1
|
Wylenzek F, Bühling KJ, Laakmann E. A systematic review on the impact of nutrition and possible supplementation on the deficiency of vitamin complexes, iron, omega-3-fatty acids, and lycopene in relation to increased morbidity in women after menopause. Arch Gynecol Obstet 2024; 310:2235-2245. [PMID: 38935105 PMCID: PMC11393286 DOI: 10.1007/s00404-024-07555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
A balanced and healthy diet during the menopausal transition and after menopause is crucial for women to reduce the risk for morbidities and chronic diseases due to deficiency of essential nutrients. PURPOSE The objective of this study was to conduct a systematic review of studies that analyzed the impact of vitamin and nutrient deficiencies in postmenopausal women in relation to increased morbidities and chronic conditions. METHODS Observational studies were searched in the databases PubMed, UpToDate, and Google Scholar. RESULTS We searched 122 studies, of which 90 were included in our analysis. The meta-analysis of the data could not be performed because of the heterogeneity of the statistical methods in the included studies. In our study, we focused on the aspects of vitamin B6, vitamin B12, vitamin D, iron, omega-3-fatty acids, and lycopene, belonging to the family of carotenoids. Postmenopausal women with deficiencies of these nutrients are more vulnerable to comorbidities such as cardiovascular and cerebrovascular events, metabolic diseases, osteoporosis, obesity, cancer and neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, depression, cognitive decline, dementia, and stroke. We concluded that women after menopause tend to have a greater probability of suffering from deficiencies in various vitamins and nutrients, and consequently have an increased risk of developing morbidities and chronic diseases. CONCLUSION In conclusion, maintaining optimum serum levels of nutrients and vitamins, either through a balanced and healthy diet consuming fresh fruits, vegetables, and fats or by taking appropriate supplementation, is essential in maintaining optimal health-related quality of life and reducing the risk for women during the menopausal transition and after menopause. Nevertheless, more recent studies need to be assessed to formulate adequate recommendations to achieve positive clinical outcomes.
Collapse
Affiliation(s)
- Friederike Wylenzek
- Department of Gynecological Endocrinology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Kai J Bühling
- Department of Gynecological Endocrinology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Elena Laakmann
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
2
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
3
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
4
|
Wang S, Heng K, Song X, Zhai J, Zhang H, Geng Q. Lycopene Improves Bone Quality in SAMP6 Mice by Inhibiting Oxidative Stress, Cellular Senescence, and the SASP. Mol Nutr Food Res 2023; 67:e2300330. [PMID: 37880898 DOI: 10.1002/mnfr.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/17/2023] [Indexed: 10/27/2023]
Abstract
SCOPE Cellular senescence (CS) is closely related to tissue ageing including bone ageing. CS and the senescence-associated secretory phenotype (SASP) have emerged as critical pathogenesis elements of senile osteoporosis. This study aims to investigate the effect of lycopene on senile osteoporosis. METHODS AND RESULTS The senescence-accelerated mouse prone 6 (SAMP6) strain of mice is used as the senile osteoporosis model. Daily ingestion of lycopene for 8 weeks preserves the bone mass, density, strength, and microarchitecture in the SAMP6 mice. Moreover, these alterations are associated with a decrease in oxidative stress in the senile osteoporosis model. In addition, there is a reduction in osteoblast and osteocyte senescence and the SASP in the bone tissues of the SAMP6 mice. Lycopene improves bone health likely due to its antioxidant properties that may be linked with the regulation of CS and SASP in the SAMP6 mice. CONCLUSION These results suggest that lycopene may be beneficial for the management of senile osteoporosis by inhibiting oxidative stress, CS, and the SASP.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Ke Heng
- Department of Orthopedics, Changzhou Second Hospital, Nanjing Medical University, Changzhou, 213000, China
| | - Xingchen Song
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
| | - Juan Zhai
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
| | - Huanyu Zhang
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
| | - Qinghe Geng
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
| |
Collapse
|
5
|
Xiao X, Cui Y, Lu H, Wang J, Yang J, Liu L, Liu Z, Peng X, Cao H, Liu X, Wei X. Strontium ranelate enriched Ruminococcus albus in the gut microbiome of Sprague-Dawley rats with postmenopausal osteoporosis. BMC Microbiol 2023; 23:365. [PMID: 38008735 PMCID: PMC10680188 DOI: 10.1186/s12866-023-03109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Gut microbiome is critical to our human health and is related to postmenopausal osteoporosis (PMO). Strontium ranelate (SrR) is an anti-osteoporosis oral drug that can promote osteoblast formation and inhibit osteoclast formation. However, the effect of SrR on gut microbiome has been rarely studied. Therefore, we investigated the effect of oral SrR on gut microbiome and metabolic profiles. RESULTS In this study, we used ovariectomized (OVX) Sprague-Dawley rats to construct a PMO model and applied oral SrR for 6 weeks. The relative abundance of intestinal microbiome was investigated by 16S rRNA metagenomic sequencing. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to analyze changes in metabolites of intestinal contents. Results demonstrated that 6-week oral SrR alleviated osteoporosis and significantly changed the composition of the gut microbiome and metabolic profiles of OVX rats. Ruminococcus, Akkermansia and Oscillospira were significantly enriched in the gut of OVX rats after 6-week oral SrR. Especially, the species R. albus showed the greatest importance by a random forest classifier between OVX and OVX_Sr group. The enrichment of R. albus in the gut was positively correlated with bone mineral density and the accumulation of lycopene and glutaric acid, which also significantly elevated after oral SrR. CONCLUSIONS We discovered that oral SrR can improve bone health while stimulate the accumulation of gut microbe R. albus and metabolites (lycopene and glutaric acid). The results suggested possible connections between oral SrR and the gut-bone axis, which may provide new insight into the treatment/prevention of osteoporosis.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Yuanyuan Cui
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Huigai Lu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Jiaqi Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Jing Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Long Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zhixin Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xiaohong Peng
- Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, PR China
| | - Hong Cao
- Department of Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xinghui Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China.
| | - Xiuli Wei
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China.
| |
Collapse
|
6
|
Wawrzyniak N, Gramza-Michałowska A, Kurzawa P, Kołodziejski P, Suliburska J. Calcium carbonate-enriched pumpkin affects calcium status in ovariectomized rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1402-1413. [PMID: 36936115 PMCID: PMC10020404 DOI: 10.1007/s13197-023-05686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Calcium carbonate (CaCO3)-enriched pumpkin may serve as a good source of calcium for patients diagnosed with osteoporosis. In this study, we aimed to determine the effect of CaCO3-enriched pumpkin on Ca status in ovariectomized rats. The study included 40 female Wistar rats divided into five groups (n = 8). One group was fed with a standard diet (control group), while the other four groups were ovariectomized and received a standard diet (control ovariectomized group), or a diet containing CaCO3-enriched pumpkin, alendronate, or both. The nutritional intervention lasted 12 weeks, and then the rats were euthanized. Tissue and blood samples were collected and assessed for the levels of total Ca, estradiol, parathyroid hormone, and procollagen type I N propeptide. In addition, a histological analysis was performed on femurs. The results of the study suggest that CaCO3-enriched pumpkin can increase Ca content in femurs and improve bone recovery in ovariectomized rats. Furthermore, enriched pumpkin contributes to Ca accumulation in the kidneys, and this effect is more pronounced in combination with alendronate.
Collapse
Affiliation(s)
- Natalia Wawrzyniak
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznan, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Paweł Kurzawa
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Oncological Pathology, Pozna University of Medical Sciences, Szamarzewskiego 84, 60-596 Poznan, Poland
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznan, Poland
| |
Collapse
|
7
|
Dietary intake of pistachios or mixed nuts results in higher systemic antioxidant capacity with minimal effects on bone in adolescent male rats. J Nutr Sci 2023; 12:e11. [PMID: 36721721 PMCID: PMC9879852 DOI: 10.1017/jns.2022.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
Nutrition is a key determinant of bone health and attainment of peak bone mass. Excess oxidative stress induces bone loss while increasing antioxidant capacity promotes protective effects on bone. Nuts are rich in antioxidants; therefore, we tested the hypothesis that compared to a control diet high in fat (40 % energy) and cholesterol, diets containing isocaloric amounts of pistachios (8·1 % g/g) or mixed nuts (7·5 % g/g) for 8 weeks would result in greater bone health in male adolescent (3 weeks; a state of continued skeletal growth) Sprague-Dawley rats. We found no difference in bone mechanical properties among groups. Tibial apparent density was ~5 % higher in the pistachio and mixed nuts groups v. control (P < 0·05) with no clear difference detected for the femur. Expressions of genes known to impact bone turnover and serum bone turnover biomarkers were unaffected by either diet relative to control. Serum antioxidant capacity was ~2-fold higher in the pistachio and mixed nuts groups compared with control (P < 0·05) but were similar between groups. Therefore, pistachios and mixed nuts may increase tibial density, in part, due to increasing antioxidant capacity. Longer dietary interventions may be necessary to elicit detectable changes in other bones (e.g. femur) and to detect potential mechanisms for the possible bone protective effects of nuts.
