1
|
Huang PJ, Lin YL, Chen CH, Lin HY, Fang SC. A chloroplast sulphate transporter modulates glutathione-mediated redox cycling to regulate cell division. PLANT, CELL & ENVIRONMENT 2024; 47:5391-5410. [PMID: 39189939 DOI: 10.1111/pce.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Glutathione redox cycling is important for cell cycle regulation, but its mechanisms are not well understood. We previously identified a small-sized mutant, suppressor of mat3 15-1 (smt15-1) that has elevated cellular glutathione. Here, we demonstrated that SMT15 is a chloroplast sulphate transporter. Reducing expression of γ-GLUTAMYLCYSTEINE SYNTHETASE, encoding the rate-limiting enzyme required for glutathione biosynthesis, corrected the size defect of smt15-1 cells. Overexpressing GLUTATHIONE SYNTHETASE (GSH2) recapitulated the small-size phenotype of smt15-1 mutant, confirming the role of glutathione in cell division. Hence, SMT15 may regulate chloroplast sulphate concentration to modulate cellular glutathione levels. In wild-type cells, glutathione and/or thiol-containing molecules (GSH/thiol) accumulated in the cytosol at the G1 phase and decreased as cells entered the S/M phase. While the cytosolic GSH/thiol levels in the small-sized mutants, smt15-1 and GSH2 overexpressors, mirrored those of wild-type cells (accumulating during G1 and declining at early S/M phase), GSH/thiol was specifically accumulated in the basal bodies at early S/M phase in the small-sized mutants. Therefore, we propose that GSH/thiol-mediated redox signalling in the basal bodies may regulate mitotic division number in Chlamydomonas reinhardtii. Our findings suggest a new mechanism by which glutathione regulates the multiple fission cell cycle in C. reinhardtii.
Collapse
Affiliation(s)
- Pin-Jui Huang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Kratzke M, Scaria G, Porter S, Kren B, Klein MA. Inhibition of Mitochondrial Antioxidant Defense and CDK4/6 in Mesothelioma. Molecules 2023; 28:molecules28114380. [PMID: 37298855 DOI: 10.3390/molecules28114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced mesothelioma is considered an incurable disease and new treatment strategies are needed. Previous studies have demonstrated that mitochondrial antioxidant defense proteins and the cell cycle may contribute to mesothelioma growth, and that the inhibition of these pathways may be effective against this cancer. We demonstrated that the antioxidant defense inhibitor auranofin and the cyclin-dependent kinase 4/6 inhibitor palbociclib could decrease mesothelioma cell proliferation alone or in combination. In addition, we determined the effects of these compounds on colony growth, cell cycle progression, and the expression of key antioxidant defense and cell cycle proteins. Auranofin and palbociclib were effective in decreasing cell growth and inhibiting the above-described activity across all assays. Further study of this drug combination will elucidate the contribution of these pathways to mesothelioma activity and may reveal a new treatment strategy.
Collapse
Affiliation(s)
- Marian Kratzke
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - George Scaria
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55417, USA
| | - Stephen Porter
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Betsy Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55417, USA
| | - Mark A Klein
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55417, USA
| |
Collapse
|
3
|
Lee MK, Zhang X, Kim HJ, Hwang YS. Peroxiredoxin 5 is involved in cancer cell invasion and tumor growth of oral squamous cell carcinoma. Oral Dis 2023; 29:423-435. [PMID: 33969595 DOI: 10.1111/odi.13910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Peroxiredoxins (Prxs) are antioxidant enzymes that can coordinate cell signal transduction via reactive species scavenging or by acting as redox sensors. The mechanism by which Prxs promote cancer invasion and progression is not yet fully understood. This study aims to elucidate the precise mechanism through which Prx type 5 (Prx5) promotes cancer invasion and tumor growth. MATERIALS AND METHODS We analyzed the Prx5 expression in oral squamous cell carcinoma (OSCC) by using microarray analysis for gene expression profiling. To identify Prx5 function in cancer, lentiviral short hairpin RNA was used for Prx5 depletion, and invasion assay and mouse xenograft were performed. RESULTS In microarray data obtained from OSCC patients, Prx5 showed higher expression at the tumor margin (TM) compared to the tumor center (TC) of the collective invasion. The depletion of Prx5 in OSCC cells (Prx5dep ) led to decreased invasion activity. In orthotopic xenograft models, Prx5dep cells harbored delimited tumorigenicity compared to wild-type cells as well as the suppression of lymph node metastasis. Prx5dep cells showed growth retardation and increased cellular reactive oxygen species (ROS) levels. The growth retardation of Prx5dep cells resulted in G1 phase arrest. CONCLUSIONS This study provides evidence that Prx5 removes excess ROS, especially in the TM, contributing to cancer invasion and tumor progression.
Collapse
Affiliation(s)
- Min Kyeong Lee
- Department of Dental Hygiene, College of Health Science, Eulji University, Republic of Korea
| | - Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji, China.,Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyung Jun Kim
- Department of Oral Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Republic of Korea
| |
Collapse
|
4
|
Zheng K, Guo L, Ullah S, Cao Y, Huang X, shan H, Jiang J, Wu J, Jiang Y. Proteome changes of sheep rumen epithelium during postnatal development. Front Genet 2022; 13:1031707. [PMID: 36386827 PMCID: PMC9641056 DOI: 10.3389/fgene.2022.1031707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The development of the rumen epithelium is a critical physiological challenge for sheep. However, the molecular mechanism underlying postnatal rumen development in sheep remains rarely understood. Results: Here, we used a shotgun approach and bioinformatics analyses to investigate and compare proteomic profiles of sheep rumen epithelium tissue on day 0, 15, 30, 45, and 60 of age. A total of 4,523 proteins were identified, in which we found 852, 342, 164, and 95 differentially expressed proteins (DEPs) between day 0 and day 15, between day 15 and day 30, between day 30 and day 45, between day 45 and day 60, respectively. Furthermore, subcellular localization analysis showed that the DEPs were majorly localized in mitochondrion between day 0 and day 15, after which nucleus proteins were the most DEPs. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DEPs significantly enriched in mitochondrion, ubiquitination, histone modifications, glutathione synthase activity, and wnt and nortch signaling pathways. Conclusion: Our data indicate that the biogenesis of mitochondrion in rumen epithelial cell is essential for the initiation of rumen epithelial development. Glutathione, wnt signaling pathway and nortch signaling pathway participated in rumen epithelial growth. Ubiquitination, post-translational modifications of histone might be key molecular functions in regulating rumen epithelial development.
Collapse
Affiliation(s)
- Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangyong Guo
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Saif Ullah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Pakistan
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huili shan
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianliang Wu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianliang Wu, ; Yongqing Jiang,
| | - Yongqing Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianliang Wu, ; Yongqing Jiang,
| |
Collapse
|
5
|
Zhang Q, Dai X, Wang H, Wang F, Tang D, Jiang C, Zhang X, Guo W, Lei Y, Ma C, Zhang H, Li P, Zhao Y, Wang Z. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:866063. [PMID: 35463436 PMCID: PMC9019583 DOI: 10.3389/fpls.2022.866063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.
Collapse
Affiliation(s)
- Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Huanpeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongxue Tang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunyun Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Xiaoyan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenjing Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Lei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Ivanova JS, Pugovkina NA, Neganova IE, Kozhukharova IV, Nikolsky NN, Lyublinskaya OG. Cell cycle-coupled changes in the level of reactive oxygen species support the proliferation of human pluripotent stem cells. Stem Cells 2021; 39:1671-1687. [PMID: 34460135 DOI: 10.1002/stem.3450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
The study of proliferation regulation in human pluripotent stem cells is crucial to gain insights into understanding the physiology of these cells. However, redox regulation of the pluripotent cell cycle remains largely unexplored. Here, using human embryonic stem cells (hESCs) as well as human induced pluripotent stem cells (hiPSCs), we demonstrate that the level of reactive oxygen species (ROS) in pluripotent cells oscillates in accordance with the cell cycle progression with the peak occurring at transition from S to G2 /M phase of the cycle. A decrease of this level by antioxidants leads to hindered S-phase initiation and progression but does not affect the early-G1 -phase or mitosis. Cells exposed to antioxidants in the early-G1 -phase accumulate the phosphorylated retinoblastoma protein and overcome the restriction point but are unable to accumulate the main regulators of the S phase-CYCLIN A and GEMININ. Based on the previous findings that CYCLIN A stability is affected by redox homeostasis disturbances in somatic cells, we compared the responses to antioxidant treatments in hESCs and in their differentiated fibroblast-like progeny cells (difESCs). In difESCs, similar to hESCs, a decrease in ROS level results in the disruption of S-phase initiation accompanied by a deficiency of the CYCLIN A level. Moreover, in antioxidant-treated cells, we revealed the accumulation of DNA breaks, which was accompanied by activation of the apoptosis program in pluripotent cells. Thus, we conclude that maintaining the physiological ROS level is essential for promotion of proliferation and accurate DNA synthesis in pluripotent cells and their differentiated descendants.
