1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Géniès C, Jeanjean C, Najjar A, Schepky A, Lange D, Kühnl J, Fabian E, Zifle A, Duplan H, Hewitt NIJ, Jacques C. Characterization of the in vitro penetration and first-pass metabolism of genistein and daidzein using human and pig skin explants and Phenion full-thickness skin models. J Appl Toxicol 2024. [PMID: 39191458 DOI: 10.1002/jat.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
OECD test guideline compliant skin penetration studies, which also comply with the SCCS basic criteria, are lacking for genistein and daidzein. Therefore, we have measured their penetration and metabolism using ex vivo explants of fresh (i.e., metabolically viable) pig skin, fresh and frozen human skin, and Phenion full-thickness (FT) models. Preliminary studies using fresh pig skin helped to define the optimal experimental conditions. The dermal absorption of 10 nmoles/cm2 genistein and daidzein in ethanol was comparable in all four models. A first-pass metabolism in skin to glucuronide and sulfate metabolites was demonstrated for both chemicals in all models except frozen human skin. The main difference between fresh skin models was the overall extent of metabolism and the relative ratio of each metabolite, for example, much lower sulfate conjugates were formed in pig skin incubations. The extent of parent chemical metabolized and the contribution of the glucuronide pathway were relatively lower in PhenionFT models than in fresh human skin, possibly due to a higher penetration rate in this model and differences in the expression of functional metabolizing enzymes. When metabolism in human skin was abolished by freezing, more radiolabelled chemical remained in the skin tissue but the overall dermal absorption was unchanged. In conclusion, this initial characterization study showed that all models tested indicated that genistein and daidzein extensively penetrated the skin when applied to skin in ethanol. All fresh skin models produced the same metabolites, with the known species difference in the sulfation pathway demonstrated in pig skin.
Collapse
Affiliation(s)
- Camille Géniès
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Corinne Jeanjean
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | | | | | | | | | | | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | | | - Carine Jacques
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
3
|
Paździora W, Paśko P, Grabowska K, Galanty A. Can Isoflavone-Rich Legume Plants Be Useful in the Chemoprevention of Hormone-Dependent Cancers?-A Systematic Review. Int J Mol Sci 2024; 25:7389. [PMID: 39000493 PMCID: PMC11242776 DOI: 10.3390/ijms25137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Plants from the Fabaceae family are widely distributed around the world, especially in Europe, Asia and North America. They are a rich source of isoflavones, compounds with estrogen-like activity, which are suspected of having a chemopreventive effect against hormone-dependent cancers. Following the PRISMA guidelines, we conducted a systematic review aimed at assessing the impact of Fabaceae plant extracts on hormone-dependent cancer cells and the content of active compounds in plant raw materials. We analyzed the results of 63 articles from in vitro and in vivo studies describing the effect of plant extracts containing isoflavones on cancer cells, along with their anti-inflammatory and antioxidant potential. In the process, we determined the research limitations and future research directions. The collected results indicate the plant species with potentially high contents of phytoestrogens and anti-inflammatory, antioxidant and cytotoxic properties. They point to the potential use of plants in the diet as a source of compounds offering cancer prevention.
Collapse
Affiliation(s)
- Wojciech Paździora
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Str., 31-530 Cracow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
| |
Collapse
|
4
|
Wang L, Li C, Luo K. Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1384091. [PMID: 38984160 PMCID: PMC11231381 DOI: 10.3389/fpls.2024.1384091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Isoflavonoids, the major secondary metabolites within the flavonoid biosynthetic pathway, play important roles in plant defense and exhibit free radical scavenging properties in mammals. Recent advancements in understanding the synthesis, transport, and regulation of isoflavonoids have identified their biosynthetic pathways as promising targets for metabolic engineering, offering potential benefits such as enhanced plant resistance, improved biomass, and restoration of soil fertility. This review provides an overview of recent breakthroughs in isoflavonoid biosynthesis, encompassing key enzymes in the biosynthetic pathway, transporters influencing their subcellular localization, molecular mechanisms regulating the metabolic pathway (including transcriptional and post-transcriptional regulation, as well as epigenetic modifications). Metabolic engineering strategies aimed at boosting isoflavonoid content in both leguminous and non-leguminous plants. Additionally, we discuss emerging technologies and resources for precise isoflavonoid regulation. This comprehensive review primarily focuses on model plants and crops, offering insights for more effective and sustainable metabolic engineering approaches to enhance nutritional quality and stress tolerance.
Collapse
Affiliation(s)
- Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Shete V, Mahajan NM, Shivhare R, Akkewar A, Gupta A, Gurav S. Genistein: A promising phytoconstituent with reference to its bioactivities. Phytother Res 2024. [PMID: 38831683 DOI: 10.1002/ptr.8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.
Collapse
Affiliation(s)
- Vaishnavi Shete
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Wardha, Maharashtra, India
| | - Nilesh M Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ruchi Shivhare
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ashish Akkewar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Amisha Gupta
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, India
| |
Collapse
|
6
|
Kumar S, Arora A, Maikhuri VK, Chaudhary A, Kumar R, Parmar VS, Singh BK, Mathur D. Advances in chromone-based copper(ii) Schiff base complexes: synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis. RSC Adv 2024; 14:17102-17139. [PMID: 38808245 PMCID: PMC11130647 DOI: 10.1039/d4ra00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chromones are well known as fundamental structural elements found in numerous natural compounds and medicinal substances. The Schiff bases of chromones have a much wider range of pharmacological applications such as antitumor, antioxidant, anti-HIV, antifungal, anti-inflammatory, and antimicrobial properties. A lot of research has been carried out on chromone-based copper(ii) Schiff-base complexes owing to their role in the organometallic domain and promise as potential bioactive cores. This review article is centered on copper(ii) Schiff-base complexes derived from chromones, highlighting their diverse range of pharmacological applications documented in the past decade, as well as the future research opportunities they offer.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
| | - Aditi Arora
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Vipin K Maikhuri
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi Delhi India
| | - Rajesh Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur India
| | - Virinder S Parmar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
- Amity Institute of Click Chemistry and Research Studies, Amity University Sector 125 Noida 201313 Uttar Pradesh India
| | - Brajendra K Singh
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Divya Mathur
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, Daulat Ram College, University of Delhi Delhi India
| |
Collapse
|
7
|
Guo J, Shi Y, Wang Y, Athari SS, Chen T. Studying of anti-inflammatory and antioxidant effects of tectorigenin in ovalbumin-induced asthma mice models. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13742. [PMID: 38664220 PMCID: PMC11045443 DOI: 10.1111/crj.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.
Collapse
Affiliation(s)
- Jingning Guo
- Department of Integrated Traditional Medicine and Western MedicineXi'an Children's HospitalXi'anChina
| | - Yanping Shi
- Department of Integrated Traditional Medicine and Western MedicineXi'an Children's HospitalXi'anChina
| | - Yujun Wang
- Department of Integrated Traditional Medicine and Western MedicineXi'an Children's HospitalXi'anChina
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical SciencesZanjanIran
| | - Tao Chen
- Department of Integrated Traditional Medicine and Western MedicineXi'an Children's HospitalXi'anChina
| |
Collapse
|
8
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Albendín MG, Aranda V, Corrales A, Ortiz-Delgado JB, Sarasquete C, Arellano JM. Characterisation of ChE in Solea solea and exposure of isoflavones in juveniles of commercial flatfish (Solea solea and Solea senegalensis). J Appl Toxicol 2023; 43:1916-1925. [PMID: 37551860 DOI: 10.1002/jat.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
The isoflavones genistein and daidzein are flavonoid compounds mainly found in legumes, especially in soybeans and their derived products. These flavonoids can be present in agricultural, domestic and industrial wastewater effluents as a result of anthropogenic activities and may be discharged in the environment. Due to the large growth of the aquaculture sector in recent decades, new and cost-effective fish feeds are being sought, but there is also a particular need to determine the effects of exposed flavonoids on fish in the aquatic environment, as this is the main route of exposure of organisms to endocrine disruptors. This study evaluated the possible effects of these isoflavones on juveniles of Solea senegalensis and Solea solea. After 48-96 h of exposure, the acetylcholinesterase activity in the sole head tissues was measured, and the cholinesterase activity in juveniles of common sole (S. solea) was determined. Experiments were carried out to determine the optimal pH, investigate the specificity of three substrates (acetylthiocholine, butyrylthiocholine, propionylthiocholine) on cholinesterase activity and determine the kinetic parameters (Vmax and Km ). The results obtained showed that neither genistein nor daidzein exposure to S. senegalensis and S. solea inhibited the activity of acetylcholinesterase at the tested concentrations (genistein: 1.25, 2.5, 5, 10 and 20 mg/L; daidzein: 0.625, 1.25, 2.5, 5 and 10 mg/L).
