1
|
Belinskaia DA, Voronina PA, Popova PI, Voitenko NG, Shmurak VI, Vovk MA, Baranova TI, Batalova AA, Korf EA, Avdonin PV, Jenkins RO, Goncharov NV. Albumin Is a Component of the Esterase Status of Human Blood Plasma. Int J Mol Sci 2023; 24:10383. [PMID: 37373530 PMCID: PMC10299176 DOI: 10.3390/ijms241210383] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The esterase status of blood plasma can claim to be one of the universal markers of various diseases; therefore, it deserves attention when searching for markers of the severity of COVID-19 and other infectious and non-infectious pathologies. When analyzing the esterase status of blood plasma, the esterase activity of serum albumin, which is the major protein in the blood of mammals, should not be ignored. The purpose of this study is to expand understanding of the esterase status of blood plasma and to evaluate the relationship of the esterase status, which includes information on the amount and enzymatic activity of human serum albumin (HSA), with other biochemical parameters of human blood, using the example of surviving and deceased patients with confirmed COVID-19. In experiments in vitro and in silico, the activity of human plasma and pure HSA towards various substrates was studied, and the effect of various inhibitors on this activity was tested. Then, a comparative analysis of the esterase status and a number of basic biochemical parameters of the blood plasma of healthy subjects and patients with confirmed COVID-19 was performed. Statistically significant differences have been found in esterase status and biochemical indices (including albumin levels) between healthy subjects and patients with COVID-19, as well as between surviving and deceased patients. Additional evidence has been obtained for the importance of albumin as a diagnostic marker. Of particular interest is a new index, [Urea] × [MDA] × 1000/(BChEb × [ALB]), which in the group of deceased patients was 10 times higher than in the group of survivors and 26 times higher than the value in the group of apparently healthy elderly subjects.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina I. Popova
- City Polyclinic No. 112, 25 Academician Baykov Str., 195427 St. Petersburg, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Vladimir I. Shmurak
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Mikhail A. Vovk
- Centre for Magnetic Resonance, St. Petersburg State University, Universitetskij pr., 26, Peterhof, 198504 St. Petersburg, Russia
| | - Tatiana I. Baranova
- Faculty of Biology, St. Petersburg State University, 7-9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Anastasia A. Batalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| |
Collapse
|
2
|
Coppo L, Scheggi S, DeMontis G, Priora R, Frosali S, Margaritis A, Summa D, Di Giuseppe D, Ulivelli M, Di Simplicio P. Does Risk of Hyperhomocysteinemia Depend on Thiol-Disulfide Exchange Reactions of Albumin and Homocysteine? Antioxid Redox Signal 2023; 38:920-958. [PMID: 36352822 DOI: 10.1089/ars.2021.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Significance: Increased plasma concentrations of total homocysteine (tHcy; mild-moderate hyperhomocysteinemia: 15-50 μM tHcy) are considered an independent risk factor for the onset/progression of various diseases, but it is not known about how the increase in tHcy causes pathological conditions. Recent Advances: Reduced homocysteine (HSH ∼1% of tHcy) is presumed to be toxic, unlike homocystine (∼9%) and mixed disulfide between homocysteine and albumin (HSS-ALB; homocysteine [Hcy]-albumin mixed disulfide, ∼90%). This and other notions make it difficult to explain the pathogenicity of Hcy because: (i) lowering tHcy does not improve pathological outcomes; (ii) damage due to HSH usually emerges at supraphysiological doses; and (iii) it is not known why tiny increments in plasma concentrations of HSH can be pathological. Critical Issues: Albumin may have a role in Hcy toxicity, because HSS-ALB could release toxic HSH via thiol-disulfide (SH/SS) exchange reactions in cells. Similarly, thiol-disulfide exchange processes of reduced albumin (albumin with free SH group of Cys34 [HS-ALB]) or N-homocysteinylated albumin are plausible alternatives for initiating Hcy pathological events. Adverse effects of albumin and other data reviewed here suggest the hypothesis of a role of albumin in Hcy toxicity. Future Directions: HSS-ALB might be involved in disruption of the antioxidant/oxidant balance in critical tissues (brain, liver, kidney). Since homocysteine-albumin mixed disulfide is a possible intermediate of thiol-disulfide exchange reactions, we suggest that homocysteinylated albumin could be a new pathological factor, and that studies on the redox role of albumin and mixed disulfide production via thiol-disulfide exchange reactions could offer new therapeutic insights for reducing Hcy toxicity.
