1
|
Taveira N, Figueiredo I, Calado R, Martin F, Bártolo I, Marcelino JM, Borrego P, Cardoso F, Barroso H. An HIV-1/HIV-2 Chimeric Envelope Glycoprotein Generates Binding and Neutralising Antibodies against HIV-1 and HIV-2 Isolates. Int J Mol Sci 2023; 24:ijms24109077. [PMID: 37240423 DOI: 10.3390/ijms24109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The development of immunogens that elicit broadly reactive neutralising antibodies (bNAbs) is the highest priority for an HIV vaccine. We have shown that a prime-boost vaccination strategy with vaccinia virus expressing the envelope glycoprotein gp120 of HIV-2 and a polypeptide comprising the envelope regions C2, V3 and C3 elicits bNAbs against HIV-2. We hypothesised that a chimeric envelope gp120 containing the C2, V3 and C3 regions of HIV-2 and the remaining parts of HIV-1 would elicit a neutralising response against HIV-1 and HIV-2. This chimeric envelope was synthesised and expressed in vaccinia virus. Balb/c mice primed with the recombinant vaccinia virus and boosted with an HIV-2 C2V3C3 polypeptide or monomeric gp120 from a CRF01_AG HIV-1 isolate produced antibodies that neutralised >60% (serum dilution 1:40) of a primary HIV-2 isolate. Four out of nine mice also produced antibodies that neutralised at least one HIV-1 isolate. Neutralising epitope specificity was assessed using a panel of HIV-1 TRO.11 pseudoviruses with key neutralising epitopes disrupted by alanine substitution (N160A in V2; N278A in the CD4 binding site region; N332A in the high mannose patch). The neutralisation of the mutant pseudoviruses was reduced or abolished in one mouse, suggesting that neutralising antibodies target the three major neutralising epitopes in the HIV-1 envelope gp120. These results provide proof of concept for chimeric HIV-1/HIV-2 envelope glycoproteins as vaccine immunogens that can direct the antibody response against neutralising epitopes in the HIV-1 and HIV-2 surface glycoproteins.
Collapse
Affiliation(s)
- Nuno Taveira
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Inês Figueiredo
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Rita Calado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Francisco Martin
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - José M Marcelino
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Pedro Borrego
- Centre for Public Administration and Public Policies, Institute of Social and Political Sciences, Universidade de Lisboa, 1300-663 Lisbon, Portugal
| | - Fernando Cardoso
- Unidade de Microbiologia Médica, Saúde Global e Medicina Tropical, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Helena Barroso
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| |
Collapse
|
2
|
Zhou T, Chen L, Gorman J, Wang S, Kwon YD, Lin BC, Louder MK, Rawi R, Stancofski ESD, Yang Y, Zhang B, Quigley AF, McCoy LE, Rutten L, Verrips T, Weiss RA, Doria-Rose NA, Shapiro L, Kwong PD. Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site. Structure 2022; 30:862-875.e4. [PMID: 35413243 PMCID: PMC9177634 DOI: 10.1016/j.str.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Nanobodies can achieve remarkable neutralization of genetically diverse pathogens, including HIV-1. To gain insight into their recognition, we determined crystal structures of four llama nanobodies (J3, A12, C8, and D7), all of which targeted the CD4-binding site, in complex with the HIV-1 envelope (Env) gp120 core, and determined a cryoelectron microscopy (cryo-EM) structure of J3 with the Env trimer. Crystal and cryo-EM structures of J3 complexes revealed this nanobody to mimic binding to the prefusion-closed trimer for the primary site of CD4 recognition as well as a secondary quaternary site. In contrast, crystal structures of A12, C8, and D7 with gp120 revealed epitopes that included portions of the gp120 inner domain, inaccessible on the prefusion-closed trimer. Overall, these structures explain the broad and potent neutralization of J3 and limited neutralization of A12, C8, and D7, which utilized binding modes incompatible with the neutralization-targeted prefusion-closed conformation of Env.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik-Stephane D Stancofski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Forsman Quigley
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy Rutten
- University of Utrecht, Utrecht, the Netherlands
| | | | - Robin A Weiss
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
3
|
Friedrich N, Stiegeler E, Glögl M, Lemmin T, Hansen S, Kadelka C, Wu Y, Ernst P, Maliqi L, Foulkes C, Morin M, Eroglu M, Liechti T, Ivan B, Reinberg T, Schaefer JV, Karakus U, Ursprung S, Mann A, Rusert P, Kouyos RD, Robinson JA, Günthard HF, Plückthun A, Trkola A. Distinct conformations of the HIV-1 V3 loop crown are targetable for broad neutralization. Nat Commun 2021; 12:6705. [PMID: 34795280 PMCID: PMC8602657 DOI: 10.1038/s41467-021-27075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
The V3 loop of the HIV-1 envelope (Env) protein elicits a vigorous, but largely non-neutralizing antibody response directed to the V3-crown, whereas rare broadly neutralizing antibodies (bnAbs) target the V3-base. Challenging this view, we present V3-crown directed broadly neutralizing Designed Ankyrin Repeat Proteins (bnDs) matching the breadth of V3-base bnAbs. While most bnAbs target prefusion Env, V3-crown bnDs bind open Env conformations triggered by CD4 engagement. BnDs achieve breadth by focusing on highly conserved residues that are accessible in two distinct V3 conformations, one of which resembles CCR5-bound V3. We further show that these V3-crown conformations can, in principle, be attacked by antibodies. Supporting this conclusion, analysis of antibody binding activity in the Swiss 4.5 K HIV-1 cohort (n = 4,281) revealed a co-evolution of V3-crown reactivities and neutralization breadth. Our results indicate a role of V3-crown responses and its conformational preferences in bnAb development to be considered in preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Nikolas Friedrich
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.424277.0Present Address: Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Deutschland
| | - Matthias Glögl
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Thomas Lemmin
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5801.c0000 0001 2156 2780Department of Computer Science, ETH Zurich, Zurich, Switzerland ,grid.29078.340000 0001 2203 2861Present Address: Euler Institute, Faculty of Biomedicine, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Simon Hansen
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: NGM Bio, 333 Oysterpoint Blvd, South San Francisco, CA 94080 USA
| | - Claus Kadelka
- grid.34421.300000 0004 1936 7312Department of Mathematics, Iowa State University, Ames, IA USA
| | - Yufan Wu
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Innovent Biologics Inc, 168 Dongping Street, Suzhou Industrial Park, 215123 China
| | - Patrick Ernst
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Present Address: Office Research and Teaching, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Liridona Maliqi
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Caio Foulkes
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Mylène Morin
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: BeiGene Switzerland GmbH, Aeschengraben 27, 4051 Basel, Switzerland
| | - Mustafa Eroglu
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Janssen Vaccines AG, Rehhagstrasse 79, 3018 Bern, Switzerland
| | - Thomas Liechti
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.419681.30000 0001 2164 9667Present Address: ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Branislav Ivan
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.410567.1Present Address: Laboratory Medicine, Division of Clinical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Thomas Reinberg
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Jonas V. Schaefer
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, Chemical Biology & Therapeutics (CBT), Novartis Pharma AG, Virchow 16, 4056 Basel, Switzerland
| | - Umut Karakus
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Stephan Ursprung
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5335.00000000121885934Present Address: University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge, CB2 0QQ UK
| | - Axel Mann
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Peter Rusert
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Roger D. Kouyos
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - John A. Robinson
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Andreas Plückthun
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
4
|
Martí-Marí O, Martínez-Gualda B, de la Puente-Secades S, Mills A, Quesada E, Abdelnabi R, Sun L, Boonen A, Noppen S, Neyts J, Schols D, Camarasa MJ, Gago F, San-Félix A. Double Arylation of the Indole Side Chain of Tri- and Tetrapodal Tryptophan Derivatives Renders Highly Potent HIV-1 and EV-A71 Entry Inhibitors†. J Med Chem 2021; 64:10027-10046. [PMID: 34229438 PMCID: PMC8389807 DOI: 10.1021/acs.jmedchem.1c00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
We have recently
described a new generation of potent human immunodeficiency
virus (HIV) and EV-A71 entry inhibitors. The prototypes contain three
or four tryptophan (Trp) residues bearing an isophthalic acid moiety
at the C2 position of each side-chain indole ring. This work is now
extended by both shifting the position of the isophthalic acid to
C7 and synthesizing doubly arylated C2/C7 derivatives. The most potent
derivative (50% effective concentration (EC50) HIV-1, 6
nM; EC50 EV-A71, 40 nM), 33 (AL-518), is a C2/C7 doubly arylated tetrapodal compound. Its superior anti-HIV
potency with respect to the previous C2-arylated prototype is in consonance
with its higher affinity for the viral gp120. 33 (AL-518) showed comparable antiviral activities against X4
and R5 HIV-1 strains and seems to interact with the tip and base of
the gp120 V3 loop. Taken together, these findings support the interest
in 33 (AL-518) as a useful new prototype
for anti-HIV/EV71 drug development.
Collapse
Affiliation(s)
- Olaia Martí-Marí
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Belén Martínez-Gualda
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Alberto Mills
- Área de Farmacología, Departamento de Ciencias Biomédicas y Unidad Asociada IQM-UAH, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Ernesto Quesada
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Liang Sun
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Arnaud Boonen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - María-José Camarasa
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas y Unidad Asociada IQM-UAH, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Ana San-Félix
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
5
|
Li SW, Wright M, Healey JF, Hutchinson JM, O’Rourke S, Mesa KA, Lollar P, Berman PW. Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. PLoS One 2020; 15:e0233866. [PMID: 32470085 PMCID: PMC7259603 DOI: 10.1371/journal.pone.0233866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Several candidate HIV subunit vaccines based on recombinant envelope (Env) glycoproteins have been advanced into human clinical trials. To facilitate biopharmaceutical production, it is necessary to produce these in CHO (Chinese Hamster Ovary) cells, the cellular substrate used for the manufacturing of most recombinant protein therapeutics. However, previous studies have shown that when recombinant Env proteins from clade B viruses, the major subtype represented in North America, Europe, and other parts of the world, are expressed in CHO cells, they are proteolyzed and lack important glycan-dependent epitopes present on virions. Previously, we identified C1s, a serine protease in the complement pathway, as the endogenous CHO protease responsible for the cleavage of clade B laboratory isolates of -recombinant gp120s (rgp120s) expressed in stable CHO-S cell lines. In this paper, we describe the development of two novel CHOK1 cell lines with the C1s gene inactivated by gene editing, that are suitable for the production of any protein susceptible to C1s proteolysis. One cell line, C1s-/- CHOK1 2.E7, contains a deletion in the C1s gene. The other cell line, C1s-/- MGAT1- CHOK1 1.A1, contains a deletion in both the C1s gene and the MGAT1 gene, which limits glycosylation to mannose-5 or earlier intermediates in the N-linked glycosylation pathway. In addition, we compare the substrate specificity of C1s with thrombin on the cleavage of both rgp120 and human Factor VIII, two recombinant proteins known to undergo unintended proteolysis (clipping) when expressed in CHO cells. Finally, we demonstrate the utility and practicality of the C1s-/- MGAT1- CHOK1 1.A1 cell line for the expression of clinical isolates of clade B Envs from rare individuals that possess broadly neutralizing antibodies and are able to control virus replication without anti-retroviral drugs (elite neutralizer/controller phenotypes). The Envs represent unique HIV vaccine immunogens suitable for further immunogenicity and efficacy studies.