Collapse
Affiliation(s)
- María Gemma Albendín
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Vanessa Aranda
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Alejandro Corrales
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | | | | | - Juana María Arellano
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| |
Collapse
|
10
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
11
|
Ubaid M, Salauddin, Shadani MA, Kawish SM, Albratty M, Makeen HA, Alhazmi HA, Najmi A, Zoghebi K, Halawi MA, Ali A, Alam MS, Iqbal Z, Mirza MA. Daidzein from Dietary Supplement to a Drug Candidate: An Evaluation of Potential. ACS OMEGA 2023; 8:32271-32293. [PMID: 37780202 PMCID: PMC10538961 DOI: 10.1021/acsomega.3c03741] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Daidzein (DDZ) is a well-known nutraceutical supplement belonging to the class of isoflavones. It is isolated from various sources such as alfalfa, soybean, and red clover. It demonstrates a broad array of pharmacological/beneficial properties such as cardiovascular exercise, cholesterol reduction, and anticancer, antifibrotic, and antidiabetic effects, which make it effective in treating a wide range of diseases. Its structure and operation are the same as those of human estrogens, which are important in preventing osteoporosis, cancer, and postmenopausal diseases. It is thus a promising candidate for development as a phytopharmaceutical. Addressing safety, efficacy, and physicochemical properties are the primary prerequisites. DDZ is already ingested every day in varying amounts, so there should not be a significant safety risk; however, each indication requires a different dose to be determined. Some clinical trials are already being conducted globally to confirm its safety, efficacy, and therapeutic potential. Furthermore, as a result of its therapeutic influence on health, in order to establish intellectual property, patents are utilized. In light of the vast potential of eugenol, this review presents a detailed data collection on DDZ to substantiate the claim to develop it in the therapeutic category.
Collapse
Affiliation(s)
- Mohammed Ubaid
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Salauddin
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Andalib Shadani
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - S. M. Kawish
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Albratty
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy
Practice Research Unit, Department of Clinical Pharmacy, College of
Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance
Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medical
Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A. Halawi
- Pharmacy
Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Department
of Haematology, Division of Cancer & Genetics School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, U.K.
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Md Shamsher Alam
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
12
|
Chalotra R, Gupta T, Chib S, Amanat M, Kumar P, Singh R. Treatment of diabetic complications: do flavonoids holds the keys? Crit Rev Food Sci Nutr 2023; 64:11091-11112. [PMID: 37435788 DOI: 10.1080/10408398.2023.2232868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Diabetes mellitus (DM) is an endocrinological disorder in which blood sugar levels get elevated and if unmanaged, it leads to several critical complications. Existing therapies or drugs are not able to attain absolute control of DM. Moreover, associated side/adverse effects associated with pharmacotherapy further worsen the Quality of life of patients. Present review is focused on therapeutical potential of flavonoids in management of diabetes and diabetic complications. Plenteous literature has established significant potential of flavonoids in the treatment of diabetes and diabetic complications. A number of flavonoids are found to be effective in treatment of not only diabetes but progression of diabetic complication was also found to be attenuated with the use of flavonoids. Moreover, SAR studies of some flavonoids also indicated the that efficacy of flavonoids is increased with a change in functional group of flavonoids in the treatment of diabetes and diabetic complications. A number of clinical trials are into action to investigate the therapeutic potential of flavonoids as first-line drugs or as adjuvants for treatment of diabetes and diabetic complications.. Owing to their diverse mechanism of action, efficacy and safety, flavonoids may be conscripted as potential candidate for treatment of diabetic complications.
Collapse
Affiliation(s)
- Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Tanya Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Muhammed Amanat
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
13
|
Kunachowicz D, Ściskalska M, Kepinska M. Modulatory Effect of Lifestyle-Related, Environmental and Genetic Factors on Paraoxonase-1 Activity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2813. [PMID: 36833509 PMCID: PMC9957543 DOI: 10.3390/ijerph20042813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Paraoxonase-1 (PON1) is a calcium-dependent, HDL-bound serum hydrolase active toward a wide variety of substrates. PON1 displays three types of activities, among which lactonase, paraoxonase, arylesterase and phosphotriesterase can be distinguished. Not only is this enzyme a major organophosphate compound detoxifier, but it is also an important constituent of the cellular antioxidant system and has anti-inflammatory and antiatherogenic functions. The concentration and activity of PON1 is highly variable among individuals, and these differences can be both of genetic origin and be a subject of epigenetic regulation. Owing to the fact that, in recent decades, the exposure of humans to an increasing number of different xenobiotics has been continuously rising, the issues concerning the role and activity of PON1 shall be reconsidered with particular attention to growing pharmaceuticals intake, dietary habits and environmental awareness. In the following manuscript, the current state of knowledge concerning the influence of certain modifiable and unmodifiable factors, including smoking, alcohol intake, gender, age and genotype variation on PON1 activity, along with pathways through which these could interfere with the enzyme's protective functions, is presented and discussed. Since exposure to certain xenobiotics plays a key role in PON1 activity, the influence of organophosphates, heavy metals and several pharmaceutical agents is also specified.
Collapse
Affiliation(s)
| | | | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland
| |
Collapse
|
14
|
Mazumder A, Sharma A, Azad MAK. A Comprehensive Review of the Pharmacological Importance of Dietary Flavonoids as Hepatoprotective Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4139117. [PMID: 37123086 PMCID: PMC10147524 DOI: 10.1155/2023/4139117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]
Abstract
The liver is a crucial organ that is involved in various kinds of metabolic activity and a very stable accessory gland for the digestive system. Long-term or persistent inflammation and oxidative stress due to any reasons have a substantial impact on the beginning and continuation of chronic diseases such as hepatocellular carcinoma, liver cirrhosis, liver fibrosis, and other hepatic conditions. There are many sources which can help the liver to be healthy and enhance its metabolic potential of the liver. Since the diet is rich origin of bioactive along with antioxidant chemicals including flavonoids and polyphenols, it can control different stages of inflammation and hepatic diseases. Numerous food sources, notably vegetables, nuts, fruits, cereals, beverages, and herbal medicinal plants, are rich in bioactive chemicals called flavonoids and their derivatives like Flavones, Anthocyanins, Iso-flavonoid, Flavanones, Flavanols, and Flavan-3-ols. Most recently occurred research on flavonoids has demonstrated that they can regulate hepatoprotective properties. This is because they are essential parts of pharmaceutical and nutraceutical products due to their hepatoprotective, antioxidative, and immune-modulating characteristics. However, the characteristics of their hepatoprotective impact remain unclear. The purpose of this comprehensive review is to survey the flavonoid structure and enriched sources for their hepatoprotective and antioxidant effects concerning liver toxicity or injury.
Collapse
Affiliation(s)
- Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute) 19, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, Haryana, India
| | - Md. A. K. Azad
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
| |
Collapse
|
15
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
17
|
Adolfo LM, Burks D, Rao X, Alvarez‐Hernandez A, Dixon RA. Evaluation of pathways to the C-glycosyl isoflavone puerarin in roots of kudzu ( Pueraria montana lobata). PLANT DIRECT 2022; 6:e442. [PMID: 36091880 PMCID: PMC9438399 DOI: 10.1002/pld3.442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Kudzu (Pueraria montana lobata) is used as a traditional medicine in China and Southeast Asia but is a noxious weed in the Southeastern United States. It produces both O- and C-glycosylated isoflavones, with puerarin (C-glucosyl daidzein) as an important bioactive compound. Currently, the stage of the isoflavone pathway at which the C-glycosyl unit is added remains unclear, with a recent report of direct C-glycosylation of daidzein contradicting earlier labeling studies supporting C-glycosylation at the level of chalcone. We have employed comparative mRNA sequencing of the roots from two Pueraria species, one of which produces puerarin (field collected P. montana lobata) and one of which does not (commercial Pueraria phaseoloides), to identify candidate uridine diphosphate glycosyltransferase (UGT) enzymes involved in puerarin biosynthesis. Expression of recombinant UGTs in Escherichia coli and candidate C-glycosyltransferases in Medicago truncatula were used to explore substrate specificities, and gene silencing of UGT and key isoflavone biosynthetic genes in kudzu hairy roots employed to test hypotheses concerning the substrate(s) for C-glycosylation. Our results confirm UGT71T5 as a C-glycosyltransferase of isoflavone biosynthesis in kudzu. Enzymatic, isotope labeling, and genetic analyses suggest that puerarin arises both from the direct action of UGT71T5 on daidzein and via a second route in which the C-glycosidic linkage is introduced to the chalcone isoliquiritigenin.