Collapse
Affiliation(s)
- Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Simona Scheggi
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Graziella DeMontis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Raffaella Priora
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Simona Frosali
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Margaritis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Summa
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Danila Di Giuseppe
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Monica Ulivelli
- Department of Surgery, Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Paolo Di Simplicio
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Alharthi NS, Khan H, Siyal FJ, Shaikh ZA, Arain SP, Eltayeb LB, Mangi AA. Glutathione, Cysteine, and D-Penicillamine Role in Exchange of Silver Metal from the Albumin Metal Complex. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3619308. [PMID: 35978640 PMCID: PMC9377917 DOI: 10.1155/2022/3619308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The purpose of this study is to investigate the exchange reaction taking place among the bovine serum albumin (BSA), 5,5'-dithiobis-(2-nitrobenzoic acid (ESSE), reduced glutathione, N-acetylcysteine, D-penicillamine (thiolates), and silver metal (AgI). For this purpose, stock solutions of BSA and Ellman's reagent were prepared by dissolving 264 mg of BSA in 5 ml of reaction buffer (0.1 M KH2PO4 at pH 7.8) and 23.8 mg of ESSE in 1.0 ml of reaction buffer which were mixed together. Mixture of BSA-AgI was prepared in a separate procedure by dissolving 0.17 mg of silver nitrate in 1 ml of reaction buffer and then dissolving BSA (200 mg) in the same solution of silver nitrate. Blocking of Cys-34 of BSA with AgI was confirmed by treating different dilutions of BSA-AgI (500 μM) solutions with the solutions of ESSE (85 μM) and ES- (85 μM) and recording the spectra (300-450) with a UV-visible spectrophotometer. The chromatographed AgI-modified BSA ((BSA-S)AgI)) samples (typically 500 μM) were subsequently mixed with thiolates (reduced glutathione, N-acetylcysteine, and D-penicillamine). AgI and modified BSA (typically 500 μM each) were treated with these low molecular weight thiolates and allowed to react overnight followed by chromatographic separation (Sephadex G25). The redox reactions of AgI-modified BSA with various low molecular weight thiols revealed a mechanically important phenomenon. In the case of reduced glutathione and N-acetylcysteine, we observed the rapid release of a commensurate amount of Ellman's anion, indicating that an exchange has taken place and low molecular weight thiols (RSH) substituted AgI species at the Cys-34 of BSA eventually forming disulfide (BSA-SSR) at Cys-34. It can be anticipated from the phase of study involving bovine serum albumin that low molecular weight thiolates (reduced glutathione and N-acetylcysteine) take off AgI which are attached to proteins elsewhere in the physiological system, making these toxic metals free for toxic action.
Collapse
Affiliation(s)
- Nahed S. Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Haroon Khan
- Gomal Centre of Pharmaceutical Sciences Faculty of Pharmacy Gomal University D.I. Khan, 29111, Pakistan
| | - Fahad Jibran Siyal
- Department of Pharmacology, Chandka Medical College, SMBB Medical University Larkana, 77150, Pakistan
| | - Zahid Ali Shaikh
- Department of Medicine, Chandka Medical College, SMBB Medical University Larkana, 77150, Pakistan
| | | | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Altaf Ali Mangi
- Gomal Centre of Pharmaceutical Sciences Faculty of Pharmacy Gomal University D.I. Khan, 29111, Pakistan
| |
Collapse
|
4
|
Carroll L, Jiang S, Irnstorfer J, Beneyto S, Ignasiak MT, Rasmussen LM, Rogowska-Wrzesinska A, Davies MJ. Oxidant-induced glutathionylation at protein disulfide bonds. Free Radic Biol Med 2020; 160:513-525. [PMID: 32877736 DOI: 10.1016/j.freeradbiomed.2020.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/13/2023]
Abstract
Disulfide bonds are a key determinant of protein structure and function, and highly conserved across proteomes. They are particularly abundant in extracellular proteins, including those with critical structural, ligand binding or receptor function. We demonstrate that oxidation of protein disulfides induces polymerization, and results in oxygen incorporation into the former disulfide via thiosulfinate generation. These intermediates, which have half-lives of several hours in vitro, undergo secondary reactions that cleave the disulfide bond, by irreversible hydrolysis to sulfinic and sulfonic acids, or reaction with thiols in a process that yields thiolated proteins (e.g. glutathionylated species in the case of reaction with glutathione). The adducts have been characterized by mass spectrometry (as ions corresponding to the addition of 306 and 712 Da for addition of one and two glutathione molecules, respectively) and immunoblotting. These modifications can be induced by multiple biologically-important oxidants, including HOCl, ONOOH, and H2O2, and on multiple proteins, demonstrating that this is a common disulfide modification pathway. Addition of glutathione to give glutathionylated proteins, can be reversed by reducing systems (e.g. tris(2-carboxyethyl)phosphine), but this does not repair the original disulfide bond. Exposure of human plasma to these modifying agents increases protein glutathionylation, demonstrating potential in vivo relevance. Overall these data provide evidence for a novel and facile route to glutathionylated proteins involving initial oxidation of a disulfide to a thiosulfinate followed by rapid reaction with GSH ('oxidant-mediated thiol-disulfide exchange'). These data elucidate a novel pathway for protein glutathionylation that may have significant implications for redox biology and cell signaling.