Collapse
Affiliation(s)
- Julia S Ivanova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia A Pugovkina
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina E Neganova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina V Kozhukharova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolay N Nikolsky
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga G Lyublinskaya
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
7
|
Soll M, Goldshtein H, Rotkopf R, Russek-Blum N, Gross Z. A Synthetic SOD/Catalase Mimic Compound for the Treatment of ALS. Antioxidants (Basel) 2021; 10:827. [PMID: 34067277 PMCID: PMC8224677 DOI: 10.3390/antiox10060827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. To date, the etiology of the disease is still unclear, with evidence of reactive oxygen species, mitochondrial dysfunction, iron homeostasis perturbation, protein misfolding and protein aggregation as key players in the pathology of the disease. Twenty percent of familial ALS and two percent of sporadic ALS instances are due to a mutation in Cu/Zn superoxide dismutase (SOD1). Sporadic and familial ALS affects the same neurons with similar pathology; therefore, the underlying hypothesis is that therapies effective in mutant SOD1 models could be translated to sporadic ALS. Corrole metal complexes have lately been identified as strong and potent catalytic antioxidants with beneficial effects in oxidative stress-related diseases such as Parkinson's disease, Alzheimer's disease, atherosclerosis, diabetes and its complications. One of the most promising candidates is the iron complex of an amphiphilic corrole, 1-Fe. In this study we used the SOD1 G93R mutant zebrafish ALS model to assess whether 1-Fe, as a potent catalytic antioxidant, displays any therapeutic merits in vivo. Our results show that 1-Fe caused a substantial increase in mutant zebrafish locomotor activity (up to 30%), bringing the locomotive abilities of the mutant treated group close to that of the wild type untreated group (50% more than the mutated untreated group). Furthermore, 1-Fe did not affect WT larvae locomotor activity, suggesting that 1-Fe enhances locomotor ability by targeting mechanisms underlying SOD1 ALS specifically. These results may pave the way for future development of 1-Fe as a viable treatment for ALS.
Collapse
Affiliation(s)
- Matan Soll
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| | - Hagit Goldshtein
- The Dead Sea & Arava Science Center, Auspices of Ben Gurion University, Central Arava 86815, Israel;
| | - Ron Rotkopf
- Bioinformatics and Biological Computing Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Niva Russek-Blum
- The Dead Sea & Arava Science Center, Auspices of Ben Gurion University, Central Arava 86815, Israel;
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
8
|
Balta E, Kramer J, Samstag Y. Redox Regulation of the Actin Cytoskeleton in Cell Migration and Adhesion: On the Way to a Spatiotemporal View. Front Cell Dev Biol 2021; 8:618261. [PMID: 33585453 PMCID: PMC7875868 DOI: 10.3389/fcell.2020.618261] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton of eukaryotic cells is a dynamic, fibrous network that is regulated by the concerted action of actin-binding proteins (ABPs). In particular, rapid polarization of cells in response to internal and external stimuli is fundamental to cell migration and invasion. Various isoforms of ABPs in different tissues equip cells with variable degrees of migratory and adhesive capacities. In addition, regulation of ABPs by posttranslational modifications (PTM) is pivotal to the rapid responsiveness of cells. In this context, phosphorylation of ABPs and its functional consequences have been studied extensively. However, the study of reduction/oxidation (redox) modifications of oxidation-sensitive cysteine and methionine residues of actin, ABPs, adhesion molecules, and signaling proteins regulating actin cytoskeletal dynamics has only recently emerged as a field. The relevance of such protein oxidations to cellular physiology and pathophysiology has remained largely elusive. Importantly, studying protein oxidation spatiotemporally can provide novel insights into localized redox regulation of cellular functions. In this review, we focus on the redox regulation of the actin cytoskeleton, its challenges, and recently developed tools to study its physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Johanna Kramer
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
LncRNA-OBFC2A targeted to Smad3 regulated Cyclin D1 influences cell cycle arrest induced by 1,4-benzoquinone. Toxicol Lett 2020; 332:74-81. [DOI: 10.1016/j.toxlet.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 07/05/2020] [Indexed: 02/03/2023]
|
10
|
Torres-Ávila JF, Espitia-Pérez L, Bonatto D, Silva FRD, Oliveira IMD, Silva LFO, Corrêa DS, Dias JF, Silva JD, Henriques JAP. Systems chemo-biology analysis of DNA damage response and cell cycle effects induced by coal exposure. Genet Mol Biol 2020; 43:e20190134. [PMID: 32609278 PMCID: PMC7315349 DOI: 10.1590/1678-4685-gmb-2019-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
Cell cycle alterations are among the principle hallmarks of cancer. Consequently, the study of cell cycle regulators has emerged as an important topic in cancer research, particularly in relation to environmental exposure. Particulate matter and coal dust around coal mines have the potential to induce cell cycle alterations. Therefore, in the present study, we performed chemical analyses to identify the main compounds present in two mineral coal samples from Colombian mines and performed systems chemo-biology analysis to elucidate the interactions between these chemical compounds and proteins associated with the cell cycle. Our results highlight the role of oxidative stress generated by the exposure to the residues of coal extraction, such as major inorganic oxides (MIOs), inorganic elements (IEs) and polycyclic aromatic hydrocarbons (PAH) on DNA damage and alterations in the progression of the cell cycle (blockage and/or delay), as well as structural dysfunction in several proteins. In particular, IEs such as Cr, Ni, and S and PAHs such as benzo[a]pyrene may have influential roles in the regulation of the cell cycle through DNA damage and oxidative stress. In this process, cyclins, cyclin-dependent kinases, zinc finger proteins such as TP53, and protein kinases may play a central role.
Collapse
Affiliation(s)
- Jose F Torres-Ávila
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil.,Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Lyda Espitia-Pérez
- Universidad del Sinú, Grupo de Investigación Biomédica y Biología Molecular, Montería, Córdoba, Colombia
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS, Brazil
| | | | - Iuri Marques de Oliveira
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil
| | - Luís F O Silva
- Universidad de la Costa, Civil and Environmental Department, Barranquilla, Colombia
| | - Dione Silva Corrêa
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Centro de Pesquisa de Produtos e Desenvolvimento, Canoas, RS, Brazil
| | - Johnny Ferraz Dias
- Universidade Federal do Rio Grande do Sul, Instituto de Física, Laboratório de Implantação de Íons, Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Universidade Luterana do Brasil, Laboratório de Toxicologia Genética, Canoas, RS, Brazil.,Universidade La Salle, Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil.,Universidade de Caxias do Sul, Instituto de Biotecnologia, Laboratório de Genômica, Proteômica e Reparo de DNA, RS, Brazil
| |
Collapse
|
11
|
Han YH, Jin MH, Jin YH, Yu NN, Liu J, Zhang YQ, Cui YD, Wang AG, Lee DS, Kim SU, Kim JS, Kwon T, Sun HN. Deletion of Peroxiredoxin II Inhibits the Growth of Mouse Primary Mesenchymal Stem Cells Through Induction of the G 0/G 1 Cell-cycle Arrest and Activation of AKT/GSK3β/β-Catenin Signaling. In Vivo 2020; 34:133-141. [PMID: 31882472 DOI: 10.21873/invivo.11754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM Dermal mesenchymal stem cells (DMSCs) are pluripotent stem cells found in the skin which maintain the thickness of the dermal layer and participate in skin wound healing. MATERIALS AND METHODS The MTT assay was performed to detect cell proliferation and cell-cycle progression and cell-surface markers were assessed by flow cytometry. The levels of proteins in related signaling pathways were detected by western blotting assay and the translocation of β-catenin into the nucleus were detected by immunofluorescence. Red oil O staining was performed to examine the differentiational ability of DMSCs. RESULTS Knockout of PRDX2 inhibited DMSC cell growth, and cell-cycle arrest at G0/G1 phase; p16, p21 and cyclin D1 expression levels in Prdx2 knockout DMSCs were significantly increased. Furthermore, AKT phosphorylation were significantly increased in Prdx2 knockout DMSCs, GSK3β activity were inhibited, result in β-Catenin accumulated in the nucleus. CONCLUSION In conclusion, these results demonstrated that PRDX2 plays a pivotal role in regulating the proliferation of DMSCs, and this is closely related to the AKT/glycogen synthase kinase 3 beta/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Nan-Nan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Jun Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Yong-Qing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Yu-Dong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Ai-Guo Wang
- Laboratory Animal center, Dalian Medical University, Dalian, P.R. China
| | - Dong-Seok Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| |
Collapse
|
12
|
Wasson EM, Alinezhadbalalami N, Brock RM, Allen IC, Verbridge SS, Davalos RV. Understanding the role of calcium-mediated cell death in high-frequency irreversible electroporation. Bioelectrochemistry 2020; 131:107369. [PMID: 31706114 PMCID: PMC10039453 DOI: 10.1016/j.bioelechem.2019.107369] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is an emerging electroporation-based therapy used to ablate cancerous tissue. Treatment consists of delivering short, bipolar pulses (1-10μs) in a series of 80-100 bursts (1 burst/s, 100μs on-time). Reducing pulse duration leads to reduced treatment volumes compared to traditional IRE, therefore larger voltages must be applied to generate ablations comparable in size. We show that adjuvant calcium enhances ablation area in vitro for H-FIRE treatments of several pulse durations (1, 2, 5, 10μs). Furthermore, H-FIRE treatment using 10μs pulses delivered with 1mM CaCl2 results in cell death thresholds (771±129V/cm) comparable to IRE thresholds without calcium (698±103V/cm). Quantifying the reversible electroporation threshold revealed that CaCl2 enhances the permeabilization of cells compared to a NaCl control. Gene expression analysis determined that CaCl2 upregulates expression of eIFB5 and 60S ribosomal subunit genes while downregulating NOX1/4, leading to increased signaling in pathways that may cause necroptosis. The opposite was found for control treatment without CaCl2 suggesting cells experience an increase in pro survival signaling. Our study is the first to identify key genes and signaling pathways responsible for differences in cell response to H-FIRE treatment with and without calcium.
