1
|
Friedrich N, Stiegeler E, Glögl M, Lemmin T, Hansen S, Kadelka C, Wu Y, Ernst P, Maliqi L, Foulkes C, Morin M, Eroglu M, Liechti T, Ivan B, Reinberg T, Schaefer JV, Karakus U, Ursprung S, Mann A, Rusert P, Kouyos RD, Robinson JA, Günthard HF, Plückthun A, Trkola A. Distinct conformations of the HIV-1 V3 loop crown are targetable for broad neutralization. Nat Commun 2021; 12:6705. [PMID: 34795280 PMCID: PMC8602657 DOI: 10.1038/s41467-021-27075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
The V3 loop of the HIV-1 envelope (Env) protein elicits a vigorous, but largely non-neutralizing antibody response directed to the V3-crown, whereas rare broadly neutralizing antibodies (bnAbs) target the V3-base. Challenging this view, we present V3-crown directed broadly neutralizing Designed Ankyrin Repeat Proteins (bnDs) matching the breadth of V3-base bnAbs. While most bnAbs target prefusion Env, V3-crown bnDs bind open Env conformations triggered by CD4 engagement. BnDs achieve breadth by focusing on highly conserved residues that are accessible in two distinct V3 conformations, one of which resembles CCR5-bound V3. We further show that these V3-crown conformations can, in principle, be attacked by antibodies. Supporting this conclusion, analysis of antibody binding activity in the Swiss 4.5 K HIV-1 cohort (n = 4,281) revealed a co-evolution of V3-crown reactivities and neutralization breadth. Our results indicate a role of V3-crown responses and its conformational preferences in bnAb development to be considered in preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Nikolas Friedrich
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.424277.0Present Address: Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Deutschland
| | - Matthias Glögl
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Thomas Lemmin
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5801.c0000 0001 2156 2780Department of Computer Science, ETH Zurich, Zurich, Switzerland ,grid.29078.340000 0001 2203 2861Present Address: Euler Institute, Faculty of Biomedicine, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Simon Hansen
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: NGM Bio, 333 Oysterpoint Blvd, South San Francisco, CA 94080 USA
| | - Claus Kadelka
- grid.34421.300000 0004 1936 7312Department of Mathematics, Iowa State University, Ames, IA USA
| | - Yufan Wu
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Innovent Biologics Inc, 168 Dongping Street, Suzhou Industrial Park, 215123 China
| | - Patrick Ernst
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Present Address: Office Research and Teaching, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Liridona Maliqi
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Caio Foulkes
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Mylène Morin
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: BeiGene Switzerland GmbH, Aeschengraben 27, 4051 Basel, Switzerland
| | - Mustafa Eroglu
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Janssen Vaccines AG, Rehhagstrasse 79, 3018 Bern, Switzerland
| | - Thomas Liechti
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.419681.30000 0001 2164 9667Present Address: ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Branislav Ivan
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.410567.1Present Address: Laboratory Medicine, Division of Clinical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Thomas Reinberg
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Jonas V. Schaefer
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, Chemical Biology & Therapeutics (CBT), Novartis Pharma AG, Virchow 16, 4056 Basel, Switzerland
| | - Umut Karakus
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Stephan Ursprung
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5335.00000000121885934Present Address: University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge, CB2 0QQ UK
| | - Axel Mann
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Peter Rusert
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Roger D. Kouyos
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - John A. Robinson
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Andreas Plückthun
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
2
|
Convergent Evolution of Neutralizing Antibodies to Staphylococcus aureus γ-Hemolysin C That Recognize an Immunodominant Primary Sequence-Dependent B-Cell Epitope. mBio 2020; 11:mBio.00460-20. [PMID: 32546616 PMCID: PMC7298706 DOI: 10.1128/mbio.00460-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. By biopanning these MAbs against a phage-display library of random Luk peptide fragments, we identified a small subregion within the rim domain of HlgC as the epitope for all the MAbs. Within the native holotoxin, this subregion folds into a conserved β-hairpin structure, with exposed key residues, His252 and Tyr253, required for antibody binding. On the basis of the phage-display results and molecular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or the homologous LukS246-260 subregion peptide elicited serum antibodies that specifically recognized the native holotoxin subunits. Furthermore, serum IgG from patients who were convalescent for invasive S. aureus infection showed neutralization of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255 peptide and was dependent on His252 and Tyr253 residues. We have thus validated an efficient, rapid, and scalable experimental workflow for identification of immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can be exploited for new S. aureus-protective vaccines and immunotherapies.
Collapse
|
3
|
Unbiased Identification of Immunogenic Staphylococcus aureus Leukotoxin B-Cell Epitopes. Infect Immun 2020; 88:IAI.00785-19. [PMID: 32014894 DOI: 10.1128/iai.00785-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/26/2020] [Indexed: 12/26/2022] Open
Abstract
Unbiased identification of individual immunogenic B-cell epitopes in major antigens of a pathogen remains a technology challenge for vaccine discovery. We therefore developed a platform for rapid phage display screening of deep recombinant libraries consisting of as few as one major pathogen antigen. Using the bicomponent pore-forming leukocidin (Luk) exotoxins of the major pathogen Staphylococcus aureus as a prototype, we randomly fragmented and separately ligated the hemolysin gamma A (HlgA) and LukS genes into a custom-built phage display system, termed pComb-Opti8. Deep sequence analysis of barcoded amplimers of the HlgA and LukS gene fragment libraries demonstrated that biopannng against a cross-reactive anti-Luk monoclonal antibody (MAb) recovered convergent molecular clones with short overlapping homologous sequences. We thereby identified an 11-amino-acid sequence that is highly conserved in four Luk toxin subunits and is ubiquitous in representation within S. aureus clinical isolates. The isolated 11-amino-acid peptide probe was predicted to retain the native three-dimensional (3D) conformation seen within the Luk holotoxin. Indeed, this peptide was recognized by the selecting anti-Luk MAb, and, using mutated peptides, we showed that a particular amino acid side chain was essential for these interactions. Furthermore, murine immunization with this peptide elicited IgG responses that were highly reactive with both the autologous synthetic peptide and the full-length Luk toxin homologues. Thus, using a gene fragment- and phage display-based pipeline, we have identified and validated immunogenic B-cell epitopes that are cross-reactive between members of the pore-forming leukocidin family. This approach could be harnessed to identify novel epitopes for a much-needed S. aureus-protective subunit vaccine.
