1
|
Zannella C, Chianese A, Monti A, Giugliano R, Morone MV, Secci F, Sanna G, Manzin A, De Filippis A, Doti N, Galdiero M. SARS-CoV-2 Fusion Peptide Conjugated to a Tetravalent Dendrimer Selectively Inhibits Viral Infection. Pharmaceutics 2023; 15:2791. [PMID: 38140131 PMCID: PMC10748278 DOI: 10.3390/pharmaceutics15122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Fusion is a key event for enveloped viruses, through which viral and cell membranes come into close contact. This event is mediated by viral fusion proteins, which are divided into three structural and functional classes. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein belongs to class I fusion proteins, characterized by a trimer of helical hairpins and an internal fusion peptide (FP), which is exposed once fusion occurs. Many efforts have been directed at finding antivirals capable of interfering with the fusion mechanism, mainly by designing peptides on the two heptad-repeat regions present in class I viral fusion proteins. Here, we aimed to evaluate the anti-SARS-CoV-2 activity of the FP sequence conjugated to a tetravalent dendrimer through a classical organic nucleophilic substitution reaction (SN2) using a synthetic bromoacetylated peptide mimicking the FP and a branched scaffold of poly-L-Lysine functionalized with cysteine residues. We found that the FP peptide conjugated to the dendrimer, unlike the monomeric FP sequence, has virucidal activity by impairing the attachment of SARS-CoV-2 to cells. Furthermore, we found that the peptide dendrimer does not have the same effects on other coronaviruses, demonstrating that it is selective against SARS-CoV-2.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy;
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
2
|
Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021; 10:1599. [PMID: 34959554 PMCID: PMC8709411 DOI: 10.3390/pathogens10121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK;
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| |
Collapse
|
3
|
Apellániz B, Huarte N, Largo E, Nieva JL. The three lives of viral fusion peptides. Chem Phys Lipids 2014; 181:40-55. [PMID: 24704587 PMCID: PMC4061400 DOI: 10.1016/j.chemphyslip.2014.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
The presence of a fusion peptide (FP) is a hallmark of viral fusion glycoproteins. Structure–function relationships underlying FP conservation remain greatly unknown. FPs establish interactions satisfying their folding within pre-fusion glycoproteins. Upon fusion activation FPs insert into and restructure target membranes. FPs can finally combine with transmembrane domains to form integral membrane bundles.
Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
4
|
Ehrlich HC, Henzler AM, Rarey M. Searching for recursively defined generic chemical patterns in nonenumerated fragment spaces. J Chem Inf Model 2013; 53:1676-88. [PMID: 23751070 DOI: 10.1021/ci400107k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retrieving molecules with specific structural features is a fundamental requirement of today's molecular database technologies. Estimates claim the chemical space relevant for drug discovery to be around 10⁶⁰ molecules. This figure is many orders of magnitude larger than the amount of molecules conventional databases retain today and will store in the future. An elegant description of such a large chemical space is provided by the concept of fragment spaces. A fragment space comprises fragments that are molecules with open valences and describes rules how to connect these fragments to products. Due to the combinatorial nature of fragment spaces, a complete enumeration of its products is intractable. We present an algorithm to search fragment spaces for generic chemical patterns as present in the SMARTS chemical pattern language. Our method allows specification of the chemical surrounding of an atom in a query and, therefore, enables a chemically intuitive search. During the search, the costly enumeration of products is avoided. The result is a fragment space that exactly describes all possible molecules that contain the user-defined pattern. We evaluated the algorithm in three different drug development use-cases and performed a large scale statistical analysis with 738 SMARTS patterns on three public available fragment spaces. Our results show the ability of the algorithm to explore the chemical space around known active molecules, to analyze fragment spaces for the presence of likely toxic molecules, and to identify complex macromolecular structures under additional structural constraints. By searching the fragment space in its nonenumerated form, spaces covering up to 10¹⁹ molecules can be examined in times ranging between 47 s and 19 min depending on the complexity of the query pattern.
Collapse
|
5
|
Ehrlich HC, Volkamer A, Rarey M. Searching for Substructures in Fragment Spaces. J Chem Inf Model 2012. [DOI: 10.1021/ci300283a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Andrea Volkamer
- University of Hamburg, Bundestraße 43, 20146 Hamburg, Germany
| | - Matthias Rarey
- University of Hamburg, Bundestraße 43, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Garg H, Viard M, Jacobs A, Blumenthal R. Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. Curr Top Med Chem 2012; 11:2947-58. [PMID: 22044225 DOI: 10.2174/156802611798808479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 02/28/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Excellence for Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | | | | | | |
Collapse
|
7
|
Lorizate M, Kräusslich HG. Role of lipids in virus replication. Cold Spring Harb Perspect Biol 2011; 3:a004820. [PMID: 21628428 DOI: 10.1101/cshperspect.a004820] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.
Collapse
Affiliation(s)
- Maier Lorizate
- Department of Infectious Diseases, Virology, University Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
8
|
Melnik LI, Garry RF, Morris CA. Peptide inhibition of human cytomegalovirus infection. Virol J 2011; 8:76. [PMID: 21342525 PMCID: PMC3050824 DOI: 10.1186/1743-422x-8-76] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/22/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV)- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB), a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. RESULTS Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS), several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF) were infected with the Towne-GFP strain of HCMV (0.5 MOI), preincubated with peptides at a range of concentrations (78 nm to 100 μM), and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100 μM and 50 μM, respectively, and 60% at a concentration of 2.5 μM. While peptides 264-291 and 297-315, individually failed to inhibit viral infection, when combined, they showed 67% inhibition of HCMV infection at a concentration of 0.125 μM each. CONCLUSIONS Peptides designed to target putative fusogenic domains of gB provide a basis for the development of novel therapeutics that prevent HCMV infection.