Collapse
Affiliation(s)
- Laci M. Adolfo
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - David Burks
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life SciencesHubei UniversityWuhanHubei ProvinceChina
| | | | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| |
Collapse
|
18
|
Al Mamun A, Sufian MA, Uddin MS, Sumsuzzman DM, Jeandet P, Islam MS, Zhang HJ, Kong AN, Sarwar MS. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol 2022; 928:174991. [PMID: 35513016 DOI: 10.1016/j.ejphar.2022.174991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023]
Abstract
During the last few decades, cancer has remained one of the deadliest diseases that endanger human health, emphasizing urgent drug discovery. Cellular senescence has gained a great deal of attention in recent years because of its link to the development of cancer therapy. Senescent cells are incapable of proliferating due to irreversibly inhibited the initiation of the cell cycle pathways. However, senescent cells aggregate in tissues and produce a pro-inflammatory secretome called senescence-associated secretory phenotype (SASP) that can cause serious harmful effects if not managed properly. There is mounting evidence that senescent cells lead to various phases of tumorigenesis in various anatomical sites, owing mostly to the paracrine activities of the SASP. Therefore, a new treatment field called senotherapeutics has been established. Senotherapeutics are newly developed anticancer agents that have been demonstrated to inhibit cancer effectively. In light of recent findings, several promising natural products have been identified as senescence inducers and senotherapeutics, including, miliusanes, epigallocatechin gallate, phloretin, silybin, resveratrol, genistein, sulforaphane, quercetin, allicin, fisetin, piperlongumine, berberine, triptolide, tocotrienols and curcumin analogs. Several of them have already been validated through preclinical trials and exert an enormous potential for clinical trials. This review article focuses on and summarises the latest advances on cellular senescence and its potential as a target for cancer treatment and highlights the well-known natural products as senotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims, Cedex 2, France
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
19
|
Goh YX, Jalil J, Lam KW, Husain K, Premakumar CM. Genistein: A Review on its Anti-Inflammatory Properties. Front Pharmacol 2022; 13:820969. [PMID: 35140617 PMCID: PMC8818956 DOI: 10.3389/fphar.2022.820969] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Nowadays, non-resolving inflammation is becoming a major trigger in various diseases as it plays a significant role in the pathogenesis of atherosclerosis, asthma, cancer, obesity, inflammatory bowel disease, chronic obstructive pulmonary disease, neurodegenerative disease, multiple sclerosis, and rheumatoid arthritis. However, prolonged use of anti-inflammatory drugs is usually accompanied with undesirable effects and hence more patients tend to seek for natural compounds as alternative medicine. Considering the fact above, there is an urgency to discover and develop potential novel, safe and efficacious natural compounds as drug candidates for future anti-inflammatory therapy. Genistein belongs to the flavonoid family, in the subgroup of isoflavones. It is a phytoestrogen that is mainly derived from legumes. It is a naturally occurring chemical constituent with a similar chemical structure to mammalian estrogens. It is claimed to exert many beneficial effects on health, such as protection against osteoporosis, reduction in the risk of cardiovascular disease, alleviation of postmenopausal symptoms and anticancer properties. In the past, numerous in vitro and in vivo studies have been conducted to investigate the anti-inflammatory potential of genistein. Henceforth, this review aims to summarize the anti-inflammatory properties of genistein linking with the signaling pathways and mediators that are involved in the inflammatory response as well as its toxicity profile. The current outcomes are analysed to highlight the prospect as a lead compound for drug discovery. Data was collected using PubMed, ScienceDirect, SpringerLink and Scopus databases. Results showed that genistein possessed strong anti-inflammatory activities through inhibition of various signaling pathways such as nuclear factor kappa-B (NF-κB), prostaglandins (PGs), inducible nitric oxide synthase (iNOS), proinflammatory cytokines and reactive oxygen species (ROS). A comprehensive assessment of the mechanism of action in anti-inflammatory effects of genistein is included. However, evidence for the pharmacological effects is still lacking. Further studies using various animal models to assess pharmacological effects such as toxicity, pharmacokinetics, pharmacodynamics, and bioavailability studies are required before clinical studies can be conducted. This review will highlight the potential use of genistein as a lead compound for future drug development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Yu Xian Goh
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chandini Menon Premakumar
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Guo J, Min D, Feng HJ. Genistein, a Natural Isoflavone, Alleviates Seizure-Induced Respiratory Arrest in DBA/1 Mice. Front Neurol 2021; 12:761912. [PMID: 34803895 PMCID: PMC8599950 DOI: 10.3389/fneur.2021.761912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Sudden unexpected death in epilepsy (SUDEP) is a fatal event that ranks second in years of potential life lost among neurological disorders. Seizure-induced respiratory arrest (S-IRA) is the primary instigator leading to death in many SUDEP cases. However, there are currently no effective preventive strategies against S-IRA other than the seizure control. Therefore, it is critical to develop new avenues to prevent SUDEP by investigating the pharmacological interventions of S-IRA. In the present study, we examined the effect of genistein, an isoflavone found in various dietary vegetables, on the incidence of S-IRA in DBA/1 mice. Methods: DBA/1 mice exhibited generalized seizures and S-IRA when subjected to acoustic stimulation. Genistein was intraperitoneally administered alone or in combination with an adrenoceptor antagonist and a serotonin (5-HT) receptor antagonist, respectively. The effects of drug treatments on S-IRA incidence and seizure behaviors were examined. Results: The incidence of S-IRA in DBA/1 mice was significantly reduced 2 h after injection of genistein at 1–90 mg/kg as compared with that in the vehicle control. Genistein could block S-IRA without interfering with any component of seizures, especially at relatively lower dosages. The S-IRA-suppressing effect of genistein was reversed by an α2 adrenoceptor antagonist but was not altered by an α1 antagonist. The inhibitory effect of genistein on S-IRA was not affected by a 5-HT3 or 5-HT2A receptor antagonist. Significance: Our data show that genistein reduces S-IRA incidence and can specifically block S-IRA in DBA/1 mice. Its suppressing effect on S-IRA is dependent on activating α2 adrenoceptors. Our study suggests that genistein, a dietary supplement, is potentially useful to prevent SUDEP in at-risk patients.
Collapse
Affiliation(s)
- Jialing Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| | - Daniel Min
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Leis K, Kulczyńska A, Racinowski M, Kaczor P, Gołębiewski J, Januszko-Giergielewicz B. Genistein–a supplement improving efficiency of the human body: A review. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Fahmi R, Ryland D, Sopiwnyk E, Malcolmson L, Shariati-Ievari S, McElrea A, Barthet V, Blewett H, Aliani M. Effect of Revtech thermal processing on volatile organic compounds and chemical characteristics of split yellow pea (Pisum sativum L.) flour. J Food Sci 2021; 86:4330-4353. [PMID: 34535898 DOI: 10.1111/1750-3841.15913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
Yellow pea (Pisumsativum L.) is an economically rich source of nutrients with health-promoting effects. However, the consumption of pea ingredients is minimal due to their off-flavor characteristics. The present study investigated the effect of Revtech heat treatment on the chemical profile and volatile compounds in split yellow pea flour. Revtech treatment (RT) was applied at 140°C with a residence time of 4 min in dry condition (RT 0%) and in the presence of 10% steam (RT 10%). Both thermal treatments resulted in a significant reduction (p < 0.05) in lipoxygenase activity and the concentration of key beany-related odors such as heptanal, (E)-2-heptenal, 1-octen-3-ol, octanal, and (E)-2-octenal. In addition, RT 10% resulted in a significant reduction in pentanal, 1-penten-3-ol, hexanal, and 1-hexanol compared to untreated flour. The content of known precursors of lipoxygenase such as linoleic and linolenic acids was found in higher concentrations in heat-treated flours, indicating the efficacy of Revtech technology in minimizing the degradation of polyunsaturated fatty acids. No significant changes in the amino acid composition or the 29 selected phenolic compounds in pea flours were observed with Revtech processing except for two compounds, caffeic acid and gallocatechin, which were found at higher concentrations in RT 0%. PRACTICAL APPLICATION: Thermal processing of split yellow pea flours at 140°C using Revtech technology successfully decreased the concentrations of volatile compounds responsible for beany off-flavor while improving the nutritional quality of studied yellow pea flours. These results provide valuable information to the food industry for developing novel pulse-based products with enhanced sensory characteristics.