Collapse
|
8
|
Qin X, Shen Q, Guo Y, Li X, Liu J, Ye M, Wang H, Jia W, Zhang C. Physicochemical properties, digestibility and anti-osteoporosis effect of yak bone powder with different particle sizes. Food Res Int 2021; 145:110401. [PMID: 34112404 DOI: 10.1016/j.foodres.2021.110401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
As a kind of promising resource, animal bone has been widely processed into functional foods. However, there is little research about the effect of particle size on the physicochemical properties and digestibility of yak bone powder (YBP), as well as its anti-osteoporosis activity. In this study, the YBP with median particle sizes (MPS) ranging from 19.68 to 128.37 μm were prepared, and their digestibility and anti-osteoporosis activity were investigated. The results showed that smaller MPS significantly increased water holding capacity and protein solubility without changing composition. The MPS reduction greatly promoted protein digestion, producing more peptides<3 kDa and free amino acids while decreased Ca2+ and P5+ release during gastrointestinal digestion. The in vivo results revealed the positive effect of YBP on ovariectomy-induced osteoporosis in rats. The bone mineral density of ovariectomized (OVX) rats was obviously improved by regulating bone turnover markers (B-ALP, OCN, S-CTX, ES and TRAP), thus potentially shedding light on osteoporosis remission. However, different MPS exhibited a weak effect on osteoporosis in OVX rats. Therefore, YBP could be produced in relatively large particle size without sacrificing food sensory quality, the processing time of which could also be shortened for higher productivity and lower cost.
Collapse
Affiliation(s)
- Xiaojie Qin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengliang Ye
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hang Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hulunbuir Muyuankangtai Biotechnology Co. Ltd, Arongqi Logistics Business Park, Hulunbuir, Inner Mongolia, Hulunbuir, 021000, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Arnold M, Rajagukguk YV, Gramza-Michałowska A. Functional Food for Elderly High in Antioxidant and Chicken Eggshell Calcium to Reduce the Risk of Osteoporosis-A Narrative Review. Foods 2021; 10:656. [PMID: 33808726 PMCID: PMC8003428 DOI: 10.3390/foods10030656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The elderly population is increasing globally and is predicted to reach 1.5 billion in 2050. The quality of life of the elderly must be concerned, for example, with developing functional food for the elderly. In this article, the development of functional food to reduce the risk of osteoporosis in the elderly is reviewed. Oxidative stress is one of the factors which accelerates osteoporosis. Various antioxidants, including vitamin C, vitamin E, polyphenols, or lycopene, have been proven by former studies to have antioxidant activity, therefore, could reduce the risk of osteoporosis. Additionally, the application of eggshell powder in various food products has been reported to improve calcium intake, and its usage is environmentally sustainable as this could contribute to reducing food waste. The application of both antioxidants and calcium could be a good combination, but the amount of some antioxidants must be concerned so it would not interfere with the bioavailability of calcium. Therefore, this review aims to explore the functional food for the elderly to reduce the risk of osteoporosis, particularly with antioxidants and calcium from chicken eggshells. The eating preference and dietary pattern of the elderly are also considered to determine the suitable form of functional food for the elderly. The results presented in the study may be the basis for the development of new calcium-enriched food products for the elderly.
Collapse
Affiliation(s)
| | | | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland; (M.A.); (Y.V.R.)
| |
Collapse
|
10
|
Ha YJ, Choi YS, Oh YR, Kang EH, Khang G, Park YB, Lee YJ. Fucoxanthin Suppresses Osteoclastogenesis via Modulation of MAP Kinase and Nrf2 Signaling. Mar Drugs 2021; 19:132. [PMID: 33673704 PMCID: PMC7997314 DOI: 10.3390/md19030132] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Fucoxanthin (FX), a natural carotenoid present in edible brown seaweed, is known for its therapeutic potential in various diseases, including bone disease. However, its underlying regulatory mechanisms in osteoclastogenesis remain unclear. In this study, we investigated the effect of FX on osteoclast differentiation and its regulatory signaling pathway. In vitro studies were performed using osteoclast-like RAW264.7 cells stimulated with the soluble receptor activator of nuclear factor-κB ligand or tumor necrosis factor-alpha/interleukin-6. FX treatment significantly inhibited osteoclast differentiation and bone resorption ability, and downregulated the expression of osteoclast-specific markers such as nuclear factor of activated T cells 1, dendritic cell-specific seven transmembrane protein, and matrix metallopeptidase 9. Intracellular signaling pathway analysis revealed that FX specifically decreased the activation of the extracellular signal-regulated kinase and p38 kinase, and increased the nuclear translocation of phosphonuclear factor erythroid 2-related factor 2 (Nrf2). Our results suggest that FX regulates the expression of mitogen-activated protein kinases and Nrf2. Therefore, FX is a potential therapeutic agent for osteoclast-related skeletal disorders including osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (Y.-J.H.); (E.H.K.)
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (Y.S.C.); (Y.R.O.)
| | - Ye Rim Oh
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (Y.S.C.); (Y.R.O.)
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (Y.-J.H.); (E.H.K.)
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science and Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si 54896, Korea;
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (Y.-J.H.); (E.H.K.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
11
|
Umigai N, Kozai Y, Saito T, Takara T. Effects of paprika carotenoid supplementation on bone turnover in postmenopausal women: a randomized, double-blind, placebo-controlled, parallel-group comparison study. Food Nutr Res 2020; 64:4565. [PMID: 33240029 PMCID: PMC7672447 DOI: 10.29219/fnr.v64.4565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background Paprika (Capsicum annuum L.) is a good source of carotenoids, including capsanthin, β-carotene, β-cryptoxanthin, and zeaxanthin. Several epidemiological studies have shown a beneficial association of intake of these carotenoids or their blood concentration with bone mineral density (BMD) and fracture risk. However, little information is available regarding the effect of intake of these carotenoids on bone metabolism in postmenopausal women. Objective The objective of the present study was to investigate the effects of paprika carotenoid extract (PCE) on bone turnover in healthy, postmenopausal women. Design We conducted a randomized, double-blind, placebo-controlled, parallel-group comparison study. One hundred participants were randomly assigned to PCE or placebo groups. Each group was given a 20 mg PCE (equivalent to 1.4 mg of carotenoids) a day or a placebo for 24 weeks. We measured bone resorption markers (tartrate-resistant acid phosphatase 5b [TRACP-5b] and serum type I collagen cross-linked N-telopeptide [sNTX]) at 12 and 24 weeks and bone formation markers (bone alkaline phosphatase and osteocalcin) at 24 weeks. Results The percentage decrease of TRACP-5b at 24 weeks was significantly higher for PCE than the placebo. There were no significant differences in sNTX or bone formation markers, although PCE decreased each marker compared with the placebo. Conclusion Our findings suggest that PCE supplementation suppresses bone resorption and contributes to maintaining bone quality in postmenopausal women.
Collapse
Affiliation(s)
| | - Yusuke Kozai
- Department of Dentomaxillofacial Diagnosis and Treatment, Kanagawa Dental University, Kanagawa, Japan
| | | | | |
Collapse
|
12
|
Odes-Barth S, Khanin M, Linnewiel-Hermoni K, Miller Y, Abramov K, Levy J, Sharoni Y. Inhibition of Osteoclast Differentiation by Carotenoid Derivatives through Inhibition of the NF-ƙB Pathway. Antioxidants (Basel) 2020; 9:E1167. [PMID: 33238590 PMCID: PMC7700390 DOI: 10.3390/antiox9111167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023] Open
Abstract
The bone protective effects of carotenoids have been demonstrated in several studies, and the inhibition of RANKL-induced osteoclast differentiation by lycopene has also been demonstrated. We previously reported that carotenoid oxidation products are the active mediators in the activation of the transcription factor Nrf2 and the inhibition of the NF-ƙB transcription system by carotenoids. Here, we demonstrate that lycopene oxidation products are more potent than intact lycopene in inhibiting osteoclast differentiation. We analyzed the structure-activity relationship of a series of dialdehyde carotenoid derivatives (diapocarotene-dials) in inhibiting osteoclastogenesis. We found that the degree of inhibition depends on the electron density of the carbon atom that determines the reactivity of the conjugated double bond in reactions such as Michael addition to thiol groups in proteins. Moreover, the carotenoid derivatives attenuated the NF-ƙB signal through inhibition of IƙB phosphorylation and NF-ƙB translocation to the nucleus. In addition, we show a synergistic inhibition of osteoclast differentiation by combinations of an active carotenoid derivative with the polyphenols curcumin and carnosic acid with combination index (CI) values < 1. Our findings suggest that carotenoid derivatives inhibit osteoclast differentiation, partially by inhibiting the NF-ƙB pathway. In addition, carotenoid derivatives can synergistically inhibit osteoclast differentiation with curcumin and carnosic acid.