Collapse
Affiliation(s)
- Sophia W. Li
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John F. Healey
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Jennie M. Hutchinson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Pete Lollar
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
6
|
Calado R, Duarte J, Borrego P, Marcelino JM, Bártolo I, Martin F, Figueiredo I, Almeida S, Graça L, Vítor J, Aires da Silva F, Dias I, Carrapiço B, Taveira N. A Prime-Boost Immunization Strategy with Vaccinia Virus Expressing Novel gp120 Envelope Glycoprotein from a CRF02_AG Isolate Elicits Cross-Clade Tier 2 HIV-1 Neutralizing Antibodies. Vaccines (Basel) 2020; 8:E171. [PMID: 32272637 PMCID: PMC7349027 DOI: 10.3390/vaccines8020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Development of new immunogens eliciting broadly neutralizing antibodies (bNAbs) is a main priority for the HIV-1 vaccine field. Envelope glycoproteins from non-B-non-C HIV-1clades have not been fully explored as components of a vaccine. We produced Vaccinia viruses expressing a truncated version of gp120 (gp120t) from HIV-1 clades CRF02_AG, H, J, B, and C and examined their immunogenicity in mice and rabbits. Mice primed with the recombinant Vaccinia viruses and boosted with the homologous gp120t or C2V3C3 polypeptides developed antibodies that bind potently to homologous and heterologous envelope glycoproteins. Notably, a subset of mice immunized with the CRF02_AG-based envelope immunogens developed a cross-reactive neutralizing response against tier 2 HIV-1 Env-pseudoviruses and primary isolates. Rabbits vaccinated with the CRF02_AG-based envelope immunogens also generated potent binding antibodies, and one animal elicited antibodies that neutralized almost all (13 of 16, 81.3%) tier 2 HIV-1 isolates tested. Overall, the results suggest that the novel CRF02_AG-based envelope immunogens and prime-boost immunization strategy elicit the type of immune responses required for a preventive HIV-1 vaccine.
Collapse
Affiliation(s)
- Rita Calado
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Joana Duarte
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Pedro Borrego
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - José Maria Marcelino
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Inês Figueiredo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Silvia Almeida
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-02 Lisboa, Portugal; (S.A.); (L.G.)
- Post-Graduate Program in Infectious Diseases, and Department of Social Medicine, Center of Health Sciences, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Luís Graça
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-02 Lisboa, Portugal; (S.A.); (L.G.)
| | - Jorge Vítor
- Biochemistry and Human Biology Dept, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Frederico Aires da Silva
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Inês Dias
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Belmira Carrapiço
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| |
Collapse
|
7
|
Han Q, Jones JA, Nicely NI, Reed RK, Shen X, Mansouri K, Louder M, Trama AM, Alam SM, Edwards RJ, Bonsignori M, Tomaras GD, Korber B, Montefiori DC, Mascola JR, Seaman MS, Haynes BF, Saunders KO. Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nat Commun 2019; 10:2898. [PMID: 31263112 PMCID: PMC6602974 DOI: 10.1038/s41467-019-10899-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The HIV-1 envelope (Env) is the target for neutralizing antibodies and exists on the surface of virions in open or closed conformations. Difficult-to-neutralize viruses (tier 2) express Env in a closed conformation antigenic for broadly neutralizing antibodies (bnAbs) but not for third variable region (V3) antibodies. Here we show that select V3 macaque antibodies elicited by Env vaccination can neutralize 26% of otherwise tier 2 HIV-1 isolates in standardized virus panels. The V3 antibodies only bound to Env in its open conformation. Thus, Envs on tier 2 viruses sample a state where the V3 loop is not in its closed conformation position. Envelope second variable region length, glycosylation sites and V3 amino acids were signatures of neutralization sensitivity. This study determined that open conformations of Env with V3 exposed are present on a subset of otherwise neutralization-resistant virions, therefore neutralization of tier 2 HIV-1 does not always indicate bnAb induction.
Collapse
Affiliation(s)
- Qifeng Han
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Julia A Jones
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nathan I Nicely
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rachel K Reed
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xiaoying Shen
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mark Louder
- Vaccine Research Center, National Instiftute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Ashley M Trama
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Microbiology and Molecular Genetics, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Instiftute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Barton F Haynes
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Microbiology and Molecular Genetics, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Hebeler-Barbosa F, Massolini VM, Watanabe T, Silva GF, Barbosa AN, Simões RP, Ferrasi AC, de Andrade Zanotto PM, de Moura Campos Pardini MI, Grotto RMT. Influence of the HIV GWG variant in the HIV infection progression in mono and HCV coinfected patients. Medicine (Baltimore) 2019; 98:e16376. [PMID: 31335686 PMCID: PMC6708615 DOI: 10.1097/md.0000000000016376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The HIV subtype B is the most frequent in Brazil. The HIV subtype B' codes the amino acids glicine-tryptophan-glicine (GWG) instead of glicine-proline-glicine on the tip of gp120 V3 loop. This variant was associated to a slower HIV progression in mono-infected patients; however, there is no information in coinfected patients. This study evaluated the infection progression of HIV variant B' on the hepatitis C virus presence. RNA isolated from plasma of the 601 infected patients were used to human immunodeficiency virus (HIV) subtyping and to classify the virus according their syncytium-inducing ability. The HIV infection progression was evaluated by clinical and laboratorial data. The results showed a significant association between HIV B' variant and CD4 count and time of AIDS in HIV mono-infected patients. Notwithstanding the fact that we did not find a direct association between GWG variant and AIDS and in HIV coinfected patients no mitigating effect due to GWG presence was found. We did observe that the association between GWG variant and CD4 counts is lost in coinfected patients. This is first work showing influence of the HIV GWG variant in coinfected patients. Nevertheless, the presence of the GWG variant can indicate a better prognostic in the mono-infected patients.
Collapse
Affiliation(s)
- Flavia Hebeler-Barbosa
- São Paulo State University (Unesp), Medical School
- Molecular Biology Laboratory, Blood Transfusion Center
| | | | - Thais Watanabe
- São Paulo State University (Unesp), School of Agriculture, Botucatu
| | | | | | | | - Adriana Camargo Ferrasi
- São Paulo State University (Unesp), Medical School
- Molecular Biology Laboratory, Blood Transfusion Center
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics (LEMB), Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Rejane Maria Tommasini Grotto
- Molecular Biology Laboratory, Blood Transfusion Center
- São Paulo State University (Unesp), School of Agriculture, Botucatu
| |
Collapse
|
9
|
Li SW, Yu B, Byrne G, Wright M, O'Rourke S, Mesa K, Berman PW. Identification and CRISPR/Cas9 Inactivation of the C1s Protease Responsible for Proteolysis of Recombinant Proteins Produced in CHO Cells. Biotechnol Bioeng 2019; 116:2130-2145. [PMID: 31087560 DOI: 10.1002/bit.27016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
Proteolysis associated with recombinant protein expression in Chinese Hamster Ovary (CHO) cells has hindered the development of biologics including HIV vaccines. When expressed in CHO cells, the recombinant HIV envelope protein, gp120, undergoes proteolytic clipping by a serine protease at a key epitope recognized by neutralizing antibodies. The problem is particularly acute for envelope proteins from clade B viruses that represent the major genetic subtype circulating in much of the developed world, including the US and Europe. In this paper, we have identified complement Component 1's (C1s), a serine protease from the complement cascade, as the protease responsible for the proteolysis of gp120 in CHO cells. CRISPR/Cas9 knockout of the C1s protease in a CHO cell line was shown to eliminate the proteolytic activity against the recombinantly expressed gp120. In addition, the C1s-/- MGAT1- CHO cell line, with the C1s protease and the MGAT1 glycosyltransferase knocked out, enabled the production of unclipped gp120 from a clade B isolate (BaL-rgp120) and enriched for mannose-5 glycans on gp120 that are required for the binding of multiple broadly neutralizing monoclonal antibodies (bN-mAbs). The availability of this technology will allow for the scale-up and testing of multiple vaccine concepts in regions of the world where clade B viruses are in circulation. Furthermore, the proteolysis issues caused by the C1s protease suggests a broader need for a C1s-deficient CHO cell line to express other recombinant proteins that are susceptible to serine protease activity in CHO cells. Similarly, the workflow described here to identify and knockout C1s in a CHO cell line can be applied to remedy the proteolysis of biologics by other CHO proteases.
Collapse
Affiliation(s)
- Sophia W Li
- Department of Chemistry, University of California Santa Cruz, California
| | - Bin Yu
- Department of Biomolecular Engineering, University of California Santa Cruz, California
| | - Gabriel Byrne
- Department of Biomolecular Engineering, University of California Santa Cruz, California
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California Santa Cruz, California
| | - Sara O'Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, California
| | - Kathryn Mesa
- Department of Biomolecular Engineering, University of California Santa Cruz, California
| | - Phillip W Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, California
| |
Collapse
|
10
|
Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 2018; 565:318-323. [PMID: 30542158 PMCID: PMC6391877 DOI: 10.1038/s41586-018-0804-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/02/2018] [Indexed: 01/26/2023]
Abstract
HIV-1 envelope glycoprotein (Env), which consists of trimeric (gp160)3 cleaved to (gp120 and gp41)3, interacts with the primary receptor CD4 and a coreceptor (such as chemokine receptor CCR5) to fuse viral and target-cell membranes. The gp120-coreceptor interaction has previously been proposed as the most crucial trigger for unleashing the fusogenic potential of gp41. Here we report a cryo-electron microscopy structure of a full-length gp120 in complex with soluble CD4 and unmodified human CCR5, at 3.9 Å resolution. The V3 loop of gp120 inserts into the chemokine-binding pocket formed by seven transmembrane helices of CCR5, and the N terminus of CCR5 contacts the CD4-induced bridging sheet of gp120. CCR5 induces no obvious allosteric changes in gp120 that can propagate to gp41; it does bring the Env trimer close to the target membrane. The N terminus of gp120, which is gripped by gp41 in the pre-fusion or CD4-bound Env, flips back in the CCR5-bound conformation and may irreversibly destabilize gp41 to initiate fusion. The coreceptor probably functions by stabilizing and anchoring the CD4-induced conformation of Env near the cell membrane. These results advance our understanding of HIV-1 entry into host cells and may guide the development of vaccines and therapeutic agents.