Collapse
Affiliation(s)
- Ronak Fahmi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| | - Donna Ryland
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute (Cigi), Winnipeg, Canada
| | | | - Shiva Shariati-Ievari
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| | - April McElrea
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| | - Veronique Barthet
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Canada
| | - Heather Blewett
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| |
Collapse
|
23
|
Sharma V, Sehrawat N, Sharma A, Yadav M, Verma P, Sharma AK. Multifaceted antiviral therapeutic potential of dietary flavonoids: Emerging trends and future perspectives. Biotechnol Appl Biochem 2021; 69:2028-2045. [PMID: 34586691 DOI: 10.1002/bab.2265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
Phytochemicals are the natural biomolecules produced by plants via primary or secondary metabolism, which have been known to have many potential health benefits to human beings. Flavonoids or phytoestrogens constitute a major group of such phytochemicals widely available in variety of vegetables, fruits, herbs, tea, and so forth, implicated in a variety of bio-pharmacological and biochemical activities against diseases including bacterial, viral, cancer, inflammatory, and autoimmune disorders. More recently, these natural biomolecules have been shown to have effective antiviral properties via therapeutically active ingredients within them, acting at different stages of infection. Current review emphasizes upon the role of these flavonoids in physiological functions, prevention and treatment of viral diseases. More so the review focuses specifically upon the antiviral effects exhibited by these natural biomolecules against RNA viruses including coronaviruses. Furthermore, the article would certainly provide a lead to the scientific community for the effective therapeutic antiviral use of flavonoids using potential cost-effective tools for improvement of the pharmacokinetics, bioavailability, and biodistribution of such compounds for the concrete action along with the promotion of human health.
Collapse
Affiliation(s)
- Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| | - Pawan Verma
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| |
Collapse
|
24
|
Otsuka K, Ochiya T. Possible connection between diet and microRNA in cancer scenario. Semin Cancer Biol 2021; 73:4-18. [DOI: 10.1016/j.semcancer.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
25
|
White Lupin as a Promising Source of Antioxidant Phenolics for Functional Food Production. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5512236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although white lupin is the oldest known legume in the history, it has been forgotten for many years. Now, the interest of food producers concerning white lupin is increased again. The aim of this study was to evaluate the total phenolic content (TPC), antioxidant activity (AA), and the content of selected phenolics in 11 white lupin cultivars. The determined TPC was in the interval 4260–5663 mg GAE/kg DM and the values of AA determined using DPPH•, ABTS•+, and FRAP methods were in the ranges 0.993–1.878, 5.496–7.924, and 1.328–1.741 μmol TE/g DM, respectively. Individual phenolics content (4-hydroxybenzoic acid, caffeic acid, trans-p-coumaric acid, trans-ferulic acid, myricetin, quercetin, apigenin, and genistein) were determined, too. Caffeic acid (442.9–766.2 mg/kg DM) and myricetin (11.2–21.2 mg/kg DM) are the dominant phenolics in the investigated lupin cultivars. Statistically significant differences in all investigated variables were observed between the tested cultivars except for quercetin. The obtained results show that the Astra and Nelly cultivars are a rich source of phenolic acids.
Collapse
|
26
|
Nam W, Kim H, Kim J, Nam B, Bae C, Kim J, Park S, Lee J, Sim J. Lactic Acid Bacteria and Natural Product Complex Ameliorates Ovalbumin-Induced Airway Hyperresponsiveness in Mice. J Med Food 2021; 24:517-526. [PMID: 34009021 DOI: 10.1089/jmf.2020.4853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The incidence of respiratory diseases, such as asthma, has substantially increased in recent times owing to environmental changes, such as air pollution. Induction of a chronic inflammatory response begins with production of biologically active mediators from the airway epithelium, which attracts and recruits inflammatory cells into the lung airway. In our previous study, we confirmed that Lactobacillus casei HY2782 and Bifidobacterium animalis spp. lactis HY8002 could improve lung inflammation in the COPD animal model. In this study, we investigated the effect of the HY2782 complex against airway hyperresponsiveness by using an ovalbumin (OVA)-induced animal model. An orally administered HY2782 complex on OVA-induced allergic asthma in a BALB/c mouse model was used. The present results showed that the HY2782 complex suppressed total immunoglobulin E in serum and bronchoalveolar lavage fluid (BALF). The cytokine production profile in BALF and serum revealed that the HY2782 complex showed reduced levels of Th2 cytokines among immune factors released due to the elevated allergic response. Levels of inflammatory mediators in BALF, MCP-1, MIP-2, and CXCL-9 were decreased by oral administration of the HY2782 complex. Lower numbers of eosinophils and neutrophils in BALF suggested that inflammation was ameliorated by the HY2782 complex. Histological observation of lung sections also showed infiltration of fewer cells. From results, we suggested that the HY2782 complex effectively responds to improvement of the immune response and airway hypersensitivity reaction because of the anti-inflammatory effect of the Pueraria lobata root extract and antioxidant effect of HY2782.
Collapse
Affiliation(s)
- Woo Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Hyeonji Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jisoo Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Bora Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Chuhyun Bae
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jooyun Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Soodong Park
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | | | - Jaehun Sim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| |
Collapse
|
27
|
Rashid H, Alqahtani SS, Alshahrani S. Diet: A Source of Endocrine Disruptors. Endocr Metab Immune Disord Drug Targets 2021; 20:633-645. [PMID: 31642798 DOI: 10.2174/1871530319666191022100141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Food is indispensable for human life and determines the health and wellbeing of the consumer. As food is the source of energy for humans, it also emerges as one of the most important sources of exposure to deleterious chemicals both natural and synthetic. The food exposed chemicals cause a number of detrimental health effects in humans, with endocrine disruption being of serious concern amongst these effects. Such chemicals disrupting the health of endocrine system are known as endocrine-disrupting chemicals (EDCs). The food exposed EDCs need to be identified and classified to effectuate a cautious consumption of food by all and especially by vulnerable groups. AIM The aim of the present review was to discuss food as a source of exposure to common endocrine disruptors in humans. This review presents the occurrence and levels of some of the critical endocrine disruptors exposed through frequently consumed diets. METHODS The major source of data was PubMed, besides other relevant publications. The focus was laid on data from the last five years, however significant earlier data was also considered. CONCLUSION The food as a source of endocrine disruptors to humans cannot be neglected. It is highly imperative for the consumer to recognize food as a source of EDCs and make informed choices in the consumption of food items.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saad S Alqahtani
- Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
28
|
Screening of Novel Source for Genistein by Rapid and Sensitive UPLC-APCI-TOF Mass Spectrometry. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:5537917. [PMID: 33816609 PMCID: PMC7987462 DOI: 10.1155/2021/5537917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/26/2022]
Abstract
Genistein has been shown to have a broad spectrum of health advantages. Only legumes were reported to have a significant amount of genistein with the highest concentration in Soybean. Soybean was found to cause allergies in children with atopic dermatitis and in adults. Limited food sources have hindered the use of genistein in daily diets, medications, and nutraceuticals. The main objective of the current research work was to discover the novel source for genistein by the simple method of extraction and quantification. Genistein was extracted by solid-liquid extraction technique. Extraction parameters were optimized by a single factor test. Identification and quantification of genistein from the selected seeds of Apiaceae were carried out using UPLC-APCI-TOF-MS. UPLC-APCI-TOF-MS method was successfully developed, validated (linearity (R2 = 0.999), precision (R.S.D. <5%), and accuracy (107.23%)), and used for the study. Remarkably, a high concentration of the genistein (811.57 μg/g) was found in the Cuminum cyminum. Solvent mixture (50 mL Methanol+25 mL Dimethyl sulphoxide+25 mL Water (v/v/v)), temperature (80°C), and time (1 h) were found to be the optimum extraction conditions. The concentration of genistein before optimization was 226.67 μg/g and after optimization is 811.57 μg/g. This shows the efficiency of the extraction method in the extraction of genistein without the need for hydrolysis. Novel source for genistein is identified in regular human food can be consumed in a regular diet which increases wellness of human health along with enhancing the taste of the food. The developed extraction method coupled with high throughput, sensitive, and selective UPLC-APCI-TOF-MS technique facilitates rapid quantification (8 minutes of run time) without primary purification of complex extract.