Collapse
Affiliation(s)
- Shlomit Odes-Barth
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Marina Khanin
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Karin Linnewiel-Hermoni
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Y.M.); (K.A.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Karina Abramov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Y.M.); (K.A.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Joseph Levy
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Yoav Sharoni
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| |
Collapse
|
13
|
Potential Role of Lycopene in the Prevention of Postmenopausal Bone Loss: Evidence from Molecular to Clinical Studies. Int J Mol Sci 2020; 21:ijms21197119. [PMID: 32992481 PMCID: PMC7582596 DOI: 10.3390/ijms21197119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by reduced bone mineral density, which affects the quality of life of the aging population. Furthermore, disruption of bone microarchitecture and the alteration of non-collagenous protein in bones lead to higher fracture risk. This is most common in postmenopausal women. Certain medications are being used for the treatment of osteoporosis; however, these may be accompanied by undesirable side effects. Phytochemicals from fruits and vegetables are a source of micronutrients for the maintenance of bone health. Among them, lycopene has recently been shown to have a potential protective effect against bone loss. Lycopene is a lipid-soluble carotenoid that exists in both all-trans and cis-configurations in nature. Tomato and tomato products are rich sources of lycopene. Several human epidemiological studies, supplemented by in vivo and in vitro studies, have shown decreased bone loss following the consumption of lycopene/tomato. However, there are still limited studies that have evaluated the effect of lycopene on the prevention of bone loss in postmenopausal women. Therefore, the aim of this review is to summarize the relevant literature on the potential impact of lycopene on postmenopausal bone loss with molecular and clinical evidence, including an overview of bone biology and the pathophysiology of osteoporosis.
Collapse
|
14
|
Berg J, Seyedsadjadi N, Grant R. Increased Consumption of Plant Foods Is Associated with Increased Bone Mineral Density. J Nutr Health Aging 2020; 24:388-397. [PMID: 32242206 DOI: 10.1007/s12603-020-1339-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the relationship between plant food consumption and bone mineral density (BMD) in a healthy population when age, gender, BMI and physical activity are accounted for. DESIGN Cross-sectional study. SETTING Participants were recruited from the Sydney Adventist hospital and the University of New South Wales, Sydney, Australia. PARTICIPANTS 33 males and 40 females (total n=73) participated in this study. The mean age was 56.1 ± 8.5 years. All participants were non-diabetic and in general good health. MEASUREMENTS A principle component analysis (PCA) was performed on 12 month self-report food intake data, gathered using the Cancer Council Victoria Dietary Questionnaire for Epidemiological Studies Version 2. Dual-energy X-ray absorptiometry was used to measure total BMD. Fasting plasma total protein, calcium and 25-Hydroxy Vitamin D levels were analysed by the Sydney Adventist Hospital pathology laboratory. Anthropometric measures were obtained using a standardized protocol. Self-reported physical activity levels were assessed using the International Physical Activity Questionnaire. RESULTS The PCA revealed three principle components. These were termed 'Meat Based', 'Junk Food' and 'Plant Based.' After controlling for age, gender, physical activity and BMI, the Plant Based component correlated positively with BMD (p=0.054, R2=0.439) and T-score (p=0.053, R2=0.221). Using a similar model no association between the Meat Based component and BMD or T-score was found. However, when the Plant Based component was included the Meat Based component correlated positively with BMD (p=0.046, R2=0.474) and T-score (p=0.046, R2=0.279). There was no significant association between the Junk Food component and BMD or T-score. People in the third Plant (927 ± 339 vs 751 ± 255 g/day, p=0.025) and Meat Based (921 ± 270 vs 676 ± 241 g/day, p=0.002) tertile had higher calcium intakes than those in the first. People in the second Plant Based tertile had higher plasma Vitamin D levels than those in the first (63.5 ± 16.8 vs. 52.3 ± 22.1 nmol/L, p=0.053) while those in the third Junk Food tertile had lower levels than those in the first (52.4 ± 18.5 vs. 65.4 ± 19.8 nmol/L, p=0.027). No association between Plant Based tertiles and protein intake was observed, however those in the third Meat Based (99.7 ± 25.1 vs. 50.9 ± 13.8 g/day, p=0.000) and Junk Food (87.4 ± 30.7 vs. 56.6 ± 22.2 g/day, p=0.000) tertile had higher protein intake compared to those in the first tertile. CONCLUSION In a healthy middle aged population with normal BMD, an increase in plant food consumption, either alone or in combination with a diet containing meat, is associated with improved bone mineralisation markers. This positive relationship is most likely due to the extensive range of micronutrients and phytochemicals packaged within plants.
Collapse
Affiliation(s)
- J Berg
- Ross Grant, The University of Sydney Adventist Hospital Clinical School, 185 Fox Valley Rd, Wahroonga, NSW Australia, Phone: +61 2 9487 9602,
| | | | | |
Collapse
|
15
|
Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol 2020; 28:101309. [PMID: 31487581 PMCID: PMC6728880 DOI: 10.1016/j.redox.2019.101309] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022] Open
Abstract
The dysregulation of ROS production and osteoclastogenesis is involved in the progress of osteoporosis. To identify novel and effective targets to treat this disease, it is important to explore the underlying mechanisms. In our study, we firstly tested the effect of the Nrf2 activator RTA-408, a novel synthetic triterpenoid under clinical investigation for many diseases, on osteoclastogenesis. We found that it could inhibit osteoclast differentiation and bone resorption in a time- and dose-dependent manner. Further, RTA-408 enhanced the expression and activity of Nrf2 and significantly suppressed RANKL-induced reactive oxygen species (ROS) production. Nrf2 regulates the STING expression and STING induces the production of IFN-β. Here, we found that RTA-408 could suppress STING expression, but that it does not affect Ifnb1 expression. RANKL-induced degradation of IκBα and the nuclear translocation of P65 was suppressed by RTA-408. Although this compound was not found to influence STING-IFN-β signaling, it suppressed the RANKL-induced K63-ubiquitination of STING via inhibiting the interaction between STING and the E3 ubiquitin ligase TRAF6. Further, adenovirus-mediated STING overexpression rescued the suppressive effect of RTA-408 on NF-κB signaling and osteoclastogenesis. In vivo experiments showed that this compound could effectively attenuate ovariectomy (OVX)-induced bone loss in C57BL/6 mice by inhibiting osteoclastogenesis. Collectively, we show that RTA-408 inhibits NF-κB signaling by suppressing the recruitment of TRAF6 to STING, in addition to attenuating osteoclastogenesis and OVX-induced bone loss in vivo, suggesting that it could be a promising candidate for treating osteoporosis in the future.
Collapse
Affiliation(s)
- Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Boya Zhang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hai Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
16
|
Przybylska S. Lycopene – a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14260] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sylwia Przybylska
- Department Food Science and Technology Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. No. 3 Szczecin 71‐459 Poland
| |
Collapse
|
17
|
Oliveira GR, Vargas-Sanchez PK, Fernandes RR, Ricoldi MST, Semeghini MS, Pitol DL, de Sousa LG, Siessere S, Bombonato-Prado KF. Lycopene influences osteoblast functional activity and prevents femur bone loss in female rats submitted to an experimental model of osteoporosis. J Bone Miner Metab 2019; 37:658-667. [PMID: 30357566 DOI: 10.1007/s00774-018-0970-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022]
Abstract
Antioxidant properties of several nutrients may influence bone metabolism, affording protection against damaging effects caused by oxidative stress. Thus, we hypothesized that lycopene may benefit bone tissue metabolism and functional activity of osteoblastic cells from bone marrow of osteoporotic female rats. Wistar rats were ovariectomized and paired with sham animals. In vitro evaluations were performed after 60 days of surgery, when cells were cultured in osteogenic medium and divided in control (C), ovariectomized (OVX) and ovariectomized + 1 μmol/L lycopene (OVXL) groups. Besides, in vivo studies were carried out to evaluate femur bone remodeling by histological and histomorphometric analyses after daily intake of 10 mg/kg of lycopene for 30 and 60 days after ovariectomy. Cell proliferation was significantly higher in OVX and OVXL groups after 10 days of culture. Alkaline phosphatase activity (ALP) was higher in OVXL group in later periods of cell culture, whereas its in situ detection was higher for this group in all experimental periods; nevertheless, mineralization did not show significant differences among the groups. There was a significant upregulation of genes Sp7, Runx2 and Bsp after 3 days and genes Runx2 and Bglap after 10 days from OVXL when compared to OVX. In vivo results demonstrated that daily intake of 10 mg/kg of lycopene for 60 days decreased bone loss in femur epiphysis in ovariectomized rats by maintaining trabecular bone similar to controls. Data obtained suggest that lycopene might benefit the functional activity of osteoblastic cells from ovariectomized rats, as well as avoid further bone resorption.