Collapse
|
4
|
Heger E, Schuetz A, Vasan S. HIV Vaccine Efficacy Trials: RV144 and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:3-30. [PMID: 30030787 DOI: 10.1007/978-981-13-0484-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Despite progress in antiretroviral therapy, pre-exposure prophylaxis, microbicides, and other preventive strategies, a vaccine to prevent HIV-1 infection remains desperately needed. Development of an effective vaccine is challenged by several immunologic features of HIV-1 evidenced by the failure of five of the six HIV-1 candidate vaccine efficacy trials to date. This chapter reviews these efficacy trials with a focus on the Phase 3 RV144 trial in Thailand, the only HIV-1 vaccine efficacy trial to show a moderate protective effect of 31% with respect to placebo administration. Although modest, this protection has allowed for the study of potential immunologic correlates of protection to improve development of future HIV-1 pox-protein and other vaccine strategies. Trials in Thailand and South Africa have built upon the RV144 framework to provide additional immunologic insights which enable current and future efficacy testing of related vaccine candidates.
Collapse
Affiliation(s)
- Elizabeth Heger
- US Army Medical Materiel Development Activity, Fort Detrick, MD, USA
| | - Alexandra Schuetz
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Sandhya Vasan
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation, Bethesda, MD, USA.
| |
Collapse
|
5
|
Haddox HK, Dingens AS, Hilton SK, Overbaugh J, Bloom JD. Mapping mutational effects along the evolutionary landscape of HIV envelope. eLife 2018; 7:34420. [PMID: 29590010 PMCID: PMC5910023 DOI: 10.7554/elife.34420] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
The immediate evolutionary space accessible to HIV is largely determined by how single amino acid mutations affect fitness. These mutational effects can shift as the virus evolves. However, the prevalence of such shifts in mutational effects remains unclear. Here, we quantify the effects on viral growth of all amino acid mutations to two HIV envelope (Env) proteins that differ at >100 residues. Most mutations similarly affect both Envs, but the amino acid preferences of a minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at sites that have substituted between the Envs—and many occur at residues that do not even contact substitutions. Therefore, long-range epistasis can unpredictably shift Env’s mutational tolerance during HIV evolution, although the amino acid preferences of most sites are conserved between moderately diverged viral strains. The virus that causes AIDS, or HIV, has a protein called Env on its surface, which is essential for the virus to infect cells. Env can also be recognized by the immune system, which then targets the virus for destruction or blocks it from infecting cells. Unfortunately, Env evolves very quickly, which means that HIV can evade our defenses. However, there are limits to how much this protein can change, since it still needs to perform its essential role in helping viruses enter cells. In the century since HIV first appeared in human populations, the virus has evolved considerably. There are now many HIV strains that infect people, and they bear Env proteins with substantially different sequences. However, it is not clear if these changes in sequence have resulted in Envs from distinct strains being able to tolerate different mutations. To examine this question, Haddox et al. compared how the Envs from two strains of HIV react to modifications in their sequences. They created all possible individual mutations in the proteins, and the resulting collections of mutated viruses were then tested for their ability to infect cells in the laboratory. Most mutations had similar effects in both Env proteins. This allowed Haddox et al. to identify portions of the protein that easily accommodate changes, and portions that must remain unchanged for viruses to remain infectious—at least in the laboratory. Some of these mutations are under different types of pressures when the virus faces the immune system, and those were identified using computational approaches. However, some mutations were tolerated differently by the two Env proteins. Therefore, viral strains differ in how their Env proteins can evolve. The parts of Env that showed differences in mutational tolerance between the strains were not necessarily the parts that differ in sequence. This shows that changes in sequence in one part of the protein can modify how other portions evolve. It remains to be determined whether changes in tolerance to mutations translate into differences in how the virus can escape immunity. This is an important question given that the rapid evolution of Env is a major obstacle to creating a vaccine for HIV.