Collapse
|
29
|
Wang X, Chen B, Xu D, Li Z, Liu H, Huang Z, Huang K, Lin X, Yao H. Molecular mechanism and pharmacokinetics of flavonoids in the treatment of resistant EGF receptor-mutated non-small-cell lung cancer: A narrative review. Br J Pharmacol 2021; 178:1388-1406. [PMID: 33450055 DOI: 10.1111/bph.15360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/11/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Here, we review the molecular mechanism and pharmacokinetics of flavonoids in the treatment of resistant EGF receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) and particularly the possible mechanism(s) of delicaflavone, a biflavonoid extracted from Selaginella doederleinii Hieron. EGFR TK inhibitors (EGFR-TKI) are ubiquitously used in the treatment of NSCLC bearing EGFR mutations. However, patients treated with EGFR-TKI inevitably and continuously develop resistance. In laboratory studies, flavonoids, as potential adjuvants for cancer chemotherapy, exhibited anti-cancer properties such as inhibition of chemoresistance by interference with ABC transporters-induced drug efflux, curbing of c-MET amplification, or reversal of T790M mutation-mediated resistance. The current review aims at summarizing the association between the anti-cancer potentials of flavonoids and their possible regulatory roles in certain types of mutation that could trigger EGFR-TKI resistance in NSCLC. Potential practical applications of these phytochemicals, as well as the relevant pharmacokinetics, are also discussed.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhijun Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Hao Liu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| | - Kangping Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
30
|
Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr Top Med Chem 2021; 20:1169-1194. [PMID: 32297582 DOI: 10.2174/1568026620666200416085330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Flavonoids, a group of natural dietary polyphenols, are known for their beneficial effects on human health. By virtue of their various pharmacological effects, like anti-oxidative, antiinflammatory, anti-carcinogenic and neuroprotective effects, flavonoids have now become an important component of herbal supplements, pharmaceuticals, medicinals and cosmetics. There has been enormous literature supporting neuroprotective effect of flavonoids. Recently their efficacy in various neurodegenerative diseases, like Alzheimer's disease and Parkinson diseases, has received particular attention. OBJECTIVE The mechanism of flavanoids neuroprotection might include antioxidant, antiapoptotic, antineuroinflammatory and modulation of various cellular and intracellular targets. In in-vivo systems, before reaching to brain, they have to cross barriers like extensive first pass metabolism, intestinal barrier and ultimately blood brain barrier. Different flavonoids have varied pharmacokinetic characteristics, which affect their pharmacodynamic profile. Therefore, brain accessibility of flavonoids is still debatable. METHODS This review emphasized on current trends of research and development on flavonoids, especially in neurodegenerative diseases, possible challenges and strategies to encounter using novel drug delivery system. RESULTS Various flavonoids have elicited their therapeutic potential against neurodegenerative diseases, however by using nanotechnology and novel drug delivery systems, the bioavailability of favonoids could be enhanced. CONCLUSION This study bridges a significant opinion on medicinal chemistry, ethanopharmacology and new drug delivery research regarding use of flavonoids in management of neurodegeneration.
Collapse
Affiliation(s)
- Gagandeep Maan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Biplab Sikdar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Ashish Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| |
Collapse
|
31
|
Devi S, Kumar V, Singh SK, Dubey AK, Kim JJ. Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders. Biomedicines 2021; 9:biomedicines9020099. [PMID: 33498503 PMCID: PMC7909525 DOI: 10.3390/biomedicines9020099] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3464 (J.-J.K.)
| | | | | | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3464 (J.-J.K.)
| |
Collapse
|
32
|
Olejnik P, Gniadek M, Echegoyen L, Plonska‐Brzezinska ME. A Nanocomposite Containing Carbon Nano‐onions and Polyaniline Nanotubes as a Novel Electrode Material for Electrochemical Sensing of Daidzein. ELECTROANAL 2021. [DOI: 10.1002/elan.202060468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Piotr Olejnik
- Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Bialystok Mickiewicza 2A 15-222 Bialystok Poland
| | - Marianna Gniadek
- Department of Chemistry University of Warsaw Pasteur 1 02-093 Warsaw Poland
| | - Luis Echegoyen
- Department of Chemistry University of Texas at El Paso 500 W. University Ave. El Paso TX 79968
| | - Marta E. Plonska‐Brzezinska
- Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Bialystok Mickiewicza 2A 15-222 Bialystok Poland
| |
Collapse
|
33
|
Kong M, Xie K, Lv M, Li J, Yao J, Yan K, Wu X, Xu Y, Ye D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed Pharmacother 2021; 133:110975. [PMID: 33212375 DOI: 10.1016/j.biopha.2020.110975] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (type 1 and type 2) and its various complications continue to place a huge burden on global medical resources, despite the availability of numerous drugs that successfully lower blood glucose levels. The major challenging issue in diabetes management is the prevention of various complications that remain the leading cause of diabetes-related mortality. Moreover, the limited long-term durability of monotherapy and undesirable side effects of currently used anti-diabetic drugs underlie the urgent need for novel therapeutic approaches. Phytochemicals represent a rich source of plant-derived molecules that are of pivotal importance to the identification of compounds with therapeutic potential. In this review, we aim to discuss recent advances in the identification of a large array of phytochemicals with immense potential in the management of diabetes and its complications. Given that metabolic inflammation has been established as a key pathophysiological event that drives the progression of diabetes, we focus on the protective effects of representative phytochemicals in metabolic inflammation. This paper also discusses the potential of phytochemicals in the development of new drugs that target the inflammation in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Mengjie Kong
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghui Lv
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Yao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqin Wu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
34
|
Sharan S, Zanghelini G, Zotzel J, Bonerz D, Aschoff J, Saint-Eve A, Maillard MN. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr Rev Food Sci Food Saf 2020; 20:401-428. [PMID: 33331050 DOI: 10.1111/1541-4337.12687] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
The food industry, along with the consumers, is interested in plant-based diet because of its health benefits and environmental sustainability. Vicia faba L. (V. faba) is a promising source of pulse proteins for the human diet and can yield potential nutritional and functional ingredients, namely, flours, concentrates, and isolates, which are relevant for industrial food applications. Different processes produce and functionalize V. faba ingredients relevant for industrial food applications, along with various alternatives within each unit operation used in their production. Processing modifies functional properties of the ingredients, which can occur by (i) changing in overall nutritional composition after processing steps and/or (ii) modifying the structure and conformation of protein and of other components present in the ingredients. Furthermore, V. faba limitations due to off-flavor, color, and antinutritional factors are influenced by ingredient production and processing that play a significant role in their consumer acceptability in foods. This review attempts to elucidate the influence of different ways of processing on the functional, sensory, and safety aspects of V. faba L. ingredients, highlighting the need for further research to better understand how the food industry could improve their utilization in the market.