Collapse
Affiliation(s)
- Lilia I Melnik
- Graduate Program in Biomedical Sciences and Department of Microbiology and Immunology, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | | | | |
Collapse
|
9
|
Manolios N, Ali M, Bender V. T-cell antigen receptor (TCR) transmembrane peptides: A new paradigm for the treatment of autoimmune diseases. Cell Adh Migr 2010; 4:273-83. [PMID: 20431344 DOI: 10.4161/cam.4.2.11909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell surface membranes are generally considered as inert and hydrophobic providing a stable physical barrier that anchor proteins and maintain cellular homeostasis between the intra- and the extra-cellular environment. The integral proteins that transverse membranes do so once or multiple times and can function alone or as part of a larger complex. Far from being inert, there is a multiplicity of biophysical factors that drive protein-protein and protein-lipid interactions within membranes that are being increasingly recognised as very important for cellular function. Unravelling these "hot-spots" on the contact surface of transmembrane (TM) proteins and targeting peptides to these sites to interrupt the cohesive interaction between the proteins provides both an enormous challenge and a huge therapeutic potential that as yet remains unrecognized. Indeed, with biopharmaceutical research on the rise, TM peptides may prove a useful innovation. Using the T-cell antigen receptor (TCR) as a model system of multi-subunits interacting at the TM via electrostatic charges the potential for peptides as therapeutic agents to interfere with normal immune responses is discussed. The principles of such can be extended to other similar receptor systems including those involved in cancer or infection.
Collapse
Affiliation(s)
- Nicholas Manolios
- Department of Rheumatology, Westmead Hospital, Westmead, NSW, Australia.
| | | | | |
Collapse
|
10
|
Grund S, Klein A, Adams O. Expression plasmids are only useful for the investigation of co-receptor tropism and fusion capacity of short HIV-1 envelope domains. J Virol Methods 2010; 166:106-9. [PMID: 20304009 DOI: 10.1016/j.jviromet.2010.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 12/19/2009] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
Abstract
Expression vectors have been used widely to identify functionally important domains in HIV-1 glycoproteins. Env domains such as the V3 loop were amplified by polymerase chain reaction (PCR) and inserted into plasmids carrying the backbone of an HIV-1 reference strain like NL4-3. The hypothesis of the present approach was that cloning large domains of wild type envelopes yields constructs that are non-functional in co-receptor-expressing HeLaCD4 cells, in contrast to laboratory-adapted HIV-1 strains. The background for this assumption was that primary HIV-1 virions are frequently less infectious and lack fusion capacity in HeLaCD4 cells compared to laboratory-adapted (LA) viruses. To address this hypothesis, env domains of different length were amplified from a panel of X4-tropic HIV-1 clinical isolates cultured in peripheral blood lymphocytes (PBLs) and cloned into the backbone of NL4-3 env. Constructs bearing either the V3 loops or 312 nucleotides of the intracellular trunk (ICT) of gp41 led to a similar fusion capacity as NL4-3. In contrast, none of the plasmids carrying the 2322 N-terminal nucleotides of primary isolates led to similar syncytium formation. These results have an effect on studies that investigate pathogenic effects of Env regions with chimeric constructs in the backbone of HIV reference envelopes.
Collapse
Affiliation(s)
- S Grund
- Institute of Virology of the University of Düsseldorf, Heinrich-Heine-University, Geb. 22.21, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
11
|
Pang W, Tam SC, Zheng YT. Current peptide HIV type-1 fusion inhibitors. Antivir Chem Chemother 2009; 20:1-18. [PMID: 19794228 DOI: 10.3851/imp1369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There are now 26 antiretroviral drugs and 6 fixed-dose combinations, including reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and fusion (or entry) inhibitors, approved by the US Food and Drug Administration for clinical use. Although they are clinically effective when used in combination, none of the existing drugs are considered ideal because of toxic side effects and the ascendance of inducing drug-resistant mutants. Development of new antiviral agents is essential. In the past decades, there has been great progress in understanding the structure of HIV type-1 (HIV-1) gp41 and the mechanism of HIV-1 entry into host cells. This opened up a promising avenue for rationally designed agents to interfere with this process. A number of fusion inhibitors have been developed to block HIV-1 replication. Enfuvirtide (T20) was one of those approved for clinical use. This signalled a new era in AIDS therapeutics. It is a synthetic polypeptide with potent inhibitory activity against HIV-1 infection. However, it is sensitive to proteolytic digestion and resistant virus strains are easily induced with multiple clinical use. One of the directions in designing new fusion inhibitors is to overcome these shortages. In the past years, large numbers of promising fusion inhibitory peptides have emerged. The antiviral activities are more potent or they can act differently from that of T20. Some of these new compounds have great potential to be further developed as therapeutic agents. This article reviewed some recent developments of these peptides and the possible role in anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Diseases Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
12
|
Nieva JL, Nir S, Wilschut J. Destabilization and Fusion of Zwitterionic Large Unilamellar Lipid Vesicles Induced by a β-Type Structure of the Hiv-1 Fusion Peptide. J Liposome Res 2008. [DOI: 10.3109/08982109809035524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Lorizate M, Huarte N, Sáez-Cirión A, Nieva JL. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1624-39. [PMID: 18222166 PMCID: PMC7094410 DOI: 10.1016/j.bbamem.2007.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 12/02/2022]
Abstract
Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley–White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure–function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - José L. Nieva
- Corresponding author. Unidad de Biofísica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain. Tel.: +34 94 6013353; fax: +34 94 6013360.
| |
Collapse
|
14
|
Sainz B, Mossel EC, Gallaher WR, Wimley WC, Peters CJ, Wilson RB, Garry RF. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res 2006; 120:146-55. [PMID: 16616792 PMCID: PMC2582734 DOI: 10.1016/j.virusres.2006.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 02/09/2006] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the cause of an atypical pneumonia that affected Asia, North America and Europe in 2002-2003. The viral spike (S) glycoprotein is responsible for mediating receptor binding and membrane fusion. Recent studies have proposed that the carboxyl terminal portion (S2 subunit) of the S protein is a class I viral fusion protein. The Wimley and White interfacial hydrophobicity scale was used to identify regions within the CoV S2 subunit that may preferentially associate with lipid membranes with the premise that peptides analogous to these regions may function as inhibitors of viral infectivity. Five regions of high interfacial hydrophobicity spanning the length of the S2 subunit of SARS-CoV and murine hepatitis virus (MHV) were identified. Peptides analogous to regions of the N-terminus or the pre-transmembrane domain of the S2 subunit inhibited SARS-CoV plaque formation by 40-70% at concentrations of 15-30 microM. Interestingly, peptides analogous to the SARS-CoV or MHV loop region inhibited viral plaque formation by >80% at similar concentrations. The observed effects were dose-dependent (IC50 values of 2-4 microM) and not a result of peptide-mediated cell cytotoxicity. The antiviral activity of the CoV peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Gómara MJ, Lorizate M, Huarte N, Mingarro I, Perez-Payá E, Nieva JL. Hexapeptides that interfere with HIV-1 fusion peptide activity in liposomes block GP41-mediated membrane fusion. FEBS Lett 2006; 580:2561-6. [PMID: 16647705 DOI: 10.1016/j.febslet.2006.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/24/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Upon receptor-mediated activation, the gp41 hydrophobic, conserved fusion peptide inserts into the target membrane and promotes the kind of perturbations required for the progression of the HIV-cell fusion reaction. Using a synthetic combinatorial library we have identified all d-amino acid hexapeptide sequences that inhibited the fusion peptide capacity of perturbing model membranes. Two hexapeptides that effectively inhibited the fusion peptide in these systems were subsequently shown to inhibit cell-cell fusion promoted by gp41 expressed at cell surfaces. These observations might be of importance for understanding the mechanisms underlying fusion peptide activity and suggest new strategies for screening compounds that target these viral sequences.