Collapse
Affiliation(s)
- Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
6
|
Aiyegbo MS, Shmelkov E, Dominguez L, Goger M, Battacharya S, deCamp AC, Gilbert PB, Berman PW, Cardozo T. Peptide Targeted by Human Antibodies Associated with HIV Vaccine-Associated Protection Assumes a Dynamic α-Helical Structure. PLoS One 2017; 12:e0170530. [PMID: 28107435 PMCID: PMC5249078 DOI: 10.1371/journal.pone.0170530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/05/2017] [Indexed: 02/02/2023] Open
Abstract
The only evidence of vaccine-induced protection from HIV acquisition in humans was obtained in the RV144 HIV vaccine clinical trial. One immune correlate of risk in RV144 was observed to be higher titers of vaccine-induced antibodies (Abs) reacting with a 23-mer non-glycosylated peptide with the same amino acid sequence as a segment in the second variable (V2) loop of the MN strain of HIV. We used NMR to analyze the dynamic 3D structure of this peptide. Distance restraints between spatially proximate inter-residue protons were calculated from NOE cross peak intensities and used to constrain a thorough search of all possible conformations of the peptide. α–helical folding was strongly preferred by part of the peptide. A high-throughput structure prediction of this segment in all circulating HIV strains demonstrated that α–helical conformations are preferred by this segment almost universally across all subtypes. Notably, α–helical conformations of this segment of the V2 loop cluster cross-subtype-conserved amino acids on one face of the helix and the variable amino acid positions on the other in a semblance of an amphipathic α–helix. Accordingly, some Abs that protected against HIV in RV144 may have targeted a specific, conserved α–helical peptide epitope in the V2 loop of HIV’s surface envelope glycoprotein.
Collapse
Affiliation(s)
- Mohammed S. Aiyegbo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Evgeny Shmelkov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Lorenzo Dominguez
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Michael Goger
- The New York Structural Biology Center, New York, New York, United States of America
| | - Shibani Battacharya
- The New York Structural Biology Center, New York, New York, United States of America
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wei XM, Xu HF, Cheng XD, Bu N, Zhou HZ. Position 22 of the V3 loop is associated with HIV infectivity. Arch Virol 2016; 162:637-643. [PMID: 27815696 DOI: 10.1007/s00705-016-3138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus subtype 1B (HIV-1B) binds to the CD4 receptor and co-receptor CCR5 or CXCR4 to enter T lymphocytes. The amino acid sequence of the HIV envelope glycoprotein V3 region determines the co-receptor tropism, thereby influencing the infectivity of the virus. Our research group previously found that the amino acid at position 22 of the V3 region may affect the infectivity of the virus, and in this study, we tested this hypothesis. We constructed pseudoviruses by changing the amino acids at position 22 of the V3 region in CCR5-tropic and CXCR4-tropic viruses and tested their infectivity. When the amino acid at V3 position 22 was altered in the CCR5- and CXCR4-tropic viruses, their ability to infect cells decreased to 20.6% and 17.14%, respectively. Therefore, we propose that residue 22 in the V3 region of subtype HIV-1B significantly influences the infectivity of the virus.
Collapse
Affiliation(s)
- Xue-Mei Wei
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hua-Feng Xu
- Department of Laboratory Diagnosis, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xue-Di Cheng
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Nan Bu
- Department of Digestive Medicine, Jiamusi Central Hospital, Jiamusi, Heilongjiang, 154002, People's Republic of China
| | - Hai-Zhou Zhou
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
8
|
Gallerano D, Cabauatan CR, Sibanda EN, Valenta R. HIV-Specific Antibody Responses in HIV-Infected Patients: From a Monoclonal to a Polyclonal View. Int Arch Allergy Immunol 2015; 167:223-41. [PMID: 26414324 DOI: 10.1159/000438484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
9
|
Markham AJ, Rasmussen SE, Salmon JE, Martinez-Ortiz W, Cardozo TJ, Clancy RM, Buyon JP. Reactivity to the p305 Epitope of the α1G T-Type Calcium Channel and Autoimmune-Associated Congenital Heart Block. J Am Heart Assoc 2015; 4:JAHA.115.001836. [PMID: 25994441 PMCID: PMC4599413 DOI: 10.1161/jaha.115.001836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Only 2% of mothers positive for anti-SSA/Ro (Ro) antibodies have children with congenital heart block (CHB). This study aimed to determine whether reactivity with p305, an epitope within the α1G T-type calcium channel, confers added risk over anti-Ro antibodies. METHODS AND RESULTS Using sera from anti-Ro-exposed pregnancies resulting in offspring with CHB, no disease but CHB-sibling, and no disease and no CHB-sibling, as well as disease (lupus without anti-Ro) and healthy controls, reactivities were determined for binding to Ro60, p305, and an epitope within Ro60, p133-Ro60, which shares structural properties with p305, including key amino acids and an α-helical structure. Candidate peptides were further evaluated in an in vitro model that assessed the binding of maternal antibodies to apoptotic cells. In anti-Ro-positive mothers, anti-p305 autoantibodies (>3 SD above healthy controls) were detected in 3/59 (5%) CHB pregnancies, 4/30 (13%) unaffected pregnancies with a CHB-sibling, and 0/42 (0%) of unaffected pregnancies with no CHB-sibling. For umbilical bloods (61 CHB, 41 healthy with CHB sibling), no association of anti-p305 with outcome was detected; however, overall levels of anti-p305 were elevated compared to mothers during pregnancy in all groups studied. For anti-p133-Ro60, reactivity paralleled that of anti-p305. In the screen employing apoptotic cells, p133-Ro60, but not p305, significantly attenuated the binding of immunoglobulin G isolated from a mother whose child had CHB (42.1% reduced to 13.9%, absence/presence of p133-Ro60, respectively, P<0.05). CONCLUSIONS These data suggest that anti-p305 is not a robust maternal marker for assessing increased risk of CHB during an anti-SSA/Ro pregnancy.