Collapse
Affiliation(s)
- Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Johanna Irnstorfer
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sergi Beneyto
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marta T Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Chemistry, Adam Mickiewicz University, and Wielkopolska Center for Advanced Technologies, Poznan, Poland
| | - Lars M Rasmussen
- Center for Individualized Medicine in Arterial Diseases (CIMA), Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Bocedi A, Cattani G, Stella L, Massoud R, Ricci G. Thiol disulfide exchange reactions in human serum albumin: the apparent paradox of the redox transitions of Cys34. FEBS J 2018; 285:3225-3237. [DOI: 10.1111/febs.14609] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Alessio Bocedi
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Italy
| | - Giada Cattani
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Italy
| | - Renato Massoud
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Italy
| |
Collapse
|
6
|
Unmasking efavirenz neurotoxicity: Time matters to the underlying mechanisms. Eur J Pharm Sci 2017; 105:47-54. [PMID: 28487145 DOI: 10.1016/j.ejps.2017.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Efavirenz is an anti-HIV drug that presents relevant short- and long-term central nervous system adverse reactions. Its main metabolite (8-hydroxy-efavirenz) was demonstrated to be a more potent neurotoxin than efavirenz itself. This work was aimed to understand how efavirenz biotransformation to 8-hydroxy-efavirenz is related to its short- and long-term neuro-adverse reactions. To access those mechanisms, the expression and activity of Cyp2b enzymes as well as the thiolomic signature (low molecular weight thiols plus S-thiolated proteins) were longitudinally evaluated in the hepatic and brain tissues of rats exposed to efavirenz during 10 and 36days. Efavirenz and 8-hydroxy-efavirenz plasma concentrations were monitored at the same time points. Cyp2b induction had a delayed onset in liver (p<0.001), translating into increases in Cyp2b activity in liver and 8-hydroxy-efavirenz plasma concentration (p<0.001). Moreover, an increase in S-cysteinyl-glycinylated proteins (p<0.001) and in free low molecular weight thiols was also observed in liver. A distinct scenario was observed in hippocampus, which showed an underexpression of Cyp2b as well as a decrease in S-cysteinylated and S-glutathionylated proteins. Additionally, the observed changes in tissues were associated with a marked increase of S-glutathionylation in plasma. Our data suggest that the time course of efavirenz biotransformation results from different mechanisms for its short- and long-term neurotoxicity. The difference in the redox profile between liver and hippocampus might explain why, despite being mostly metabolized by the liver, this drug is neurotoxic. If translated to clinical practice, this evidence will have important implications in efavirenz short- and long-term neurotoxicity prevention and management.
Collapse
|
7
|
The Early Effect of Carotid Artery Stenting on Antioxidant Capacity and Oxidative Stress in Patients with Carotid Artery Stenosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1789596. [PMID: 28058087 PMCID: PMC5187477 DOI: 10.1155/2016/1789596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
Abstract
The treatment of carotid artery stenosis is associated with the risk of complications, which may include stroke after carotid artery stenting (CAS) and myocardial infarction after carotid endarterectomy (CEA). The imbalance between prooxidative mechanisms and antioxidant capacity creates a milieu of factors, which may increase the risk of complications after endovascular procedures. We have examined 43 consecutive patients with carotid artery stenosis. Sera were analyzed for the activity of paraoxonase (PON) and arylesterase (ARE), sulfhydryl groups (SG), malondialdehyde (MDA), and conjugated dienes (CD) concentrations by means of spectrophotometric methods before and next day after CAS. We have found lowered PON (P = 0.0032), increase in ARE activity (P = 0.0058), and decrease in sulfhydryl groups concentration (P = 0.0267). No effect on absolute MDA and CD concentrations was observed. The degree of carotid artery stenosis correlated negatively with PON/ARE ratio after CAS (rS = -0.507, P = 0.0268). To conclude, CAS influences both enzymatic (differently, PON and ARE activity) and nonenzymatic antioxidant defense. Females are more susceptible to lipid peroxidation after CAS. PON/ARE ratio after CAS correlated with the degree of carotid artery stenosis. The changes (deltas) in ARE activity, SG, and MDA concentrations correlated with the severity of neurological deficit and disability.