Collapse
|
11
|
Kumar R, Kumari R, Khan L, Sankhyan A, Parray HA, Tiwari A, Wig N, Sinha S, Luthra K. Isolation and Characterization of Cross-Neutralizing Human Anti-V3 Single-Chain Variable Fragments (scFvs) Against HIV-1 from an Antigen Preselected Phage Library. Appl Biochem Biotechnol 2018; 187:1011-1027. [DOI: 10.1007/s12010-018-2862-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
12
|
de Taeye SW, de la Peña AT, Vecchione A, Scutigliani E, Sliepen K, Burger JA, van der Woude P, Schorcht A, Schermer EE, van Gils MJ, LaBranche CC, Montefiori DC, Wilson IA, Moore JP, Ward AB, Sanders RW. Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. J Biol Chem 2017; 293:1688-1701. [PMID: 29222332 PMCID: PMC5798299 DOI: 10.1074/jbc.ra117.000709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
To provide protective immunity against circulating primary HIV-1 strains, a vaccine most likely has to induce broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) spike. Recombinant Env trimers such as the prototype BG505 SOSIP.664 that closely mimic the native Env spike can induce autologous neutralizing antibodies (NAbs) against relatively resistant (tier 2) primary viruses. Ideally, Env immunogens should present broadly neutralizing antibody epitopes but limit the presentation of immunodominant non-NAb epitopes that might induce off-target and potentially interfering responses. The V3 loop in gp120 is such a non-NAb epitope that can effectively elicit non-NAbs when animals are immunized with SOSIP.664 trimers. V3 immunogenicity can be diminished, but not abolished, by reducing the conformational flexibility of trimers via targeted sequence changes, including an A316W substitution in V3, that create the SOSIP.v4.1 and SOSIP.v5.2 variants. Here, we further modified these trimer designs by introducing leucine residues at V3 positions 306 and 308 to create hydrophobic interactions with the tryptophan residue at position 316 and with other topologically proximal sites in the V1V2 domain. Together, these modifications further stabilized the resulting SOSIP.v5.2 S306L/R308L trimers in the prefusion state in which V3 is sequestered. When we tested these trimers as immunogens in rabbits, the induction of V3 non-NAbs was significantly reduced compared with the SOSIP.v5.2 trimers and even more so compared with the SOSIP.664 prototype, without affecting the autologous NAb response. Hence, these additional trimer sequence modifications may be beneficial for immunization strategies that seek to minimize off-target non-NAb responses.
Collapse
Affiliation(s)
- Steven W de Taeye
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Alba Torrents de la Peña
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Andrea Vecchione
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Enzo Scutigliani
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Kwinten Sliepen
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Judith A Burger
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Patricia van der Woude
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Anna Schorcht
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Edith E Schermer
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Marit J van Gils
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Celia C LaBranche
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - David C Montefiori
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Ian A Wilson
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, California 92037, and
| | - John P Moore
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Andrew B Ward
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, California 92037, and
| | - Rogier W Sanders
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands, .,the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
13
|
Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex. J Virol 2017; 91:JVI.01216-17. [PMID: 28978711 DOI: 10.1128/jvi.01216-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
The trimeric envelope glycoprotein spike (Env) of HIV-1 is the target of vaccine development to elicit broadly neutralizing antibodies (bnAbs). Env trimer instability and heterogeneity in principle make subunit interfaces inconsistent targets for the immune response. Here, we investigate how functional stability of Env relates to neutralization sensitivity to V2 bnAbs and V3 crown antibodies that engage subunit interfaces upon binding to unliganded Env. Env heterogeneity was inferred when antibodies neutralized a mutant Env with a plateau of less than 100% neutralization. A statistically significant correlation was found between the stability of mutant Envs and the MPN of V2 bnAb, PG9, as well as an inverse correlation between stability of Env and neutralization by V3 crown antibody, 447-52D. A number of Env-stabilizing mutations and V2 bnAb-enhancing mutations were identified in Env, but they did not always overlap, indicating distinct requirements of functional stabilization versus antibody recognition. Blocking complex glycosylation of Env affected V2 bnAb recognition, as previously described, but also notably increased functional stability of Env. This study shows how instability and heterogeneity affect antibody sensitivity of HIV-1 Env, which is relevant to vaccine design involving its dynamic apex.IMPORTANCE The Env trimer is the only viral protein on the surface of HIV-1 and is the target of neutralizing antibodies that reduce viral infectivity. Quaternary epitopes at the apex of the spike are recognized by some of the most potent and broadly neutralizing antibodies to date. Being that their glycan-protein hybrid epitopes are at subunit interfaces, the resulting heterogeneity can lead to partial neutralization. Here, we screened for mutations in Env that allowed for complete neutralization by the bnAbs. We found that when mutations outside V2 increased V2 bnAb recognition, they often also increased Env stability-of-function and decreased binding by narrowly neutralizing antibodies to the V3 crown. Three mutations together increased neutralization by V2 bnAb and eliminated binding by V3 crown antibodies. These results may aid the design of immunogens that elicit antibodies to the trimer apex.
Collapse
|
14
|
Maruta Y, Kuwata T, Tanaka K, Alam M, Valdez KPR, Egami Y, Suwa Y, Morioka H, Matsushita S. Cross-Neutralization Activity of Single-Chain Variable Fragment (scFv) Derived from Anti-V3 Monoclonal Antibodies Mediated by Post-Attachment Binding. Jpn J Infect Dis 2016; 69:395-404. [PMID: 26902223 DOI: 10.7883/yoken.jjid.2015.667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The V3 loop in the envelope (Env) of HIV-1 is one of the major targets of neutralizing antibodies. However, this antigen is hidden inside the Env trimer in most isolates and is fully exposed only during CD4-gp120 interaction. Thus, primary HIV-1 isolates are relatively resistant to anti-V3 antibodies because IgG is too large to access the V3 loop. To overcome this obstacle, we constructed single-chain variable fragments (scFvs) from anti-V3 monoclonal antibodies 0.5γ, 5G2, and 16G6. Enhanced neutralization by 0.5γ and 5G2 scFvs was observed in strains resistant to their IgG counterparts. Neutralization coverage by 0.5γ scFv reached up to 90% of the tested viruses (tier 2 and 3 classes). The temperature-regulated neutralization assay revealed that extensive cross-neutralization of 0.5γ scFv can be explained by post-attachment neutralization. Neutralization assay involving viruses carrying an inter-subunit disulfide bond (SOS virus) showed that the neutralization-susceptible timeframe after attachment was 60 to 120 min. These results indicate that the scFvs efficiently access the V3 loop and subsequently neutralize HIV-1, even after virus attachment to the target cells. Based on its broad and potent neutralizing activity, further development of anti-V3 scFv for therapeutic and preventive strategies is warranted.
Collapse
Affiliation(s)
- Yasuhiro Maruta
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Differential evolution of a CXCR4-using HIV-1 strain in CCR5wt/wt and CCR5∆32/∆32 hosts revealed by longitudinal deep sequencing and phylogenetic reconstruction. Sci Rep 2015; 5:17607. [PMID: 26631642 PMCID: PMC4668558 DOI: 10.1038/srep17607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
Rare individuals homozygous for a naturally-occurring 32 base pair deletion in the CCR5 gene (CCR5∆32/∆32) are resistant to infection by CCR5-using ("R5") HIV-1 strains but remain susceptible to less common CXCR4-using ("X4") strains. The evolutionary dynamics of X4 infections however, remain incompletely understood. We identified two individuals, one CCR5wt/wt and one CCR5∆32/∆32, within the Vancouver Injection Drug Users Study who were infected with a genetically similar X4 HIV-1 strain. While early-stage plasma viral loads were comparable in the two individuals (~4.5-5 log10 HIV-1 RNA copies/ml), CD4 counts in the CCR5wt/wt individual reached a nadir of <20 CD4 cells/mm(3) within 17 months but remained >250 cells/mm(3) in the CCR5∆32/∆32 individual. Ancestral phylogenetic reconstructions using longitudinal envelope-V3 deep sequences suggested that both individuals were infected by a single transmitted/founder (T/F) X4 virus that differed at only one V3 site (codon 24). While substantial within-host HIV-1 V3 diversification was observed in plasma and PBMC in both individuals, the CCR5wt/wt individual's HIV-1 population gradually reverted from 100% X4 to ~60% R5 over ~4 years whereas the CCR5∆32/∆32 individual's remained consistently X4. Our observations illuminate early dynamics of X4 HIV-1 infections and underscore the influence of CCR5 genotype on HIV-1 V3 evolution.