Collapse
Affiliation(s)
- Gustavo Ribeiro Oliveira
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Paula Katherine Vargas-Sanchez
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Roger Rodrigo Fernandes
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Milla Sprone Tavares Ricoldi
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Mayara Sgarbi Semeghini
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Dimitrius Leonardo Pitol
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Luiz Gustavo de Sousa
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Selma Siessere
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
18
|
Pi Y, Liang H, Yu Q, Yin Y, Xu H, Lei Y, Han Z, Tian J. Low‑frequency pulsed electromagnetic field inhibits RANKL‑induced osteoclastic differentiation in RAW264.7 cells by scavenging reactive oxygen species. Mol Med Rep 2019; 19:4129-4136. [PMID: 30942408 PMCID: PMC6470919 DOI: 10.3892/mmr.2019.10079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/15/2019] [Indexed: 12/28/2022] Open
Abstract
Bone homeostasis is a dynamic balance maintained by bone formation and resorption. An increase in the number and activity of osteoclasts leads to excessive bone resorption, which in turn results in bone disease, including osteoporosis. Therefore, inhibiting the differentiation and activity of osteoclasts is important for maintaining bone mass. Several studies have revealed that the use of a low-frequency pulsed electromagnetic field (PEMF) is an effective method to treat osteoporosis. However, its exact mechanism remains to be fully clarified. Therefore, the present study was designed to examine the effects that PEMF exerts on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and intracellular reactive oxygen species (ROS) production in RAW264.7 cells. The viability of cells was determined using a Cell Counting Kit-8 assay, and gene and protein expression were investigated via reverse transcription-quantitative polymerase chain reaction and western blot analyses. Furthermore, microscopy was performed to detect the levels of intracellular ROS and tartrate-resistant acid phosphatase (TRAP). Following the culture of RAW264.7 cells with RANKL (50 ng/ml) for 4 days (3 h/day) under PEMF (75 Hz, 1 mt) exposure, it was observed that PEMF had an inhibitory effect on RANKL-induced osteoclastic differentiation. Multinucleated osteoclast formation, the activity of TRAP and the expression of osteoclastogenesis-associated genes, including cathepsin K, nuclear factor of activated T cells cytoplasmic 1 and TRAP, were significantly reduced by PEMF. Furthermore, PEMF effectively decreased the generation of intracellular ROS during osteoclastic differentiation. In addition, the results demonstrated that ROS are the key factor in osteoclast differentiation and formation. Reducing intracellular ROS with diphenylene-iodonium chloride significantly inhibited RANKL-induced osteoclast differentiation. Taken together, the results of the present study demonstrated that PEMF may inhibit RANKL-induced osteoclastogenesis by scavenging intracellular ROS. These results may provide the groundwork for future PEMF clinical applications in osteoclast-associated bone disease.
Collapse
Affiliation(s)
- Ying Pi
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Haifeng Liang
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Yu
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yukun Yin
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Xu
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yutian Lei
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongyu Han
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
19
|
Wang H, Chen N, Shen S, Li H, Hu X, Yang Y, Yu X, Ye L, Zhou W, Feng M. Peptide TQS169 prevents osteoporosis in rats by enhancing osteogenic differentiation and calcium absorption. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Li X, Xue W, Cao Y, Long Y, Xie M. Effect of lycopene on titanium implant osseointegration in ovariectomized rats. J Orthop Surg Res 2018; 13:237. [PMID: 30223885 PMCID: PMC6142359 DOI: 10.1186/s13018-018-0944-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background Lycopene prevents bone loss in osteopenic models. However, the role of lycopene in the success rate of dental implants under osteopenic conditions remains unknown. The aim of this study was to evaluate whether lycopene prevents delayed implant osseointegration in an ovariectomized (OVX) rat model. Methods Thirty female Sprague-Dawley rats were randomly divided into the following groups: OVX with vehicle (OVX group), OVX with lycopene (OVX + lycopene group) and sham-operated with vehicle (sham group). Twelve weeks after ovariectomy or sham operation, titanium implants were placed into the distal metaphysis of the bilateral femurs of each rat. These rats were subsequently gavaged with lycopene (50 mg/kg/day) or vehicle. After 12 weeks of gavage, all rats were sacrificed, and specimens were harvested. Sample osseointegration was evaluated by biomechanical testing, 3D micro-computed tomography (micro-CT) analysis and histomorphometric analysis. Results Compared with the OVX group, the OVX + lycopene group showed a 69.3% increase in the maximum push-out force (p < 0.01). Micro-CT data for the femurs in the OVX + lycopene group showed significantly higher bone volume, trabecular thickness and less trabecular space than did those in the OVX group. The bone area (BA) around the implant and bone contact (BC) with the implant were increased by 72.3% (p < 0.01) and 51.4% (p < 0.01) in the OVX + lycopene group, respectively, compared with those in the OVX group. There was no significant difference in the mechanical test, micro-CT scanning and histomorphometric data between the OVX + lycopene and sham groups (p > 0.05). Conclusions Lycopene improved implant osseointegration, fixation and bone formation under osteopenic conditions, suggesting that lycopene is a promising therapeutic agent to prevent delayed implant osseointegration and bone loss under osteopenic conditions.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China.
| | - Wenli Xue
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| | - Yong Cao
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| | - Yanming Long
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| | - Mengsheng Xie
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10th Shuangyong Road, Nanning, 530021, China
| |
Collapse
|
21
|
Lee J, Son HS, Lee HI, Lee GR, Jo YJ, Hong SE, Kim N, Kwon M, Kim NY, Kim HJ, Lee YJ, Seo EK, Jeong W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. FASEB J 2018; 33:2026-2036. [PMID: 30216110 DOI: 10.1096/fj.201800866rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many bone diseases, such as osteoporosis and rheumatoid arthritis, are attributed to an increase in osteoclast number or activity; therefore, control of osteoclasts has significant clinical implications. This study shows how skullcapflavone II (SFII), a flavonoid with anti-inflammatory activity, regulates osteoclast differentiation, survival, and function. SFII inhibited osteoclastogenesis with decreased activation of MAPKs, Src, and cAMP response element-binding protein (CREB), which have been known to be redox sensitive. SFII decreased reactive oxygen species by scavenging them or activating nuclear factor-erythroid 2-related factor 2 (Nrf2), and its effects were partially reversed by hydrogen peroxide cotreatment or Nrf2 deficiency. In addition, SFII attenuated survival, migration, and bone resorption, with a decrease in the expression of integrin β3, Src, and p130 Crk-associated substrate, and the activation of RhoA and Rac1 in differentiated osteoclasts. Furthermore, SFII inhibited osteoclast formation and bone loss in an inflammation- or ovariectomy-induced osteolytic mouse model. These findings suggest that SFII inhibits osteoclastogenesis through redox regulation of MAPKs, Src, and CREB and attenuates the survival and resorption function by modulating the integrin pathway in osteoclasts. SFII has therapeutic potential in the treatment and prevention of bone diseases caused by excessive osteoclast activity.-Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., Jeong, W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Han Saem Son
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hye In Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Gong-Rak Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - You-Jin Jo
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Hong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Narae Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Minjeong Kwon
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Nam Young Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun Jin Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Yoo Jin Lee
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Woojin Jeong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
22
|
Costa-Rodrigues J, Fernandes MH, Pinho O, Monteiro PRR. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J Nutr Biochem 2018; 57:26-34. [PMID: 29655028 DOI: 10.1016/j.jnutbio.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/20/2018] [Accepted: 03/01/2018] [Indexed: 01/21/2023]
Abstract
Lycopene is a lipid-soluble pigment that is mainly found in tomato. It is the carotenoid that presents the highest antioxidant potential, and due to that, it has been implicated in a decrease of the risk of several oxidative-stress-related disorders, such as cancer, inflammatory diseases and osteoporosis. Nevertheless, at the present, there is no detailed information about how lycopene affects bone metabolism. The aim of the present work was to characterize the cellular and molecular effects of lycopene on human osteoclast and osteoblast differentiation and function. It was observed that lycopene, at levels found in plasma after the ingestion of lycopene-containing products, decreased osteoclast differentiation but did not affect cell density/survival; calcium-phosphate resorbing ability was also decreased. On the other hand, osteoblast proliferation (via a decrease on apoptosis) and differentiation were increased in the presence of lycopene. The observed effects in both cell types appeared to be related to significant changes in MEK signaling pathway, but also in protein kinase C pathway in osteoclasts and NFkB signaling in osteoblasts. In conclusion, lycopene appears to promote an anabolic state of bone metabolism, stimulating osteoblastogenesis and inhibiting osteoclastogenesis, which may contribute to the promotion of a proper health status of bone tissue. This information might be relevant for the prevention and delay in the progression of osteolytic bone conditions.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; ESS-Escola Superior de Saúde, P. Porto, Portugal; Faculdade de Medicina Dentária, U. Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Portugal.
| | | | - Olívia Pinho
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; REQUIMTE/LAQV-U. Porto, Portugal
| | | |
Collapse
|
23
|
Carotenoids and risk of fracture: a meta-analysis of observational studies. Oncotarget 2018; 8:2391-2399. [PMID: 27911854 PMCID: PMC5356809 DOI: 10.18632/oncotarget.13678] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture.
Collapse
|
24
|
BACANLI M, BAŞARAN N, BAŞARAN AA. Lycopene: Is it Beneficial to Human Health as an Antioxidant? Turk J Pharm Sci 2017; 14:311-318. [PMID: 32454630 PMCID: PMC7227929 DOI: 10.4274/tjps.43043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022]
Abstract
It is well known that free oxygen radicals play an important role in the pathogenesis of several chronic disorders. Antioxidants are known as potential scavengers of reactive oxygen species that can protect biologic membranes against oxidative damage. Recent interest in phytochemicals has increased because of their protective effects against free oxygen radicals. Lycopene, which belongs to the carotenoid family, is the most effective singlet oxygen scavenger in vitro of all the carotenoids. Foods that contain lycopene and related supplements have been reported to prevent chronic diseases including cancer, asthma, and cardiovascular disorders. The aim of the article was to give a brief review of the antioxidant properties and beneficial health effects of lycopene.