Collapse
Affiliation(s)
- María J Gómara
- Biofisika Unitatea, CSIC-UPV/EHU, and Biokimika Saila, Euskal Herriko Unibertsitatea, Posta Kutxa 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Gerber D, Pritsker M, Gunther-Ausborn S, Johnson B, Blumenthal R, Shai Y. Inhibition of HIV-1 envelope glycoprotein-mediated cell fusion by a DL-amino acid-containing fusion peptide: possible recognition of the fusion complex. J Biol Chem 2004; 279:48224-30. [PMID: 15339935 DOI: 10.1074/jbc.m403436200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal fusion peptide (FP) of human immunodeficiency virus-1 (HIV-1) is a potent inhibitor of cell-cell fusion, possibly because of its ability to recognize the corresponding segments inside the fusion complex within the membrane. Here we show that a fusion peptide in which the highly conserved Ile(4), Phe(8), Phe(11), and Ala(14) were replaced by their d-enantiomers (IFFA) is a potent inhibitor of cell-cell fusion. Fourier transform infrared spectroscopy confirmed that despite these drastic modifications, the peptide preserved most of its structure within the membrane. Fluorescence energy transfer studies demonstrated that the diastereomeric peptide interacted with the wild type FP, suggesting this segment as the target site for inhibition of membrane fusion. This is further supported by the similar localization of the wild type and IFFA FPs to microdomains in T cells and the preferred partitioning into ordered regions within sphingomyelin/phosphatidyl-choline/cholesterol giant vesicles. These studies provide insight into the mechanism of molecular recognition within the membrane milieu and may serve in designing novel HIV entry inhibitors.
Collapse
Affiliation(s)
- Doron Gerber
- The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | |
Collapse
|
17
|
Cooper DA, Lange JMA. Peptide inhibitors of virus-cell fusion: enfuvirtide as a case study in clinical discovery and development. THE LANCET. INFECTIOUS DISEASES 2004; 4:426-36. [PMID: 15219553 DOI: 10.1016/s1473-3099(04)01058-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The peptidic antiretroviral enfuvirtide (Fuzeon) is the first clinically approved antiviral fusion inhibitor and the first antiretroviral that must routinely be administered parenterally. Its extracellular activity results both in activity against current drug-resistant strains of HIV-1 and a low potential for systemic toxicities. As a peptide, enfuvirtide also exhibits few interactions with other antiretrovirals and concomitant medications used in HIV disease. Enfuvirtide shows potent antiretroviral activity and significantly improves medical outcomes in highly treatment-experienced patients with HIV-1 infection, but like other antiretrovirals must be given as part of a carefully selected combination regimen to minimise the risk of emergent drug resistance. Despite its subcutaneous route of administration, clinical data indicate that most patients can accept long-term enfuvirtide treatment with little difficulty or impact on daily activities. The only common adverse event associated with enfuvirtide use is injection-site reactions of generally mild-to-moderate severity, which are seldom treatment-limiting.
Collapse
Affiliation(s)
- David A Cooper
- University of New South Wales, National Centre in HIV Epidemiology and Clinical Research, St Vincent's Hospital Medical Centre, Sydney, Australia.
| | | |
Collapse
|
18
|
Nieva JL, Agirre A. Are fusion peptides a good model to study viral cell fusion? BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:104-15. [PMID: 12873771 DOI: 10.1016/s0005-2736(03)00168-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusion peptides are hydrophobic and conserved sequences located within glycoprotein ectodomains that protrude from the virion surface. Direct participation of fusion peptides in the viral membrane fusion phenomenon has been inferred from genetic analyses showing that even a single residue substitution or a deletion within these sequences may completely block the process. However, the specific fusion peptide activities associated to the multi-step fusion mechanism are not well defined. Based on the assumption that fusion peptides are transferred into target membranes, biophysical methodologies have been applied to study integration into model membranes of synthetic fragments representing functional and non-functional sequences. From these studies, it is inferred that, following insertion, functional sequences generate target membrane perturbations and adopt specific structural arrangements within. Further characterization of these artificial systems may help in understanding the molecular processes that bring initial bilayer destabilizations to the eventual opening of a fusion pore.
Collapse
Affiliation(s)
- José L Nieva
- Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080, Bilbao, Spain.
| | | |
Collapse
|
19
|
Mas V, Pérez L, Encinar JA, Pastor MT, Rocha A, Perez-Paya E, Ferrer-Montiel A, Gonzalez Ros JM, Estepa A, Coll JM. Salmonid viral haemorrhagic septicaemia virus: fusion-related enhancement of virus infectivity by peptides derived from viral glycoprotein G or a combinatorial library. J Gen Virol 2002; 83:2671-2681. [PMID: 12388802 DOI: 10.1099/0022-1317-83-11-2671] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To search for enhancers and/or inhibitors of viral haemorrhagic septicaemia virus (VHSV, a salmonid rhabdovirus) infectivity, a total of 51 peptides from a pepscan of viral envelope protein G, a recombinant peptide from protein G (frg11) and 80 peptide mixtures from an alpha-helix-favoured combinatorial library were screened. However, contrary to what occurs in many other enveloped viruses, only peptides enhancing rather than inhibiting VHSV infectivity were found. Because some of the enhancer pepscan G peptides and frg11 were derived from phospholipid-binding or fusion-related regions identified previously, it was suggested that enhancement of virus infectivity might be related to virus-cell fusion. Furthermore, enhancement was significant only when the viral peptides were pre-incubated with VHSV at the optimal low pH of fusion, before being adjusted to physiological pH and assayed for infectivity. Enhancement of VHSV infectivity caused by the pre-incubation of VHSV with peptide p5 (SAAEASAKATAEATAKG), one of the individual enhancer peptides defined from the screening of the combinatorial library, was independent of the pre-incubation pH. However, it was also related to fusion because the binding of p5 to protein G induced VHSV to bypass the endosome pathway of infection and reduced the low-pH threshold of fusion, thus suggesting an alternative virus entry pathway for p5-VHSV complexes. Further investigations into VHSV enhancer peptides might shed some light on the mechanisms of VHSV fusion.