Collapse
|
16
|
Peachman KK, Karasavvas N, Chenine AL, McLinden R, Rerks-Ngarm S, Jaranit K, Nitayaphan S, Pitisuttithum P, Tovanabutra S, Zolla-Pazner S, Michael NL, Kim JH, Alving CR, Rao M. Identification of New Regions in HIV-1 gp120 Variable 2 and 3 Loops that Bind to α4β7 Integrin Receptor. PLoS One 2015; 10:e0143895. [PMID: 26625359 PMCID: PMC4666614 DOI: 10.1371/journal.pone.0143895] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background The gut mucosal homing integrin receptor α4β7 present on activated CD4+ T cells interacts with the HIV-1 gp120 second variable loop (V2). Case control analysis of the RV144 phase III vaccine trial demonstrated that plasma IgG binding antibodies specific to scaffolded proteins expressing the first and second variable regions (V1V2) of HIV envelope protein gp120 containing the α4β7 binding motif correlated inversely with risk of infection. Subsequently antibodies to the V3 region were also shown to correlate with protection. The integrin receptor α4β7 was shown to interact with the LDI/V motif on V2 loop but recent studies suggest that additional regions of V2 loop could interact with the α4β7. Thus, there may be several regions on the V2 and possibly V3 loops that may be involved in this binding. Using a cell line, that constitutively expressed α4β7 receptors but lacked CD4, we examined the contribution of V2 and V3 loops and the ability of V2 peptide-, V2 integrin-, V3-specific monoclonal antibodies (mAbs), and purified IgG from RV144 vaccinees to block the V2/V3-α4β7 interaction. Results We demonstrate that α4β7 on RPMI8866 cells bound specifically to its natural ligand mucosal addressin cell adhesion molecule-1 (MAdCAM-1) as well as to cyclic-V2 and cyclic-V3 peptides. This binding was inhibited by anti-α4β7-specific monoclonal antibody (mAb) ACT-1, mAbs specific to either V2 or V3 loops, and by purified primary virions or infectious molecular clones expressing envelopes from acute or chronic subtypes A, C, and CRF01_AE viruses. Plasma from HIV-1 infected Thai individuals as well as purified IgG from uninfected RV144 vaccinees inhibited (0–50%) the binding of V2 and V3 peptides to α4β7. Conclusion Our results indicate that in addition to the tripeptide LDI/V motif, other regions of the V2 and V3 loops of gp120 were involved in binding to α4β7 receptors and this interaction was blocked by anti-V2 peptide, anti-V2 integrin, and anti-V3 antibodies. The ability of purified IgG from some of the uninfected RV144 vaccinees to inhibit α4β7 raises the hypothesis that anti-V2 and anti-V3 antibodies may play a role in blocking the gp120-α4β7 interaction after vaccination and thus prevent HIV-1 acquisition.
Collapse
Affiliation(s)
- Kristina K. Peachman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Nicos Karasavvas
- United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Agnes-Laurence Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Robert McLinden
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | | | | | - Sorachai Nitayaphan
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Susan Zolla-Pazner
- Veterans Administration New York Harbor Health Care System and NYU School of Medicine, New York, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jerome H. Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kwon YD, Pancera M, Acharya P, Georgiev IS, Crooks ET, Gorman J, Joyce MG, Guttman M, Ma X, Narpala S, Soto C, Terry DS, Yang Y, Zhou T, Ahlsen G, Bailer RT, Chambers M, Chuang GY, Doria-Rose NA, Druz A, Hallen MA, Harned A, Kirys T, Louder MK, O'Dell S, Ofek G, Osawa K, Prabhakaran M, Sastry M, Stewart-Jones GBE, Stuckey J, Thomas PV, Tittley T, Williams C, Zhang B, Zhao H, Zhou Z, Donald BR, Lee LK, Zolla-Pazner S, Baxa U, Schön A, Freire E, Shapiro L, Lee KK, Arthos J, Munro JB, Blanchard SC, Mothes W, Binley JM, McDermott AB, Mascola JR, Kwong PD. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat Struct Mol Biol 2015; 22:522-31. [PMID: 26098315 PMCID: PMC4706170 DOI: 10.1038/nsmb.3051] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.
Collapse
Affiliation(s)
- Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma T Crooks
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Goran Ahlsen
- 1] Department of Biochemistry &Molecular Biophysics, Columbia University, New York, New York, USA. [2] Department of Systems Biology, Columbia University, New York, New York, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Hallen
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam Harned
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tatsiana Kirys
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul V Thomas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tishina Tittley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hong Zhao
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Bruce R Donald
- 1] Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. [2] Department of Chemistry, Duke University, Durham, North Carolina, USA. [3] Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - Lawrence K Lee
- Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Susan Zolla-Pazner
- 1] New York University School of Medicine, New York, New York, USA. [2] New York Veterans Affairs Harbor Healthcare System, New York, New York, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lawrence Shapiro
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Biochemistry &Molecular Biophysics, Columbia University, New York, New York, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Munro
- 1] Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Bęczkowski PM, Logan N, McMonagle E, Litster A, Willett BJ, Hosie MJ. An investigation of the breadth of neutralizing antibody response in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2014; 96:671-680. [PMID: 25395594 PMCID: PMC4336861 DOI: 10.1099/vir.0.071522-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neutralizing antibodies (NAbs) are believed to comprise an essential component of the protective immune response induced by vaccines against feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infections. However, relatively little is known about the role of NAbs in controlling FIV infection and subsequent disease progression. Here, we present studies where we examined the neutralization of HIV-luciferase pseudotypes bearing homologous and heterologous FIV envelope proteins (n = 278) by sequential plasma samples collected at 6 month intervals from naturally infected cats (n = 38) over a period of 18 months. We evaluated the breadth of the NAb response against non-recombinant homologous and heterologous clade A and clade B viral variants, as well as recombinants, and assessed the results, testing for evidence of an association between the potency of the NAb response and the duration of infection, CD4+ T lymphocyte numbers, health status and survival times of the infected cats. Neutralization profiles varied significantly between FIV-infected cats and strong autologous neutralization, assessed using luciferase-based in vitro assays, did not correlate with the clinical outcome. No association was observed between strong NAb responses and either improved health status or increased survival time of infected animals, implying that other protective mechanisms were likely to be involved. Similarly, no correlation was observed between the development of autologous NAbs and the duration of infection. Furthermore, cross-neutralizing antibodies were evident in only a small proportion (13 %) of cats.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK.,MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nicola Logan
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Elizabeth McMonagle
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Bruun TH, Mühlbauer K, Benen T, Kliche A, Wagner R. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development. PLoS One 2014; 9:e109196. [PMID: 25279768 PMCID: PMC4184847 DOI: 10.1371/journal.pone.0109196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022] Open
Abstract
An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.
Collapse
Affiliation(s)
- Tim-Henrik Bruun
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Katharina Mühlbauer
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Thomas Benen
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
- * E-mail:
| |
Collapse
|
20
|
Brandenberg OF, Rusert P, Magnus C, Weber J, Böni J, Günthard HF, Regoes RR, Trkola A. Partial rescue of V1V2 mutant infectivity by HIV-1 cell-cell transmission supports the domain's exceptional capacity for sequence variation. Retrovirology 2014; 11:75. [PMID: 25287422 PMCID: PMC4190450 DOI: 10.1186/s12977-014-0075-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variable loops 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 perform two key functions: ensuring envelope trimer entry competence and shielding against neutralizing antibodies. While preserving entry functionality would suggest a high need for V1V2 sequence optimization and conservation, shielding efficacy is known to depend on a high flexibility of V1V2 giving rise to its substantial sequence variability. How entry competence of the trimer is maintained despite the continuous emergence of antibody escape mutations within V1V2 has not been resolved. Since HIV cell-cell transmission is considered a highly effective means of virus dissemination, we investigated whether cell-cell transmission may serve to enhance infectivity of V1V2 variants with debilitated free virus entry. RESULTS In a detailed comparison of wt and V1V2 mutant envelopes, V1V2 proved to be a key factor in ascertaining free virus infectivity, with V1V2 mutants displaying significantly reduced trimer integrity. Despite these defects, cell-cell transmission was able to partially rescue infectivity of V1V2 mutant viruses. We identified two regions, encompassing amino acids 156 to 160 (targeted by broadly neutralizing antibodies) and 175 to 180 (encompassing the α4β7 binding site) which were particularly prone to free virus infectivity loss upon mutation but maintained infectivity in cell-cell transmission. Of note, V1V2 antibody shielding proved important during both free virus infection and cell-cell transmission. CONCLUSIONS Based on our data we propose a model for V1V2 evolution that centers on cell-cell transmission as a salvage pathway for virus replication. Escape from antibody neutralization may frequently result in V1V2 mutations that reduce free virus infectivity. Cell-cell transmission could provide these escape viruses with sufficiently high replication levels that enable selection of compensatory mutations, thereby restoring free virus infectivity while ensuring antibody escape. Thus, our study highlights the need to factor in cell-cell transmission when considering neutralization escape pathways of HIV-1.
Collapse
|
21
|
Manhas S, Chau D, Rempel C, Clark BE, Auyeung K, Pantophlet R. The presence of glutamine at position 315 but not epitope masking predominantly hinders HIV subtype C neutralization by the anti-V3 antibody B4e8. Virology 2014; 462-463:98-106. [PMID: 24971702 PMCID: PMC4125615 DOI: 10.1016/j.virol.2014.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/14/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022]
Abstract
Antibody B4e8 exhibits modest cross-neutralizing activity, with preference for HIV subtype B. This preference might be explained by B4e8׳s extensive interaction with Arg315, which occurs at the center of most subtype B V3 sequences but is replaced by Gln in subtype C. The extent to which B4e8׳s ability to neutralize subtype C strains is hindered by Gln315 and/or other factors, e.g. epitope masking, is unclear. We confirmed here that an Arg315-to-Gln substitution in a subtype B virus abrogates B4e8 neutralizing activity. Conversely, B4e8-resistant subtype C viruses were rendered sensitive upon Gln 315-to-Arg substitution. V2 region swapping between B4e8-sensitive and- resistant subtype C strains revealed a role for V2 in limiting B4e8 access, but this was less significant than the absence of Arg315. Our findings, while illustrating the importance of Arg315 for B4e8, suggest that some subtype C strains may be vulnerable to B4e8 derivatives capable of binding stronger to Gln315-containing sequences.
Collapse
Affiliation(s)
- Savrina Manhas
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Dennis Chau
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Caitlin Rempel
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Brenda E Clark
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Kate Auyeung
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6; Department of Molecular Biology and Biochemistry, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6.
| |
Collapse
|
22
|
Specific sequences commonly found in the V3 domain of HIV-1 subtype C isolates affect the overall conformation of native Env and induce a neutralization-resistant phenotype independent of V1/V2 masking. Virology 2013; 448:363-74. [PMID: 24314667 DOI: 10.1016/j.virol.2013.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/23/2013] [Accepted: 10/03/2013] [Indexed: 11/21/2022]
Abstract
Primary HIV-1 isolates are relatively resistant to neutralization by antibodies commonly induced after infection or vaccination. This is generally attributed to masking of sensitive epitopes by the V1/V2 domain and/or glycans situated at various positions in Env. Here we identified a novel masking effect mediated by subtype C-specific V3 sequences that contributes to the V1/V2-independent and glycan-independent neutralization resistance of chimeric and primary Envs to antibodies directed against multiple neutralization domains. Positions at several conserved charged and hydrophobic sites in the V3 crown and stem were also shown to affect neutralization phenotype. These results indicated that substitutions typically present in subtype C and related V3 sequences influence the overall conformation of native Env in a way that occludes multiple neutralization targets located both within and outside of the V3 domain, and may reflect an alternative mechanism for neutralization resistance that is particularly active in subtype C and related isolates.