Collapse
Affiliation(s)
- Androo J Markham
- Department of Medicine, New York University School of Medicine, New York, NY (A.J.M., S.E.R., R.M.C., J.P.B.)
| | - Sara E Rasmussen
- Department of Medicine, New York University School of Medicine, New York, NY (A.J.M., S.E.R., R.M.C., J.P.B.)
| | - Jane E Salmon
- Division of Rheumatology, Hospital for Special Surgery, New York, NY (J.E.S.)
| | - Wilnelly Martinez-Ortiz
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY (W.M.O., T.J.C.)
| | - Timothy J Cardozo
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY (W.M.O., T.J.C.)
| | - Robert M Clancy
- Department of Medicine, New York University School of Medicine, New York, NY (A.J.M., S.E.R., R.M.C., J.P.B.)
| | - Jill P Buyon
- Department of Medicine, New York University School of Medicine, New York, NY (A.J.M., S.E.R., R.M.C., J.P.B.)
| |
Collapse
|
10
|
Krebs SJ, McBurney SP, Kovarik DN, Waddell CD, Jaworski JP, Sutton WF, Gomes MM, Trovato M, Waagmeester G, Barnett SJ, DeBerardinis P, Haigwood NL. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA. PLoS One 2014; 9:e113463. [PMID: 25514675 PMCID: PMC4267727 DOI: 10.1371/journal.pone.0113463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab) responses toward conserved regions of the viral Envelope (Env). However, the generation of neutralizing Abs (NAbs) targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER) of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.
Collapse
Affiliation(s)
- Shelly J. Krebs
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Sean P. McBurney
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Dina N. Kovarik
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, WA, United States of America
| | - Chelsea D. Waddell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - J. Pablo Jaworski
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - William F. Sutton
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Michelle M. Gomes
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Maria Trovato
- Institute of Protein Biochemistry, C.N.R., Naples, Italy
| | - Garret Waagmeester
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
| | - Susan J. Barnett
- Novartis Vaccines & Diagnostics, Emeryville, CA, United States of America
| | | | - Nancy L. Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, United States of America
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Klein F, Nogueira L, Nishimura Y, Phad G, West AP, Halper-Stromberg A, Horwitz JA, Gazumyan A, Liu C, Eisenreich TR, Lehmann C, Fätkenheuer G, Williams C, Shingai M, Martin MA, Bjorkman PJ, Seaman MS, Zolla-Pazner S, Karlsson Hedestam GB, Nussenzweig MC. Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. ACTA ACUST UNITED AC 2014; 211:2361-72. [PMID: 25385756 PMCID: PMC4235636 DOI: 10.1084/jem.20141050] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian-human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants.
Collapse
Affiliation(s)
- Florian Klein
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Lilian Nogueira
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ganesh Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anthony P West
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Ariel Halper-Stromberg
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Anna Gazumyan
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Cassie Liu
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Thomas R Eisenreich
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Clara Lehmann
- First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany
| | - Gerd Fätkenheuer
- First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany
| | | | - Masashi Shingai
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pamela J Bjorkman
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Susan Zolla-Pazner
- Department of Pathology, NYU School of Medicine, New York, NY 10016 Research Service, Veterans Affairs Medical Center, New York, NY 10010
| | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
12
|
Zolla-Pazner S, Edlefsen PT, Rolland M, Kong XP, deCamp A, Gottardo R, Williams C, Tovanabutra S, Sharpe-Cohen S, Mullins JI, deSouza MS, Karasavvas N, Nitayaphan S, Rerks-Ngarm S, Pitisuttihum P, Kaewkungwal J, O'Connell RJ, Robb ML, Michael NL, Kim JH, Gilbert P. Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses. EBioMedicine 2014; 1:37-45. [PMID: 25599085 PMCID: PMC4293639 DOI: 10.1016/j.ebiom.2014.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To evaluate the role of V3-specific IgG antibodies (Abs) in the RV144 clinical HIV vaccine trial, which reduced HIV-1 infection by 31.2%, the anti-V3 Ab response was assessed. Vaccinees' V3 Abs were highly cross-reactive with cyclic V3 peptides (cV3s) from diverse virus subtypes. Sieve analysis of CRF01_AE breakthrough viruses from 43 vaccine- and 66 placebo-recipients demonstrated an estimated vaccine efficacy of 85% against viruses with amino acids mismatching the vaccine at V3 site 317 (p = 0.004) and 52% against viruses matching the vaccine at V3 site 307 (p = 0.004). This analysis was supported by data showing that vaccinees' plasma Abs were less reactive with I307 when replaced with residues found more often in vaccinees' breakthrough viruses. Simultaneously, viruses with mutations at F317 were less infectious, possibly due to the contribution of F317 to optimal formation of the V3 hydrophobic core. These data suggest that RV144-induced V3-specific Abs imposed immune pressure on infecting viruses and inform efforts to design an HIV vaccine. The RV144 vaccine reduced infection by viruses with isoleucine in V3 position 307. Many vaccine-induced antibodies are cross-reactive and target an epitope including I307. There was selection for breakthrough viruses carrying F317 in V3 (p = 0.004). F317 is needed to maintain optimal infectivity. F317 is a poor or non-contact residue for vaccine induced V3 antibodies.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York Veterans Affairs Harbor Healthcare System, 423 East 23 Street, New York, NY 10010, USA ; New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Morgane Rolland
- Department of Retrovirology, Walter Reed Army Institute of Research, Building 503, Silver Spring, MD 20910, USA
| | - Xiang-Peng Kong
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Constance Williams
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Sodsai Tovanabutra
- Department of Retrovirology, Walter Reed Army Institute of Research, Building 503, Silver Spring, MD 20910, USA
| | - Sandra Sharpe-Cohen
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, 358B Rosen Building, Campus box 358070, Seattle, WA 98195
| | - Mark S deSouza
- Thai Red Cross AIDS Research Center 104, Tower 2, Rajdumari Rd. Pathumwan, Bangkok, Thailand, 10330