Collapse
|
8
|
Magné J, Huneau JF, Borderie D, Mathé V, Bos C, Mariotti F. Plasma asymmetric and symmetric dimethylarginine in a rat model of endothelial dysfunction induced by acute hyperhomocysteinemia. Amino Acids 2015; 47:1975-82. [PMID: 25792109 DOI: 10.1007/s00726-015-1959-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/25/2022]
Abstract
Hyperhomocysteinemia induces vascular endothelial dysfunction, an early hallmark of atherogenesis. While higher levels of circulating asymmetric dimethylarginine (ADMA) and symmetric dimethyl arginine (SDMA), endogenous inhibitors of nitric oxide synthesis, have been associated with increased cardiovascular risk, the role that ADMA and SDMA play in the initiation of hyperhomocysteinemia-induced endothelial dysfunction remains still controversial. In the present study, we studied the changes of circulating ADMA and SDMA in a rat model of acutely hyperhomocysteinemia-induced endothelial dysfunction. In healthy rats, endothelium-related vascular reactivity (measured as acetylcholine-induced transient decrease in mean arterial blood pressure), plasma ADMA and SDMA, total plasma homocysteine (tHcy), cysteine and glutathione were measured before and 2, 4 and 6 h after methionine loading or vehicle. mRNA expression of hepatic dimethylarginine dimethylaminohydrolase-1 (DDAH1), a key protein responsible for ADMA metabolism, was measured 6 h after the methionine loading or the vehicle. Expectedly, methionine load induced a sustained increase in tHcy (up to 54.9 ± 1.9 µM) and a 30 % decrease in vascular reactivity compared to the baseline values. Plasma ADMA and SDMA decreased transiently after the methionine load. Hepatic mRNA expression of DDAH1, cathepsin D, and ubiquitin were significantly lower 6 h after the methionine load than after the vehicle. The absence of an elevation of circulating ADMA and SDMA in this model suggests that endothelial dysfunction induced by acute hyperhomocysteinemia cannot be explained by an up-regulation of protein arginine methyltransferases or a down-regulation of DDAH1. In experimental endothelial dysfunction induced by acute hyperhomocysteinemia, down-regulation of the proteasome is likely to dampen the release of ADMA and SDMA in the circulation.
Collapse
Affiliation(s)
- Joëlle Magné
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, 171 76, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Role of SH levels and markers of immune response in the stroke. DISEASE MARKERS 2013; 35:141-7. [PMID: 24167359 PMCID: PMC3774977 DOI: 10.1155/2013/246205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/27/2013] [Accepted: 07/28/2013] [Indexed: 11/17/2022]
Abstract
Background. Sulfhydryl groups (SH) are considered a key factor in redox sensitive reaction of plasma, and their modification could be considered an expression of abnormal generation of oxygen free radicals.
Methods. Fifty consecutive patients with acute brain stroke were enclosed in this study. The plasma concentrations of SH groups were correlated to cytokines (IL-1b, IL-6, IL-8, TNF-α), plasma chitotriosidase (Chit), metalloprotease (MMP2–9), intercellular adhesion molecule-1 (ICAM-1). Results. The results demonstrated a significant reduction of SH groups within 24 hours from the onset of an acute ischemic stroke, a reduction of plasma IL-1b, IL-6, and IL-8, and an increase of Chit and TNF-α in relation to the stroke severity. Conclusion. The observation of an intense microenvironment activation that follows the stroke and the correlation between SH levels and markers of immune response suggest that, especially in stroke, is necessary to maintain the redox function to prevent the brain damage. The reduced SH levels represent an attempt to neutralize the abnormal generation of free radicals. Since the reperfusion of brain after ischemic event represents a severe oxidative stress, which must be corrected by regeneration of redox sensitive function, pharmacological intervention could be beneficial in this setting.