Collapse
Affiliation(s)
- Elisa M Wasson
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Nastaran Alinezhadbalalami
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA.
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Scott S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Li Y, Zhao W, Wang L, Chen Y, Zhang H, Wang T, Yang X, Xing F, Yan J, Fang X. Protective Effects of Fucoidan against Hydrogen Peroxide-Induced Oxidative Damage in Porcine Intestinal Epithelial Cells. Animals (Basel) 2019; 9:ani9121108. [PMID: 31835456 PMCID: PMC6940796 DOI: 10.3390/ani9121108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Simple Summary High levels of production in intensive farming systems make domestic animals like piglets particularly susceptible to oxidative stress, which is detrimental to intestinal homeostasis and function. It is of paramount importance to identify effective and reliable nutrients to counteract oxidative damage to the porcine intestinal epithelium, especially with the recent phasing out of the use of antibiotics in China. This study indicates that fucoidan could ameliorate hydrogen peroxide-induced oxidative stress in porcine intestinal epithelial cells, primarily owing to the action of fucoidan to facilitate nuclear factor-erythroid 2-related factor-2 signals and cellular antioxidant responses. These findings may provide useful implications for practical swine production. Abstract This study was conducted to evaluate the effectiveness of fucoidan in ameliorating hydrogen peroxide (H2O2)-induced oxidative stress to porcine intestinal epithelial cell line (IPEC-1). The cell viability test was initially performed to screen out appropriate concentrations of H2O2 and fucoidan. After that, cells were exposed to H2O2 in the presence or absence of pre-incubation with fucoidan. Hydrogen peroxide increased the apoptotic and necrotic rate, boosted reactive oxygen species (ROS) generation, and disturbed the transcriptional expression of genes associated with antioxidant defense and apoptosis in IPEC-1 cells. Pre-incubation with fucoidan inhibited the increases in necrosis and ROS accumulation induced by H2O2. Consistently, in the H2O2-treated IPEC-1 cells, fucoidan normalized the content of reduced glutathione as well as the mRNA abundance of NAD(P)H quinone dehydrogenase 1 and superoxide dismutase 1 while it prevented the overproduction of malondialdehyde. Moreover, H2O2 stimulated the translocation of nuclear factor-erythroid 2-related factor-2 to the nucleus of IPEC-1 cells, but this increase was further promoted by fucoidan pre-treatment. The results suggest that fucoidan is effective in protecting IPEC-1 cells against oxidative damage induced by H2O2, which may help in developing appropriate strategies for maintaining the intestinal health of young piglets.
Collapse
Affiliation(s)
- Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Li Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Tian Wang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Xiaoyang Yang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Fei Xing
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Xiaomin Fang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
- Correspondence: ; Tel.: +86-25-84391941
| |
Collapse
|
14
|
Spatial oxidation of L-plastin downmodulates actin-based functions of tumor cells. Nat Commun 2019; 10:4073. [PMID: 31501427 PMCID: PMC6733871 DOI: 10.1038/s41467-019-11909-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/06/2019] [Indexed: 01/15/2023] Open
Abstract
Several antitumor therapies work by increasing reactive oxygen species (ROS) within the tumor micromilieu. Here, we reveal that L-plastin (LPL), an established tumor marker, is reversibly regulated by ROS-induced thiol oxidation on Cys101, which forms a disulfide bridge with Cys42. LPL reduction is mediated by the Thioredoxin1 (TRX1) system, as shown by TRX1 trapping, TRX1 knockdown and blockade of Thioredoxin1 reductase (TRXR1) with auranofin. LPL oxidation diminishes its actin-bundling capacity. Ratiometric imaging using an LPL-roGFP-Orp1 fusion protein and a dimedone-based proximity ligation assay (PLA) reveal that LPL oxidation occurs primarily in actin-based cellular extrusions and strongly inhibits cell spreading and filopodial extension formation in tumor cells. This effect is accompanied by decreased tumor cell migration, invasion and extracellular matrix (ECM) degradation. Since LPL oxidation occurs following treatment of tumors with auranofin or γ-irradiation, it may be a molecular mechanism contributing to the effectiveness of tumor treatment with redox-altering therapies. The actin-remodelling protein L-plastin promotes tumour migration and invasion. Here, the authors show that L-plastin is regulated spatially by ROS-induced thiol oxidation which inhibits its actin-bundling function and cell spreading and filopodial extension formation in tumor cells.
Collapse
|
15
|
Datla SR, Hilenski L, Seidel-Rogol B, Dikalova AE, Harousseau M, Punkova L, Joseph G, Taylor WR, Lassègue B, Griendling KK. Poldip2 knockdown inhibits vascular smooth muscle proliferation and neointima formation by regulating the expression of PCNA and p21. J Transl Med 2019; 99:387-398. [PMID: 30237457 PMCID: PMC6393166 DOI: 10.1038/s41374-018-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
Polymerase delta-interacting protein 2 (Poldip2) is a multi-functional protein with numerous roles in the vasculature, including the regulation of cell apoptosis and migration, as well as extracellular matrix deposition; however, its role in VSMC proliferation and neointimal formation is unknown. In this study, we investigated the role of Poldip2 in intraluminal wire-injury induced neointima formation and proliferation of vascular smooth muscle cells in vitro and in vivo. Poldip2 expression was observed in the intima and media of human atherosclerotic arteries, where it colocalized with proliferating cell nuclear antigen (PCNA). Wire injury of femoral arteries of Poldip2+/+ mice induced robust neointimal formation after 2 weeks, which was impaired in Poldip2+/‒ mice. PCNA expression was significantly reduced and expression of the cell cycle inhibitor p21 was significantly increased in wire-injured arteries of Poldip2+/‒ animals compared to wild-type controls. No difference was observed in apoptosis. Downregulation of Poldip2 in rat aortic smooth muscle cells significantly reduced serum-induced proliferation and PCNA expression, but upregulated p21 expression. Downregulation of p21 using siRNA reversed the inhibition of proliferation induced by knockdown of Poldip2. These results indicate that Poldip2 plays a critical role in the proliferation of VSMCs.
Collapse
Affiliation(s)
- Srinivasa Raju Datla
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Lula Hilenski
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Bonnie Seidel-Rogol
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Anna E. Dikalova
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Mark Harousseau
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Lili Punkova
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Giji Joseph
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - W. Robert Taylor
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322,The Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322,The Atlanta VA Medical Center, Atlanta, GA 30033
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| |
Collapse
|
16
|
Previte DM, Piganelli JD. Reactive Oxygen Species and Their Implications on CD4 + T Cells in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1399-1414. [PMID: 28990401 DOI: 10.1089/ars.2017.7357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4+ T cell activation and differentiation. As CD4+ T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4+ T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4+ T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4+ T cells have been done to examine the influence of redox on CD4+ T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4+ T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4+ T cell formation and function.