Collapse
Affiliation(s)
- Merve BACANLI
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Nurşen BAŞARAN
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - A. Ahmet BAŞARAN
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
| |
Collapse
|
25
|
Gajowik A, Dobrzyńska MM. The evaluation of protective effect of lycopene against genotoxic influence of X-irradiation in human blood lymphocytes. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:413-422. [PMID: 28913689 PMCID: PMC5655585 DOI: 10.1007/s00411-017-0713-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/07/2017] [Indexed: 05/07/2023]
Abstract
Many studies suggest that exogenous antioxidants may protect cells against DNA damage caused with ionizing radiation. One of the most powerful antioxidants is lycopene (LYC), a carotenoid derived from tomatoes. The aim of this study was to investigate, using the comet assay, whether LYC can act as protectors/modifiers and prevent DNA damage induced in human blood lymphocytes, as well as to mitigate the effects of radiation exposure. In this project, LYC, dissolved in DMSO at a concentration of 10, 20 or 40 μM/ml of cell suspension, was added to the isolated lymphocytes from human blood at appropriate intervals before or after the X-irradiation at doses of 0.5, 1 and 2 Gy. Cell viability in all groups was maintained at above 70%. The results showed the decrease of DNA damage in cells treated with various concentrations of LYC directly and 1 h before exposure to X-rays compared to the control group exposed to irradiation alone. Contrary results were observed in cells exposed to LYC immediately after exposure to ionizing radiation. The studies confirmed the protective effect of LYC against DNA damage induced by ionizing radiation, but after irradiation the carotenoid did not stimulate of DNA repair and cannot act as modifier. However, supplementation with LYC, especially at lower doses, may be useful in protection from radiation-induced oxidative damage.
Collapse
Affiliation(s)
- Aneta Gajowik
- Department of Radiation Protection and Radiobiology, National Institute of Public Health-National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland.
| | - Małgorzata M Dobrzyńska
- Department of Radiation Protection and Radiobiology, National Institute of Public Health-National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland
| |
Collapse
|
26
|
Hong SE, Lee J, Seo DH, In Lee H, Ri Park D, Lee GR, Jo YJ, Kim N, Kwon M, Shon H, Kyoung Seo E, Kim HS, Young Lee S, Jeong W. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast. Free Radic Biol Med 2017; 112:191-199. [PMID: 28774817 DOI: 10.1016/j.freeradbiomed.2017.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 07/29/2017] [Indexed: 02/01/2023]
Abstract
Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast.
Collapse
Affiliation(s)
- Seong-Eun Hong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Dong-Hyun Seo
- Department of Biomedical Engineering, College of Health Science, Institute of Medical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Doo Ri Park
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - You-Jin Jo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minjung Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hansem Shon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Han-Sung Kim
- Department of Biomedical Engineering, College of Health Science, Institute of Medical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
27
|
Hosseini-Vashan SJ, Golian A, Yaghobfar A. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1183-1192. [PMID: 26589827 DOI: 10.1007/s00484-015-1112-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
A study was conducted to investigate the effects of supplementation of dried tomato pomace (DTP) on growth performance, relative weights of viscera, serum biological parameters, antioxidant status, immune response, and bone composition of broilers exposed to a high ambient temperature. A total of 352 one-day-old male broiler chickens were randomly divided into four groups consisting of four replicates with 22 birds each. One group was reared under the thermoneutral zone and fed a corn-soybean meal basal diet. The other three groups were subjected to a cyclic heat stress from 29 to 42 days of age (34 ± 1 °C, 55 % RH, 5 h/day). These birds were fed corn-soybean meal basal diet or the same diet supplemented with 3 % DTP (420 mg lycopene/kg diet) or 5 % (708 mg lycopene/kg diet) of DTP. Blood samples were collected on days 28 and 42, and the birds were slaughtered at the same times. Supplementation of 5 % of DTP increased body weight and production index and decreased feed conversion ratio during 1-28 days of age. On day 28, the broilers supplemented with 5 % DTP had lower serum triglycerides and higher high-density lipoprotein (HDL) cholesterol concentration than those on the other dietary treatments. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were higher and the concentration of malondialdehyde (MDA) was lower in the broilers fed 5 % TP than those of the broilers fed other diets at 28 days of age. The effects of heat stress (HS) were impaired body weight, enhanced serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipase, and MDA concentration while reducing the activities of GPx and SOD. Dried tomato pomace supplementation did not influence growth performance under HS but ameliorated the negative effects of HS on the serum enzyme activities, GPx activity, and lipid peroxidation. Heat stress did not change the relative weights of the lymphoid organs but reduced the total and IgG titers for secondary antibody response to sheep red blood cells and titer against Newcastle disease virus and increased the heterophil/lymphocyte ratio. The supplementation with 5 % of DTP completely alleviated the negative effects of HS on immune responses. The ash, Ca, and P contents of the tibia bone were decreased under HS. The ash and Ca contents of the tibia were not significantly different between thermoneutral and heat-stressed broilers supplemented with 5 % DTP. In conclusion, dietary supplementation of DTP, particularly 5 % DTP, to broiler diet attenuated the detrimental effects of HS on the activities of serum enzymes, oxidative status, immune response, and bone composition.
Collapse
Affiliation(s)
- S J Hosseini-Vashan
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, PO Box 91775-163, Islamic Republic of Iran.
| | - A Golian
- The Excellence Center for Animal Sciences and Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, PO Box 91775-1163, Islamic Republic of Iran
| | - A Yaghobfar
- Animal Nutrition Department, Animal Research Institute, Karj, Iran
| |
Collapse
|
28
|
Zhang ZQ, Cao WT, Liu J, Cao Y, Su YX, Chen YM. Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporos Int 2016; 27:1593-1601. [PMID: 26753540 DOI: 10.1007/s00198-015-3425-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED This cross-sectional study has been performed to investigate the relationship between serum carotenoids and bone mineral density (BMD) in Chinese population. We found that women with higher serum β-cryptoxanthin, lycopene, or α-carotene exhibited higher BMD at various bone sites. Similar association was observed between α-carotene and BMD in men. INTRODUCTION Carotenoids may positively regulate bone metabolism through their antioxidant properties; however, few studies have examined the relation between serum carotenoids and bone health. We aimed to determine the associations between the serum concentration of several carotenoid subclasses and BMD in a Chinese population. METHODS This study was a community-based cross-sectional study. We measured 1898 women and 933 men aged 59.6 years who completed serum β-cryptoxanthin, zeaxanthin + lutein, lycopene, and α-carotene concentration analyses and BMD assessments. Serum individual carotenoids were assessed by the methods of reverse-phase high-performance liquid chromatography. Dual-energy X-ray absorptiometry was applied to determine BMD at whole body, lumbar spine, total hip, femur neck, and trochanter. ANCOVA was used to examine the correlations between categorized individual carotenoids and BMD at measured sites. RESULTS After adjusting for potential covariates, a monotonic dose-response positive correlation between circulating levels of β-cryptoxanthin, lycopene, and α-carotene and BMD at various skeletal sites was observed in women. Women in the top (vs. bottom) quartiles of serum β-cryptoxanthin, lycopene, or α-carotene exhibited 1.8-2.3, 1.5-2.0, or 1.3-2.7 % higher BMD at the bone sites with significant results (P-trend <0.05), respectively. For men, the corresponding values were 2.6-4.0 % for α-carotene at the whole body and hip regions (P-trend <0.001-0.023). CONCLUSION These results suggest that serum carotenoids have a favorable association with bone health in the study population, especially in women.
Collapse
Affiliation(s)
- Z-Q Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - W-T Cao
- Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - J Liu
- Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Y Cao
- Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Y-X Su
- Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Y-M Chen
- Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
29
|
Ardawi MSM, Badawoud MH, Hassan SM, Rouzi AA, Ardawi JMS, AlNosani NM, Qari MH, Mousa SA. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model. Bone 2016; 83:127-140. [PMID: 26549245 DOI: 10.1016/j.bone.2015.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]
Abstract
Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture.
Collapse
Affiliation(s)
- Mohammed-Salleh M Ardawi
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Clinical Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia; King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed H Badawoud
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Anatomy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif M Hassan
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Anatomy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahim A Rouzi
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Obstetrics and Gynecology, King Abdulaziz University, Jeddah, Saudi Arabia; King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumanah M S Ardawi
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouf M AlNosani
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Qari
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Haematology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaker A Mousa
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, State of New York University, Rensselaer, NY, USA
| |
Collapse
|
30
|
Sahni S, Mangano KM, McLean RR, Hannan MT, Kiel DP. Dietary Approaches for Bone Health: Lessons from the Framingham Osteoporosis Study. Curr Osteoporos Rep 2015; 13:245-55. [PMID: 26045228 PMCID: PMC4928581 DOI: 10.1007/s11914-015-0272-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoporosis is characterized by systemic impairment of bone mass, strength, and microarchitecture, resulting in increased risk for fragility fracture, disability, loss of independence, and even death. Adequate nutrition is important in achieving and maintaining optimal bone mass, as well as preventing this debilitating disease. It is widely accepted that adequate calcium and vitamin D intake are necessary for good bone health; however, nutritional benefits to bone go beyond these two nutrients. This review article will provide updated information on all nutrients and foods now understood to alter bone health. Specifically, this paper will focus on related research from the Framingham Osteoporosis Study, an ancillary study of the Framingham Heart Study, with data on more than 5000 adult men and women.