Collapse
|
10
|
Abstract
High-fat meals (HFM) induce metabolic stress, leading to the activation of protective mechanisms, including inflammation and endogenous antioxidant defences. In the present study, we investigated the effects of antioxidant-rich fruit juice drinks on the endogenous antioxidant response induced by HFM. In a double-blind, cross-over design (10 d washout), fourteen overweight volunteers were randomly assigned to one of the following interventions: HFM+500 ml placebo beverage (HFM-PB, free from fruit); HFM+500 ml antioxidant beverage 1 (HFM-AB1; apple, grape, blueberry and pomegranate juices and grape skin, grape seed and green tea extracts); HFM+500 ml antioxidant beverage 2 (HFM-AB2; pineapple, black currant and plum juices). HFM-PB consumption increased the plasma levels of thiols (SH) (4 h, P< 0·001) and uric acid (UA) (2 h, P< 0·01) and total radical-trapping antioxidant parameter (TRAP) (4 h, P< 0·01). Following the consumption of drinks, UA production was significantly reduced with respect to placebo beverage consumption 8 h after HFM-AB2 consumption (P< 0·05). SH levels were reduced 0·5 (P< 0·05), 1 (P< 0·05) and 2 h (P< 0·01) after HFM-AB1 consumption and 2, 4 and 8 h (P< 0·05) after HFM-AB2 consumption. Plasma TRAP (2 h, P< 0·001) and urinary ferric reducing antioxidant power (0–8 h, P< 0·01) were increased by HFM-AB1 consumption, the drink with the highest in vitro antioxidant capacity, but not by HFM-AB2 consumption. In urine, UA levels were significantly increased from basal levels after the consumption of HFM-PB and HFM-AB2. However, neither of the beverages increased the urinary excretion of UA with respect to the placebo beverage. In conclusion, the increase in UA and SH levels induced by HFM as part of an endogenous antioxidant response to postprandial stress can be prevented by the concomitant ingestion of antioxidant-rich fruit juice drinks.
Collapse
|
11
|
Vistoli G, De Maddis D, Straniero V, Pedretti A, Pallavicini M, Valoti E, Carini M, Testa B, Aldini G. Exploring the space of histidine containing dipeptides in search of novel efficient RCS sequestering agents. Eur J Med Chem 2013; 66:153-60. [PMID: 23792353 DOI: 10.1016/j.ejmech.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/25/2013] [Accepted: 05/10/2013] [Indexed: 11/16/2022]
Abstract
The study reports a set of forty proteinogenic histidine-containing dipeptides as potential carbonyl quenchers. The peptides were chosen to cover as exhaustively as possible the accessible chemical space, and their quenching activities toward 4-hydroxy-2-nonenal (HNE) and pyridoxal were evaluated by HPLC analyses. The peptides were capped at the C-terminus as methyl esters or amides to favor their resistance to proteolysis and diastereoisomeric pairs were considered to reveal the influence of configuration on quenching. On average, the examined dipeptides are less active than the parent compound carnosine (βAla + His) thus emphasizing the unfavorable effect of the shortening of the βAla residue as confirmed by the control dipeptide Gly-His. Nevertheless, some peptides show promising activities toward HNE combined with a remarkable selectivity. The results emphasize the beneficial role of aromatic and positively charged residues, while negatively charged and H-bonding side chains show a detrimental effect on quenching. As a trend, ester derivatives are slightly more active than amides while heterochiral peptides are more active than their homochiral diastereoisomer. Overall, the results reveal that quenching activity strongly depends on conformational effects and vicinal residues (as evidenced by the reported QSAR analysis), offering insightful clues for the design of improved carbonyl quenchers and to rationalize the specific reactivity of histidine residues within proteins.
Collapse
Affiliation(s)
- Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nagy P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 2013; 18:1623-41. [PMID: 23075118 PMCID: PMC3613173 DOI: 10.1089/ars.2012.4973] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. CRITICAL ISSUES This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. RECENT ADVANCES AND FUTURE DIRECTIONS Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
14
|
Antioxidant and inflammatory response following high-fat meal consumption in overweight subjects. Eur J Nutr 2012; 52:1107-14. [DOI: 10.1007/s00394-012-0420-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/02/2012] [Indexed: 02/04/2023]
|
15
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Zhang BL, Gao Y. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol Pharm Bull 2010; 33:29-34. [PMID: 20045931 DOI: 10.1248/bpb.33.29] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferulic acid (FA) has been demonstrated to have a remarkable antioxidant activity, the mechanism of FA of protecting human umbilical vein endothelial cells (HUVECs) from radiation induced oxidative stress was investigated in the present study. The oxidative protection of FA was assessed by cellular glutathione (GSH) content, nicotinamide adenine dinucleotide phosphate (NADPH) levels, and reactive oxygen species (ROS) analysis. Nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation was detected using Western blotting. The upstream signaling pathway involved in FA mediated Nrf2 activation was determined by signaling inhibitors. FA significantly increased the transcription of antioxidant related genes such as GCLC (glutamate-cysteine ligase catalytic subunit), GCLM (glutamate-cysteine ligase regulatory subunit), NQO1 (NADPH quinone oxidoreductase-1) and heme oxygenase-1 (HO-1) mRNA in radiated cells, and these changes involved in a significant increase of the intracellular GSH content and the expression of NAPDH. FA evidently promoted Nrf2 translocation into nuclei and increased the intracellular GSH and NADPH levels in radiated cells. Phosphatidylinositol 3-kinase (PI3K) and extracellular signal regulated kinase (ERK) pathways were associated with FA-induced Nrf2 activation. The results suggested that FA-induced Nrf2 activation play key role in cytoprotective effect of FA against oxidative stress via PI3K and ERK signaling pathways.