Collapse
Affiliation(s)
- Dana M Previte
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jon D Piganelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
18
|
Liu JR, Xu GM, Shi XM, Zhang GJ. Low temperature plasma promoting fibroblast proliferation by activating the NF-κB pathway and increasing cyclinD1 expression. Sci Rep 2017; 7:11698. [PMID: 28916796 PMCID: PMC5601921 DOI: 10.1038/s41598-017-12043-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/01/2017] [Indexed: 11/23/2022] Open
Abstract
The potential applications of low temperature plasma (LTP) in wound healing have aroused the concern of many researchers. In this study, an argon atmospheric pressure plasma jet was applied to generate LTP for treatment of murine fibroblast cell (L929) cultured in vitro to investigate the effect of NF-κB pathway on fibroblast proliferation. The results showed that, compared with the control, L929 cells treated with plasma for less than 20 s had significant increases of proliferation; the productions of intracellular ROS, O2− and NO increased with prolongation of LTP treatment time; NF-κB pathway was activated by LTP in a proper dose range, and the expression of cyclinD1 in LTP-treated cells increased with the same trend as cell proliferation. After RNA interference to block p65 expression, with the same treatment time, RNAi-treated cells proliferated more slowly and expressed less cyclinD1 than normal cells. Furthermore, pretreatment with N-acetyl-L-cysteine (NAC) markedly prevented the plasma-induced changes in cells. In conclusion, the proliferation of L929 cells induced by LTP was closely related to NF-κB signaling pathway, which might be activated by appropriate level of intracellular ROS. These novel findings can provide some theoretical reference of LTP inducing cell proliferation and promoting wound healing.
Collapse
Affiliation(s)
- Jin-Ren Liu
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Gui-Min Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xing-Min Shi
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Guan-Jun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
19
|
D'Angelo S, Martino E, Ilisso CP, Bagarolo ML, Porcelli M, Cacciapuoti G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int J Oncol 2017; 51:939-948. [DOI: 10.3892/ijo.2017.4088] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/14/2017] [Indexed: 11/05/2022] Open
|
20
|
Wu F, Tian F, Zeng W, Liu X, Fan J, Lin Y, Zhang Y. Role of peroxiredoxin2 downregulation in recurrent miscarriage through regulation of trophoblast proliferation and apoptosis. Cell Death Dis 2017; 8:e2908. [PMID: 28661480 PMCID: PMC5520946 DOI: 10.1038/cddis.2017.301] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023]
Abstract
Peroxiredoxin (Prdx) 2 is an antioxidant protein that utilizes its redox-sensitive cysteine groups to reduce hydrogen peroxide molecules and protect cells against oxidative damage from reactive oxygen species (ROS). However, its function in trophoblasts at the maternal-fetal interface has not been clarified yet. In this study, significantly lower Prdx2 expression was found in the first-trimester villous cytotrophoblasts of patients with recurrent miscarriage (RM) than in cytotrophoblasts from healthy controls. Further, Prdx2 knockdown inhibited proliferation and increased apoptosis of trophoblast cells. The reason for this may be an increase in the level of cellular ROS after knockdown of Prdx2, which may subsequently lead to an increase in the expression of phosphorylated p53 (p-p53) and p38-MAPK/p21. Prdx2 knockdown also impaired the fusion of BeWo cells induced by forskolin. Bioinformatics analysis identified a c-Myc-binding site in the Prdx2 promoter region, and chromatin immunoprecipitation verified that c-Myc directly bound to a site in this locus. Suppression and overexpression of c-Myc resulted in reduction and increase of Prdx2 expression respectively. Furthermore, we demonstrated that c-Myc was downregulated in the first-trimester cytotrophoblasts of patients with RM, and its downregulation is also related with inhibited cell proliferation, increased apoptosis, as well as upregulated p21 expression and p-p53/p53 ratio. Our findings indicate that Prdx2 might have an important role in the regulation of trophoblast proliferation and apoptosis during early pregnancy, and that its expression is mediated by c-Myc. Thus, these two proteins may be involved in the pathogenesis of RM and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Liu S, Oshita S, Kawabata S, Makino Y, Yoshimoto T. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11295-11302. [PMID: 27259095 DOI: 10.1021/acs.langmuir.6b01621] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exogenous reactive oxygen species (ROS) produced by nanobubble (NB) water offer a reasonable explanation for NBs' physiological promotion and oxidation effects. To develop and exploit the NB technology, we have performed further research to identify the specific ROS produced by NBs. Using a fluorescent reagent APF, a Fenton reaction, a dismutation reaction of superoxide dismutase and DMSO, we distinguished four types of ROS (superoxide anion radical (O2·-), hydrogen peroxide (H2O2), hydroxyl radical (·OH), and singlet oxygen (1O2)). ·OH was confirmed to be the specific ROS produced by NB water. The role of ·OH produced by NB water in physiological processes depends on its concentration. The amount of exogenous ·OH has a positive correlation with the NB number density in the water. Here, spinach and carrot seed germination tests were repeatedly performed with three seed groups submerged in distilled water, high-number density NB water, and low-number density NB water under similar dissolved oxygen concentrations. The final germination rates of spinach seeds in distilled water, low-number density NB water, and high-number density NB water were 54%, 65%, and 69%, respectively. NBs can also promote sprout growth. The sprout lengths of spinach seeds dipped in NB water were longer than those in the distilled water. For carrot seeds, the amount of exogenous ·OH in high-number density NB water was beyond their toxic threshold, and negative effects were shown on hypocotyl elongation and chlorophyll formation. The presented results allow us to obtain a deeper understanding of the physiological promotion effects of NBs.
Collapse
Affiliation(s)
- Shu Liu
- Graduate School of Agricultural & Life Sciences, The University of Tokyo , Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiichi Oshita
- Graduate School of Agricultural & Life Sciences, The University of Tokyo , Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saneyuki Kawabata
- Graduate School of Agricultural & Life Sciences, The University of Tokyo , Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshio Makino
- Graduate School of Agricultural & Life Sciences, The University of Tokyo , Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiko Yoshimoto
- Graduate School of Agricultural & Life Sciences, The University of Tokyo , Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE For a healthy cell to turn into a cancer cell and grow out to become a tumor, it needs to undergo a series of complex changes and acquire certain traits, summarized as "The Hallmarks of Cancer." These hallmarks can all be regarded as the result of altered signal transduction cascades and an understanding of these cascades is essential for cancer treatment. RECENT ADVANCES Redox signaling is a long overlooked form of signal transduction that proceeds through the reversible oxidation of cysteines in proteins and that uses hydrogen peroxide as a second messenger. CRITICAL ISSUES In this article, we provide examples that show that redox signaling is involved in the regulation of proteins and signaling cascades that play roles in every hallmark of cancer. FUTURE DIRECTIONS An understanding of how redox signaling and "classical" signal transduction are intertwined could hold promising strategies for cancer therapy in the future. Antioxid. Redox Signal. 25, 300-325.
Collapse
Affiliation(s)
- Marten Hornsveld
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Tobias B Dansen
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|
23
|
Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget 2016; 6:16848-65. [PMID: 26078352 PMCID: PMC4627278 DOI: 10.18632/oncotarget.4253] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10-15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display 'asbestos-like' pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Nuvoli
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Simona Catalani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Rossella Galati
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
24
|
Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci 2016; 148:183-93. [PMID: 26851532 DOI: 10.1016/j.lfs.2016.02.002] [Citation(s) in RCA: 699] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.
Collapse
Affiliation(s)
- Vibha Rani
- Department of Biotechnology, JayPee Institute of Information Technology, A-10, Sector-62, Noida 201 307, UP, India.
| | - Gagan Deep
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, 12850 E. Montview Blvd, Aurora, CO 80045, USA.
| | - Rakesh K Singh
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call St., Tallahassee, FL 32306-4300, USA.
| | - Komaraiah Palle
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Spring Hill Avenue, Mobile, AL 36604, USA.
| | - Umesh C S Yadav
- Metabolic Disorder & Inflammatory Pathologies Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
25
|
Rouaud F, Romero-Perez M, Wang H, Lobysheva I, Ramassamy B, Henry E, Tauc P, Giacchero D, Boucher JL, Deprez E, Rocchi S, Slama-Schwok A. Regulation of NADPH-dependent Nitric Oxide and reactive oxygen species signalling in endothelial and melanoma cells by a photoactive NADPH analogue. Oncotarget 2015; 5:10650-64. [PMID: 25296975 PMCID: PMC4279400 DOI: 10.18632/oncotarget.2525] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022] Open
Abstract
Nitric Oxide (NO) and Reactive oxygen species (ROS) are endogenous regulators of angiogenesis-related events as endothelial cell proliferation and survival, but NO/ROS defect or unbalance contribute to cancers. We recently designed a novel photoactive inhibitor of NO-Synthases (NOS) called NS1, which binds their NADPH site in vitro. Here, we show that NS1 inhibited NO formed in aortic rings. NS1-induced NO decrease led to an inhibition of angiogenesis in a model of VEGF-induced endothelial tubes formation. Beside this effect, NS1 reduced ROS levels in endothelial and melanoma A375 cells and in aorta. In metastatic melanoma cells, NS1 first induced a strong decrease of VEGF and blocked melanoma cell cycle at G2/M. NS1 decreased NOX4 and ROS levels that could lead to a specific proliferation arrest and cell death. In contrast, NS1 did not perturb melanocytes growth. Altogether, NS1 revealed a possible cross-talk between eNOS- and NOX4 –associated pathways in melanoma cells via VEGF, Erk and Akt modulation by NS1 that could be targeted to stop proliferation. NS1 thus constitutes a promising tool that modulates NO and redox stresses by targeting and directly inhibiting eNOS and, at least indirectly, NADPH oxidase(s), with great potential to control angiogenesis.