Collapse
Affiliation(s)
- Siddharth Sharan
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Massy, France.,Döhler GmBH, Darmstadt, Germany
| | | | | | | | | | - Anne Saint-Eve
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Massy, France
| | | |
Collapse
|
35
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
36
|
Benayad A, Taghouti M, Benali A, Aboussaleh Y, Benbrahim N. Nutritional and technological assessment of durum wheat-faba bean enriched flours, and sensory quality of developed composite bread. Saudi J Biol Sci 2020; 28:635-642. [PMID: 33424350 PMCID: PMC7785439 DOI: 10.1016/j.sjbs.2020.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 01/03/2023] Open
Abstract
Faba beans are acknowledged as a good source of proteins, minerals, fibers, vitamins and antioxidants. A blending study was undertaken in order to prepare naturally bread from enriched flours with added nutritional value, mainly in terms of Iron and proteins. Enriched flours were prepared with varied levels (25, 30, 35 and 40%) of whole faba bean flour to assess the effects of this substitution on their nutritional and technological properties. Then, whole durum wheat bread (regular) and enriched bread at 40% substitution level (composite bread) were prepared and subjected to sensory evaluation. The substitution level of composite bread was selected on the basis of Iron and proteins contents and technological results of the flour blends. Nutritionally, except for moisture, fibers, fat, zinc and sodium values, significant (p < 0.05) increases were showed in ash, proteins, minerals, total phenolic compounds, condensed tannins, total flavonoids and anti-radical activity values. Technologically, significant (p < 0.05) decreases were recorded for lightness and whiteness index. The gluten strength value revealed a significant (p < 0.05) decrease as whole faba bean flour was added. On the sensory level, the level of substitution (40%) chosen for the manufacture of composite bread resulted in acceptable bread by consumers. Moreover, composite bread was most preferred in aroma as it imparts a feeling of satiety. The observed nutritional improvements could be useful for malnourished people, including those having Iron and proteins deficiencies. Technologically, the observed changes didn’t present limitations since composite bread was accepted by consumers even at 40% substitution level. Besides, the slight preference of composite bread aroma might encourage its consumption by consumers. Also, its promotion of satiety is important for gluten sensitivity sufferers. Our results suggested that 40% is the appropriate ratio to increase, at the same time, Iron and proteins contents of enriched flours as well as their overall nutritional quality. Also it was possible to produce natural composite bread at this level (40%) while maintaining adequate technological and sensory quality.
Collapse
Affiliation(s)
- Asmaa Benayad
- Laboratory of Health, Nutrition and Environment, University Ibn Tofail, Faculty of Sciences, B.P. 133, 14000 Kenitra, Morocco.,Research Unit of Plant Genetic Resources and Plant Breeding, National Institute for Agronomic Research, BP 6356, Institutes 1010, Rabat, Morocco.,Research Unit of Food Technology, National Institute for Agronomic Research, BP 6356, Institutes 1010, Rabat, Morocco
| | - Mona Taghouti
- Research Unit of Plant Genetic Resources and Plant Breeding, National Institute for Agronomic Research, BP 6356, Institutes 1010, Rabat, Morocco
| | - Aouatif Benali
- Research Unit of Food Technology, National Institute for Agronomic Research, BP 6356, Institutes 1010, Rabat, Morocco
| | - Youssef Aboussaleh
- Laboratory of Health, Nutrition and Environment, University Ibn Tofail, Faculty of Sciences, B.P. 133, 14000 Kenitra, Morocco
| | - Nadia Benbrahim
- Research Unit of Plant Genetic Resources and Plant Breeding, National Institute for Agronomic Research, BP 6356, Institutes 1010, Rabat, Morocco
| |
Collapse
|
37
|
Atiq A, Parhar I. Anti-neoplastic Potential of Flavonoids and Polysaccharide Phytochemicals in Glioblastoma. Molecules 2020; 25:E4895. [PMID: 33113890 PMCID: PMC7660188 DOI: 10.3390/molecules25214895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Clinically, gliomas are classified into four grades, with grade IV glioblastoma multiforme being the most malignant and deadly, which accounts for 50% of all gliomas. Characteristically, glioblastoma involves the aggressive proliferation of cells and invasion of normal brain tissue, outcomes as poor patient prognosis. With the current standard therapy of glioblastoma; surgical resection and radiotherapy followed by adjuvant chemotherapy with temozolomide, it remains fatal, because of the development of drug resistance, tumor recurrence, and metastasis. Therefore, the need for the effective therapeutic option for glioblastoma remains elusive. Previous studies have demonstrated the chemopreventive role of naturally occurring pharmacological agents through preventing or reversing the initiation phase of carcinogenesis or arresting the cancer progression phase. In this review, we discuss the role of natural phytochemicals in the amelioration of glioblastoma, with the aim to improve therapeutic outcomes, and minimize the adverse side effects to improve patient's prognosis and enhancing their quality of life.
Collapse
Affiliation(s)
- Ayesha Atiq
- Brain Research Institute Monash Sunway (BRIMS), Jeffery Cheah School of Medicine, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia;
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
38
|
Sheng H, Sun X, Yan Y, Yuan Q, Wang J, Shen X. Metabolic Engineering of Microorganisms for the Production of Flavonoids. Front Bioeng Biotechnol 2020; 8:589069. [PMID: 33117787 PMCID: PMC7576676 DOI: 10.3389/fbioe.2020.589069] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Flavonoids are a class of secondary metabolites found in plant and fungus. They have been widely used in food, pharmaceutical, and nutraceutical industries owing to their significant biological activities, such as antiaging, antioxidant, anti-inflammatory, and anticancer. However, the traditional approaches for the production of flavonoids including chemical synthesis and plant extraction involved hazardous materials and complicated processes and also suffered from low product titer and yield. Microbial synthesis of flavonoids from renewable biomass such as glucose and xylose has been considered as a sustainable and environmentally friendly method for large-scale production of flavonoids. Recently, construction of microbial cell factories for efficient biosynthesis of flavonoids has gained much attention. In this article, we summarize the recent advances in microbial synthesis of flavonoids including flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. We put emphasis on developing pathway construction and optimization strategies to biosynthesize flavonoids and to improve their titer and yield. Then, we discuss the current challenges and future perspectives on successful strain development for large-scale production of flavonoids in an industrial level.
Collapse
Affiliation(s)
- Huakang Sheng
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yajun Yan
- College of Engineering, University of Georgia, Athens, GA, United States
| | - Qipeng Yuan
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jia Wang
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
39
|
Dobrzynska M, Napierala M, Florek E. Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy. Biomolecules 2020; 10:biom10091268. [PMID: 32887473 PMCID: PMC7564267 DOI: 10.3390/biom10091268] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, a ubiquitous group of naturally occurring polyphenolic compounds, have recently gained importance as anticancer agents. Unfortunately, due to low solubility, absorption, and rapid metabolism of dietary flavonoids, their anticancer potential is not sufficient. Nanocarriers can improve the bioavailability of flavonoids. In this review we aimed to evaluate studies on the anticancer activity of flavonoid nanoparticles. A review of English language articles published until 30 June 2020 was conducted, using PubMed (including MEDLINE), CINAHL Plus, Cochrane, and Web of Science data. Most studies determining the anticancer properties of flavonoid nanoparticles are preclinical. The potential anticancer activity focuses mainly on MCF-7 breast cancer cells, A549 lung cancer cells, HepG2 liver cancer cells, and melanoma cells. The flavonoid nanoparticles can also support the anti-tumour effect of drugs used in cancer therapy by enhancing the anti-tumour effect or reducing the systemic toxicity of drugs.
Collapse
Affiliation(s)
- Malgorzata Dobrzynska
- Department of Bromatology, Poznan University of Medical Sciences, 60-354 Poznan, Poland;
| | - Marta Napierala
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Correspondence: (M.N.); (E.F.); Tel.: +48-61-847-2081 (E.F.)
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Correspondence: (M.N.); (E.F.); Tel.: +48-61-847-2081 (E.F.)
| |
Collapse
|
40
|
Synthesis, Characterization, and Antiradical Activity of 6-Hydroxygenistein. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Jeminiwa BO, Knight RM, Braden TD, Cruz-Espindola C, Boothe DM, Akingbemi BT. Regulation of the neuroendocrine axis in male rats by soy-based diets is independent of age and due specifically to isoflavone action†. Biol Reprod 2020; 103:892-906. [PMID: 32520353 DOI: 10.1093/biolre/ioaa101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Soy-based foods are consumed for their health beneficial effects, implying that the population is exposed to soy isoflavones in the diet. Herein, male rats at 21, 35, and 75 days of age were maintained either on a casein control diet, soybean meal (SBM), or control diet supplemented with daidzin and genistin (G + D) for 14 days. Feeding of SBM and G + D diets decreased testicular testosterone (T) secretion regardless of age. Altered androgen secretion was due to decreased (P < 0.05) Star and Hsd17β protein in the testes and was associated with increased (P < 0.05) Lhβ and Fshβ subunit protein expression in pituitary glands. Second, male rats were fed either a casein control diet, control diet + daidzin, control diet + genistin, or control diet + genistin + daidzin (G + D). Compared to control, feeding of all isoflavone-containing diets decreased (P < 0.05) testicular T concentrations, and more so in the G + D diet group. Interestingly, Esr1 and androgen receptor protein and pituitary Fshβ with Lhβ subunit protein were increased (P < 0.05) by feeding of genistin and G + D diets, but not the daidzin diet. However, daidzein and genistein both caused a concentration dependent inhibition (P < 0.05) of T secretion by Leydig cells in vitro with IC50 of 184 ηM and 36 ηM, respectively. Results demonstrated that altered testicular steroidogenic capacity and pituitary FSHβ and LHβ subunit expression due to soy-based diets result from specific actions by genistein and daidzein. Experiments to assess effects of isoflavone regulation of intratesticular androgen concentrations on male fertility are warranted.
