1
|
Garcia-Maldonado E, Huber AD, Chai SC, Nithianantham S, Li Y, Wu J, Poudel S, Miller DJ, Seetharaman J, Chen T. Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR. Nat Commun 2024; 15:4054. [PMID: 38744881 PMCID: PMC11094003 DOI: 10.1038/s41467-024-48472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that can often be useful drug targets. Unfortunately, ligand promiscuity leads to two-thirds of receptors remaining clinically untargeted. PXR is a nuclear receptor that can be activated by diverse compounds to elevate metabolism, negatively impacting drug efficacy and safety. This presents a barrier to drug development because compounds designed to target other proteins must avoid PXR activation while retaining potency for the desired target. This problem could be avoided by using PXR antagonists, but these compounds are rare, and their molecular mechanisms remain unknown. Here, we report structurally related PXR-selective agonists and antagonists and their corresponding co-crystal structures to describe mechanisms of antagonism and selectivity. Structural and computational approaches show that antagonists induce PXR conformational changes incompatible with transcriptional coactivator recruitment. These results guide the design of compounds with predictable agonist/antagonist activities and bolster efforts to generate antagonists to prevent PXR activation interfering with other drugs.
Collapse
Affiliation(s)
- Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stanley Nithianantham
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
2
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
3
|
Li Y, Lin W, Chai SC, Wu J, Annu K, Chen T. Design and Optimization of 1 H-1,2,3-Triazole-4-carboxamides as Novel, Potent, and Selective Inverse Agonists and Antagonists of PXR. J Med Chem 2022; 65:16829-16859. [PMID: 36480704 PMCID: PMC9789209 DOI: 10.1021/acs.jmedchem.2c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pregnane X receptor (PXR) is a key regulator of drug metabolism. Many drugs bind to and activate PXR, causing adverse drug responses. This suggests that PXR inhibitors have therapeutic value, but potent PXR inhibitors have so far been lacking. Herein, we report the structural optimization of a series of 1H-1,2,3-triazole-4-carboxamides compounds that led to the discovery of compound 85 as a selective and the most potent inverse agonist and antagonist of PXR, with low nanomolar IC50 values for binding and cellular activity. Importantly, compound 89, a close analog of 85, is a selective and pure antagonist with low nanomolar IC50 values for binding and cellular activity. This study has provided novel, selective, and most potent PXR inhibitors (a dual inverse agonist/antagonist and a pure antagonist) for use in basic research and future clinical studies and also shed light on how to reduce the binding affinity of a compound to PXR.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Sergio C. Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Kavya Annu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
4
|
Huber A, Li Y, Lin W, Galbraith AN, Mishra A, Porter SN, Wu J, Florke Gee RR, Zhuang W, Pruett-Miller SM, Peng J, Chen T. SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1. ACS Med Chem Lett 2022; 13:1311-1320. [PMID: 35978691 PMCID: PMC9377019 DOI: 10.1021/acsmedchemlett.2c00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
We previously reported a specific inverse agonist (SPA70) of the nuclear receptor pregnane X receptor (PXR). However, derivatization of SPA70 yielded only agonists and neutral antagonists, suggesting that inverse agonism of PXR is difficult to achieve. Therefore, we sought to design proteolysis targeting chimeras (PROTACs) aimed at inducing PXR degradation. Conjugation of a SPA70 derivative to ligands of the E3 substrate receptor cereblon (CRBN) resulted in one molecule, SJPYT-195, that reduced PXR protein level in an optimized degradation assay described here. Further analysis revealed that SJPYT-195 was a molecular glue degrader of the translation termination factor GSPT1 and that GSPT1 degradation resulted in subsequent reduction of PXR protein. GSPT1 has recently gained interest as an anticancer target, and our results give new insights into chemical determinants of drug-induced GSPT1 degradation. Additionally, we have developed assays and cell models for PXR degrader discovery that can be applied to additional protein targets.