Collapse
Affiliation(s)
- V Mas
- Ctr. Biología Molecular y Cellular, UMH, Elche, Spain1
| | - L Pérez
- Ctr. Biología Molecular y Cellular, UMH, Elche, Spain1
| | - J A Encinar
- Ctr. Biología Molecular y Cellular, UMH, Elche, Spain1
| | - M T Pastor
- Dept Bioquimica i Biología Molecular, UV-46100, Burjasot, Valencia, Spain2
| | - A Rocha
- INIA, Instituto Nacional de Investigaciones Agrarias, SGIT - Dept Biotecnología, Ctr. Coruña Km 7, Madrid, Spain3
| | - E Perez-Paya
- Dept Bioquimica i Biología Molecular, UV-46100, Burjasot, Valencia, Spain2
| | | | | | - A Estepa
- Ctr. Biología Molecular y Cellular, UMH, Elche, Spain1
| | - J M Coll
- INIA, Instituto Nacional de Investigaciones Agrarias, SGIT - Dept Biotecnología, Ctr. Coruña Km 7, Madrid, Spain3
| |
Collapse
|
20
|
Ma J, Kennedy-Stoskopf S, Jaynes JM, Thurmond LM, Tompkins WA. Inhibitory activity of synthetic peptide antibiotics on feline immunodeficiency virus infectivity in vitro. J Virol 2002; 76:9952-61. [PMID: 12208971 PMCID: PMC136481 DOI: 10.1128/jvi.76.19.9952-9961.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural peptide antibiotics are part of host innate immunity against a wide range of microbes, including some viruses. Synthetic peptides modeled after natural peptide antibiotics interfere with microbial membranes and are termed peptidyl membrane-interactive molecules (peptidyl-MIM [Demegen Inc, Pittsburgh, Pa.]). Sixteen peptidyl-MIM candidates were tested for activity against feline immunodeficiency virus (FIV) on infected CrFK cells. Three of them (D4E1, DC1, and D1D6) showed potent anti-FIV activity in chronically infected CrFK cells as measured by decreased reverse transcriptase (RT) activity, having 50% inhibitory concentrations of 0.46, 0.75, and 0.94 micro M, respectively, which were approximately 10 times lower than their direct cytotoxic concentrations. Treatment of chronically infected CrFK cells with 2 micro M D4E1 for 3 days completely reversed virus-induced cytopathic effect. Immunofluorescence revealed reduced p26 staining in these cells. Treatment of chronically infected CrFK cells with 2 micro M D4E1 suppressed virus production ( approximately 50%) for up to 7 days, The virions from the D4E1-treated culture had impaired infectivity, as measured by the 50% tissue culture infectious dose and nested PCR analysis of proviral DNA. However, these noninfectious virions were able to bind and internalize, suggesting a defect at some postentry step. After chronically infected CrFK cells were treated with D4E1 for 24 h, increased cell-associated mature p26 Gag and decreased extracellular virus-associated p26 Gag were observed by Western blot analysis, suggesting that virus assembly and/or release may be blocked by D4E1 treatment, whereas virus binding, penetration, RNA synthesis, and protein synthesis appear to be unaffected. Synthetic peptide antibiotics may be useful tools in the search for antiviral drugs having a wide therapeutic window for host cells.
Collapse
Affiliation(s)
- Jia Ma
- Department of Microbiology, Pathology and Parasitology, North Carolina State University, Raleigh, North Carolina, USA.
| | | | | | | | | |
Collapse
|
21
|
Estepa A, Fernandez-Alonso M, Coll JM. Structure, binding and neutralization of VHSV with synthetic peptides. Virus Res 1999; 63:27-34. [PMID: 10509713 DOI: 10.1016/s0168-1702(99)00055-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The phosphatidylserine binding region p2 of VHSV was characterized and was shown to be involved with fusion. Synthetic peptides corresponding to this region interact with phospholipids by penetrating into the membrane and changing to a beta sheet configuration. Computer modeling of this region shows the possible ways by which the interaction with the membranes can succeed. Inhibitory peptides are presently being sought by studying possible interactions within heptad repeats located in other regions of the G protein of VHSV. The heptad repeat region that includes the phosphatidylserine binding domain p2 has been cloned and preliminary experiments show that under certain conditions, peptides from this region can inhibit VHSV infectivity.
Collapse
Affiliation(s)
- A Estepa
- Departmento Bioquimica y Biologia Molecular, Universidad Miguel Hernandez, Elche, Alicante, Spain
| | | | | |
Collapse
|
22
|
Langat DK, Johnson PM, Rote NS, Wango EO, Owiti GO, Isahakia MA, Mwenda JM. Characterization of antigens expressed in normal baboon trophoblast and cross-reactive with HIV/SIV antibodies. J Reprod Immunol 1999; 42:41-58. [PMID: 10098831 DOI: 10.1016/s0165-0378(98)00043-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electron microscopic studies have revealed the presence of endogenous retroviral (ERV) particles in normal primate placental tissues. These particles have ultrastructural similarities to type C retroviral particles and are mainly associated with the trophoblast. In normal human placental tissues, they have antigenic similarity with exogenous retroviruses, such as the human immunodeficiency virus (HIV), and may have a role to play in the regulation of cellular gene expression, syncytiotrophoblast formation or pregnancy-related immunosuppression. In this study, a panel of antibodies (polyclonal and monoclonal antibodies) against viral proteins (anti-HIV and anti-SIV) and endogenous retroviral (ERV) proteins were assessed by immunohistochemistry and immunoblotting, for their cross-reactivity with ERV particles isolated from normal baboon placental tissues. The antibodies (anti-HERV-K RT, anti-ERV3 env, anti-HIV-1 p17, anti-HIV-2 gp120) reacted positively with the syncytiotrophoblast and each antibody recognized one or two proteins of molecular weights (MW) 38, 58 or 64 kDa present in the baboon placental villous tissues and SIV-infected molt-4 Cl8 cells, but not in uninfected cells. The results of this study confirm the specific expression of retroviral cross-reactive antigens in normal baboon placental tissues and suggest placental cellular proteins may have antigenic similarity with those recognized by anti-HIV/SIV antibodies. The role of these retroviral-related proteins expressed at the maternal-fetal interface remain unclear.