Collapse
Affiliation(s)
- Bamidele O Jeminiwa
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rachel M Knight
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tim D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Crisanta Cruz-Espindola
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
42
|
Eum HL, Park Y, Yi TG, Lee JW, Ha KS, Choi IY, Park NI. Effect of germination environment on the biochemical compounds and anti-inflammatory properties of soybean cultivars. PLoS One 2020; 15:e0232159. [PMID: 32339211 PMCID: PMC7185686 DOI: 10.1371/journal.pone.0232159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/08/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated changes in the isoflavone content, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activities (DPPH, ABTS), and anti-inflammatory activities of small-seeded and large-seeded soybean cultivars during germination (light/dark conditions). Total isoflavone content was higher at the seed stage in large-seeded soybeans, while it increased after 7 days of germination in small-seeded soybeans, particularly in response to light conditions, under which they had high TPC, TFC, and antioxidant activities. In large-seeded soybeans, the germination environment did not significantly affect TFC or DPPH inhibition, whereas TPC and ABTS inhibition were high under dark germination conditions. Extracts of sprouts exhibited superior anti-inflammatory activities. Nitric oxide production was slightly lower in small-seeded and large-seeded soybeans germinated under light and dark conditions, respectively. Our findings indicate that germinated soybeans improved nutritionally, and that enhancement of bioactivity under different germination environments could contribute to the selection of appropriate soybean cultivars.
Collapse
Affiliation(s)
- Hyang Lan Eum
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Tae Gyu Yi
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Jae Wook Lee
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Keon-Soo Ha
- Gangwondo Agricultural Research and Extension Services, Chuncheon, Republic of Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Republic of Korea
| | - Nam Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
43
|
Chien HJ, Wang CS, Chen YH, Toh JT, Zheng YF, Hong XG, Lin HY, Lai CC. Rapid determination of isoflavones and other bioactive compounds in soybean using SWATH-MS. Anal Chim Acta 2020; 1103:122-133. [PMID: 32081177 DOI: 10.1016/j.aca.2019.12.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023]
Abstract
Isoflavones are the major bioactive components in soybeans. Sequential window acquisition of all theoretical fragment ions (SWATH) is a kind of data-independent acquisition (DIA), such that all fragments of each precursor will be preserved in a SWATH-Mass Spectrometry (SWATH-MS) run. In this study, a high-throughput SWATH-MS method for the determination of 12 isoflavones in soybeans was established. Furthermore, amino acids, saponins can be semi-quantitated from the same SWATH-MS data. Combination of targeted quantification and untargeted profiling with SWATH, all bioactive compounds were analyzed within 5 min in 10 min run time, and the method had good linear regression with r2 > 0.99. The precisions (RSD %) of the intra-day and inter-day analyses ranged from 2.11% to 18.7%, and the accuracies (RE%) ranged from -14.39% to 17.48%. The matrix effect ranged from 88.66% to 114.82%. Moreover, 7 varieties of soybeans were analyzed and compared with this robust screening method.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Yu-Hsun Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Jie-Teng Toh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Xiang-Gui Hong
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Hung-Yu Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 40402, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan.
| |
Collapse
|
44
|
Shao J, Zhao T, Ma HP, Jia ZP, Jing LL. Synthesis, Characterization, and Antioxidant Activity of 8-Hydroxygenistein. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20901399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It was reported that 8-hydroxygenistein (8-OHG) was synthesized by methylation, bromination, methoxylation, and demethylation using cheap and readily available biochanin A as raw material. All synthesized products were structurally confirmed by ultra-high-performance liquid chromatography (UHPLC), infrared spectroscopy, mass spectrometry, 1H-nuclear magnetic resonance (NMR), and 13C-NMR. In addition, we examined the antioxidant capacity of 8-OHG using 6 different methods such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical (ABTS) scavenging, nitric oxide radical (NO) scavenging, superoxide radical (O2 −•) scavenging, reducing power assay, and total antioxidant activity using ascorbic acid (VC) as a positive control. Compared with VC, 8-OHG exhibited higher total antioxidant activity and stronger scavenging activity on ABTS, NO, and O2 −•. These results indicate that 8-OHG is an excellent antioxidant agent and may be effective in preventing damage induced by free radical.
Collapse
Affiliation(s)
- Jin Shao
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
- Department of Medicinal Chemistry, Lanzhou University, Gansu, China
| | - Tong Zhao
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
- Department of Pharmacy, Gansu University of Chinese Medicine, China
| | - Hui-Ping Ma
- Department of Medicinal Chemistry, Lanzhou University, Gansu, China
| | - Zheng-Ping Jia
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
- Department of Medicinal Chemistry, Lanzhou University, Gansu, China
| | - Lin-Lin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
| |
Collapse
|
45
|
Johnston DJ, Theodoridou K, Gordon AW, Yan T, McRoberts WC, Ferris CP. Field bean inclusion in the diet of early-lactation dairy cows: Effects on performance and nutrient utilization. J Dairy Sci 2019; 102:10887-10902. [PMID: 31548054 DOI: 10.3168/jds.2019-16513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022]
Abstract
The European livestock sector has a significant deficit of high-quality protein feed ingredients. Consequently there is interest in using locally grown protein grain crops to partially or completely replace imported protein feeds in dairy cow rations. Field bean (FB; Vicia faba) has been identified as a locally grown crop with significant potential. The current study was designed to examine the effects of FB on cow performance and nutrient utilization in the diet of early-lactation dairy cows, including high levels of FB (up to 8.4 kg/cow per day). The experiment used 72 dairy cows in a 3-treatment continuous design (from calving until wk 20 of lactation). All cows were given ad libitum access to a mixed ration comprising grass silage and concentrates [45:55 on a dry matter (DM) basis]. Concentrates offered contained either 0, 349, or 698 g of FB/kg of concentrate (treatments FB0, FB-Low, and FB-High, respectively), with FB completely replacing soybean meal, rapeseed meal, maize gluten, and wheat in the concentrate for the FB-High treatment. Following completion of the 20-wk experiment, ration digestibility, nutrient utilization, and methane (CH4) production were measured using 4 cows from each treatment. Neither silage DM intake, total DM intake, nor milk yield were affected by treatment. Cows on FB0 had a higher milk fat content than those on FB-High, and cows on FB0 and FB-Low had higher milk protein contents than did those on FB-High. Field bean inclusion increased the degree of saturation of milk fat produced. Milk fat yield, milk protein yield, and milk fat plus protein yield were higher with FB0 than with either FB-Low or FB-High. Treatment had no effect on the digestibility of DM, organic matter, nitrogen (N), gross energy, or neutral detergent fiber, whereas digestibility of acid detergent fiber was higher with FB0 than with FB-High. Neither the efficiency of gross energy or N utilization, nor any of the CH4 production parameters examined, were affected by treatment. Similarly, none of the fertility or health parameters examined were affected by treatment. The reduction in milk fat observed may have been due to the higher starch content of the FB-High diet, and the reduction in milk protein may have been due to a deficit of methionine in the diet. It is likely that these issues could be overcome by changes in ration formulation, thus allowing FB to be included at the higher range without loss in performance.