Collapse
Affiliation(s)
- Andrew
D. Huber
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Yongtao Li
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Wenwei Lin
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Annalise N. Galbraith
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Ashutosh Mishra
- Center
for Proteomics and Metabolomics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Shaina N. Porter
- Department
of Cell and Molecular Biology, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Center
for Advanced Genome Engineering, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Jing Wu
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Rebecca R. Florke Gee
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Graduate
School of Biomedical Sciences, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Wei Zhuang
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Shondra M. Pruett-Miller
- Department
of Cell and Molecular Biology, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Center
for Advanced Genome Engineering, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Junmin Peng
- Center
for Proteomics and Metabolomics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Developmental Neurobiology, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
5
|
Li Y, Lin W, Wright WC, Chai SC, Wu J, Chen T. Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70. J Med Chem 2021; 64:1733-1761. [PMID: 33497575 DOI: 10.1021/acs.jmedchem.0c02201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pregnane X receptor (PXR) plays roles in detoxification and other physiological processes. PXR activation may enhance drug metabolism (leading to adverse drug reactions) or inhibit inflammation. Therefore, PXR agonists, antagonists, and inverse agonists may serve as research tools and drug candidates. However, a specific PXR modulator with an associated structure-activity relationship is lacking. Based on the scaffold of specific human PXR (hPXR) antagonist SPA70 (10), we developed 81 SPA70 analogs and evaluated their receptor-binding and cellular activities. Interestingly, analogs with subtle structural differences displayed divergent cellular activities, including agonistic, dual inverse agonistic and antagonistic, antagonistic, and partial agonistic/partial antagonistic activities (as in compounds 111, 10, 97, and 42, respectively). We generated a pharmacophore model that represents 81 SPA70 analogs, and docking models that correlate strong interactions between the compounds and residues in the AF-2 helix with agonistic activity. These compounds are novel chemical tools for studying hPXR.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, United States
| |
Collapse
|
6
|
Liu X, Zhang X, Lv D, Yuan Y, Zheng G, Zhou D. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med Chem 2020; 12:1155-1179. [PMID: 32431173 PMCID: PMC7333641 DOI: 10.4155/fmc-2020-0073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Targeted protein degradation by small-molecule degraders represents an emerging mode of action in drug discovery. Proteolysis targeting chimeras (PROTACs) are small molecules that can recruit an E3 ligase and a protein of interest (POI) into proximity, leading to induced ubiquitination and degradation of the POI by the proteasome system. To date, the design and optimization of PROTACs remain empirical due to the complicated mechanism of induced protein degradation. Nevertheless, it is increasingly appreciated that profiling step-by-step along the ubiquitin-proteasome degradation pathway using biochemical and biophysical assays are essential in understanding the structure-activity relationship and facilitating the rational design of PROTACs. This review aims to summarize these assays and to discuss the potential of expanding the toolbox with other new techniques.
Collapse
Affiliation(s)
- Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Lin W, Bwayi M, Wu J, Li Y, Chai SC, Huber AD, Chen T. CITCO Directly Binds to and Activates Human Pregnane X Receptor. Mol Pharmacol 2020; 97:180-190. [PMID: 31882411 PMCID: PMC6978709 DOI: 10.1124/mol.119.118513] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The xenobiotic receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are activated by structurally diverse chemicals to regulate the expression of target genes, and they have overlapping regulation in terms of ligands and target genes. Receptor-selective agonists are, therefore, critical for studying the overlapping function of PXR and CAR. An early effort identified 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) as a selective human CAR (hCAR) agonist, and this has since been widely used to distinguish the function of hCAR from that of human PXR (hPXR). The selectivity was demonstrated in a green monkey kidney cell line, CV-1, in which CITCO displayed >100-fold selectivity for hCAR over hPXR. However, whether the selectivity observed in CV-1 cells also represented CITCO activity in liver cell models was not hitherto investigated. In this study, we showed that CITCO: 1) binds directly to hPXR; 2) activates hPXR in HepG2 cells, with activation being blocked by an hPXR-specific antagonist, SPA70; 3) does not activate mouse PXR; 4) depends on tryptophan-299 to activate hPXR; 5) recruits steroid receptor coactivator 1 to hPXR; 6) activates hPXR in