Collapse
Affiliation(s)
- Zeng-Chun Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Terada T, Okamoto KI, Nishikawa JI, Miura T, Nishinaka T, Nishihara T. Site-directed mutagenesis of rat thioltransferase: effects of essential cysteine residues for the protection against oxidative stress. J Biochem Mol Toxicol 2010; 24:60-5. [PMID: 20175144 DOI: 10.1002/jbt.20312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A cDNA of rat liver thioltransferase was cloned and then expressed using pMAL-c expression vector in Escherichia coli. Recombinant rat liver thioltransferase was expressed as a fusion protein with maltose-binding protein and then purified by amylose resin column chromatography to be homogeneity on 12.5% SDS-polyacrylamide gel electrophoretic analysis. The expressed proteins were shown as two bands at around 53 and 41 kDa, suggesting that the high molecular one was a fusion protein of recombinant thioltransferase (11.7 plus 41 kDa) and the other (smaller one) was a maltose-binding protein (41 kDa). A recombinant thioltransferase catalyzed a thiol/disulfide exchange reaction in the same way as thioltransferases purified from various sources. Compared with wild type, the mutants C23A, C26A, C79A, and C83A showed 0%, 17%, 82%, and 86% in the enzymatic activity, respectively. In addition, wild-type-transfected bacteria expressed in bacterial cells showed a strong resistance to H(2)O(2) treatment as well as the case of active mutants (C79A and C83A), but inactive mutants (C23A and C26A) showed no resistance to H(2)O(2) treatment as same as mocktransfection. Thioltransferase can be important for survival of bacterial cells under oxidative stress.
Collapse
Affiliation(s)
- Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Francis GL. Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 2010; 62:1-16. [PMID: 20373019 PMCID: PMC2860567 DOI: 10.1007/s10616-010-9263-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/10/2010] [Indexed: 12/15/2022] Open
Abstract
Albumin has a long historical involvement in design of media for the successful culture of mammalian cells, in both the research and commercial fields. The potential application of albumins, bovine or human serum albumin, for cell culture is a by-product of the physico-chemical, biochemical and cell-specific properties of the molecule. In this review an analysis of these features of albumin leads to a consideration of the extracellular and intracellular actions of the molecule, and importantly the role of its interactions with numerous ligands or bioactive factors that influence the growth of cells in culture: these include hormones, growth factors, lipids, amino acids, metal ions, reactive oxygen and nitrogen species to name a few. The interaction of albumin with the cell in relation to these co-factors has a potential impact on metabolic and biosynthetic activity, cell proliferation and survival. Application of this knowledge to improve the performance in manufacturing biotechnology and in the emerging uses of cell culture for tissue engineering and stem cell derived therapies is an important prospect.
Collapse
Affiliation(s)
- Geoffrey L Francis
- Applied R&D, Novozymes Biopharma AU Ltd, 28 Dalgleish Street, Thebarton, SA, 5031, Australia,
| |
Collapse
|
18
|
Ogasawara Y, Komiyama M, Funakoshi M, Ishii K. Disruption of Glutathione Homeostasis Causes Accumulation of S-Glutathionyl Proteins in Response to Exposure to Reactive Oxygen Species in Human Erythrocytes. Biol Pharm Bull 2010; 33:1925-31. [DOI: 10.1248/bpb.33.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Ogasawara
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Megumi Komiyama
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Masayo Funakoshi
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Kazuyuki Ishii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| |
Collapse
|
19
|
Nagy P, Winterbourn CC. Redox Chemistry of Biological Thiols. ADVANCES IN MOLECULAR TOXICOLOGY 2010. [DOI: 10.1016/s1872-0854(10)04006-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Summa D, Spiga O, Bernini A, Venditti V, Priora R, Frosali S, Margaritis A, Di Giuseppe D, Niccolai N, Di Simplicio P. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model. Proteins 2009; 69:369-78. [PMID: 17607746 DOI: 10.1002/prot.21532] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.