Collapse
Affiliation(s)
- D J Johnston
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down, BT26 6DR, United Kingdom; Queens University Belfast, Co. Antrim, BT7 1NN, United Kingdom.
| | - K Theodoridou
- Queens University Belfast, Co. Antrim, BT7 1NN, United Kingdom
| | - A W Gordon
- Agri-Food and Biosciences Institute, Belfast, Co. Antrim, BT9 5PX, United Kingdom
| | - T Yan
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down, BT26 6DR, United Kingdom
| | - W C McRoberts
- Agri-Food and Biosciences Institute, Belfast, Co. Antrim, BT9 5PX, United Kingdom
| | - C P Ferris
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down, BT26 6DR, United Kingdom
| |
Collapse
|
46
|
Pueraria lobata and Daidzein Reduce Cytotoxicity by Enhancing Ubiquitin-Proteasome System Function in SCA3-iPSC-Derived Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8130481. [PMID: 31687087 PMCID: PMC6800904 DOI: 10.1155/2019/8130481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion within the ATXN3/MJD1 gene. The expanded CAG repeats encode a polyglutamine (polyQ) tract at the C-terminus of the ATXN3 protein. ATXN3 containing expanded polyQ forms aggregates, leading to subsequent cellular dysfunctions including an impaired ubiquitin-proteasome system (UPS). To investigate the pathogenesis of SCA3 and develop potential therapeutic strategies, we established induced pluripotent stem cell (iPSC) lines from SCA3 patients (SCA3-iPSC). Neurons derived from SCA3-iPSCs formed aggregates that are positive to the polyQ marker 1C2. Treatment with the proteasome inhibitor, MG132, on SCA3-iPSC-derived neurons downregulated proteasome activity, increased production of radical oxygen species (ROS), and upregulated the cleaved caspase 3 level and caspase 3 activity. This increased susceptibility to the proteasome inhibitor can be rescued by a Chinese herbal medicine (CHM) extract NH037 (from Pueraria lobata) and its constituent daidzein via upregulating proteasome activity and reducing protein ubiquitination, oxidative stress, cleaved caspase 3 level, and caspase 3 activity. Our results successfully recapitulate the key phenotypes of the neurons derived from SCA3 patients, as well as indicate the potential of NH037 and daidzein in the treatment for SCA3 patients.
Collapse
|
47
|
Li H, Qi J, Li L. Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacol Res 2019; 147:104393. [PMID: 31401211 DOI: 10.1016/j.phrs.2019.104393] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
Obesity is a chronic metabolic disease caused by a long-term imbalance between energy intake and expenditure. The discovery of three different shades of adipose tissues has implications in terms of understanding the pathogenesis and potential interventions for obesity and its related complications. Fat browning, as well as activation of brown adipocytes and new beige adipocytes differentiated from adipogenic progenitor cells, are emerging as interesting and promising methods to curb obesity because of their unique capacity to upregulate non-shivering thermogenesis. This capacity is due to catabolism of stored energy to generate heat through the best characterized thermogenic effector uncoupling protein 1 (UCP1). A variety of phytochemicals have been shown in the literature to contribute to thermogenesis by acting as chemical uncouplers, UCP1 inducers or regulators of fat differentiation and browning. In this review, we summarize the mechanisms and strategies for targeting adipose-mediated thermogenesis and highlight the role of phytochemicals in targeting adipose thermogenesis to fight against obesity. We also discuss proposed targets for how these phytochemical molecules promote BAT activity, WAT browning and beige cell development, thereby offering novel insights into interventional strategies of how phytochemicals may help prevent and manage obesity via adipose thermogenesis.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, PR China; Section of Endocrinology, School of Medicine, Yale University, New Haven, 06520, USA.
| | - Jiameng Qi
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
48
|
Dimidi E, Cox SR, Rossi M, Whelan K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019; 11:nu11081806. [PMID: 31387262 PMCID: PMC6723656 DOI: 10.3390/nu11081806] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Fermented foods are defined as foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action. In recent years, fermented foods have undergone a surge in popularity, mainly due to their proposed health benefits. The aim of this review is to define and characterise common fermented foods (kefir, kombucha, sauerkraut, tempeh, natto, miso, kimchi, sourdough bread), their mechanisms of action (including impact on the microbiota), and the evidence for effects on gastrointestinal health and disease in humans. Putative mechanisms for the impact of fermented foods on health include the potential probiotic effect of their constituent microorganisms, the fermentation-derived production of bioactive peptides, biogenic amines, and conversion of phenolic compounds to biologically active compounds, as well as the reduction of anti-nutrients. Fermented foods that have been tested in at least one randomised controlled trial (RCT) for their gastrointestinal effects were kefir, sauerkraut, natto, and sourdough bread. Despite extensive in vitro studies, there are no RCTs investigating the impact of kombucha, miso, kimchi or tempeh in gastrointestinal health. The most widely investigated fermented food is kefir, with evidence from at least one RCT suggesting beneficial effects in both lactose malabsorption and Helicobacter pylori eradication. In summary, there is very limited clinical evidence for the effectiveness of most fermented foods in gastrointestinal health and disease. Given the convincing in vitro findings, clinical high-quality trials investigating the health benefits of fermented foods are warranted.
Collapse
Affiliation(s)
- Eirini Dimidi
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK
| | - Selina Rose Cox
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK
| | - Megan Rossi
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK
| | - Kevin Whelan
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK.
| |
Collapse
|
49
|
Miladinović J, Đorđević V, Balešević-Tubić S, Petrović K, Ćeran M, Cvejić J, Bursać M, Miladinović D. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Sci Rep 2019; 9:10341. [PMID: 31316115 PMCID: PMC6637268 DOI: 10.1038/s41598-019-46817-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/05/2019] [Indexed: 01/25/2023] Open
Abstract
Isoflavones are a group of phytoestrogens, naturally-occurring substances important for their role in human health. Legumes, particularly soybeans (Glycine max (L.) Merr.), are the richest source of isoflavones in human diet. Since there is not much current data on genetics of isoflavones in soybean, particularly in the aglycone form, elucidation of the mode of inheritance is necessary in order to design an efficient breeding strategy for the development of high-isoflavone soybean genotypes. Based on the isoflavone content in 23 samples of soybeans from four different maturity groups (00, 0, I and II), three crosses were made in order to determine the inheritance pattern and increase the content of total isoflavones and their aglycone form. Genotype with the lowest total isoflavone content (NS-L-146) was crossed with the low- (NS Zenit), medium (NS Maximus), and high- (NS Virtus) isoflavone genotypes. There were no significant differences in the total isoflavone content (TIF) between F2 populations, and there was no transgression among genotypes within the populations. Each genotype within all three populations had a higher TIF value than the lower parent (NS-L-146), while genotypes with a higher TIF value than the better parent were found only in the NS-L-146 × NS Zenit cross. However, significant differences in the aglycone ratio (ratio of aglycone to glycone form of isoflavones) were found between the populations. The highest aglycone ratio was found in the NS-L-146 × NS Maximus cross. The results indicate that the genetic improvement for the trait is possible.
Collapse
Affiliation(s)
- Jegor Miladinović
- Soybean Department, Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia.
| | - Vuk Đorđević
- Soybean Department, Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| | | | - Kristina Petrović
- Soybean Department, Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| | - Marina Ćeran
- Soybean Department, Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| | - Jelena Cvejić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Mira Bursać
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Dragana Miladinović
- Industrial Crops Department, Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| |
Collapse
|
50
|
Kim BG. Biological synthesis of genistein in Escherichia coli. J Microbiol Biotechnol 2019; 30:770-776. [PMID: 32482944 PMCID: PMC9728162 DOI: 10.4014/jmb.1911.11009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Genistein is a type of isoflavonoid found predominantly in leguminous plants. Genistein has diverse biological activities, such as anthelmintic and antioxidant effects, as well as inhibitory effects on the growth of several cancers. In addition, genistein is well known as a phytoestrogen. In this study, we attempted to biologically synthesize genistein from either p-coumaric acid or naringenin using Escherichia coli as a biotransformation host. Four genes, Os4CL, PeCHS, RcIFS, and OsCPR, were used for genistein production. To functionally express RcIFS and OsCPR, two members of the cytochrome P450 family, in E. coli, the membrane-binding anchor domain of each gene was removed, and RcIFS and OsCPR were translationally fused to generate an RcIFS-OsCPR hybrid. Os4CL and PeCHS, or the RcIFS-OsCPR hybrid, were then transformed into E. coli BL21(DE3). Using these strains, we optimized our culture system at a laboratory scale in terms of the cell density, concentrations of substrate and isopropyl-β-D-thiogalactoside, temperature, and culture medium. Under the optimized culture conditions, genistein was produced at up to 35 mg/l and 18.6 mg/l using naringenin and p-coumaric acid, respectively.
Collapse
Affiliation(s)
- Bong-Gyu Kim
- Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| |
Collapse
|