| | - Nicos Karasavvas
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Supachai Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Punnee Pitisuttihum
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Jaranit Kaewkungwal
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Merlin L Robb
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Nelson L Michael
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Jerome H Kim
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| |
Collapse
|
13
|
Cryptic determinant of α4β7 binding in the V2 loop of HIV-1 gp120. PLoS One 2014; 9:e108446. [PMID: 25265384 PMCID: PMC4180765 DOI: 10.1371/journal.pone.0108446] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/21/2014] [Indexed: 11/30/2022] Open
Abstract
The peptide segment of the second variable loop of HIV-1 spanning positions 166–181 harbors two functionally important sites. The first, spanning positions 179–181, engages the human α4β7 integrin receptor which is involved in T-cell gut-homing and may play a role in human immunodeficiency virus (HIV)-host cell interactions. The second, at positions 166–178, is a major target of anti-V2 antibodies elicited by the ALVAC/AIDSVAX vaccine used in the RV144 clinical trial. Notably, these two sites are directly adjacent, but do not overlap. Here, we report the identity of a second determinant of α4β7 binding located at positions 170–172 of the V2 loop. This segment – tripeptide QRV170–172– is located within the second site, yet functionally affects the first site. The absence of this segment abrogates α4β7 binding in peptides bearing the same sequence from position 173–185 as the V2 loops of the RV144 vaccines. However, peptides exhibiting V2 loop sequences from heterologous HIV-1 strains that include this QRV170–172 motif bind the α4β7 receptor on cells. Therefore, the peptide segment at positions 166–178 of the V2 loop of HIV-1 viruses appears to harbor a cryptic determinant of α4β7 binding. Prior studies show that the anti-V2 antibody response elicited by the RV144 vaccine, along with immune pressure inferred from a sieve analysis, is directed to this same region of the V2 loop. Accordingly, the anti-V2 antibodies that apparently reduced the risk of infection in the RV144 trial may have functioned by blocking α4β7-mediated HIV-host cell interactions via this cryptic determinant.
Collapse
|
14
|
Visualization of retroviral envelope spikes in complex with the V3 loop antibody 447-52D on intact viruses by cryo-electron tomography. J Virol 2014; 88:12265-75. [PMID: 25122783 DOI: 10.1128/jvi.01596-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gp120 portion of the envelope spike on human immunodeficiency virus type 1 (HIV-1) plays a critical role in viral entry into host cells and is a key target for the humoral immune response, and yet many structural details remain elusive. We have used cryoelectron tomography to visualize the binding of the broadly neutralizing monoclonal antibody (MAb) 447-52D to intact envelope spikes on virions of HIV-1 MN strain. Antibody 447-52D has previously been shown to bind to the tip of the V3 loop. Our results show antibody arms radiating from the sides of the gp120 protomers at a range of angles and place the antibody-bound V3 loop in an orientation that differs from that predicted by most current models but consistent with the idea that antibody binding dislodges the V3 loop from its location in the Env spike, making it flexible and disordered. These data reveal information on the position of the V3 loop and its relative flexibility and suggest that 447-52D neutralizes HIV-1 MN by capturing the V3 loop, blocking its interaction with the coreceptor and altering the structure of the envelope spike. IMPORTANCE Antibody neutralization is one of the primary ways that the body fights infection with HIV. Because HIV is a highly mutable virus, the body must constantly produce new antibodies to counter new strains of HIV that the body itself is producing. Consequently, antibodies capable of neutralizing multiple HIV strains are comparatively few. An improved understanding of the mechanism of antibody neutralization might advance the development of immunogens. Most neutralizing antibodies target the Env glycoprotein spikes found on the virus surface. The broadly neutralizing antibody 447-52D targets the highly conserved β-turn of variable loop 3 (V3) of gp120. The importance of V3 lies in its contribution to the coreceptor binding site on the target cell. We show here that 447-52D binding to V3 converts the Env conformation from closed to open and makes the V3 loop highly flexible, implying disruption of coreceptor binding and attachment to the target cell.
Collapse
|
15
|
Xiang Y, Liu W, Chen Y, Zhang C, Su W, Zhang Y, Sun J, Gao F, Jiang C. The variable loop 3 in the envelope glycoprotein is critical for the atypical coreceptor usage of an HIV-1 strain. PLoS One 2014; 9:e98058. [PMID: 24897520 PMCID: PMC4045670 DOI: 10.1371/journal.pone.0098058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
The majority of HIV-1 strains enter CD4+ T cells using the CCR5 and/or CXCR4 co-receptor. However, we recently identified a transmitted/founder (T/F) virus (ZP6248) that efficiently used an alternative coreceptor GPR15, rather than commonly used CXCR4 and CCR5, to establish clinical infection. To understand which regions in the env gene were critical for the atypical coreceptor usage, we generated a set of V3 mutants and determined their infectivity in GHOST cells that expressed different coreceptors. When the variable loop 3 (V3) in YU2 was replaced with the ZP6248 V3 (YU2.6248V3), the chimera YU2.6248V3 infected GPR15+ cells but not CCR5+ cells. To determine which amino acids in V3 was responsible for this phenotype change, each of the eight amino acids that differed from the subtype B consensus V3 was substituted with alanine. The G306A and S322A mutations significantly reduced the replication capacity of YU2.6248V3 in GPR15+ cells, while all other alanine substitutions at positions 307, 314, 315, 316, 317 and 318 completely abrogated the infectivity of YU2.6248V3 in GPR15+ cells. The E314A mutation, as the E314G mutation reported before, also rendered the YU2.6248V3 infectious in CCR5+ cells, while none of other alanine mutants could infect CCR5+ cells. These results demonstrated that amino acids in ZP6248 V3 might form a unique conformation that was critical for the interaction with GPR15 while the amino acids at position 314 in the V3 crown of ZP6248 played a key role in interaction with both CCR5 and GPR15. The unique phenotypes of ZP6248 can serve as a model to understand how HIV-1 explores the diverse coreceptor reservoir through novel genetic variants to establish clinical infection.