Collapse
Affiliation(s)
- Florian Rouaud
- INSERM U1065 team 1, Université de Nice Sophia Antipolis et Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Miguel Romero-Perez
- Pole of Pharmacology and Therapeutics, FATH5349, IREC, UCL Medical Sector, Brussels, Belgium
| | - Huan Wang
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), ENS-Cachan, CNRS UMR 8113, IDA FR3242, Cachan, France
| | - Irina Lobysheva
- Pole of Pharmacology and Therapeutics, FATH5349, IREC, UCL Medical Sector, Brussels, Belgium
| | - Booma Ramassamy
- CNRS UMR 8601, Université Paris Descartes, 45 rue des Saints Pères, Paris, France
| | - Etienne Henry
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), ENS-Cachan, CNRS UMR 8113, IDA FR3242, Cachan, France
| | - Patrick Tauc
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), ENS-Cachan, CNRS UMR 8113, IDA FR3242, Cachan, France
| | | | - Jean-Luc Boucher
- CNRS UMR 8601, Université Paris Descartes, 45 rue des Saints Pères, Paris, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), ENS-Cachan, CNRS UMR 8113, IDA FR3242, Cachan, France
| | - Stéphane Rocchi
- INSERM U1065 team 1, Université de Nice Sophia Antipolis et Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Anny Slama-Schwok
- Virologie et Immunologie Moléculaires, UR 892, INRA, Jouy en Josas, France
| |
Collapse
|
26
|
Chiu SC, Lin YJ, Huang SY, Lien CF, Chen SP, Pang CY, Lin JH, Yang KT. The Role of Intermittent Hypoxia on the Proliferative Inhibition of Rat Cerebellar Astrocytes. PLoS One 2015; 10:e0132263. [PMID: 26172116 PMCID: PMC4501806 DOI: 10.1371/journal.pone.0132263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
Sleep apnea syndrome, characterized by intermittent hypoxia (IH), is linked with increased oxidative stress. This study investigates the mechanisms underlying IH and the effects of IH-induced oxidative stress on cerebellar astrocytes. Rat primary cerebellar astrocytes were kept in an incubator with an oscillating O2 concentration between 20% and 5% every 30 min for 1–4 days. Although the cell loss increased with the duration, the IH incubation didn’t induce apoptosis or necrosis, but rather a G0/G1 cell cycle arrest of cerebellar astrocytes was noted. ROS accumulation was associated with cell loss during IH. PARP activation, resulting in p21 activation and cyclin D1 degradation was associated with cell cycle G0/G1 arrest of IH-treated cerebellar astrocytes. Our results suggest that IH induces cell loss by enhancing oxidative stress, PARP activation and cell cycle G0/G1 arrest in rat primary cerebellar astrocytes.
Collapse
Affiliation(s)
- Sheng-Chun Chiu
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Yu-Jou Lin
- Physiological and Anatomical Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sung-Ying Huang
- Department of Ophthalmology, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Chih-Feng Lien
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shee-Ping Chen
- Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jian-Hong Lin
- PhD program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Physiological and Anatomical Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta Neuropathol 2015; 129:511-25. [PMID: 25618528 PMCID: PMC4366542 DOI: 10.1007/s00401-015-1382-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder for which no effective treatment is available. Increased insight into the disease mechanism in early stages of pathology is required for the development of a successful therapy. Over the years, numerous studies have shown that cell cycle proteins are expressed in neurons of AD patients. Traditionally, neurons are considered to be post-mitotic, which means that they permanently retract from the cell cycle. The expression of cell cycle proteins in adult neurons of AD patients has therefore been suggested to promote or even instigate pathomechanisms underlying AD. Interestingly, expression of cell cycle proteins is detected in post-mitotic neurons of healthy controls as well, albeit to a lesser extent than in AD patients. This indicates that cell cycle proteins may serve important physiological functions in differentiated neurons. Here, we provide an overview of studies that support a role of cell cycle proteins in DNA repair and neuroplasticity in post-mitotic neurons. Aberrant control of these processes could, in turn, contribute to cell cycle-mediated neurodegeneration. The balance between regenerative and degenerative effects of cell cycle proteins in post-mitotic neurons might change throughout the different stages of AD. In the early stages of AD pathology, cell cycle protein expression may primarily occur to aid in the repair of sublethal double-strand breaks in DNA. With the accumulation of pathology, cell cycle-mediated neuroplasticity and neurodegeneration may become more predominant. Understanding the physiological and pathophysiological role of cell cycle proteins in AD could give us more insight into the neurodegenerative process in AD.
Collapse
|
28
|
Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Free Radic Biol Med 2015; 79:300-23. [PMID: 25481740 PMCID: PMC10173888 DOI: 10.1016/j.freeradbiomed.2014.10.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Zaibo Li
- Department of Pathology, Ohio State University Wexner Medical Center, 410W 10th Avenue, E403 Doan Hall, Columbus, OH 43210-1240, USA.
| | - Tiefei Dong
- University of Michigan Tech Transfer, 1600 Huron Pkwy, 2nd Floor, Building 520, Ann Arbor, MI 48109-2590, USA.
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine,10 South Pine Street, MSTF Room 600, Baltimore, MD 21201, USA.
| | - Christoph Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Ibro Ambeskovic
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Joerg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 9E, Boston, MA 02114, USA.
| | - Ruolan Han
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yin Miranda Yang
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Christopher Folts
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jennifer Stripay
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Hsing-Yu Chen
- Harvard Medical School, Department of Cell Biology 240 Longwood Avenue Building C1, Room 513B Boston, MA 02115, USA.
| | - Brett M Stevens
- University of Colorado School of Medicine, Division of Hematology, 12700 E. 19th Avenue, Campus Box F754-AMCA, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Tiew TWY, Sheahan MB, Rose RJ. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts. FRONTIERS IN PLANT SCIENCE 2015; 6:658. [PMID: 26379686 PMCID: PMC4549554 DOI: 10.3389/fpls.2015.00658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 05/18/2023]
Abstract
The ability to induce Arabidopsis protoplasts to dedifferentiate and divide provides a convenient system to analyze organelle dynamics in plant cells acquiring totipotency. Using peroxisome-targeted fluorescent proteins, we show that during protoplast culture, peroxisomes undergo massive proliferation and disperse uniformly around the cell before cell division. Peroxisome dispersion is influenced by the cytoskeleton, ensuring unbiased segregation during cell division. Considering their role in oxidative metabolism, we also investigated how peroxisomes influence homeostasis of reactive oxygen species (ROS). Protoplast isolation induces an oxidative burst, with mitochondria the likely major ROS producers. Subsequently ROS levels in protoplast cultures decline, correlating with the increase in peroxisomes, suggesting that peroxisome proliferation may also aid restoration of ROS homeostasis. Transcriptional profiling showed up-regulation of several peroxisome-localized antioxidant enzymes, most notably catalase (CAT). Analysis of antioxidant levels, CAT activity and CAT isoform 3 mutants (cat3) indicate that peroxisome-localized CAT plays a major role in restoring ROS homeostasis. Furthermore, protoplast cultures of pex11a, a peroxisome division mutant, and cat3 mutants show reduced induction of cell division. Taken together, the data indicate that peroxisome proliferation and CAT contribute to ROS homeostasis and subsequent protoplast division induction.