Collapse
|
23
|
Chen Y, Vaine M, Wallace A, Han D, Wan S, Seaman MS, Montefiori D, Wang S, Lu S. A novel rabbit monoclonal antibody platform to dissect the diverse repertoire of antibody epitopes for HIV-1 Env immunogen design. J Virol 2013; 87:10232-43. [PMID: 23864612 PMCID: PMC3754024 DOI: 10.1128/jvi.00837-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/07/2013] [Indexed: 01/13/2023] Open
Abstract
The majority of available monoclonal antibodies (MAbs) in the current HIV vaccine field are generated from HIV-1-infected people. In contrast, preclinical immunogenicity studies have mainly focused on polyclonal antibody responses in experimental animals. Although rabbits have been widely used for antibody studies, there has been no report of using rabbit MAbs to dissect the specificity of antibody responses for AIDS vaccine development. Here we report on the production of a panel of 12 MAbs from a New Zealand White (NZW) rabbit that was immunized with an HIV-1 JR-FL gp120 DNA prime and protein boost vaccination regimen. These rabbit MAbs recognized a diverse repertoire of envelope (Env) epitopes ranging from the highly immunogenic V3 region to several previously underappreciated epitopes in the C1, C4, and C5 regions. Nine MAbs showed cross-reactivity to gp120s of clades other than clade B. Increased somatic mutation and extended CDR3 were observed with Ig genes of several molecularly cloned rabbit MAbs. Phylogenic tree analysis showed that the heavy chains of MAbs recognizing the same region on gp120 tend to segregate into an independent subtree. At least three rabbit MAbs showed neutralizing activities with various degrees of breadth and potency. The establishment of this rabbit MAb platform will significantly enhance our ability to test optimal designs of Env immunogens to gain a better understanding of the structural specificity and evolution process of Env-specific antibody responses elicited by candidate AIDS vaccines.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aaron Wallace
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dong Han
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shengqin Wan
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael S. Seaman
- Department of Medicine, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
24
|
Killikelly A, Zhang HT, Spurrier B, Williams C, Gorny MK, Zolla-Pazner S, Kong XP. Thermodynamic signatures of the antigen binding site of mAb 447-52D targeting the third variable region of HIV-1 gp120. Biochemistry 2013; 52:6249-57. [PMID: 23944979 DOI: 10.1021/bi400645e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The third variable region (V3) of HIV-1 gp120 plays a key role in viral entry into host cells; thus, it is a potential target for vaccine design. Human monoclonal antibody (mAb) 447-52D is one of the most broadly and potently neutralizing anti-V3 mAbs. We further characterized the 447-52D epitope by determining a high-resolution crystal structure of the Fab fragment in complex with a cyclic V3 and interrogated the antigen-antibody interaction by a combination of site-specific mutagenesis, isothermal titration calorimetry (ITC) and neutralization assays. We found that 447-52D's neutralization capability is correlated with its binding affinity and at 25 °C the Gibbs free binding energy is composed of a large enthalpic component and a small favorable entropic component. The large enthalpic contribution is due to (i) an extensive hydrogen bond network, (ii) a π-cation sandwiching the V3 crown apex residue Arg(315), and (iii) a salt bridge between the 447-52D heavy chain residue Asp(H95) and Arg(315). Arg(315) is often harbored by clade B viruses; thus, our data explained why 447-52D preferentially neutralizes clade B viruses. Interrogation of the thermodynamic signatures of residues at the antigen binding interface gives key insights into their contributions in the antigen-antibody interaction.
Collapse
Affiliation(s)
- April Killikelly
- Departments of Biochemistry and Molecular Pharmacology and ‡Department of Pathology, New York University School of Medicine , New York, New York 10016, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Gazarian KG, Palacios-Rodríguez Y, Gazarian TG, Huerta L. HIV-1 V3 loop crown epitope-focused mimotope selection by patient serum from random phage display libraries: implications for the epitope structural features. Mol Immunol 2012; 54:148-56. [PMID: 23270686 DOI: 10.1016/j.molimm.2012.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022]
Abstract
The crown region of the V3 loop in HIV-1 that contains the conserved amino acid sequence GPGR/G is known as the principal neutralizing determinant due to the extraordinary ability of antibodies to this region to neutralize the virus. To complement the existing peptide models of this epitope, we describe a family of 18 phage-displayed peptides, which include linear 12mer and constrained 7mer peptides that was selected by screening random libraries with serum from HIV-1 subtype B-infected patients. The 7mer constrained peptides presented two conserved amino acid sequences: PR-L in N-terminus and GPG in the C-terminus. On the basis of these peptides we propose a mimotope model of the V3 crown epitope in which the PR-L and GPG sequences represent the two known epitope binding sites. The GPG, has the same function as the V3 crown GPGR sequence but without the involvement of the "R" despite its being considered as the signature of the epitope in B-subtype viruses. The PR-L contains a proline not existing in the epitope that is postulated to induce kinks in the backbones of all peptides and create a spatial element mimicking the N-terminal conformationally variable binding site. Rabbit serum to these mimotopes recognized the V3 peptides and moderately decreased the fusion between HIV-1 Env- and CD4-expressing Jurkat cells. This study proposes the efficient generation by means of patient sera of V3 epitope mimics validated by interaction with the antibodies to contemporary viruses induced in patients. The serum antibody-selectable mimotopes are sources of novel information on the fine structure-function properties of HIV-1 principal neutralizing domain and candidate anti-HIV-1 immunogens.
Collapse
Affiliation(s)
- Karlen G Gazarian
- Department of Medicine Genomics and Environmental Toxicology, Institute of the Biomedical Research, Mexican National University, Ciudad Universitaria, 3er Circuito Exterior S/N, Mexico-City 04510, Mexico.
| | | | | | | |
Collapse
|
26
|
Kumar R, Andrabi R, Tiwari A, Prakash SS, Wig N, Dutta D, Sankhyan A, Khan L, Sinha S, Luthra K. A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C. BMC Biotechnol 2012; 12:87. [PMID: 23153214 PMCID: PMC3536577 DOI: 10.1186/1472-6750-12-87] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Production of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs) against the third variable region (V3) of the clade C HIV-1 envelope. Results An antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding phage. After selection, the phage clones were propagated in a clonal manner. Conclusions This strategy can be efficiently used and is cost effective for the generation of diverse recombinant antibodies. This is the first study to generate anti-V3 scFvs against HIV-1 Clade C.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Andrabi R, Kumar R, Bala M, Nair A, Biswas A, Wig N, Kumar P, Pal R, Sinha S, Luthra K. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors. Virol J 2012; 9:196. [PMID: 22971578 PMCID: PMC3493341 DOI: 10.1186/1743-422x-9-196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/29/2012] [Indexed: 01/10/2023] Open
Abstract
Background Analysis of human monoclonal antibodies (mAbs) developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3) is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5) binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females) within the age range of 20–57 years (median = 33 years) were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB) fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL), suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope specificities of these mAbs and further experimental manipulations will be helpful in identification of epitopes, unique to clade C or shared with non-clade C viruses, in context of V3 region.
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Resistance of Subtype C HIV-1 Strains to Anti-V3 Loop Antibodies. Adv Virol 2012; 2012:803535. [PMID: 22548061 PMCID: PMC3323838 DOI: 10.1155/2012/803535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022] Open
Abstract
HIV-1's subtype C V3 loop consensus sequence exhibits increased resistance to anti-V3 antibody-mediated neutralization as compared to the subtype B consensus sequence. The dynamic 3D structure of the consensus C V3 loop crown, visualized by ab initio folding, suggested that the resistance derives from structural rigidity and non-β-strand secondary protein structure in the N-terminal strand of the β-hairpin of the V3 loop crown, which is where most known anti-V3 loop antibodies bind. The observation of either rigidity or non-β-strand structure in this region correlated with observed resistance to antibody-mediated neutralization in a series of chimeric pseudovirus (psV) mutants. The results suggest the presence of an epitope-independent, neutralization-relevant structural difference in the antibody-targeted region of the V3 loop crown between subtype C and subtype B, a difference that we hypothesize may contribute to the divergent pattern of global spread between these subtypes. As antibodies to a variable loop were recently identified as an inverse correlate of risk for HIV infection, the structure-function relationships discussed in this study may have relevance to HIV vaccine research.
Collapse
|
29
|
Liu L, Cimbro R, Lusso P, Berger EA. Intraprotomer masking of third variable loop (V3) epitopes by the first and second variable loops (V1V2) within the native HIV-1 envelope glycoprotein trimer. Proc Natl Acad Sci U S A 2011; 108:20148-53. [PMID: 22128330 PMCID: PMC3250183 DOI: 10.1073/pnas.1104840108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the trimeric HIV-1 envelope (Env) spike, the first and second variable loops (V1V2 region) and the third variable loop (V3) of the gp120 subunit play dual roles in antibody recognition, because they contain neutralization epitopes and also participate in epitope masking. The spatial relationships between V1V2 and V3 and the associated mechanisms of epitope masking remain unclear. Here we investigated interactions between these domains using two monoclonal antibodies recognizing distinct conserved linear epitopes that are subject to masking in the functional trimer, which limits their neutralizing activities. Using Env pseudotype virus infection assays, we found that deleting the V1V2 region greatly enhanced neutralization by both antibodies, leading us to consider two alternative models: V1V2 on one gp120 protomer masks V3 on the same protomer (intraprotomer or cis masking) versus on an adjacent protomer (interprotomer or trans masking). Our experimental approach exploited a previously described complementation system wherein two variant Envs harboring different inactivating mutations (one in gp120, the other in gp41) are coexpressed in the same cell; functional Env results only from cooperative interactions within mixed trimers, thereby enabling selective examination of mixed trimer activity. We introduced additional mutations that either promoted (V1V2 deletion, i.e., unmasking) or prevented (GPGR to GPGQ mutation, i.e., epitope destruction) interaction with the antibodies. The observed neutralization sensitivities of mixed trimers produced from various combinations of constructs support the intraprotomer (cis) model of V1V2 masking of V3 epitopes.