Collapse
Affiliation(s)
- Yue Xiang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Wei Liu
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Yue Chen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chuntao Zhang
- The 2nd Division of In Vitro Diagnostic, National Institutes for Food and Drug Control, Beijing, China
| | - Weiheng Su
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Yan Zhang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Jiaxi Sun
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Feng Gao
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chunlai Jiang
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Trott M, Weiß S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 2014; 9:e97478. [PMID: 24828352 PMCID: PMC4020869 DOI: 10.1371/journal.pone.0097478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022] Open
Abstract
HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.
Collapse
Affiliation(s)
- Maria Trott
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Svenja Weiß
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Sascha Antoni
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Hagen von Briesen
- HIV Specimen Cryorepository (HSC) at Fraunhofer Institute of Biomedical Engineering, St. Ingbert, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
17
|
Shmelkov E, Krachmarov C, Grigoryan AV, Pinter A, Statnikov A, Cardozo T. Computational prediction of neutralization epitopes targeted by human anti-V3 HIV monoclonal antibodies. PLoS One 2014; 9:e89987. [PMID: 24587168 PMCID: PMC3934971 DOI: 10.1371/journal.pone.0089987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/25/2014] [Indexed: 11/18/2022] Open
Abstract
The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design.
Collapse
Affiliation(s)
- Evgeny Shmelkov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| | - Chavdar Krachmarov
- Public Health Research Institute Center, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Arsen V. Grigoryan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Abraham Pinter
- Public Health Research Institute Center, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Alexander Statnikov
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York, United States of America
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
18
|
Abstract
Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.
Collapse
Affiliation(s)
- Sandhya Vasan
- Department of Retrovirology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
19
|
Andrianov AM, Kashyn IA, Tuzikov AV. Discovery of novel anti-HIV-1 agents based on a broadly neutralizing antibody against the envelope gp120 V3 loop: a computational study. J Biomol Struct Dyn 2013; 32:1993-2004. [DOI: 10.1080/07391102.2013.848825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Andrianov AM, Kornoushenko YV, Anishchenko IV, Eremin VF, Tuzikov AV. Structural analysis of the envelope gp120 V3 loop for some HIV-1 variants circulating in the countries of Eastern Europe. J Biomol Struct Dyn 2013; 31:665-83. [DOI: 10.1080/07391102.2012.706455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Andrabi R, Kumar R, Bala M, Nair A, Biswas A, Wig N, Kumar P, Pal R, Sinha S, Luthra K. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors. Virol J 2012; 9:196. [PMID: 22971578 PMCID: PMC3493341 DOI: 10.1186/1743-422x-9-196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/29/2012] [Indexed: 01/10/2023] Open
Abstract
Background Analysis of human monoclonal antibodies (mAbs) developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3) is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5) binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females) within the age range of 20–57 years (median = 33 years) were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB) fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL), suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope specificities of these mAbs and further experimental manipulations will be helpful in identification of epitopes, unique to clade C or shared with non-clade C viruses, in context of V3 region.
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Demberg T, Robert-Guroff M. Controlling the HIV/AIDS epidemic: current status and global challenges. Front Immunol 2012; 3:250. [PMID: 22912636 PMCID: PMC3418522 DOI: 10.3389/fimmu.2012.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the current status of the global HIV pandemic and strategies to bring it under control. It updates numerous preventive approaches including behavioral interventions, male circumcision (MC), pre- and post-exposure prophylaxis (PREP and PEP), vaccines, and microbicides. The manuscript summarizes current anti-retroviral treatment options, their impact in the western world, and difficulties faced by emerging and resource-limited nations in providing and maintaining appropriate treatment regimens. Current clinical and pre-clinical approaches toward a cure for HIV are described, including new drug compounds that target viral reservoirs and gene therapy approaches aimed at altering susceptibility to HIV infection. Recent progress in vaccine development is summarized, including novel approaches and new discoveries.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, Section on Immune Biology of Retroviral Infection, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
23
|
Vasan S, Michael NL. Improved outlook on HIV-1 prevention and vaccine development. Expert Opin Biol Ther 2012; 12:983-94. [DOI: 10.1517/14712598.2012.688020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Resistance of Subtype C HIV-1 Strains to Anti-V3 Loop Antibodies. Adv Virol 2012; 2012:803535. [PMID: 22548061 PMCID: PMC3323838 DOI: 10.1155/2012/803535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022] Open
Abstract
HIV-1's subtype C V3 loop consensus sequence exhibits increased resistance to anti-V3 antibody-mediated neutralization as compared to the subtype B consensus sequence. The dynamic 3D structure of the consensus C V3 loop crown, visualized by ab initio folding, suggested that the resistance derives from structural rigidity and non-β-strand secondary protein structure in the N-terminal strand of the β-hairpin of the V3 loop crown, which is where most known anti-V3 loop antibodies bind. The observation of either rigidity or non-β-strand structure in this region correlated with observed resistance to antibody-mediated neutralization in a series of chimeric pseudovirus (psV) mutants. The results suggest the presence of an epitope-independent, neutralization-relevant structural difference in the antibody-targeted region of the V3 loop crown between subtype C and subtype B, a difference that we hypothesize may contribute to the divergent pattern of global spread between these subtypes. As antibodies to a variable loop were recently identified as an inverse correlate of risk for HIV infection, the structure-function relationships discussed in this study may have relevance to HIV vaccine research.