Collapse
Affiliation(s)
- D K Langat
- Institute of Primate Research, Karen, Nairobi, Kenya
| | | | | | | | | | | | | |
Collapse
|
23
|
Silburn KA, McPhee DA, Maerz AL, Poumbourios P, Whittaker RG, Kirkpatrick A, Reilly WG, Manthey MK, Curtain CC. Efficacy of fusion peptide homologs in blocking cell lysis and HIV-induced fusion. AIDS Res Hum Retroviruses 1998; 14:385-92. [PMID: 9546797 DOI: 10.1089/aid.1998.14.385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Contrary to earlier reports, we have found that tri- and hexapeptides analogous or homologous with segments of the 23-residue N-terminal fusion sequence (FS) of the viral transmembrane glycoprotein gp41 (residues 517-539) did not significantly inhibit HIV-1-induced syncytium formation, using an uninfected cell-infected cell fusion assay. In contrast, we found that the high molecular weight apolipoprotein A-1 and a 23-residue analog of the FS, with the phenylalanine residues at positions 524 and 527 replaced with alanine residues, were effective inhibitors. Although the tripeptides were ineffective as inhibitors of syncytium formation, we found a number of them inhibited red cell lysis induced by the synthetic peptide AVGIGALFLGFLGAAGSTMGARS (based on the HIV-1 gp41 FS). This effect was also seen with apolipoprotein A-1. The Ala524,527 analog of the fusion sequence could not be tested in this system because it was hemolytic. We concluded that the smaller peptides were effective inhibitors of hemolysis because they interfered with pore formation by the fusion sequence peptide, either by disrupting the pores or by preventing the peptide from adopting the alpha-helical conformation found in the pores. On the other hand, membrane fusion, which is a prelude to syncytium formation, has been shown to require the fusion sequence in the beta-strand conformation. We argue that small peptides would be unable to block interaction between such strands, although larger molecules, such as apolipoprotein A-1 and the Ala524,527 analog, would be able to do so and thus inhibit fusion. It seems, therefore, that a successful drug directed against the FS-cell membrane interaction stage of syncytium formation would need to be of relatively high molecular weight and complexity.
Collapse
Affiliation(s)
- K A Silburn
- AIDS Cellular Biology Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pereira FB, Goñi FM, Nieva JL. Membrane fusion induced by the HIV type 1 fusion peptide: modulation by factors affecting glycoprotein 41 activity and potential anti-HIV compounds. AIDS Res Hum Retroviruses 1997; 13:1203-11. [PMID: 9310287 DOI: 10.1089/aid.1997.13.1203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peptides representing a sequence of 23 amino acid residues at the N terminus of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41 bind and subsequently induce fusion of large unilamellar vesicles (LUV), an activity presumably related to gp41 function in viral infection. These in vitro effects can be modulated by several factors that are known to affect HIV-1 infectivity and gp41-mediated virus-cell fusion. Peptide-induced membrane fusion but not peptide binding can be inhibited by two factors known to block gp41 activity: a polar amino acid substitution V --> E in position 2 and the presence of the N-terminal hexapeptide of gp41 in addition to the parent sequence. Whereas inclusion of the alternative gp120 receptor galactosylceramide in membranes has virtually no effect, membrane cholesterol stimulates fusion activity. In view of its putative physiological relevance, we have used the fusion activity of the peptides as a tool to evaluate the inhibitory effect of antivirals that might target this sequence. We describe three dissimilar effects: Amphotericin B inhibits in a cholesterol-independent way peptide-induced fusion but not binding, human serum albumin inhibits binding and consequently fusion, and dextran sulfate (M(r) 5000) does not affect either binding or fusion.
Collapse
Affiliation(s)
- F B Pereira
- Department of Biochemistry and Molecular Biology (Biomembrane Laboratory-CSIC), University of the Basque Country, Bilbao, Spain
| | | | | |
Collapse
|
25
|
Kliger Y, Aharoni A, Rapaport D, Jones P, Blumenthal R, Shai Y. Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study. J Biol Chem 1997; 272:13496-505. [PMID: 9153194 DOI: 10.1074/jbc.272.21.13496] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The fusion domain of human immunodeficiency virus (HIV-1) envelope glycoprotein (gp120-gp41) is a conserved hydrophobic region located at the N terminus of the transmembrane glycoprotein (gp41). A V2E mutant has been shown to dominantly interfere with wild-type envelope-mediated syncytium formation and virus infectivity. To understand this phenomenon, a 33-residue peptide (wild type, WT) identical to the N-terminal segment of gp41 and its V2E mutant were synthesized, fluorescently labeled, and characterized. Both peptides inhibited HIV-1 envelope-mediated cell-cell fusion and had similar alpha-helical content in membrane mimetic environments. Studies with fluorescently labeled peptide analogues revealed that both peptides have high affinity for phospholipid membranes, are susceptible to digestion by proteinase-K in their membrane-bound state, and tend to self- and coassemble in the membranes. In SDS-polyacrylamide gel electrophoresis the WT peptide formed dimers as well as higher order oligomers, whereas the V2E mutant only formed dimers. The WT, but not the V2E mutant, induced liposome aggregation, destabilization, and fusion. Moreover, the V2E mutant inhibited vesicle fusion induced by the WT peptide, probably by forming inactive heteroaggregates. These data form the basis for an explanation of the mechanism by which the gp41 V2E mutant inhibits HIV-1 infectivity in cells when co-expressed with WT gp41.