Collapse
Affiliation(s)
- Domenico Summa
- Department of Neuroscience, Pharmacology Unit, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Uner N, Sevgiler Y, Durmaz H, Piner P, Cinkiloğlu E. N-Acetylcysteine provides dose-dependent protection against fenthion toxicity in the brain of Cyprinus carpio L. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:33-8. [PMID: 19444991 DOI: 10.1016/j.cbpc.2009.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N-Acetyl-L-cysteine, a low-molecular weight thiol compound, with two different doses was used to prevent fenthion, an organophosphorus insecticide and acaricide, related oxidative stress in the brain of a model organism, Cyprinus carpio. Fish were exposed to sub-lethal and nominal concentration of fenthion after intraperitoneal injection of 0.5 or 400 mg/kg NAC. Brain tissues were then dissected and homogenized to analyse GSH, GSSG, TBARS, and protein contents. Enzymes that constitute the first line antioxidant defence, namely SOD and CAT, GSH-related enzymes, GR and GST, together with AChE activities were also determined spectrophotometrically. Fenthion did not cause any alteration in SOD and CAT activities while increasing GSH content, GSH/GSSG ratio and GST specific enzyme activity and decreasing GSSG, TBARS, and protein contents. Although, the highest induction in SOD and GST enzymes activities and the highest increase in GSH content were observed in the 0.5 mg/kg NAC-injected fish, their protein contents showed a decrease. 400 mg/kg NAC impeded the activation of the GST enzyme and a higher decrease in lipid peroxidation was observed. Fish were also protected against protein depletion by the higher dose NAC application. AChE activity was not influenced by fenthion exposure. Xenobiotic and GSH transporters may cause mild oxidative stress conditions in brain. Cellular redox status could trigger a series of reactions that result in an increase in SOD activity and a decrease in protein content. Based on the present results, it was suggested that the usefulness of NAC against fenthion depends on applied dose and tissue characteristics. Species-specifity and concentration selection should be taken into consideration in studies dealing with anticholinesterases.
Collapse
Affiliation(s)
- Nevin Uner
- Department of Biology, Faculty of Science and Letters, University of Cukurova, Balcali, Adana, Turkey.
| | | | | | | | | |
Collapse
|
22
|
Matsuyama Y, Hayashi T, Terawaki H, Negawa T, Terada T, Okano Y, Era S. Human astrocytes and aortic endothelial cells actively convert the oxidized form of albumin to the reduced form: reduced albumin might participate in redox regulation of nerve and blood vessel systems. J Physiol Sci 2009; 59:207-15. [PMID: 19340537 PMCID: PMC10717114 DOI: 10.1007/s12576-009-0028-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/02/2009] [Indexed: 11/29/2022]
Abstract
Human serum albumin (HSA) is a mixture of mercaptalbumin (HMA, reduced form) and nonmercaptalbumin (HNA, oxidized form), i.e., a protein-thiol redox couple in the extracellular fluid (ECF), and it might have antioxidant properties. Forty-two patients with orthopedic disorders participated in this study and were divided into two groups according to their age (young and older groups). By using HPLC to separate HSA into HMA and HNA, we analyzed the percentages of HMA and HNA in serum and lumbar cerebrospinal fluid (CSF). We also examined the redox activity of cultured normal human astrocytes, aortic endothelial cells, and dermal fibroblasts for HSA-thiol. The mean HMA value from the serum of the older group was significantly lower than that of the young group, whereas that from CSF was not significantly different between the two groups; CSF albumin is almost completely in the reduced form, and no age-related differences were observed. Cultured astrocytes and aortic endothelial cells showed conversion of HNA to HMA, whereas dermal fibroblasts showed no such redox activity. From the results obtained from in-vivo and in-vitro studies, HMA is considered to participate in redox regulation in the ECF, for example in the CSF that surrounds the central nervous system (CNS), and in blood serum.
Collapse
Affiliation(s)
- Yukie Matsuyama
- Department of Physiology and Biophysics, Gifu University Graduate School of Medicine, 1-1 Yanagodo, Gifu, 501-1194 Japan
| | - Tomoya Hayashi
- Department of Physiology, Meiji University of Oriental Medicine, Kyoto, 629-0392 Japan
| | - Hiroyuki Terawaki
- Division of Kidney and Hypertension, The Jikei University School of Medicine, Tokyo, 105-8461 Japan
| | - Tsuneo Negawa
- Department of Physiology and Biophysics, Gifu University Graduate School of Medicine, 1-1 Yanagodo, Gifu, 501-1194 Japan
| | - Tomoyoshi Terada
- Department of Physiology and Biophysics, Gifu University Graduate School of Medicine, 1-1 Yanagodo, Gifu, 501-1194 Japan
| | - Yukio Okano
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, 1-1 Yanagodo, Gifu, 501-1194 Japan
| | - Seiichi Era
- Department of Physiology and Biophysics, Gifu University Graduate School of Medicine, 1-1 Yanagodo, Gifu, 501-1194 Japan
| |
Collapse
|
23
|
Gilge JL, Fisher M, Chai YC. The effect of oxidant and the non-oxidant alteration of cellular thiol concentration on the formation of protein mixed-disulfides in HEK 293 cells. PLoS One 2008; 3:e4015. [PMID: 19107210 PMCID: PMC2603474 DOI: 10.1371/journal.pone.0004015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/24/2008] [Indexed: 02/02/2023] Open
Abstract
Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present. Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione. Phenylarsine oxide, which specifically forms a covalent adduct with vicinal thiols, was used to determine the possible role of vicinal thiols in the amount of glutathionylation. Our data shows phenylarsine oxide did not change glutathione concentrations, but it did enhance the amount of glutathionylation in oxidant-treated cells.