Collapse
Affiliation(s)
- Li Liu
- Laboratories of Viral Diseases and
| | - Raffaello Cimbro
- Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paolo Lusso
- Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
30
|
Longer V1V2 region with increased number of potential N-linked glycosylation sites in the HIV-1 envelope glycoprotein protects against HIV-specific neutralizing antibodies. J Virol 2011; 85:6986-95. [PMID: 21593147 DOI: 10.1128/jvi.00268-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has the ability to adapt to the host environment by escaping from host immune responses. We previously observed that escape from humoral immunity, both at the individual and at a population level, coincided with longer variable loops and an increased number of potential N-linked glycosylation sites (PNGS) in the viral envelope glycoprotein (Env) and, in particular, in variable regions 1 and 2 (V1V2). Here, we provide several lines of evidence for the role of V1V2 in the resistance of HIV-1 to neutralizing antibodies. First, we determined that the increasing neutralization resistance of a reference panel of tier-categorized neutralization-sensitive and -resistant HIV-1 variants coincided with a longer V1V2 loop containing more PNGS. Second, an exchange of the different variable regions of Env from a neutralization-sensitive HIV-1 variant into a neutralization-resistant escape variant from the same individual revealed that the V1V2 loop is a strong determinant for sensitivity to autologous-serum neutralization. Third, exchange of the V1V2 loop of neutralization-sensitive HIV-1 variants from historical seroconverters with the V1V2 loop of neutralization-resistant HIV-1 variants from contemporary seroconverters decreased the neutralization sensitivity to CD4-binding site-directed antibodies. Overall, we demonstrate that an increase in the length of the V1V2 loop and/or the number of PNGS in that same region of the HIV-1 envelope glycoprotein is directly involved in the protection of HIV-1 against HIV-specific neutralizing antibodies, possibly by shielding underlying epitopes in the envelope glycoprotein from antibody recognition.
Collapse
|
31
|
Swetnam J, Shmelkov E, Zolla-Pazner S, Cardozo T. Comparative magnitude of cross-strain conservation of HIV variable loop neutralization epitopes. PLoS One 2010; 5:e15994. [PMID: 21209919 PMCID: PMC3012121 DOI: 10.1371/journal.pone.0015994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/02/2010] [Indexed: 01/17/2023] Open
Abstract
Although the sequence variable loops of the human immunodeficiency virus' (HIV-1) surface envelope glycoprotein (gp120) can exhibit good immunogenicity, characterizing conserved (invariant) cross-strain neutralization epitopes within these loops has proven difficult. We recently developed a method to derive sensitive and specific signature motifs for the three-dimensional (3D) shapes of the HIV-1 neutralization epitopes in the third variable (V3) loop of gp120 that are recognized by human monoclonal antibodies (mAbs). We used the signature motif method to estimate the conservation of these epitopes across circulating worldwide HIV-1 strains. The epitope targeted by the anti-V3 loop neutralizing mAb 3074 is present in 87% of circulating strains, distributed nearly evenly among all subtypes. The results for other anti-V3 Abs are: 3791, present in 63% of primarily non-B subtypes; 2219, present in 56% of strains across all subtypes; 2557, present in 52% across all subtypes; 447-52D, present in 11% of primarily subtype B strains; 537-10D, present in 9% of primarily subtype B strains; and 268-D, present in 5% of primarily subtype B strains. The estimates correlate with in vitro tests of these mAbs against diverse viral panels. The mAb 3074 thus targets an epitope that is nearly completely conserved among circulating HIV-1 strains, demonstrating the presence of an invariant structure hidden in the dynamic and sequence-variable V3 loop in gp120. Since some variable loop regions are naturally immunogenic, designing immunogens to mimic their conserved epitopes may be a promising vaccine discovery approach. Our results suggest one way to quantify and compare the magnitude of the conservation.
Collapse
Affiliation(s)
- James Swetnam
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Evgeny Shmelkov
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- New York Veterans Affairs Medical Center, New York, New York, United States of America
| | - Timothy Cardozo
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Paul S, Planque S, Nishiyama Y, Escobar M, Hanson C. Back to the future: covalent epitope-based HIV vaccine development. Expert Rev Vaccines 2010; 9:1027-43. [PMID: 20822346 DOI: 10.1586/erv.10.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditional HIV vaccine approaches have proved ineffective because the immunodominant viral epitopes are mutable and the conserved epitopes necessary for infection are not sufficiently immunogenic. The CD4 binding site expressed by the HIV envelope protein of glycoprotein 120 is essential for viral entry into host cells. In this article, we review the B-cell superantigenic character of the CD4 binding site as the cause of its poor immunogenicity. We summarize evidence supporting development of covalent immunization as the first vaccine strategy with the potential to induce an antibody response to a conserved HIV epitope that neutralizes genetically divergent HIV strains.
Collapse
Affiliation(s)
- Sudhir Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, 6431 Fannin, MSB 2.230A, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
33
|
Yang Q, Li C, Wei Y, Huang W, Wang LX. Expression, glycoform characterization, and antibody-binding of HIV-1 V3 glycopeptide domain fused with human IgG1-Fc. Bioconjug Chem 2010; 21:875-83. [PMID: 20369886 DOI: 10.1021/bc9004238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The third variable (V3) domain of HIV-1 gp120 envelope glycoprotein is critical for HIV-1 entry and represents an attractive target for vaccine design. There are three conserved N-glycans within or around the V3 loop. The N295 and N332 glycans at the base of V3 are usually characterized as high-mannose type in gp120, and the N301 glycan is a complex type. We report in this paper the expression and characterization of glycosylated, full-size V3 domain derived from HIV-1(Bal) strain as an IgG1-Fc fusion protein, including its binding to two broadly HIV-neutralizing antibodies 2G12 and 447-52D. It was found that expressing the V3-Fc fusion protein in the HEK293T cells resulted in the production of a glycoform in which all the N-glycans were complex type, in contrast to the glycosylation pattern of V3 in the context of gp120, where the N295 and N332 glycans are high-mannose type. Controlling the glycosylation to restore an epitope of antibody 2G12 was achieved by using an inhibitor of glycan processing enzymes. Mutational studies indicate that the glycan at N301 slightly decreases the binding of V3-Fc to antibody 447-52D, but it can significantly enhance the binding of the V3-Fc to antibody 2G12 when it is changed to a high-mannose type N-glycan. The high-mannose type V3-Fc fusion protein that includes both the 2G12 and 447-52D epitopes represents an interesting immunogen that may be able to raise anti-HIV neutralizing antibodies.
Collapse
Affiliation(s)
- Qiang Yang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
34
|
Totrov M, Jiang X, Kong XP, Cohen S, Krachmarov C, Salomon A, Williams C, Seaman MS, Abagyan R, Cardozo T, Gorny MK, Wang S, Lu S, Pinter A, Zolla-Pazner S. Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology 2010; 405:513-23. [PMID: 20663531 DOI: 10.1016/j.virol.2010.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/04/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boosting with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.
Collapse
Affiliation(s)
- Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Individuals infected with HIV-1 and nearly everyone vaccinated with HIV-1 vaccines will, in time, generate antibodies against viral proteins. These antibodies do not resolve natural infection, and vaccine candidates that successfully stimulate the production of high titers of neutralizing antibodies have failed to protect against infection. In spite of this, antibodies continue to be a focus of vaccine research. One reason for the continued interest in antibodies is the failure of a vaccine engineered to generate cell-mediated immunity against HIV. Successful protective immunity against most intracellular pathogens involves several arms of the immune response. A successful vaccine should also stimulate both protective cell-mediated immunity and specific antibody. Efforts should be directed toward making a vaccine that will stimulate the production of 1) more antibody, 2) more broadly cross-reactive neutralizing antibody (broadly neutralizing antibodies), and 3) antibody with a particular functional activity (antibody-dependent cell-mediated cytotoxicity; catalytic antibodies).
Collapse
|
36
|
Jiang X, Burke V, Totrov M, Williams C, Cardozo T, Gorny MK, Zolla-Pazner S, Kong XP. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 2010; 17:955-61. [PMID: 20622876 DOI: 10.1038/nsmb.1861] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/29/2010] [Indexed: 11/09/2022]
Abstract
Binding of the third variable region (V3) of the HIV-1 envelope glycoprotein gp120 to the cell-surface coreceptors CCR5 or CXCR4 during viral entry suggests that there are conserved structural elements in this sequence-variable region. These conserved elements could serve as epitopes to be targeted by a vaccine against HIV-1. Here we perform a systematic structural analysis of representative human anti-V3 monoclonal antibodies in complex with V3 peptides, revealing that the crown of V3 has four conserved structural elements: an arch, a band, a hydrophobic core and the peptide backbone. These are either unaffected by or are subject to minimal sequence variation. As these regions are targeted by cross-clade neutralizing human antibodies, they provide a blueprint for the design of vaccine immunogens that could elicit broadly cross-reactive protective antibodies.
Collapse
Affiliation(s)
- Xunqing Jiang
- Department of Biochemistry, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hioe CE, Wrin T, Seaman MS, Yu X, Wood B, Self S, Williams C, Gorny MK, Zolla-Pazner S. Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PLoS One 2010; 5:e10254. [PMID: 20421997 PMCID: PMC2858080 DOI: 10.1371/journal.pone.0010254] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/17/2010] [Indexed: 11/24/2022] Open
Abstract
Background The V3 loop of the HIV-1 envelope (Env) glycoprotein gp120 was identified as the “principal neutralizing domain” of HIV-1, but has been considered too variable to serve as a neutralizing antibody (Ab) target. Structural and immunochemical data suggest, however, that V3 contains conserved elements which explain its role in binding to virus co-receptors despite its sequence variability. Despite this evidence of V3 conservation, the ability of anti-V3 Abs to neutralize a significant proportion of HIV-1 isolates from different subtypes (clades) has remained controversial. Methods HIV-1 neutralization experiments were conducted in two independent laboratories to test human anti-V3 monoclonal Abs (mAbs) against pseudoviruses (psVs) expressing Envs of diverse HIV-1 subtypes from subjects with acute and chronic infections. Neutralization was defined by 50% inhibitory concentrations (IC50), and was statistically assessed based on the area under the neutralization titration curves (AUC). Results Using AUC analyses, statistically significant neutralization was observed by ≥1 anti-V3 mAbs against 56/98 (57%) psVs expressing Envs of diverse subtypes, including subtypes A, AG, B, C and D. Even when the 10 Tier 1 psVs tested were excluded from the analysis, significant neutralization was detected by ≥1 anti-V3 mAbs against 46/88 (52%) psVs from diverse HIV-1 subtypes. Furthermore, 9/24 (37.5%) Tier 2 viruses from the clade B and C standard reference panels were neutralized by ≥1 anti-V3 mAbs. Each anti-V3 mAb tested was able to neutralize 28–42% of the psVs tested. By IC50 criteria, 40/98 (41%) psVs were neutralized by ≥1 anti-V3 mAbs. Conclusions Using standard and new statistical methods of data analysis, 6/7 anti-V3 human mAbs displayed cross-clade neutralizing activity and revealed that a significant proportion of viruses can be neutralized by anti-V3 Abs. The new statistical method for analysis of neutralization data provides many advantages to previously used analyses.