Collapse
Affiliation(s)
- Y Kliger
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | |
Collapse
|
26
|
Lin PF, Samanta H, Bechtold CM, Deminie CA, Patick AK, Alam M, Riccardi K, Rose RE, White RJ, Colonno RJ. Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor. Antimicrob Agents Chemother 1996; 40:133-8. [PMID: 8787894 PMCID: PMC163071 DOI: 10.1128/aac.40.1.133] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human immunodeficiency virus (HIV) fusion inhibitor siamycin I, a 21-residue tricyclic peptide, was identified from a Streptomyces culture by using a cell fusion assay involving cocultivation of HeLa-CD4+ cells and monkey kidney (BSC-1) cells expressing the HIV envelope gp160. Siamycin I is effective against acute HIV type 1 (HIV-1) and HIV-2 infections, with 50% effective doses ranging from 0.05 to 5.7 microM, and the concentration resulting in a 50% decrease in cell viability in the absence of viral infection is 150 microM in CEM-SS cells. Siamycin I inhibits fusion between C8166 cells and CEM-SS cells chronically infected with HIV (50% effective dose of 0.08 microM) but has no effect on Sendai virus-induced fusion or murine myoblast fusion. Siamycin I does not inhibit gp120 binding to CD4 in either gp120- or CD4-based capture enzyme-linked immunosorbent assays. Inhibition of HIV-induced fusion by this compound is reversible, suggesting that siamycin I binds noncovalently. An HIV-1 resistant variant was selected by in vitro passage of virus in the presence of increasing concentrations of siamycin I. Drug susceptibility studies on a chimeric virus containing the envelope gene from the siamycin I-resistant variant indicate that resistance maps to the gp160 gene. Envelope-deficient HIV complemented with gp160 from siamycin I-resistant HIV also displayed a resistant phenotype upon infection of HeLa-CD4-LTR-beta-gal cells. A comparison of the DNA sequences of the envelope genes from the resistant and parent viruses revealed a total of six amino acid changes. Together these results indicate that siamycin I interacts with the HIV envelope protein.
Collapse
Affiliation(s)
- P F Lin
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
James W, Weiss RA, Simon JH. The receptor for HIV: dissection of CD4 and studies on putative accessory factors. Curr Top Microbiol Immunol 1996; 205:137-58. [PMID: 8575194 DOI: 10.1007/978-3-642-79798-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- W James
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
28
|
Schaal H, Klein M, Gehrmann P, Adams O, Scheid A. Requirement of N-terminal amino acid residues of gp41 for human immunodeficiency virus type 1-mediated cell fusion. J Virol 1995; 69:3308-14. [PMID: 7745678 PMCID: PMC189042 DOI: 10.1128/jvi.69.6.3308-3314.1995] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An expression vector was designed to test the structural requirements of the gp41 N terminus for human immunodeficiency virus type 1-induced membrane fusion. Mutations in the region coding for the N terminus of gp41 were found to disrupt glycoprotein expression because of deleterious effects on the Rev-responsive element (RRE). Insertion of an additional RRE in the 3'-noncoding sequence of env made possible efficient glycoprotein expression, irrespective of the mutations introduced into the RRE in the natural location. This permitted the insertion of the unique restriction site SpeI within the N-terminal sequences of gp41, allowing convenient and efficient mutation of the gp41 N terminus by using double-stranded synthetic oligonucleotides. Mutants with deletions of 1 to 7 amino acids of the N terminus were constructed. Expression and cleavage of all mutants were confirmed by Western immunoblot analysis with anti-gp41 antibodies. The capability of mutants to induce membrane fusion was monitored following transfection of HeLa-T4+ cell lines with wild-type and mutant expression vectors by electroporation and microinjection. The efficiency of cell-fusing activity decreased drastically with deletion of 3 and 4 amino acids and was completely lost with deletion of 5 amino acids. Cotransfection of the parent and mutant expression vectors resulted in reduced cell-fusing activity. The extent of this dominant interference by mutant glycoprotein paralleled the decrease in cell-fusing activity of the mutants alone. This suggests the existence of a specific N-terminal structure required for fusing activity. However, there does not appear to be a stringent requirement for the precise length of the N terminus. This finding is supported by the length variation of this region among natural human immunodeficiency virus type 1 isolates and is in contrast to the apparent stringency in the length of analogous N-terminal structures of influenza A virus and paramyxovirus fusion glycoproteins.
Collapse
Affiliation(s)
- H Schaal
- Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
29
|
Gordon LM, Waring AJ, Curtain CC, Kirkpatrick A, Leung C, Faull K, Mobley PW. Antivirals that target the amino-terminal domain of HIV type 1 glycoprotein 41. AIDS Res Hum Retroviruses 1995; 11:677-86. [PMID: 7576927 DOI: 10.1089/aid.1995.11.677] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Functional and structural studies were made to assess whether a class of antiviral agents targets the N-terminal domain of the glycoprotein 41,000 (gp41) of human immunodeficiency virus type 1 (HIV-1). Previous experiments have shown that the amino-terminal peptide (FP-I; 23 amino acids, residues 519-541) of HIV-1 gp41 is cytolytic to both human erythrocytes (non-CD4+ cells) and Hut-78 cells (CD4+ lymphocytes). Accordingly, FP-I-induced hemolysis may be used as a surrogate assay for evaluating the role of the N-terminal gp41 domain in HIV-cell interactions. Here, we studied the blocking of FP-I-induced lysis of erythrocytes by the following anti-HIV agents: (1) IgG [i.e., anti-(518-541) IgG] raised to an immunoconjugate of Arg-FP-I, (2) apolipoprotein A-1 (apo A-1) and a peptide based on apo A-1, (3) dextran sulfate, (4) gp41 peptide (residues 637-666), and (5) anionic human serum albumins. Dose-response curves indicated that their relative potency in inhibiting FP-I-induced hemolysis was approximately correlated with their previously reported anti-HIV activity. Electron spin resonance (ESR) studies showed that FP-I spin labeled at the N-terminal alanine binds to anti-(518-541) IgG, dextran sulfate, and anionic albumins. The high in vitro antiviral activity and low cytotoxicity of these agents suggest that blocking membrane-FP-I interactions offers a novel approach for AIDS therapy or prophylaxis.