Collapse
|
25
|
Xenoepitope substitution avoids deceptive imprinting and broadens the immune response to foot-and-mouth disease virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:461-7. [PMID: 22323558 DOI: 10.1128/cvi.00035-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many RNA viruses encode error-prone polymerases which introduce mutations into B and T cell epitopes, providing a mechanism for immunological escape. When regions of hypervariability are found within immunodominant epitopes with no known function, they are referred to as "decoy epitopes," which often deceptively imprint the host's immune response. In this work, a decoy epitope was identified in the foot-and-mouth disease virus (FMDV) serotype O VP1 G-H loop after multiple sequence alignment of 118 isolates. A series of chimeric cyclic peptides resembling the type O G-H loop were prepared, each bearing a defined "B cell xenoepitope" from another virus in place of the native decoy epitope. These sequences were derived from porcine respiratory and reproductive syndrome virus (PRRSV), from HIV, or from a presumptively tolerogenic sequence from murine albumin and were subsequently used as immunogens in BALB/c mice. Cross-reactive antibody responses against all peptides were compared to a wild-type peptide and ovalbumin (OVA). A broadened antibody response was generated in animals inoculated with the PRRSV chimeric peptide, in which virus binding of serum antibodies was also observed. A B cell epitope mapping experiment did not reveal recognition of any contiguous linear epitopes, raising the possibility that the refocused response was directed to a conformational epitope. Taken together, these results indicate that xenoepitope substitution is a novel method for immune refocusing against decoy epitopes of RNA viruses such as FMDV as part of the rational design of next-generation vaccines.
Collapse
|
26
|
Andrianov AM, Anishchenko IV, Tuzikov AV. Discovery of Novel Promising Targets for Anti-AIDS Drug Developments by Computer Modeling: Application to the HIV-1 gp120 V3 Loop. J Chem Inf Model 2011; 51:2760-7. [DOI: 10.1021/ci200255t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander M. Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str. 5/2, 220141, Minsk, Belarus
| | - Ivan V. Anishchenko
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Str. 6, 220012, Minsk, Belarus
| | - Alexander V. Tuzikov
- Laboratory of Mathematical Cybernetics, United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Str. 6, 220012, Minsk, Belarus
| |
Collapse
|
27
|
Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. J Virol 2011; 85:9887-98. [PMID: 21795338 DOI: 10.1128/jvi.05086-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The V3 epitope is a known target for HIV-1 neutralizing antibodies (NAbs), and V3-scaffold fusion proteins used as boosting immunogens after gp120 DNA priming were previously shown to induce NAbs in rabbits. Here, we evaluated whether the breadth and potency of the NAb response could be improved when boosted with rationally designed V3-scaffold immunogens. Rabbits were primed with codon-optimized clade C gp120 DNA and boosted with one of five V3-cholera toxin B fusion proteins (V3-CTBs) or with double combinations of these. The inserts in these immunogens were designed to display V3 epitopes shared by the majority of global HIV-1 isolates. Double combinations of V3-CTB immunogens generally induced more broad and potent NAbs than did boosts with single V3-CTB immunogens, with the most potent and broad NAbs elicited with the V3-CTB carrying the consensus V3 of clade C (V3(C)-CTB), or with double combinations of V3-CTB immunogens that included V3(C)-CTB. Neutralization of tier 1 and 2 pseudoviruses from clades AG, B, and C and of peripheral blood mononuclear cell (PBMC)-grown primary viruses from clades A, AG, and B was achieved, demonstrating that priming with gp120 DNA followed by boosts with V3-scaffold immunogens effectively elicits cross-clade NAbs. Focusing on the V3 region is a first step in designing a vaccine targeting protective epitopes, a strategy with potential advantages over the use of Env, a molecule that evolved to protect the virus by poorly inducing NAbs and by shielding the epitopes that are most critical for infectivity.
Collapse
|
28
|
Relative reactivity of HIV-1 polyclonal plasma antibodies directed to V3 and MPER regions suggests immunodominance of V3 over MPER and dependence of high anti-V3 antibody titers on virus persistence. Arch Virol 2011; 156:1787-94. [PMID: 21735212 DOI: 10.1007/s00705-011-1053-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
Antibodies to two crucial regions, the third variable loop (V3) of gp120 and the membrane-proximal external region (MPER) of gp41 are important for HIV-1 neutralization. We here evaluated the relative binding of polyclonal plasma antibodies from 99 HIV-1-infected individuals from India to the consensus-C V3 and MPER peptides and observed immunodominance of V3 over MPER (p < 0.0001). We further examined the V3- and MPER-specific antibody correlates with clinical parameters. Our results revealed that anti-V3 antibody titers are significantly lower in patients on ART compared to drug-naive individuals (p < 0.0001), most likely due to a decrease in plasma viral load, irrespective of their CD4 counts and total IgG. No such association was observed for MPER, with a similar trend in four follow-up patients. These findings strongly suggest that high titers of V3-specific antibodies are dependent on persistence of virus in circulation, while antibodies to MPER are probably not.
Collapse
|
29
|
Charles-Niño C, Pedroza-Roldan C, Viveros M, Gevorkian G, Manoutcharian K. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response. Vaccine 2011; 29:5313-21. [PMID: 21600948 DOI: 10.1016/j.vaccine.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/25/2022]
Abstract
The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.