HepaRG cell lines even when hCAR is knocked out; and 7) activates hPXR in primary human hepatocytes. Together, these data indicate that CITCO binds directly to the hPXR ligand-binding domain to activate hPXR. As CITCO has been widely used, its confirmation as a dual agonist for hCAR and hPXR is important for appropriately interpreting existing data and designing future experiments to understand the regulation of hPXR and hCAR. SIGNIFICANCE STATEMENT: The results of this study demonstrate that 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) is a dual agonist for human constitutive androstane receptor (hCAR) and human pregnane X receptor (hPXR). As CITCO has been widely used to activate hCAR, and hPXR and hCAR have distinct and overlapping biological functions, these results highlight the value of receptor-selective agonists and the importance of appropriately interpreting data in the context of receptor selectivity of such agonists.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
8
|
Zhang S, Gong Z, Oladimeji PO, Currier DG, Deng Q, Liu M, Chen T, Li Y. A high-throughput screening identifies histone deacetylase inhibitors as therapeutic agents against medulloblastoma. Exp Hematol Oncol 2019; 8:30. [PMID: 31788346 PMCID: PMC6858705 DOI: 10.1186/s40164-019-0153-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Medulloblastoma is the most frequently occurring malignant brain tumor in children. Current treatment strategies for medulloblastoma include aggressive surgery, cranio-spinal irradiation and adjuvant chemotherapy. Because current treatments can cause severe long-term side effects and are not curative, successful treatment remains a challenge. METHODS In this study, we employed a high-throughput cell viability assay to screen 12,800 compounds and to identify drug candidates with anti-proliferative properties for medulloblastoma cells. We also tested these compounds for attenuating medulloblastoma tumor development using mouse xenografts. RESULTS We identified two histone deacetylase inhibitors (dacinostat and quisinostat) with anti-proliferative properties for medulloblastoma cells. We showed that both compounds induce cytotoxicity, trigger cell apoptosis, and block cell cycle progression at the G2/M phase. In addition, dacinostat and quisinostat attenuated xenograft medulloblastoma growth in mice. CONCLUSIONS Our findings suggest that histone deacetylase inhibitors are potent therapeutic agents against medulloblastoma.
Collapse
Affiliation(s)
- Shanshan Zhang
- Section of Epidemiology & Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peter O. Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Duane G. Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Qipan Deng
- Section of Epidemiology & Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Ming Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Yong Li
- Section of Epidemiology & Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
9
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
10
|
Narayanan B, Lade JM, Heck CJ, Dietz KD, Wade H, Bumpus NN. Probing Ligand Structure-Activity Relationships in Pregnane X Receptor (PXR): Efavirenz and 8-Hydroxyefavirenz Exhibit Divergence in Activation. ChemMedChem 2018; 13:736-747. [PMID: 29430850 PMCID: PMC6081956 DOI: 10.1002/cmdc.201700730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Indexed: 12/24/2022]
Abstract
Efavirenz (EFV), an antiretroviral that interacts clinically with co-administered drugs via activation of the pregnane X receptor (PXR), is extensively metabolized by the cytochromes P450. We tested whether its primary metabolite, 8-hydroxyEFV (8-OHEFV) can activate PXR and potentially contribute to PXR-mediated drug-drug interactions attributed to EFV. Luciferase reporter assays revealed that despite only differing from EFV by an oxygen atom, 8-OHEFV does not activate PXR. Corroborating this, treatment with EFV for 72 h elevated the mRNA abundance of the PXR target gene, Cyp3a11, by approximately 28-fold in primary hepatocytes isolated from PXR-humanized mice, whereas treatment with 8-OHEFV did not result in a change in Cyp3A11 mRNA levels. FRET-based competitive binding assays and isothermal calorimetry demonstrated that even with the lack of ability to activate PXR, 8-OHEFV displays an affinity for PXR (IC50 12.1 μm; KD 7.9 μm) nearly identical to that of EFV (IC50 18.7 μm; KD 12.5 μm). The use of 16 EFV analogues suggest that other discreet changes to the EFV structure beyond the 8-position are well tolerated. Molecular docking simulations implicate an 8-OHEFV binding mode that may underlie its divergence in PXR activation from EFV.
Collapse
Affiliation(s)
- Bhargavi Narayanan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street Hunterian 709 Baltimore, MD, USA
| | - Julie M. Lade
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St Biophysics 307 Baltimore, MD, USA
| | - Carley J.S. Heck
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St Biophysics 307 Baltimore, MD, USA
| | - Kevin D. Dietz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street Hunterian 709 Baltimore, MD, USA
| | - Herschel Wade
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street Hunterian 709 Baltimore, MD, USA
| | - Namandjé N. Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, 725 N Wolfe St Biophysics 307 Baltimore, MD, USA
| |
Collapse
|