Collapse
Affiliation(s)
- Catarina E Hioe
- Department of Pathology, New York University Langone School of Medicine, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kelker HC, Itri VR, Valentine FT. A strategy for eliciting antibodies against cryptic, conserved, conformationally dependent epitopes of HIV envelope glycoprotein. PLoS One 2010; 5:e8555. [PMID: 20052405 PMCID: PMC2797330 DOI: 10.1371/journal.pone.0008555] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/10/2009] [Indexed: 11/18/2022] Open
Abstract
Background Novel strategies are needed for the elicitation of broadly neutralizing antibodies to the HIV envelope glycoprotein, gp120. Experimental evidence suggests that combinations of antibodies that are broadly neutralizing in vitro may protect against challenge with HIV in nonhuman primates, and a small number of these antibodies have been selected by repertoire sampling of B cells and by the fractionation of antiserum from some patients with prolonged disease. Yet no additional strategies for identifying conserved epitopes, eliciting antibodies to these epitopes, and determining whether these epitopes are accessible to antibodies have been successful to date. The defining of additional conserved, accessible epitopes against which one can elicit antibodies will increase the probability that some may be the targets of broadly neutralizing antibodies. Methodology/Principal Findings We postulate that additional cryptic epitopes of gp120 are present, against which neutralizing antibodies might be elicited even though these antibodies are not elicited by gp120, and that many of these epitopes may be accessible to antibodies should they be formed. We demonstrate a strategy for eliciting antibodies in mice against selected cryptic, conformationally dependent conserved epitopes of gp120 by immunizing with multiple identical copies of covalently linked peptides (MCPs). This has been achieved with MCPs representing 3 different domains of gp120. We show that some cryptic epitopes on gp120 are accessible to the elicited antibodies, and some epitopes in the CD4 binding region are not accessible. The antibodies bind to gp120 with relatively high affinity, and bind to oligomeric gp120 on the surface of infected cells. Conclusions/Significance Immunization with MCPs comprised of selected peptides of HIV gp120 is able to elicit antibodies against conserved, conformationally dependent epitopes of gp120 that are not immunogenic when presented as gp120. Some of these cryptic epitopes are accessible to the elicited antibodies.
Collapse
Affiliation(s)
- Hanna C. Kelker
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Vincenza R. Itri
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Fred T. Valentine
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Burke V, Williams C, Sukumaran M, Kim SS, Li H, Wang XH, Gorny MK, Zolla-Pazner S, Kong XP. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure 2009; 17:1538-46. [PMID: 19913488 PMCID: PMC3683248 DOI: 10.1016/j.str.2009.09.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/26/2009] [Accepted: 09/15/2009] [Indexed: 01/07/2023]
Abstract
Human monoclonal antibodies 447-52D and 537-10D, both coded by the VH3 gene and specific for the third variable region (V3) of the HIV-1 gp120, were found to share antigen-binding structural elements including an elongated CDR H3 forming main-chain interactions with the N terminus of the V3 crown. However, water-mediated hydrogen bonds and a unique cation-pi sandwich stacking allow 447-52D to be broadly reactive with V3 containing both the GPGR and GPGQ crown motifs, while the deeper binding pocket and a buried Glu in the binding site of 537-10D limit its reactivity to only V3 containing the GPGR motif. Our results suggest that the design of immunogens for anti-V3 antibodies should avoid the Arg at the V3 crown, as GPGR-containing epitopes appear to select for B cells making antibodies of narrower specificity than V3 that carry Gln at this position.
Collapse
Affiliation(s)
- Valicia Burke
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Constance Williams
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
| | - Madhav Sukumaran
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Seung-Sup Kim
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Huiguang Li
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Xiao-Hong Wang
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Miroslaw K. Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
,Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
40
|
Nishiyama Y, Planque S, Mitsuda Y, Nitti G, Taguchi H, Jin L, Symersky J, Boivin S, Sienczyk M, Salas M, Hanson CV, Paul S. Toward effective HIV vaccination: induction of binary epitope reactive antibodies with broad HIV neutralizing activity. J Biol Chem 2009; 284:30627-42. [PMID: 19726674 DOI: 10.1074/jbc.m109.032185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragment revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (V(H)) domain framework (FR) residues. Substitution of the FR cavity V(H) Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and V(H) FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from V(H)1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.
Collapse
Affiliation(s)
- Yasuhiro Nishiyama
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zolla-Pazner S, Cohen S, Pinter A, Krachmarov C, Wrin T, Wang S, Lu S. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope. Virology 2009; 392:82-93. [PMID: 19632700 DOI: 10.1016/j.virol.2009.05.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/18/2009] [Accepted: 05/28/2009] [Indexed: 11/17/2022]
Abstract
Studies were performed to induce cross-clade neutralizing antibodies (Abs) by testing various combinations of prime and boost constructs that focus the immune response on structurally-conserved epitopes in the V3 loop of HIV-1 gp120. Rabbits were immunized with gp120 DNA containing a V3 loop characterized by the GPGR motif at its tip, and/or with gp120 DNA with a V3 loop carrying the GPGQ motif. Priming was followed by boosts with V3-fusion proteins (V3-FPs) carrying the V3 sequence from a subtype B virus (GPGR motif), and/or with V3 sequences from subtypes A and C (GPGQ motif). The broadest and most consistent neutralizing responses were generated when using a clade C gp120 DNA prime and with the V3(B)-FP boost. Immune sera displayed neutralizing activity in three assays against pseudoviruses and primary isolates from subtypes A, AG, B, C, and D. Polyclonal Abs in the immune rabbit sera neutralized viruses that were not neutralized by pools of human anti-V3 monoclonal Abs. Greater than 80% of the neutralizing Abs were specific for V3, showing that the immune response could be focused on a neutralizing epitope and that vaccine-induced anti-V3 Abs have cross-clade neutralizing activity.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York University School of Medicine, 550 First Avenue, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Cardozo T, Swetnam J, Pinter A, Krachmarov C, Nadas A, Almond D, Zolla-Pazner S. Worldwide distribution of HIV type 1 epitopes recognized by human anti-V3 monoclonal antibodies. AIDS Res Hum Retroviruses 2009; 25:441-50. [PMID: 19320565 DOI: 10.1089/aid.2008.0188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epitopes, also known as antigenic determinants, are small clusters of specific atoms within macromolecules that are recognized by the immune system. Such epitopes can be targeted with vaccines designed to protect against specific pathogens. The third variable loop (V3 loop) of the HIV-1 pathogen's gp120 surface envelope glycoprotein can be a highly sensitive neutralization target. We derived sequence motifs for the V3 loop epitopes recognized by the human monoclonal antibodies (mAbs) 447-52D and 2219. Searching the HIV database for the occurrence of each epitope motif in worldwide viruses and correcting the results based on published WHO epidemiology reveal that the 447-52D epitope we defined occurs in 13% of viruses infecting patients worldwide: 79% of subtype B viruses, 1% of subtype C viruses, and 7% of subtype A/AG sequences. In contrast, the epitope we characterized for human anti-V3 mAb 2219 is present in 30% of worldwide isolates but is evenly distributed across the known HIV-1 subtypes: 48% of subtype B strains, 40% of subtype C, and 18% of subtype A/AG. Various assays confirmed that the epitopes corresponding to these motifs, when expressed in the SF162 Env backbone, were sensitively and specifically neutralized by the respective mAbs. The method described here is capable of accurately determining the worldwide occurrence and subtype distribution of any crystallographically resolved HIV-1 epitope recognized by a neutralizing antibody, which could be useful for multivalent vaccine design. More importantly, these calculations demonstrate that globally relevant, structurally conserved epitopes are present in the sequence variable V3 loop.
Collapse
Affiliation(s)
- Timothy Cardozo
- New York University School of Medicine, Departments of Pharmacology, Pathology and Environmental Medicine, New York, New York 10016
| | - James Swetnam
- New York University School of Medicine, Departments of Pharmacology, Pathology and Environmental Medicine, New York, New York 10016
| | - Abraham Pinter
- Public Health Research Institute at the University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07107
| | - Chavdar Krachmarov
- Public Health Research Institute at the University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07107
| | - Arthur Nadas
- New York University School of Medicine, Departments of Pharmacology, Pathology and Environmental Medicine, New York, New York 10016
| | - David Almond
- New York University School of Medicine, Departments of Pharmacology, Pathology and Environmental Medicine, New York, New York 10016
| | - Susan Zolla-Pazner
- New York University School of Medicine, Departments of Pharmacology, Pathology and Environmental Medicine, New York, New York 10016
- New York VA Medical Center, New York, New York 10010
| |
Collapse
|
43
|
Lynch RM, Shen T, Gnanakaran S, Derdeyn CA. Appreciating HIV type 1 diversity: subtype differences in Env. AIDS Res Hum Retroviruses 2009; 25:237-48. [PMID: 19327047 DOI: 10.1089/aid.2008.0219] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) group M is responsible for the current AIDS pandemic and exhibits exceedingly high levels of viral genetic diversity around the world, necessitating categorization of viruses into distinct lineages, or subtypes. These subtypes can differ by around 35% in the envelope (Env) glycoproteins of the virus, which are displayed on the surface of the virion and are targets for both neutralizing antibody and cell-mediated immune responses. This diversity reflects the remarkable ability of the virus to adapt to selective pressures, the bulk of which is applied by the host immune response, and represents a serious obstacle for developing an effective vaccine with broad coverage. Thus, it is important to understand the underlying biological consequences of intersubtype diversity. Recent studies have revealed that some of the HIV-1 subtypes exhibit phenotypic differences stemming from subtle changes in Env structure, particularly within the highly immunogenic V3 domain, which participates directly in viral entry. This review will therefore explore current research that describes subtype differences in Env at the genetic and phenotypic level, focusing in particular on V3, and highlighting recent discoveries about the unique features of subtype C Env, which is the most globally prevalent subtype.