Collapse
Affiliation(s)
- L M Gordon
- Department of Pediatrics, Drew University-King Medical Center/UCLA 90059, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 1994; 91:9770-4. [PMID: 7937889 PMCID: PMC44898 DOI: 10.1073/pnas.91.21.9770] [Citation(s) in RCA: 756] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To define the role of the human immunodeficiency virus type 1 (HIV-1) envelope proteins in virus infection, a series of peptides were synthesized based on various regions of the HIV-1 transmembrane protein gp41. One of these peptides, DP-178, corresponding to a region predictive of alpha-helical secondary structure (residues 643-678 of the HIV-1LAI isolate), has been identified as a potent antiviral agent. This peptide consistently blocked 100% of virus-mediated cell-cell fusion at < 5 ng/ml (IC90 approximately 1.5 ng/ml) and gave an approximately 10 times reduction in infectious titer of cell-free virus at approximately 80 ng/ml. The inhibitory activity was observed at peptide concentrations approximately 10(4) to 10(5) times lower than those at which cytotoxicity and cytostasis were detected. Peptide-mediated inhibition is HIV-1 specific in that approximately 10(2) to 10(3) times more peptide was required for inhibition of a human immunodeficiency virus type 2 isolate. Further experiments showed that DP-178 exhibited antiviral activity against both prototypic and primary HIV-1 isolates. As shown by PCR analysis of newly synthesized proviral DNA, DP-178 blocks an early step in the virus life cycle prior to reverse transcription. Finally, we discuss possible mechanisms by which DP-178 may exert its inhibitory activity.
Collapse
Affiliation(s)
- C T Wild
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
31
|
Curtain CC, Separovic F, Rivett D, Kirkpatrick A, Waring AJ, Gordon LM, Azad AA. Fusogenic activity of amino-terminal region of HIV type 1 Nef protein. AIDS Res Hum Retroviruses 1994; 10:1231-40. [PMID: 7848681 DOI: 10.1089/aid.1994.10.1231] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have studied two isoforms of Nef, Nef-27 and Nef-25, which were produced in E. coli. Nef-25 lacked the first 18 N-terminal residues of Nef-27 and both were nonmyristylated. Nef-27 fuses small unilamellar dipalmitoyl phosphatidylcholine vesicles (SUVs), as indicated by enhanced light scattering of SUVs and lipid mixing using concentration-dependent fluorescence dequenching. Nef-27 also causes the appearance of a shifted isotropic peak in the 31P NMR spectra of these vesicles, suggesting that protein interactions induce nonlamellar lipid structures. Recombinant Nef-25, which lacks only the 18 N-terminal residues of Nef-27, does not fuse vesicles and has little effect on the 31P NMR spectra. On the other hand, synthetic peptides consisting of 18 or 21 of the N-terminal residues of Nef-27 are strongly membrane perturbing, causing vesicle fusion and inducing isotropic peaks in the 31P NMR spectrum. Endogenous fluorescence spectra of the N-terminal peptide (21 residues) with SUVs show that the N-terminal sequence of Nef may achieve these perturbing effects by inserting its hydrophobic side into the lipid bilayer. Theoretical calculations using hydrophobic moment plot analysis indicate that short-length stretches (i.e., six amino acid residues) of the N-terminal sequence may insert into the lipid bilayer as multimeric alpha helices or beta sheets. The above-described membrane activities of Nef-27, which principally reside in its N-terminal domain, may play critical role(s) in certain functional properties of the full-length protein. For example, the fusogenic activity of the N-terminal sequence may be involved in the extracellular release of Nef-27, much of which appears to be associated with small membrane vesicles. The fusion activity may also be relevant to the ability of Nef-27 to downregulate CD4 and IL-2 receptors when this protein is electroporated into cultured lymphocytes, an activity not possessed by Nef-25.
Collapse
MESH Headings
- 1,2-Dipalmitoylphosphatidylcholine
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Gene Products, nef/biosynthesis
- Gene Products, nef/chemistry
- Gene Products, nef/metabolism
- HIV-1/metabolism
- Light
- Liposomes
- Magnetic Resonance Spectroscopy
- Membrane Fusion
- Molecular Sequence Data
- Peptide Fragments/chemical synthesis
- Peptide Fragments/chemistry
- Protein Structure, Secondary
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Scattering, Radiation
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- C C Curtain
- Biomolecular Research Institute, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Willey RL, Martin MA, Peden KW. Increase in soluble CD4 binding to and CD4-induced dissociation of gp120 from virions correlates with infectivity of human immunodeficiency virus type 1. J Virol 1994; 68:1029-39. [PMID: 7904656 PMCID: PMC236541 DOI: 10.1128/jvi.68.2.1029-1039.1994] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutations in the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins gp120 and gp41, previously shown to confer an enhanced replicative capacity and broadened host range to the ELI1 strain of HIV-1, were analyzed for their biochemical effects on envelope structure and function. The tendency of purified virions to release their extracellular gp120 component, either spontaneously or after interacting with soluble CD4 (CD4-induced shedding) was assessed. A single amino acid substitution in part of the CD4 binding site of gp120 (Gly-427 to Arg) enhanced both spontaneous and CD4-induced shedding of gp120 from virions, while a single change in the fusogenic region of gp41 (Met-7 to Val) affected only CD4-induced shedding. Although each codon change alone conferred increased growth ability, virus with both mutations exhibited the most rapid replication kinetics. In addition, when both of these mutations were present, virions had the highest tendency to shed gp120, both spontaneously and after exposure to soluble CD4. Analysis of CD4 binding to virion-associated gp120 showed that the changes in both gp120 and gp41 contributed to increased binding. These results demonstrated that the increased replicative capacity of the ELI variants in human CD4+ cell lines was associated with altered physical and functional properties of the virion envelope glycoproteins.
Collapse
Affiliation(s)
- R L Willey
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | |
Collapse
|
33
|
Wild C, Greenwell T, Matthews T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retroviruses 1993; 9:1051-3. [PMID: 8312047 DOI: 10.1089/aid.1993.9.1051] [Citation(s) in RCA: 312] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
34
|
Gordon LM, Curtain CC, McCloyn V, Kirkpatrick A, Mobley PW, Waring AJ. The amino-terminal peptide of HIV-1 gp41 interacts with human serum albumin. AIDS Res Hum Retroviruses 1993; 9:1145-56. [PMID: 8312056 DOI: 10.1089/aid.1993.9.1145] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Structural and functional studies were made to assess interactions between human serum albumin (HSA) and the amino-terminal peptide (FP-I; 23-residue peptide 519-541) of glycoprotein 41,000 (gp41) of human immunodeficiency virus type-1 (HIV-1). Circular dichroism (CD) spectroscopy indicated that the peptide binds to albumin with dominant alpha-helical character. Peptide binding to albumin was also examined using FP-I spin labeled at either the amino-terminal alanine (FP-II; residue 519) or methionine (FP-III; position 537). Electron spin resonance (ESR) spectra of FP-II bound to HSA at 38 degrees C indicated that the spin label at the amino-terminal residue (Ala-519) was motionally restricted. The ESR spectrum of 12-nitroxide stearate (12-NS)-labeled HSA was identical to that obtained with FP-II, indicating that the reporter groups for the 12-NS and FP-II probes are similarly bound to albumin. Contrarily, ESR spectra of HSA labeled with FP-III indicated high mobility for the reporter group (Met-537) at the aqueous-protein interface. This suggests that the N-terminal gp41 peptide binds as an alpha helix (residues 519-536) to fatty acid sites on HSA, such that Ala-519 of the peptide residues in the interior of the protein while Met-537 lies outside the protein in aqueous solution. It is also of interest that addition of HSA to human red blood cells dramatically reduced the ability of FP-I to induce hemolysis, presumably through peptide-albumin binding that inhibited FP-I interactions with red cell membranes. The significance of these results focuses on the following three points. The first is that high serum levels of albumin may limit the efficacy of anti-HIV therapies using peptides based on the N-terminal gp41 domain. The second is that the elucidation of FP-I and HSA interactions with physical techniques may provide clues on the molecular features underlying viral FP-I combination with receptors on the target cell surface. Last, the affinity of albumin for the N-terminal gp41 peptide may play a subordinate role in the blocking of HIV infectivity in vitro that has been reported for chemically modified albumins.