Collapse
Affiliation(s)
- Claudia Charles-Niño
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México, Distrito Federal 04510, Mexico
| | | | | | | | | |
Collapse
|
30
|
Andrianov AM. Human immunodeficiency virus-1 gp120 V3 loop for anti-acquired immune deficiency syndrome drug discovery: computer-aided approaches to the problem solving. Expert Opin Drug Discov 2011; 6:419-35. [DOI: 10.1517/17460441.2011.560603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220141 Minsk, Republic of Belarus +375 17 2678263 ; +375 17 2241214 ;
| |
Collapse
|
31
|
Almond D, Cardozo T. Assessment of immunologically relevant dynamic tertiary structural features of the HIV-1 V3 loop crown R2 sequence by ab initio folding. J Vis Exp 2010:2118. [PMID: 20864931 DOI: 10.3791/2118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The antigenic diversity of HIV-1 has long been an obstacle to vaccine design, and this variability is especially pronounced in the V3 loop of the virus' surface envelope glycoprotein. We previously proposed that the crown of the V3 loop, although dynamic and sequence variable, is constrained throughout the population of HIV-1 viruses to an immunologically relevant β-hairpin tertiary structure. Importantly, there are thousands of different V3 loop crown sequences in circulating HIV-1 viruses, making 3D structural characterization of trends across the diversity of viruses difficult or impossible by crystallography or NMR. Our previous successful studies with folding of the V3 crown used the ab initio algorithm accessible in the ICM-Pro molecular modeling software package (Molsoft LLC, La Jolla, CA) and suggested that the crown of the V3 loop, specifically from positions 10 to 22, benefits sufficiently from the flexibility and length of its flanking stems to behave to a large degree as if it were an unconstrained peptide freely folding in solution. As such, rapid ab initio folding of just this portion of the V3 loop of any individual strain of the 60,000+ circulating HIV-1 strains can be informative. Here, we folded the V3 loop of the R2 strain to gain insight into the structural basis of its unique properties. R2 bears a rare V3 loop sequence thought to be responsible for the exquisite sensitivity of this strain to neutralization by patient sera and monoclonal antibodies. The strain mediates CD4-independent infection and appears to elicit broadly neutralizing antibodies. We demonstrate how evaluation of the results of the folding can be informative for associating observed structures in the folding with the immunological activities observed for R2.
Collapse
Affiliation(s)
- David Almond
- Department of Pharmacology, School of Medicine, New York University, NY, USA
| | | |
Collapse
|
32
|
Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 2010; 10:527-35. [PMID: 20577269 DOI: 10.1038/nri2801] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the main challenges of developing an HIV-1 vaccine lies in eliciting immune responses that can overcome the antigenic variability exhibited by HIV. Most HIV-1 vaccine development has focused on inducing immunity to conserved regions of the HIV-1 envelope. However, new studies of the sequence-variable regions of the HIV-1 gp120 envelope glycoprotein have shown that there are conserved immunological and structural features in these regions. Recombinant immunogens that include these features may provide the means to address the antigenic diversity of HIV-1 and induce protective antibodies that can prevent infection with HIV-1.
Collapse
|
33
|
Hioe CE, Wrin T, Seaman MS, Yu X, Wood B, Self S, Williams C, Gorny MK, Zolla-Pazner S. Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PLoS One 2010; 5:e10254. [PMID: 20421997 PMCID: PMC2858080 DOI: 10.1371/journal.pone.0010254] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/17/2010] [Indexed: 11/24/2022] Open
Abstract
Background The V3 loop of the HIV-1 envelope (Env) glycoprotein gp120 was identified as the “principal neutralizing domain” of HIV-1, but has been considered too variable to serve as a neutralizing antibody (Ab) target. Structural and immunochemical data suggest, however, that V3 contains conserved elements which explain its role in binding to virus co-receptors despite its sequence variability. Despite this evidence of V3 conservation, the ability of anti-V3 Abs to neutralize a significant proportion of HIV-1 isolates from different subtypes (clades) has remained controversial. Methods HIV-1 neutralization experiments were conducted in two independent laboratories to test human anti-V3 monoclonal Abs (mAbs) against pseudoviruses (psVs) expressing Envs of diverse HIV-1 subtypes from subjects with acute and chronic infections. Neutralization was defined by 50% inhibitory concentrations (IC50), and was statistically assessed based on the area under the neutralization titration curves (AUC). Results Using AUC analyses, statistically significant neutralization was observed by ≥1 anti-V3 mAbs against 56/98 (57%) psVs expressing Envs of diverse subtypes, including subtypes A, AG, B, C and D. Even when the 10 Tier 1 psVs tested were excluded from the analysis, significant neutralization was detected by ≥1 anti-V3 mAbs against 46/88 (52%) psVs from diverse HIV-1 subtypes. Furthermore, 9/24 (37.5%) Tier 2 viruses from the clade B and C standard reference panels were neutralized by ≥1 anti-V3 mAbs. Each anti-V3 mAb tested was able to neutralize 28–42% of the psVs tested. By IC50 criteria, 40/98 (41%) psVs were neutralized by ≥1 anti-V3 mAbs. Conclusions Using standard and new statistical methods of data analysis, 6/7 anti-V3 human mAbs displayed cross-clade neutralizing activity and revealed that a significant proportion of viruses can be neutralized by anti-V3 Abs. The new statistical method for analysis of neutralization data provides many advantages to previously used analyses.
Collapse
Affiliation(s)
- Catarina E Hioe
- Department of Pathology, New York University Langone School of Medicine, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|