Collapse
Affiliation(s)
- Rebecca M. Lynch
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia 30329
| | - Tongye Shen
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - S. Gnanakaran
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
44
|
Andrianov AM. Immunophilins and HIV-1 V3 Loop For Structure-Based Anti-AIDS Drug Design. J Biomol Struct Dyn 2009; 26:445-54. [DOI: 10.1080/07391102.2009.10507259] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Nyambi P, Burda S, Urbanski M, Heyndrickx L, Janssens W, Vanham G, Nadas A. Neutralization patterns and evolution of sequential HIV type 1 envelope sequences in HIV type 1 subtype B-infected drug-naive individuals. AIDS Res Hum Retroviruses 2008; 24:1507-19. [PMID: 19018670 DOI: 10.1089/aid.2008.0154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To design a vaccine that will remain potent against HIV-1, the immunogenic regions in the viral envelope that tend to change as well as those that remain constant over time must be identified. To determine the neutralization profiles of sequential viruses over time and study whether neutralization patterns correlate with sequence evolution, 12 broadly neutralizing plasmas from HIV-1 subtype B-infected individuals were tested for their ability to neutralize sequential primary HIV-1 subtype B viruses from four individuals. Three patterns of neutralization were observed, including a loss of neutralization sensitivity by viruses over time, an increase in neutralization sensitivity by sequential viruses, or a similarity in the sensitivity of sequential viruses to neutralization. Seven to 11 gp160 clones from each sequential virus sample were sequenced and analyzed to identify mutational patterns. Analysis of the envelope sequences of the sequential viruses revealed changes characteristic of the neutralization patterns. Viruses that evolved to become resistant to neutralizing antibodies also evolved with diverse sequences, with most of the changes being due to nonsynonymous mutations occurring in the V1/V2, as well as in the constant regions (C2, C3, C4), the most changes occurring in the C3. Viruses from the patient that evolved to become more sensitive to neutralization exhibited less sequence diversity with fewer nonsynonymous changes that occurred mainly in the V1/V2 region. The V3 region remained constant over time for all the viruses tested. This study demonstrates that as viruses evolve in their host, they either become sensitive or resistant to neutralization by antibodies in heterologous plasma and mutations in different envelope regions account for these changes in their neutralization profiles.
Collapse
Affiliation(s)
- Phillipe Nyambi
- Department of Pathology, New York University School of Medicine, New York, New York 10016
- Research Enhancement Award Program, Veterans Affairs New York Harbor Healthcare System, New York, New York 10010
| | - Sherri Burda
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Mateusz Urbanski
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Leo Heyndrickx
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wouter Janssens
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Vanham
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Arthur Nadas
- Institute of Environmental Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
46
|
Human immunodeficiency virus type 2 (HIV-2)/HIV-1 envelope chimeras detect high titers of broadly reactive HIV-1 V3-specific antibodies in human plasma. J Virol 2008; 83:1240-59. [PMID: 19019969 DOI: 10.1128/jvi.01743-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deciphering antibody specificities that constrain human immunodeficiency virus type 1 (HIV-1) envelope (Env) diversity, limit virus replication, and contribute to neutralization breadth and potency is an important goal of current HIV/AIDS vaccine research. Transplantation of discrete HIV-1 neutralizing epitopes into HIV-2 scaffolds may provide a sensitive, biologically functional context by which to quantify specific antibody reactivities even in complex sera. Here, we describe a novel HIV-2 proviral scaffold (pHIV-2(KR.X7)) into which we substituted the complete variable region 3 (V3) of the env gene of HIV-1(YU2) or HIV-1(Ccon) to yield the chimeric proviruses pHIV-2(KR.X7) YU2 V3 and pHIV-2(KR.X7) Ccon V3. These HIV-2/HIV-1 chimeras were replication competent and sensitive to selective pharmacological inhibitors of virus entry. V3 chimeric viruses were resistant to neutralization by HIV-1 monoclonal antibodies directed against the CD4 binding site, coreceptor binding site, and gp41 membrane proximal external region but exhibited striking sensitivity to HIV-1 V3-specific monoclonal antibodies, 447-52D and F425 B4e8 (50% inhibitory concentration of [IC(50)] <0.005 microg/ml for each). Plasma specimens from 11 HIV-1 clade B- and 10 HIV-1 clade C-infected subjects showed no neutralizing activity against HIV-2 but exhibited high-titer V3-specific neutralization against both HIV-2/HIV-1 V3 chimeras with IC(50) measurements ranging from 1:50 to greater than 1:40,000. Neutralization titers of B clade plasmas were as much as 1,000-fold lower when tested against the primary HIV-1(YU2) virus than with the HIV-2(KR.X7) YU2 V3 chimera, demonstrating highly effective shielding of V3 epitopes in the native Env trimer. This finding was replicated using a second primary HIV-1 strain (HIV-1(BORI)) and the corresponding HIV-2(KR.X7) BORI V3 chimera. We conclude that V3 is highly immunogenic in vivo, eliciting antibodies with substantial breadth of reactivity and neutralizing potential. These antibodies constrain HIV-1 Env to a structure(s) in which V3 epitopes are concealed prior to CD4 engagement but do not otherwise contribute to neutralization breadth and potency against most primary virus strains. Triggering of the viral spike to reveal V3 epitopes may be required if V3 immunogens are to be components of an effective HIV-1 vaccine.
Collapse
|
47
|
Wu X, Sambor A, Nason MC, Yang ZY, Wu L, Zolla-Pazner S, Nabel GJ, Mascola JR. Soluble CD4 broadens neutralization of V3-directed monoclonal antibodies and guinea pig vaccine sera against HIV-1 subtype B and C reference viruses. Virology 2008; 380:285-95. [PMID: 18804254 PMCID: PMC3739291 DOI: 10.1016/j.virol.2008.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/02/2008] [Accepted: 07/09/2008] [Indexed: 11/22/2022]
Abstract
To better understand the limits of antigenic reactivity and epitope accessibility of the V3 domain of primary HIV-1 isolates, we evaluated three human anti-V3 monoclonal antibodies (mAbs) and selected guinea pig vaccine sera for neutralization against reference panels of subtype B and C pseudoviruses derived from early stage infections. The mAbs and vaccine sera potently neutralized several prototype viruses, but displayed substantially less neutralization of most reference strains. In the presence of soluble CD4 (sCD4), the breadth of V3-mediated neutralization was increased; up to 80% and 77% of the subtype B and C viruses respectively were sensitive to V3-mediated neutralization. Unlike sCD4, the reaction of CD4-binding site mAbs b12 and F105 with native virus did not lead to full exposure of the V3 domain. These findings confirm that V3 antibodies recognize most primary viral strains, but that the epitope often has limited accessibility in the context of native envelope spike.
Collapse
Affiliation(s)
- Xueling Wu
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Anna Sambor
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Martha C. Nason
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD 20892
| | - Zhi-Yong Yang
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Lan Wu
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Susan Zolla-Pazner
- New York Veterans Affairs Medical Center and School of Medicine, New York University, New York, NY 10016
| | - Gary J. Nabel
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | | |
Collapse
|
48
|
Andrianov AM. Determining the Invariant Structure Elements of the HIV-1 Variable V3 Loops: Insight into the HIV-MN and HIV-Haiti Isolates. J Biomol Struct Dyn 2008; 26:247-54. [DOI: 10.1080/07391102.2008.10507240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Neutralizing activity of antibodies to the V3 loop region of HIV-1 gp120 relative to their epitope fine specificity. Virology 2008; 381:251-60. [PMID: 18822440 DOI: 10.1016/j.virol.2008.08.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 11/23/2022]
Abstract
The V3 loop of HIV-1 gp120 is considered occluded on many primary viruses. However, virus sensitivity to neutralization by different V3 mAbs often varies, indicating that access to V3 is not restricted equally for all antibodies. Here, we have sought to gain a better understanding of these restrictions by determining the neutralizing activities of 7 V3 mAbs (19b, 39F, CO11, F2A3, F530, LA21, and LE311) against 15 subtype B primary isolates and relating these activities to the fine specificity of the mAbs. Not surprisingly, we found that most mAbs neutralized the same 2-3 viruses, with only mAb F530 able to neutralize 2 additional viruses not neutralized by the other mAbs. Epitope mapping revealed that positively-charged residues in or near the V3 stem are important for the binding of all the mAbs and that most mAbs seem to require the Pro residue that forms the GPGR beta hairpin turn in the V3 tip for binding. Based on the mapping, we determined that V3 sequence variation accounted for neutralization resistance of approximately half the viruses tested. Comparison of these results to those of select V3 mAbs with overall better neutralizing activities in the light of structural information illustrates how an antibody's mode of interaction with V3, driven by contact residue requirements, may restrict the antibody from accessing its epitope on different viruses. Based on the data we propose an angle of interaction with V3 that is less stringent on access for antibodies with cross-neutralizing activity compared to antibodies that neutralize relatively fewer viruses.
Collapse
|
50
|
Sourial S, Nilsson C. HIV-2 neutralization by intact V3-specific Fab fragments. Virol J 2008; 5:96. [PMID: 18706111 PMCID: PMC2559833 DOI: 10.1186/1743-422x-5-96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 08/18/2008] [Indexed: 11/25/2022] Open
Abstract
The V3 region of both HIV-1 gp120 and HIV-2 gp125 surface glycoprotein has been described as a target for neutralizing antibodies. In this study a conformation-sensitive (3C4) and a linear site-specific (7C8) anti-HIV-2 V3 monoclonal antibody (mAb) were characterized. The neutralization capacity of the purified mAbs and their respective papain-generated Fab fragments was analyzed. The Fabs were further characterized by sequence analysis. Our results demonstrate that neither purified mAbs were capable of neutralizing HIV-2, while intact Fab fragments from both mAbs blocked in vitro infection of HIV-2 isolates. Moreover, the conformation sensitive 3C4 Fab neutralized both subtype A and B HIV-2 isolates and SIVsm. Sequence analysis of the hypervariable regions of 3C4 Fab and 7C8 Fab revealed that the third CDR of the heavy chain (CDRH3) of the antibodies was not as long as many of the previously characterized neutralizing antibodies. Our findings suggest that whole 7C8 and 3C4 mAbs are sterically hindered from neutralizing HIV-2, whereas the smaller size of Fab fragments enables access to the V3 region on the virion surface.
Collapse
Affiliation(s)
- Samer Sourial
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|