Collapse
Affiliation(s)
- L M Gordon
- Department of Pediatrics, Drew University, King Medical Center/UCLA 90059
| | | | | | | | | | | |
Collapse
|
35
|
Haynes BF, Arthur LO, Frost P, Matthews TJ, Langlois AJ, Palker TJ, Hart MK, Scearce RM, Jones DM, McDanal C. Conversion of an immunogenic human immunodeficiency virus (HIV) envelope synthetic peptide to a tolerogen in chimpanzees by the fusogenic domain of HIV gp41 envelope protein. J Exp Med 1993; 177:717-27. [PMID: 7679708 PMCID: PMC2190925 DOI: 10.1084/jem.177.3.717] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fusogenic (F) domain of human immunodeficiency virus (HIV) gp41 envelope (env) protein has sequence similarities to many virus and mediates the fusion of HIV-infected cells. During a survey of the immunogenicity of HIV env peptides in chimpanzees, we have observed that HIV peptide immunogenicity was dramatically altered by the NH2-terminal synthesis of the gp41 F domain to an otherwise immunogenic peptide. We compared two hybrid peptide types comprised of T helper (Th) and B cell epitopes of HIV gp120 env protein for their immunogenicity in chimpanzees. The Th-B epitope hybrid peptides contained the HIV gp120 Th cell determinant, T1 (amino acids [aa] 428-440)-synthesized NH2 terminal to gp120 V3 loop peptides, which contain B cell epitopes that induce anti-HIV-neutralizing antibodies (SP10IIIB [aa 303-321] and SP10IIIB [A] [aa 303-327]). The F-Th-B peptide contained the HIV gp41 F domain of HIVIIIB gp41 (aa 519-530)-synthesized NH2 terminal to the Th-B peptide. Whereas Th-B peptides were potent immunogens for chimpanzee antibody and T cell-proliferative responses, the F-Th-B peptide induced lower anti-HIV gp120 T and B cell responses. Moreover, immunization of chimpanzees with F-Th-B peptide but not Th-B peptides induced a significant decrease in peripheral blood T lymphocytes (mean decrease during immunization, 52%; p < 0.02). Chimpanzees previously immunized with F-Th-B peptide did not respond well to immunization with Th-B peptide with T or B cell responses to HIV peptides, demonstrating that the F-Th-B peptide induced immune hyporesponsiveness to Th and B HIV gp120 env determinants. These observations raise the hypothesis that the HIV gp41 env F domain may be a biologically active immunoregulatory peptide in vivo, and by an as yet uncharacterized mechanism, promotes primate immune system hyporesponsiveness to otherwise immunogenic peptides.
Collapse
Affiliation(s)
- B F Haynes
- Department of Medicine, Duke Center for AIDS Research, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gordon LM, Curtain CC, Zhong YC, Kirkpatrick A, Mobley PW, Waring AJ. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation. Biochim Biophys Acta Mol Basis Dis 1992; 1139:257-74. [PMID: 1355364 DOI: 10.1016/0925-4439(92)90099-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Structural studies assessed interactions between the amino-terminal peptide (FP-I; 23 residues 519-541) of the glycoprotein 41,000 (gp41) of Human Immunodeficiency Virus Type-1 (HIV-1) and human erythrocyte membranes and simulated membrane environments. Peptide binding was examined at sub-hemolytic (approx. less than 5 microM) and hemolytic (greater than or equal to 5 microM) doses (Mobley et al. (1992) Biochem. Biophys. Acta 1139, 251-256), using circular dichroism (CD) and Fourier-transform infrared (FTIR) measurements with FP-I, and electron spin resonance (ESR) studies employing FP-I spin-labeled at either the amino-terminal alanine (FP-II; residue 519) or methionine (FP-III; position 537). In the sub-lytic regime, FP-I binds to both erythrocyte lipids and dispersions of SDS with high alpha-helicity. Further, ESR spectra of FP-II labeled erythrocyte ghosts indicated peptide binding to both lipid and protein. In ghost lipids, FP-II was monomeric and exhibited low polarity and rapid, anisotropic motion about its long molecular axis (i.e., alpha-helical axis), with restricted motion away from this axis. The spin-label at the amino-terminal residue (Ala-519) is insensitive to the aqueous broadening agent chromium oxalate and buried within the hydrophobic core of the membrane; the angle that the alpha-helix (residues 519-536) makes to the normal of the bilayer plane is either 0 degree or 40 degrees. Contrarily, ESR spectra of ghost lipids labeled with sub-lytic doses of FP-III indicated high mobility and polarity for the reporter group (Met-537) at the aqueous-membrane interface, as well as extreme sensitivity to chromium oxalate. At lytic FP-I doses, CD and FTIR showed both alpha-helix and beta-structure for peptide in ghost lipids or detergent, while ESR spectra of high-loaded FP-II in ghost membranes indicated peptide aggregates. Membrane aggregates of FP-I may be involved in hemolysis, and models are suggested for N-terminal gp41 peptide participation in HIV-induced fusion and cytolysis.
Collapse
Affiliation(s)
- L M Gordon
- Department of Pediatrics, King-Drew Medical Center/UCLA 90059
| | | | | | | | | | | |
Collapse
|