Collapse
Affiliation(s)
- Shivani Sahni
- Institute for Aging Research, Hebrew SeniorLife, Instructor, Beth Israel Deaconess Medical Center, Harvard Medical School, 1200 Center St., Boston, MA 02131, Phone: 617-971-5382, Fax: 617-971-5339,
| | - Kelsey M Mangano
- Institute for Aging Research, Hebrew SeniorLife, Beth Israel Deaconess Medical Center, Harvard Medical School, 1200 Center St., Boston, MA 02131, Phone: 617-971-5321, Fax: 617-971-5339,
| | - Robert R McLean
- Institute for Aging Research, Hebrew SeniorLife, Assistant Professor, Beth Israel Deaconess Medical Center, Harvard Medical School, 1200 Center St., Boston, MA 02131, Phone: 617-971-5376, Fax: 617-971-5339,
| | - Marian T Hannan
- Institute for Aging Research, Hebrew SeniorLife, Associate Professor, Beth Israel Deaconess Medical Center, Harvard Medical School, 1200 Center St., Boston, MA 02131, Phone: 617-971-5366, Fax: 617-971-5339,
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Professor, Beth Israel Deaconess Medical Center, Harvard Medical School, 1200 Center St., Boston, MA 02131, Phone: 617-971-5373, Fax: 617-971-5339,
| |
Collapse
|
31
|
Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 2015; 33:359-70. [PMID: 25804315 DOI: 10.1007/s00774-015-0656-4] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.
Collapse
Affiliation(s)
- Danielle A Callaway
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | | |
Collapse
|
32
|
Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Ir J Med Sci 2015; 185:581-587. [DOI: 10.1007/s11845-015-1309-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
|
33
|
Iimura Y, Agata U, Takeda S, Kobayashi Y, Yoshida S, Ezawa I, Omi N. The protective effect of lycopene intake on bone loss in ovariectomized rats. J Bone Miner Metab 2015; 33:270-8. [PMID: 24996525 DOI: 10.1007/s00774-014-0596-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
Antioxidant lycopene supplementation has been shown to decrease oxidative stress and have beneficial effects on bone health. However, it remains unclear whether lycopene exerts its beneficial effect on bone metabolism through mitigation of oxidative stress in vivo. The aim of this study was to investigate whether lycopene intake protects against bone loss by reducing oxidative stress in ovariectomized rats. Female Sprague-Dawley 6-week-old rats were ovariectomized and randomly divided into four groups according to the lycopene content of their diet: 0, 50, 100, and 200 ppm. The tibial bone mineral density (BMD) in the 50, 100, and 200 ppm groups was significantly higher than that in the 0 ppm group. Serum and urinary bone resorption marker levels were significantly lower in the 50, 100, and 200 ppm groups than in the 0 ppm group. There was no significant difference in systemic oxidative stress markers among all groups. However, systemic oxidative stress levels were inversely correlated with the tibial BMD. Our findings suggest that lycopene intake significantly inhibits bone loss by suppressing bone resorption in ovariectomized rats. Further studies are necessary to clarify the effect of lycopene on oxidative stress in local tissues such as bone tissue.
Collapse
Affiliation(s)
- Yuki Iimura
- Department of Health and Sport Science, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Iimura Y, Agata U, Takeda S, Kobayashi Y, Yoshida S, Ezawa I, Omi N. Lycopene intake facilitates the increase of bone mineral density in growing female rats. J Nutr Sci Vitaminol (Tokyo) 2015; 60:101-7. [PMID: 24975219 DOI: 10.3177/jnsv.60.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intake of the antioxidant lycopene has been reported to decrease oxidative stress and have beneficial effects on bone health. However, few in vivo studies have addressed these beneficial effects in growing female rodents or young women. The aim of this study was to investigate the effect of lycopene intake on bone metabolism through circulating oxidative stress in growing female rats. Six-week-old Sprague-Dawley female rats were randomly divided into 3 groups according to the lycopene content in their diet: 0, 50, and 100 ppm. The bone mineral density (BMD) of the lumbar spine and the tibial proximal metaphysis increased with lycopene content in a dose-dependent manner; the BMD in 100 ppm group was significantly higher than in the 0 ppm group. The urine deoxypyridinoline concentrations were significantly lower in the 50 and 100 ppm groups than in the 0 ppm group, and the serum bone-type alkaline phosphatase activity was significantly higher in 100 ppm group than in the 0 ppm group. No difference in systemic oxidative stress level was observed; however, the oxidative stress level inversely correlated with the tibial BMD. Our findings suggested that lycopene intake facilitates bone formation and inhibits bone resorption, leading to an increase of BMD in growing female rats.
Collapse
Affiliation(s)
- Yuki Iimura
- Department of Physical Education, Health and Sport Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba
| | | | | | | | | | | | | |
Collapse
|
35
|
Singh A, Ahmad S, Ahmad A. Green extraction methods and environmental applications of carotenoids-a review. RSC Adv 2015. [DOI: 10.1039/c5ra10243j] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review covers and discusses various aspects of carotenoids including their chemistry, classification, biosynthesis, extraction methods (conventional and non-conventional), analytical techniques and biological roles in living beings.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
- India
| | - Anees Ahmad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
36
|
Dai Z, Wang R, Ang LW, Low YL, Yuan JM, Koh WP. Protective effects of dietary carotenoids on risk of hip fracture in men: the Singapore Chinese Health Study. J Bone Miner Res 2014; 29:408-17. [PMID: 23857780 PMCID: PMC3894263 DOI: 10.1002/jbmr.2041] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
Abstract
Experimental and epidemiologic data suggest that carotenoids in vegetables and fruits may benefit bone health due to their antioxidant properties. The relationship between dietary total and specific carotenoids, as well as vegetables and fruits, and risk of hip fracture was examined among Chinese in Singapore. We used data from the Singapore Chinese Health Study, a prospective cohort of 63,257 men and women who were of ages 45 to 74 years between 1993 and 1998. At recruitment, subjects were interviewed on lifestyle factors and medical history. Usual diet was measured using a validated food frequency questionnaire. During a mean follow-up of 9.9 years, we identified 1630 hip fracture incident cases. Among men, consumption of vegetables was associated with lower hip fracture risk. Similarly, dietary total carotenoids and specific carotenoids, α-carotene, β-carotene, and lutein/zeaxanthin were inversely associated with hip fracture risk. Compared to men in the lowest quartile of nutrient density, men in the highest quartile had statistically significant 26% to 39% risk reduction (all p for trend <0.05). When stratified by body mass index (BMI), the greatest protective effects of total vegetables and carotenoids were found in men with BMI <20 kg/m(2) (p for trend ≤0.004). There was no association between dietary carotenoids or vegetables/fruits and hip fracture risk among women. This study suggests that adequate intake of vegetables may reduce risk of osteoporotic fractures among elderly men and that the antioxidant effects of carotenoids may counteract the mechanism of osteoporosis related to leanness.
Collapse
Affiliation(s)
- Zhaoli Dai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Li-Wei Ang
- Epidemiology & Disease Control Division, Ministry of Health, Singapore
| | - Yen-Ling Low
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
37
|
Tadaishi M, Nishide Y, Tousen Y, Kruger MC, Ishimi Y. Cooperative effects of soy isoflavones and carotenoids on osteoclast formation. J Clin Biochem Nutr 2014; 54:109-15. [PMID: 24688220 PMCID: PMC3947975 DOI: 10.3164/jcbn.13-94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 11/22/2022] Open
Abstract
Osteoclasts play a major role in bone resorption. Several functional food components, such as soy isoflavones and carotenoids, are reported to inhibit osteoclast formation. However, the cooperative effect of functional foods or their constituents on bone metabolism has not been clarified. This study aimed to investigate the cooperative effect of soy isoflavones and carotenoids on osteoclast formation in vitro using cultures of RAW264 and bone marrow cells in the presence of receptor activator of nuclear factor κ-B ligand. In RAW264 cells, treatment with soy isoflavones (genistein or equol) or carotenoids (β-carotene) suppressed osteoclast formation. At 10 µM, genistein and equol inhibited RAW264 cell proliferation but did not affect cell viability. When 10 µM genistein or equol was combined with 0.1 µM β-carotene, we observed an additive suppressive effect on osteoclast differentiation. Similar results were observed with bone marrow cell cultures. We found that 10 µM of zeaxanthin or lutein suppressed osteoclast formation singly, and further enhanced the suppressive effects of daidzein or genistein when administered in combination. These results suggest that the combination of soy isoflavones and carotenoids have an enhanced suppressive effect on osteoclast formation. This knowledge might be important in planning diet for bone health.