Collapse
Affiliation(s)
| | | | - Ray J. Rose
- *Correspondence: Ray J. Rose, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australi,
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE In this review, the dual nature of both iron and reactive oxygen species (ROS) will be explored in normal and cancer cell metabolism. Although iron and ROS play important roles in cellular homeostasis, they may also contribute to carcinogenesis. On the other hand, many studies have indicated that abrogation of iron metabolism, elevation of ROS, or modification of redox regulatory mechanisms in cancer cells, should be considered as therapeutic approaches for cancer. RECENT ADVANCES Drugs that target different aspects of iron metabolism may be promising therapeutics for cancer. The ability of iron chelators to cause iron depletion and/or elevate ROS levels indicates that these types of compounds have more potential as antitumor medicines than originally expected. Other natural and synthetic compounds that target pathways involved in ROS homeostasis also have potential value alone or in combination with current chemotherapeutics. CRITICAL ISSUES Although ROS induction and iron depletion may be targets for cancer therapies, the optimal therapeutic strategies have yet to be identified. This review highlights some of the research that strives to identify such therapeutics. FUTURE DIRECTIONS More studies are needed to better understand the role of iron and ROS in carcinogenesis not only as cancer promoters, but also as cytotoxic agents to cancer cells and cancer stem cells (CSCs). Moreover, the structure-activity effects of iron chelators and other compounds that increase ROS and/or disrupt iron metabolism need to be further evaluated to assess the effectiveness and selectivity of these compounds against both cancer and CSCs.
Collapse
Affiliation(s)
- Laura M Bystrom
- 1 Department of Pediatrics-Hematology/Oncology, Weill Cornell Medical College , New York, New York
| | | | | |
Collapse
|
31
|
Fan LM, Li JM. Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies. J Pharmacol Toxicol Methods 2014; 70:40-7. [PMID: 24721421 DOI: 10.1016/j.vascn.2014.03.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/22/2023]
Abstract
Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs.
Collapse
Affiliation(s)
- Lampson M Fan
- John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jian-Mei Li
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
32
|
Crosas-Molist E, Bertran E, Sancho P, López-Luque J, Fernando J, Sánchez A, Fernández M, Navarro E, Fabregat I. The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radic Biol Med 2014; 69:338-47. [PMID: 24509161 DOI: 10.1016/j.freeradbiomed.2014.01.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
The NADPH oxidase NOX4 has emerged as an important source of reactive oxygen species in signal transduction, playing roles in physiological and pathological processes. NOX4 mediates transforming growth factor-β-induced intracellular signals that provoke liver fibrosis, and preclinical assays have suggested NOX4 inhibitors as useful tools to ameliorate this process. However, the potential consequences of sustained treatment of liver cells with NOX4 inhibitors are yet unknown. The aim of this work was to analyze whether NOX4 plays a role in regulating liver cell growth either under physiological conditions or during tumorigenesis. In vitro assays proved that stable knockdown of NOX4 expression in human liver tumor cells increased cell proliferation, which correlated with a higher percentage of cells in S/G2/M phases of the cell cycle, downregulation of p21(CIP1/WAF1), increase in cyclin D1 protein levels, and nuclear localization of β-catenin. Silencing of NOX4 in untransformed human and mouse hepatocytes also increased their in vitro proliferative capacity. In vivo analysis in mice revealed that NOX4 expression was downregulated under physiological proliferative situations of the liver, such as regeneration after partial hepatectomy, as well as during pathological proliferative conditions, such as diethylnitrosamine-induced hepatocarcinogenesis. Xenograft experiments in athymic mice indicated that NOX4 silencing conferred an advantage to human hepatocarcinoma cells, resulting in earlier onset of tumor formation and increase in tumor size. Interestingly, immunochemical analyses of NOX4 expression in human liver tumor cell lines and tissues revealed decreased NOX4 protein levels in liver tumorigenesis. Overall, results described here strongly suggest that NOX4 would play a growth-inhibitory role in liver cells.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Esther Bertran
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Patricia Sancho
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Judit López-Luque
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Joan Fernando
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28080 Madrid, Spain
| | - Margarita Fernández
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28080 Madrid, Spain
| | - Estanis Navarro
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Departament de Ciències Fisiològiques II, Universitat de Barcelona, Campus de Bellvitge, Barcelona, Spain.
| |
Collapse
|
33
|
Kwon B, Kumar P, Lee HK, Zeng L, Walsh K, Fu Q, Barakat A, Querfurth HW. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Hum Mol Genet 2014; 23:3681-94. [PMID: 24556217 DOI: 10.1093/hmg/ddu077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express β-amyloid (Aβ42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aβ-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aβ-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Han-Kyu Lee
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ling Zeng
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Kenneth Walsh
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Qinghao Fu
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Amey Barakat
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Henry W Querfurth
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| |
Collapse
|
34
|
Cunniff B, Snider GW, Fredette N, Stumpff J, Hondal RJ, Heintz NH. Resolution of oxidative stress by thioredoxin reductase: Cysteine versus selenocysteine. Redox Biol 2014; 2:475-84. [PMID: 24624337 PMCID: PMC3949094 DOI: 10.1016/j.redox.2014.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 01/01/2023] Open
Abstract
Thioredoxin reductase (TR) catalyzes the reduction of thioredoxin (TRX), which in turn reduces mammalian typical 2-Cys peroxiredoxins (PRXs 1-4), thiol peroxidases implicated in redox homeostasis and cell signaling. Typical 2-Cys PRXs are inactivated by hyperoxidation of the peroxidatic cysteine to cysteine-sulfinic acid, and regenerated in a two-step process involving retro-reduction by sulfiredoxin (SRX) and reduction by TRX. Here transient exposure to menadione and glucose oxidase was used to examine the dynamics of oxidative inactivation and reactivation of PRXs in mouse C10 cells expressing various isoforms of TR, including wild type cytoplasmic TR1 (Sec-TR1) and mitochondrial TR2 (Sec-TR2) that encode selenocysteine, as well as mutants of TR1 and TR2 in which the selenocysteine codon was changed to encode cysteine (Cys-TR1 or Cys-TR2). In C10 cells endogenous TR activity was insensitive to levels of hydrogen peroxide that hyperoxidize PRXs. Expression of Sec-TR1 increased TR activity, reduced the basal cytoplasmic redox state, and increased the rate of reduction of a redox-responsive cytoplasmic GFP probe (roGFP), but did not influence either the rate of inactivation or the rate of retro-reduction of PRXs. In comparison to roGFP, which was reduced within minutes once oxidants were removed reduction of 2-Cys PRXs occurred over many hours. Expression of wild type Sec-TR1 or Sec-TR2, but not Cys-TR1 or TR2, increased the rate of reduction of PRXs and improved cell survival after menadione exposure. These results indicate that expression levels of TR do not reduce the severity of initial oxidative insults, but rather govern the rate of reduction of cellular factors required for cell viability. Because Sec-TR is completely insensitive to cytotoxic levels of hydrogen peroxide, we suggest TR functions at the top of a redox pyramid that governs the oxidation state of peroxiredoxins and other protein factors, thereby dictating a hierarchy of phenotypic responses to oxidative insults.
Collapse
Affiliation(s)
- Brian Cunniff
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Gregg W. Snider
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Nicholas Fredette
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, VT 05405, USA
- Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Robert J. Hondal
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Nicholas H. Heintz
- Department of Pathology, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, USA
- Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
35
|
Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:132. [PMID: 24765099 PMCID: PMC3982065 DOI: 10.3389/fpls.2014.00132] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.
Collapse
Affiliation(s)
- Efthimios A. Andronis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Panagiotis N. Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala, Sweden
| | - Imene Toumi
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Kalliopi A. Roubelakis-Angelakis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
- *Correspondence: Kalliopi A. Roubelakis-Angelakis, Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete 70013, Greece e-mail:
| |
Collapse
|
36
|
Municoy S, Ibañez IL, Durán H, Bellino MG. A catalase-magnetic switch for cell proliferation. RSC Adv 2014. [DOI: 10.1039/c4ra01257g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The combination of enzymes to tackle cell messengers with magnetite nanoparticles was exploited to control cell behavior by means of magnetic fields.
Collapse
Affiliation(s)
- Sofia Municoy
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| | - Irene L. Ibañez
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| | - Martín G. Bellino
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| |
Collapse
|
37
|
Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N. Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 2013; 19:2213-31. [PMID: 23706097 DOI: 10.1089/ars.2012.4904] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Chronic hypoxia induces pulmonary hypertension (PH) that is concomitant with pulmonary vascular remodeling. Reactive oxygen species (ROS) are thought to play a major role in this. Recent findings suggest that ROS production by NADPH oxidase 4 (Nox4) is important in this remodeling. We investigated whether ROS production by Nox is also important in an inflammatory model of monocrotaline (MCT)-induced PH. We examined ROS production, their possible sources, and their impact on the function of pulmonary arterial smooth muscle cells (PASMC) isolated from MCT-treated and healthy rats. RESULTS MCT-PASMC showed increased intracellular superoxide production, migration, and proliferation compared with healthy controls due to increased Nox1 expression. A comparison of PASMC from MCT- and nontreated rats revealed an up-regulation of Sod2, Nrf2, cyclin D1, and matrix metalloproteinase-9 (MMP-9) as well as an increased phosphorylation of cofilin and extracellular signal-regulated kinases (Erk). Expression of Sod2, Nrf2, and cyclin D1 and phosphorylation of cofilin and Erk were Nox1 dependent. INNOVATION The role of ROS in PH is not fully understood. Mitochondria and Nox have been suggested as sources of altered ROS generation in PH, yet it remains unclear whether increased or decreased ROS contributes to the development of PH. Our studies provide evidence that for different triggers of PH, different Nox isoforms regulate proliferation and migration of PASMC. CONCLUSION In contrast to hypoxia-induced PH, Nox1 but not Nox4 is responsible for pathophysiological proliferation and migration of PASMC in an inflammatory model of MCT-induced PH via increased superoxide production. Thus, different Nox isoforms may be targeted in different forms of PH.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellencecluster Cardio-Pulmonary System (ECCPS), German Lung Center (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen , Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pyo CW, Choi JH, Oh SM, Choi SY. Oxidative stress-induced cyclin D1 depletion and its role in cell cycle processing. Biochim Biophys Acta Gen Subj 2013; 1830:5316-25. [PMID: 23920145 DOI: 10.1016/j.bbagen.2013.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/01/2013] [Accepted: 07/27/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cyclin D1 is immediately down-regulated in response to reactive oxygen species (ROS) and implicated in the induction of cell cycle arrest in G2 phase by an unknown mechanism. Either treatment with a protease inhibitor alone or expression of protease-resistant cyclin D1 T286A resulted in only a partial relief from the ROS-induced cell cycle arrest, indicating the presence of an additional control mechanism. METHODS Cells were exposed to hydrogen peroxide (H2O2), and analyzed to assess the changes in cyclin D1 level and its effects on cell cycle processing by kinase assay, de novo synthesis, gene silencing, and polysomal analysis, etc. RESULTS Exposure of cells to excessive H2O2 induced ubiquitin-dependent proteasomal degradation of cyclin D1, which was subsequently followed by translational repression. This dual control mechanism was found to contribute to the induction of cell cycle arrest in G2 phase under oxidative stress. Silencing of an eIF2α kinase PERK significantly retarded cyclin D1 depletion, and contributed largely to rescuing cells from G2 arrest. Also the cyclin D1 level was found to be correlated with Chk1 activity. CONCLUSIONS In addition to an immediate removal of the pre-existing cyclin D1 under oxidative stress, the following translational repression appear to be required for ensuring full depletion of cyclin D1 and cell cycle arrest. Oxidative stress-induced cyclin D1 depletion is linked to the regulation of G2/M transit via the Chk1-Cdc2 DNA damage checkpoint pathway. GENERAL SIGNIFICANCE The control of cyclin D1 is a gate keeping program to protect cells from severe oxidative damages.
Collapse
Affiliation(s)
- Chul-Woong Pyo
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
39
|
Wang YT, Tzeng DW, Wang CY, Hong JY, Yang JL. APE1/Ref-1 prevents oxidative inactivation of ERK for G1-to-S progression following lead acetate exposure. Toxicology 2013; 305:120-9. [PMID: 23370007 DOI: 10.1016/j.tox.2013.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1)/redox effector factor-1 is a multifunctional enzyme involved in DNA base excision repair and protein redox regulation. Previously, we have showed that lead acetate (Pb) elicits EGFR activation to initiate the SFK/PKCα/Ras/Raf-1/MKK1/2/ERK signaling cascade functioning against genotoxicity. Here, we explore whether APE1 and reactive oxygen species (ROS) affect ERK signaling and cell cycle progression following Pb exposure. We found that Pb induced APE1 expression and ROS generation in CL3 human lung cancer cells. The Pb-elicited ROS levels and cytotoxicity were further enhanced by introducing small interfering RNA specific for APE1 (siAPE1). E3330, an inhibitor of APE1 redox activity, also augmented the ROS levels and cytotoxicity in Pb-treated cells. Intriguingly, the capability of Pb to activate ERK was abolished under siAPE1 or E3330 co-treatments; conversely, forced expression of APE1 up-regulated the ERK activation by Pb or serum in both Cys65-redox activity dependent and independent manners. Moreover, APE1 formed complex with ERK2, and its redox activity could rescue ERK oxidative inactivation. APE1 redox activity also facilitated the Cyclin D1 expression and G1-to-S progression following Pb exposure. In summary, the results indicate that APE1 is a direct redox regulator of ERK for maintaining the kinase activity to promote cell proliferation.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Molecular Carcinogenesis Laboratory, Institute of Biotechnology & Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 2013; 138:255-71. [PMID: 23356980 DOI: 10.1016/j.pharmthera.2013.01.011] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023]
Abstract
Cell proliferation is an essential mechanism for growth, development and regeneration of eukaryotic organisms; however, it is also the cause of one of the most devastating diseases of our era: cancer. Given the relevance of the processes in which cell proliferation is involved, its regulation is of paramount importance for multicellular organisms. Cell division is orchestrated by a complex network of interactions between proteins, metabolism and microenvironment including several signaling pathways and mechanisms of control aiming to enable cell proliferation only in response to specific stimuli and under adequate conditions. Three main players have been identified in the coordinated variation of the many molecules that play a role in cell cycle: i) The cell cycle protein machinery including cyclin-dependent kinases (CDK)-cyclin complexes and related kinases, ii) The metabolic enzymes and related metabolites and iii) The reactive-oxygen species (ROS) and cellular redox status. The role of these key players and the interaction between oscillatory and non-oscillatory species have proved essential for driving the cell cycle. Moreover, cancer development has been associated to defects in all of them. Here, we provide an overview on the role of CDK-cyclin complexes, metabolic adaptations and oxidative stress in regulating progression through each cell cycle phase and transitions between them. Thus, new approaches for the design of innovative cancer therapies targeting crosstalk between cell cycle simultaneous events are proposed.
Collapse
Affiliation(s)
- Santiago Diaz-Moralli
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Chunyan W, Valiyaveettil S. Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. RSC Adv 2013. [DOI: 10.1039/c3ra41346b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
42
|
Kim BH, Kim SY, Nam KH. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells 2012; 34:539-48. [PMID: 23180292 PMCID: PMC3887832 DOI: 10.1007/s10059-012-0230-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/17/2012] [Accepted: 10/26/2012] [Indexed: 11/26/2022] Open
Abstract
We previously reported that one of the brassinosteroidinsensitive mutants, bri1-9, showed increased cold tolerance compared with both wild type and BRI1-overexpressing transgenic plants, despite its severe growth retardation. This increased tolerance in bri1-9 resulted from the constitutively high expression of stress-inducible genes under normal conditions. In this report, we focused on the genes encoding class III plant peroxidases (AtPrxs) because we found that, compared with wild type, bri1-9 plants contain higher levels of reactive oxygen species (ROS) that are not involved with the activation of NADPH oxidase and show an increased level of expression of a subset of genes encoding class III plant peroxidases. Treatment with a peroxidase inhibitor, salicylhydroxamic acid (SHAM), led to the reduction of cold resistance in bri1-9. Among 73 genes that encode AtPrxs in Arabidopsis, we selected four (AtPrx1, AtPrx22, AtPrx39, and AtPrx69) for further functional analyses in response to cold temperatures. T-DNA insertional knockout mutants showed increased sensitivity to cold stress as measured by leaf damage and ion leakage. In contrast, the overexpression of AtPrx22, AtPrx39, and AtPrx69 increased cold tolerance in the BRI1-GFP plants. Taken together, these results indicate that the appropriate expression of a particular subset of AtPrx genes and the resulting higher levels of ROS production are required for the cold tolerance.