Collapse
Affiliation(s)
- Miki Tadaishi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Yoriko Nishide
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Marlena C Kruger
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| |
Collapse
|
38
|
Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med 2013; 65:789-799. [PMID: 23954472 DOI: 10.1016/j.freeradbiomed.2013.08.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates the expression of a variety of antioxidant and detoxification genes through an antioxidant-response element. Nrf2 has been shown to protect several types of cells against the acute and chronic injury that accompanies oxidative stress, but its role in osteoclasts remains unclear. In this study, we investigated the role of Nrf2 in osteoclast (OC) differentiation, a process in which reactive oxygen species (ROS) are generated and then participate, using Nrf2-knockout mice. Receptor activator of nuclear factor κB ligand (RANKL)-induced OC differentiation, actin ring formation, and osteoclastic bone resorption were substantially promoted in Nrf2-deficient OC precursor cells compared to wild-type cells. Under both unstimulated and RANKL-stimulated conditions, Nrf2 loss led to an increase in the intracellular ROS level and the oxidized-to-reduced glutathione ratio and a defect in the production of numerous antioxidant enzymes and glutathione. Moreover, pretreatment with N-acetylcysteine or diphenyleneiodonium significantly reduced the OC differentiation and decreased the intracellular ROS level in both Nrf2-deficient and wild-type cells. Pretreatment with sulforaphane and curcumin also inhibited the OC differentiation by activating Nrf2 in part. Nrf2 deficiency promoted the RANKL-induced activation of mitogen-activated protein kinases, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38; the induction of c-Fos; and the consequent induction of nuclear factor of activated T cells, cytoplasmic 1, a pivotal determinant of OC differentiation. Our results suggest that Nrf2 probably inhibits RANKL-induced OC differentiation by regulating the cellular redox status by controlling the expression of oxidative response genes, findings that might form the basis of a new strategy for treating inflammatory bone diseases.
Collapse
Affiliation(s)
- Seungha Hyeon
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Hyojung Lee
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Yoohee Yang
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Woojin Jeong
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea.
| |
Collapse
|
39
|
Tamjidipoor A, Tavafi M, Ahmadvand H. Effect of dimethyl sulfoxide on inhibition of post-ovariectomy osteopenia in rats. Connect Tissue Res 2013; 54:426-31. [PMID: 24020358 DOI: 10.3109/03008207.2013.841678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is increasing evidence that oxidative stress, due to estrogen deficiency, leads to osteopenia. In this study, dimethyl sulfoxide (DMSO), an antioxidant solvent, was used against post-ovariectomy osteopenia (PO) in rats. Forty female rats were divided into 5 groups randomly as follows: Sham, control group; OVX, ovariectomized group; DMSO1, ovariectomized injected DMSO (0.5 ml/kg/d ip); DMSO2, ovariectomized injected DMSO (1 ml/kg/day ip) and DMSO3, ovariectomized injected DMSO (2 ml/kg/d ip). DMSO therapy started 1 week after ovariectomy and continued for 13 weeks. After 13th weeks, sera were prepared, and then L4 vertebrae and right tibial bones rinsed in fixative. Serum bone alkaline phosphatase (BALP), osteocalcin, pyridinoline, malondialdehyde (MDA) and glutathione (GSH) were measured. Trabecular volume density, trabecular and cortex thickness were estimated. Osteoclast and osteoblast numbers were counted morphometrically. The data were analyzed by ANOVA and then post hoc Tukey test at p < 0.05. The increase of pyridinoline and decrease of BALP in DMSO injected groups were inhibited compared with OVX group (p < 0.05). In DMSO injected groups, decrease of bone density, trabecular volume density, thickness of trabecular and tibial cortex were inhibited compared with OVX group (p < 0.05). MDA decreased significantly in DMSO injected groups compared with OVX group. Osteoclast number decreased in DMSO injected groups compared with OVX group (p < 0.05). Osteoblast number did not show significant change in DMSO groups compared with OVX group. In conclusion, DMSO ameliorates PO through decrease of osteoclast number, osteoclast inhibition and osteoblast activation. These effects may probably be mediated via antioxidant property of DMSO.
Collapse
Affiliation(s)
- Ahmad Tamjidipoor
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences , Khorramabad , Iran and
| | | | | |
Collapse
|
40
|
Sacco SM, Horcajada MN, Offord E. Phytonutrients for bone health during ageing. Br J Clin Pharmacol 2013; 75:697-707. [PMID: 23384080 PMCID: PMC3575936 DOI: 10.1111/bcp.12033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
Osteoporosis is a skeletal disease characterized by a decrease in bone mass and bone quality that predispose an individual to an increased risk of fragility fractures. Evidence demonstrating a positive link between certain dietary patterns (e.g. Mediterranean diet or high consumption of fruits and vegetables) and bone health highlights an opportunity to investigate their potential to protect against the deterioration of bone tissue during ageing. While the list of these phytonutrients is extensive, this review summarizes evidence on some which are commonly consumed and have gained increasing attention over recent years, including lycopene and various polyphenols (e.g. polyphenols from tea, grape seed, citrus fruit, olive and dried plum). Evidence to define a clear link between these phytonutrients and bone health is currently insufficient to generate precise dietary recommendations, owing to mixed findings or a scarcity in clinical data. Moreover, their consumption typically occurs within the context of a diet consisting of a mix of phytonutrients and other nutrients rather than in isolation. Future clinical trials that can apply a robust set of outcome measurements, including the determinants of bone strength, such as bone quantity (i.e. bone mineral density) and bone quality (i.e. bone turnover and bone microarchitecture), will help to provide a more comprehensive outlook on how bone responds to these various phytonutrients. Moreover, future trials that combine these phytonutrients with established bone nutrients (i.e. calcium and vitamin D) are needed to determine whether combined strategies can produce more robust effects on skeletal health.
Collapse
|
41
|
Shen CL, von Bergen V, Chyu MC, Jenkins MR, Mo H, Chen CH, Kwun IS. Fruits and dietary phytochemicals in bone protection. Nutr Res 2012; 32:897-910. [DOI: 10.1016/j.nutres.2012.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/13/2022]
|
42
|
Abstract
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Aging induces bone loss due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Nutritional factors may play a role in the prevention of bone loss with aging. Among various carotenoids (carotene and xanthophylls including beta (β)-cryptoxanthin, lutein, lycopene, β-carotene, astaxanthin, and rutin), β-cryptoxanthin, which is abundant in Satsuma mandarin orange (Citrus unshiu MARC.), has been found to have a stimulatory effect on bone calcification in vitro. β-cryptoxanthin has stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoclastic bone resorption in vitro, thereby increasing bone mass. β-cryptoxanthin has an effect on the gene expression of various proteins that are related osteoblastic bone formation and osteoclastic bone resororption in vitro. The intake of β-cryptoxanthin may have a preventive effect on bone loss in animal models for osteoporosis and in healthy human or postmenopausal women. Epidemiological studies suggest a potential role of β-cryptoxanthin as a sustainable nutritional approach to improving bone health of human subjects. β-Cryptoxanthin may be an osteogenic factor in preventing osteoporosis in human subjects.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Foods and Nutrition, The University of Georgia, Athens, GA 30602-2771, USA.
| |
Collapse
|
43
|
Affiliation(s)
- Hala Ahmadieh
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
44
|
Mackinnon ES, Rao AV, Josse RG, Rao LG. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int 2011; 22:1091-101. [PMID: 20552330 DOI: 10.1007/s00198-010-1308-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
UNLABELLED To date, no intervention studies have been published demonstrating the effect of the antioxidant lycopene on bone. Postmenopausal women supplemented with lycopene had significantly increased antioxidant capacity and decreased oxidative stress and the bone resorption marker N-telopeptide (NTx). Lycopene decreases bone resorption markers and may reduce the risk of osteoporosis. INTRODUCTION We have previously shown in vitro and in vivo that lycopene from tomato is associated with a protective effect on bone, but lycopene intervention studies have not been reported. Our aim was to carry out a randomized controlled intervention study to determine whether lycopene would act as an antioxidant to decrease oxidative stress parameters, resulting in decreased bone turnover markers, thus reducing the risk of osteoporosis in postmenopausal women. METHODS Sixty postmenopausal women, 50-60 years old, were recruited. Following a 1-month washout without lycopene consumption, participants consumed either (N = 15/group): (1) regular tomato juice, (2) lycopene-rich tomato juice, (3) tomato Lyc-O-Mato lycopene capsules, or (4) placebo capsules, twice daily for total lycopene intakes of 30, 70, 30, and 0 mg/day respectively for 4 months. Serum collected after the washout, 2 and 4 months of supplementation, was assayed for cross-linked aminoterminal N-telopeptide, carotenoid content, total antioxidant capacity (TAC), lipid, and protein oxidation. RESULTS Participants who consumed juice or lycopene capsules were analyzed in one group designated "LYCOPENE-supplemented". Repeated measures ANOVA showed that LYCOPENE-supplementation for 4 months significantly increased serum lycopene compared to placebo (p < 0.001). LYCOPENE-supplementation for 4 months resulted in significantly increased TAC (p < 0.05) and decreased lipid peroxidation (p < 0.001), protein oxidation (p < 0.001), and NTx (p < 0.001). These decreases in lipid peroxidation, protein oxidation, and NTx were significantly different from the corresponding changes resulting from placebo supplementation (p < 0.05, p < 0.005, and p < 0.02, respectively). CONCLUSIONS Our findings suggest that the antioxidant lycopene is beneficial in reducing oxidative stress parameters and the bone resorption marker NTx.
Collapse
Affiliation(s)
- E S Mackinnon
- Department of Medicine, Division of Endocrinology and Metabolism, St. Michael's Hospital, 30 Bond St., Toronto, ON, Canada M5B 1W8
| | | | | | | |
Collapse
|
45
|
Abstract
Carotenoids are one of the most widespread groups of pigments in nature and more than 600 of these have been identified. Beside provitamin A activity, carotenoids are important as antioxidants and protective agents against various diseases. They are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. Cyclization at one or both ends occurs in hydrocarbon carotene, while xanthophylls are formed by the introduction of oxygen. In addition, modifications involving chain elongation, isomerization, or degradation are also found. The composition of carotenoids in food may vary depending upon production practices, post-harvest handling, processing, and storage. In higher plants they are synthesized in the plastid. Both mevalonate dependent and independent pathway for the formation of isopentenyl diphosphate are known. Isopentenyl diphosphate undergoes a series of addition and condensation reactions to form phytoene, which gets converted to lycopene. Cyclization of lycopene either leads to the formation of β-carotene and its derivative xanthophylls, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin or α-carotene and lutein. Even though most of the carotenoid biosynthetic genes have been cloned and identified, some aspects of carotenoid formation and manipulation in higher plants especially remain poorly understood. In order to enhance the carotenoid content of crop plants to a level that will be required for the prevention of diseases, there is a need for research in both the basic and the applied aspects.
Collapse
Affiliation(s)
- K K Namitha
- Human Resource Development, Central Food Technological Research Institute (CSIR), Mysore, India
| | | |
Collapse
|
46
|
Le Nihouannen D, Barralet JE, Fong JE, Komarova SV. Ascorbic acid accelerates osteoclast formation and death. Bone 2010; 46:1336-43. [PMID: 19932205 DOI: 10.1016/j.bone.2009.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/11/2009] [Accepted: 11/14/2009] [Indexed: 12/15/2022]
Abstract
Ascorbic acid (AA) plays a key role in bone formation. However controversy remains about the effect of AA on cells responsible for bone destruction, osteoclasts. We investigated the effect of AA on osteoclastogenesis using primary mouse bone marrow cultures and monocytic RAW 264.7 cells treated with osteoclastogenic factors RANKL and MCSF. Treatment with AA resulted in significant increase in osteoclast number, size and nucleation. To assess osteoclast oxidative stress level, a ratio of reduced (GSH) to oxidized (GSSG) glutathione and the total glutathione content (GSH(t)) were evaluated. Osteoclast differentiation was associated with a decrease in GSH/GSSG and GSH(t). AA induced further decrease in both parameters, and resulted in significant production of H(2)O(2), indicating its pro-oxidant action. At low concentration, H(2)O(2) induced similar effects to AA, although less potently, and catalase partially inhibited AA-induced osteoclastogenesis. To assess the modification in osteoclast metabolism, the mitochondrial activity was evaluated using JC-1 and the ATP levels were assessed. Osteoclast formation was associated with the increase in mitochondrial activity and ATP concentration, which were further increased in the presence of AA. Importantly, the stimulatory effect of AA was only evident at early phase of osteoclastogenesis, whereas at the late stage AA significantly accelerated osteoclast death. Thus, during osteoclastogenesis AA acts as an oxidant, first stimulating osteoclast formation, but later limiting osteoclast lifespan. This duality of AA action allows reconciling the stimulatory action of AA on osteoclastogenesis observed in vitro with an overall attenuation of bone resorption in the presence of AA observed in vivo.
Collapse
Affiliation(s)
- Damien Le Nihouannen
- Faculty of Dentistry, McGill University, 740 Dr. Penfiled Ave., Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
47
|
Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res 2009; 24:1086-94. [PMID: 19138129 PMCID: PMC2683648 DOI: 10.1359/jbmr.090102] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vitro and in vivo studies suggest that carotenoids may inhibit bone resorption, yet no previous study has examined individual carotenoid intake (other than beta-carotene) and the risk of fracture. We evaluated associations of total and individual carotenoid intake (alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, lutein + zeaxanthin) with incident hip fracture and nonvertebral osteoporotic fracture. Three hundred seventy men and 576 women (mean age, 75 +/- 5 yr) from the Framingham Osteoporosis Study completed a food frequency questionnaire (FFQ) in 1988-1989 and were followed for hip fracture until 2005 and nonvertebral fracture until 2003. Tertiles of carotenoid intake were created from estimates obtained using the Willett FFQ adjusting for total energy (residual method). HRs were estimated using Cox-proportional hazards regression, adjusting for sex, age, body mass index, height, total energy, calcium and vitamin D intake, physical activity, alcohol, smoking, multivitamin use, and current estrogen use. A total of 100 hip fractures occurred over 17 yr of follow-up. Subjects in the highest tertile of total carotenoid intake had lower risk of hip fracture (p = 0.02). Subjects with higher lycopene intake had lower risk of hip fracture (p =0.01) and nonvertebral fracture (p = 0.02). A weak protective trend was observed for total beta-carotene for hip fracture alone, but associations did not reach statistical significance (p = 0.10). No significant associations were observed with alpha-carotene, beta-cryptoxanthin, or lutein + zeaxanthin. These results suggest a protective role of several carotenoids for bone health in older adults.
Collapse
|
48
|
Wang X, Gillen EA, van der Meulen MCH, Lei XG. Knockouts of Se-glutathione peroxidase-1 and Cu,Zn superoxide dismutase exert different impacts on femoral mechanical performance of growing mice. Mol Nutr Food Res 2009; 52:1334-9. [PMID: 18727007 DOI: 10.1002/mnfr.200700351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to determine the impact of knockout of Cu,Zn-superoxide dismutase (SOD1) and Se-glutathione peroxidase-1 (GPX1) on murine bone biomechanical properties. Femora samples were collected from wild-type (WT), SOD1-knockout [SOD1(-/-)] and GPX1-knockout [GPX1(-/-)] female mice (9-wk old, n = 7-8 per genotype) to assay for bone enzyme activities and mechanical properties in three point bending. Prior to testing, all mice were fed a torula yeast diet supplemented with 0.4 mg Se/kg as sodium selenite. Compared with the WT mice, SOD1(-/-) mice displayed a series of reductions (p < 0.05): 24% in body mass, 8% in femoral length, 43% in femoral structural strength, and 32% in bending stiffness. When differences in body size were accounted for, femoral failure moment in SOD1(-/-) mice remained lower (p < 0.05) than that of WT. Femoral tartrate resistant acid phosphatase activity in SOD1(-/-) was 47% greater (p < 0.05) than the WT. In contrast, GPX1(-/-) mice showed no significant differences in femoral mechanical properties from those of WT mice. In conclusion, knockout of SOD1 exerted a greater impact on femoral mechanical characteristics than that of GPX1 in growing mice.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
49
|
Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL. Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women: the Framingham Osteoporosis Study. Am J Clin Nutr 2009; 89:416-24. [PMID: 19056581 PMCID: PMC3151434 DOI: 10.3945/ajcn.2008.26388] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In vitro and in vivo studies suggest that carotenoids may inhibit bone resorption and stimulate proliferation and differentiation of osteoblasts. Few studies have examined the association between carotenoid intake (other than beta-carotene) and bone mineral density (BMD). OBJECTIVE We evaluated associations between total and individual carotenoid intake (alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, and lutein+zeaxanthin) with BMD at the hip, spine, and radial shaft and the 4-y change in BMD. DESIGN Both cross-sectional and longitudinal analyses were conducted in 334 men and 540 women (mean +/- SD age: 75 +/- 5 y) in the Framingham Osteoporosis Study. Energy-adjusted carotenoid intakes were estimated from the Willett food-frequency questionnaire. Mean BMD and mean 4-y BMD changes were estimated, for men and women separately, by quartile of carotenoid intake with adjustment for age, BMI, height, physical activity index, smoking (never compared with ever smokers), multivitamin use, season of BMD measurement (for cross-sectional analyses on BMD only), estrogen use (in women), and intakes of total energy, calcium, vitamin D, caffeine, and alcohol. RESULTS Few cross-sectional associations were observed with carotenoid intake. Associations between lycopene intake and 4-y change in lumbar spine BMD were significant for women (P for trend = 0.03), as were intakes of total carotenoids, beta-carotene, lycopene and lutein+zeaxanthin with 4-y change in trochanter BMD in men (P for trend = 0.0005, 0.02, 0.009, and 0.008, respectively). CONCLUSIONS Carotenoids showed protective associations against 4-y loss in trochanter BMD in men and in lumbar spine in women. No significant associations were observed at other bone sites. Although not consistent across all BMD sites examined, these results support a protective role of carotenoids for BMD in older men and women.
Collapse
Affiliation(s)
- Shivani Sahni
- Dietary Assessment and Epidemiology Research Program and the Antioxidants Research Laboratory, Jean Mayer US Department of Agriculture, HNRCA, Tufts University, Boston, MA 02111-1524, USA
| | | | | | | | | | | |
Collapse
|
50
|
The Preventive Effect of Fermented Milk Supplement Containing Tomato Lycopersion Esculentum and Taurine on Bone Loss in Ovariectomized Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:333-40. [DOI: 10.1007/978-0-387-75681-3_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|