Collapse
Affiliation(s)
- Beg Hab Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Sun Young Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Kyoung Hee Nam
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
43
|
Park JI, Jeon HJ, Jung NK, Jang YJ, Kim JS, Seo YW, Jeong M, Chae HZ, Chun SY. Periovulatory expression of hydrogen peroxide-induced sulfiredoxin and peroxiredoxin 2 in the rat ovary: gonadotropin regulation and potential modification. Endocrinology 2012; 153:5512-21. [PMID: 22989627 DOI: 10.1210/en.2012-1414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species are involved in ovulation. The aim of this study was to examine gonadotropin regulation of antioxidant enzyme sulfiredoxin (Srx) and peroxiredoxin 2 (PRDX2) expressions and modification during the ovulatory process in rats. Administration of antioxidants in vivo reduced ovulation rate and cumulus expansion. LH treatment increased H(2)O(2) levels within 15 min, which, in turn, induced Srx gene expression in cultured preovulatory follicles. Treatment of preovulatory follicles with catalase suppressed the stimulatory effect of LH on Akt phosphorylation. LH- or H(2)O(2)-stimulated Srx mRNA levels were suppressed by inhibitors of antioxidant agents and MAPK kinase. An in vivo injection of equine chorionic gonadotropin-human chorionic gonadotropin (hCG) stimulated Srx mRNA within 1 h in granulosa but not thecal cells of preovulatory follicles. Srx protein levels were stimulated from 3 h post-hCG injection. Immunofluorescence analysis revealed that oocytes expressed the Srx protein. Furthermore, hCG treatment increased Srx expression in mural granulosa, theca and cumulus cells, but the Srx protein was not detected in corpora lutea. Gene expression of PRDX2, identified as an Srx-dependent modified enzyme, was stimulated by gonadotropins. In situ hybridization analysis demonstrated that PRDX2 mRNA was detected in oocytes and theca cells as well as granulosa cells of some antral and preovulatory follicles. High levels of PRDX2 mRNA were detected in corpora lutea. Total levels of PRDX2 protein were not changed by gonadotropins. However, levels of hyperoxidized PRDX2 increased within 2-3 h after the hCG injection. Taken together, gonadotropin stimulation of Srx expression and PRDX2 modification in the ovary suggest the existence of an antioxidant system to maintain H(2)O(2) production and elimination during the periovulatory period.
Collapse
Affiliation(s)
- Jae-Il Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schippers JHM, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. ROS homeostasis during development: an evolutionary conserved strategy. Cell Mol Life Sci 2012; 69:3245-57. [PMID: 22842779 PMCID: PMC11114851 DOI: 10.1007/s00018-012-1092-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.
Collapse
Affiliation(s)
- Jos H. M. Schippers
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hung M. Nguyen
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dandan Lu
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Romy Schmidt
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells. PLoS One 2012; 7:e44502. [PMID: 22970236 PMCID: PMC3435274 DOI: 10.1371/journal.pone.0044502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/08/2012] [Indexed: 01/18/2023] Open
Abstract
The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2)O(2)) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2)O(2) removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2)O(2) (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2)O(2) scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27Kip1.
Collapse
|
46
|
Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis. Int J Cell Biol 2012; 2012:434971. [PMID: 22745639 PMCID: PMC3382959 DOI: 10.1155/2012/434971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 02/07/2023] Open
Abstract
The integrity of the vascular endothelium of the blood-brain barrier (BBB) is central to cerebrovascular homeostasis. Given the function of the BBB as a physical and metabolic barrier that buffers the systemic environment, oxidative damage to the endothelial monolayer will have significant deleterious impact on the metabolic, immunological, and neurological functions of the brain. Glutathione (GSH) is a ubiquitous major thiol within mammalian cells that plays important roles in antioxidant defense, oxidation-reduction reactions in metabolic pathways, and redox signaling. The existence of distinct GSH pools within the subcellular organelles supports an elegant mode for independent redox regulation of metabolic processes, including those that control cell fate. GSH-dependent homeostatic control of neurovascular function is relatively unexplored. Significantly, GSH regulation of two aspects of endothelial function is paramount to barrier preservation, namely, GSH protection against oxidative endothelial cell injury and GSH control of postdamage cell proliferation in endothelial repair and/or wound healing. This paper highlights our current insights and hypotheses into the role of GSH in cerebral microvascular biology and pathobiology with special focus on endothelial GSH and vascular integrity, oxidative disruption of endothelial barrier function, GSH regulation of endothelial cell proliferation, and the pathological implications of GSH disruption in oxidative stress-associated neurovascular disorders, such as diabetes and stroke.
Collapse
|
47
|
Meller CL, Meller R, Simon RP, Culpepper KM, Podrabsky JE. Cell cycle arrest associated with anoxia-induced quiescence, anoxic preconditioning, and embryonic diapause in embryos of the annual killifish Austrofundulus limnaeus. J Comp Physiol B 2012; 182:909-20. [PMID: 22570106 DOI: 10.1007/s00360-012-0672-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/19/2023]
Abstract
Embryos of the annual killifish Austrofundulus limnaeus can enter into dormancy associated with diapause and anoxia-induced quiescence. Dormant embryos are composed primarily of cells arrested in the G(1)/G(0) phase of the cell cycle based on flow cytometry analysis of DNA content. In fact, most cells in developing embryos contain only a diploid complement of DNA, with very few cells found in the S, G(2), or M phases of the cell cycle. Diapause II embryos appear to be in a G(0)-like state with low levels of cyclin D1 and p53. However, the active form of pAKT is high during diapause II. Exposure to anoxia causes an increase in cyclin D1 and p53 expression in diapause II embryos, suggesting a possible re-entry into the cell cycle. Post-diapause II embryos exposed to anoxia or anoxic preconditioning have stable levels of cyclin D1 and stable or reduced levels of p53. The amount of pAKT is severely reduced in 12 dpd embryos exposed to anoxia or anoxic preconditioning. This study is the first to evaluate cell cycle control in embryos of A. limnaeus during embryonic diapause and in response to anoxia and builds a foundation for future research on the role of cell cycle arrest in supporting vertebrate dormancy.
Collapse
Affiliation(s)
- Camie L Meller
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA
| | | | | | | | | |
Collapse
|
48
|
Radical decisions in cancer: redox control of cell growth and death. Cancers (Basel) 2012; 4:442-74. [PMID: 24213319 PMCID: PMC3712695 DOI: 10.3390/cancers4020442] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 12/21/2022] Open
Abstract
Free radicals play a key role in many physiological decisions in cells. Since free radicals are toxic to cellular components, it is known that they cause DNA damage, contribute to DNA instability and mutation and thus favor carcinogenesis. However, nowadays it is assumed that free radicals play a further complex role in cancer. Low levels of free radicals and steady state levels of antioxidant enzymes are responsible for the fine tuning of redox status inside cells. A change in redox state is a way to modify the physiological status of the cell, in fact, a more reduced status is found in resting cells while a more oxidative status is associated with proliferative cells. The mechanisms by which redox status can change the proliferative activity of cancer cells are related to transcriptional and posttranscriptional modifications of proteins that play a critical role in cell cycle control. Since cancer cells show higher levels of free radicals compared with their normal counterparts, it is believed that the anti-oxidative stress mechanism is also increased in cancer cells. In fact, the levels of some of the most important antioxidant enzymes are elevated in advanced status of some types of tumors. Anti-cancer treatment is compromised by survival mechanisms in cancer cells and collateral damage in normal non-pathological tissues. Though some resistance mechanisms have been described, they do not yet explain why treatment of cancer fails in several tumors. Given that some antitumoral treatments are based on the generation of free radicals, we will discuss in this review the possible role of antioxidant enzymes in the survival mechanism in cancer cells and then, its participation in the failure of cancer treatments.
Collapse
|
49
|
Protoporphyrin IX-dependent photodynamic production of endogenous ROS stimulates cell proliferation. Eur J Cell Biol 2012; 91:216-23. [DOI: 10.1016/j.ejcb.2011.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/10/2011] [Accepted: 12/04/2011] [Indexed: 01/02/2023] Open
|
50
|
Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011; 8:59-71. [PMID: 21211782 DOI: 10.1016/j.stem.2010.11.028] [Citation(s) in RCA: 632] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 08/22/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
The majority of research on reactive oxygen species (ROS) has focused on their cellular toxicities. Stem cells generally have been thought to maintain low levels of ROS as a protection against these processes. However, recent studies suggest that ROS can also play roles as second messengers, activating normal cellular processes. Here, we investigated ROS function in primary brain-derived neural progenitors. Somewhat surprisingly, we found that proliferative, self-renewing multipotent neural progenitors with the phenotypic characteristics of neural stem cells (NSC) maintained a high ROS status and were highly responsive to ROS stimulation. ROS-mediated enhancements in self-renewal and neurogenesis were dependent on PI3K/Akt signaling. Pharmacological or genetic manipulations that diminished cellular ROS levels also interfered with normal NSC and/or multipotent progenitor function both in vitro and in vivo. This study has identified a redox-mediated regulatory mechanism of NSC function that may have significant implications for brain injury, disease, and repair.
Collapse
Affiliation(s)
- Janel E Le Belle
- NPI-Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|