Collapse
Affiliation(s)
- Jasen Lee Gilge
- Department of Chemistry, John Carroll University, University Height, Ohio, United States of America
| | - Michael Fisher
- Department of Chemistry, John Carroll University, University Height, Ohio, United States of America
| | - Yuh-Cherng Chai
- Department of Chemistry, John Carroll University, University Height, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ogasawara Y, Funakoshi M, Ishii K. Pyruvate kinase is protected by glutathione-dependent redox balance in human red blood cells exposed to reactive oxygen species. Biol Pharm Bull 2008; 31:1875-81. [PMID: 18827347 DOI: 10.1248/bpb.31.1875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the antioxidant role of glutathione (GSH) in human red blood cells (RBCs), we investigated the effect of disrupting GSH homeostasis on the oxidative modification of thiol-dependent enzymes by exposure to tert-butyl hydroperoxide (BHP). When hemolysate was incubated with BHP, significant decreases in enzyme activity were observed. However, the inactivation did not occur in intact RBC suspensions that were exposed to BHP. In this study, we used two independent treatments aimed at decreasing the level of reduced form of GSH, pre-incubation with a glutathione reductase inhibitor or glucose-free medium to examine the influences of preventing GSH-dependent antioxidant and reactivation activity on thiol-dependent enzyme. Pyruvate kinase (PK) activity clearly decreased along with depletion of GSH compared to other glycolytic enzyme activities by BHP exposure in RBCs. The addition of GSH, but not glucose, before BHP exposure completely prevented the inactivation of PK in hemolysate; however, partial reactivation of inactivated PK was observed by post-addition of both GSH and glutaredoxin at an early stage during BHP exposure. Moreover, hydroxyl radicals but not hydrogen peroxide inactivated PK. These results suggest that PK is highly susceptible to radicals and that GSH is essential to protect PK activity by not only directly scavenging radicals but also by systematically reactivating oxidized enzyme in human RBCs.
Collapse
Affiliation(s)
- Yuki Ogasawara
- Department of Environmental Biology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588,Japan.
| | | | | |
Collapse
|
25
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 358] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
26
|
Bickel A, Drobot A, Aviram M, Eitan A. Validation and reduction of the oxidative stress following laparoscopic operations: a prospective randomized controlled study. Ann Surg 2007; 246:31-5. [PMID: 17592287 PMCID: PMC1899204 DOI: 10.1097/01.sla.0000262784.44278.b5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To validate ischemia-reperfusion mechanism during laparoscopic cholecystectomy, and to assess the reduction of oxidative stress by an intermittent sequential pneumatic compression (ISPC) device. SUMMARY BACKGROUND Increased intraperitoneal pressure during laparoscopic operations may lead to decreased cardiac output and visceral perfusion, and possible ischemia-reperfusion effects. Using the ISPC device was shown to improve cardiac output and visceral perfusion during pneumoperitoneum (PP). METHODS Twenty patients undergoing elective laparoscopic cholecystectomy were enrolled in a randomized prospective controlled study and divided into 2 groups: 1) study group (10 patients), activation of ISPC together with creation of PP; and 2) control group, without ISPC. Lipid peroxidation and glutathione levels (as indicators of oxidative stress) as well as liver and renal function tests, were measured before and at the end of PP, and again at 30 minutes, 4 hours, and 24 hours afterward, together with hemodynamic and respiratory parameters. RESULTS There was no significant difference between both groups concerning liver enzymes and bilirubin, nor in hemodynamic parameters. In the control group, increased lipid peroxide levels were noted 4 hours after PP termination, in comparison to pre-PP levels (590.4-649.2 mmol/L, P = 0.002). In the study group (ISPC), such changes were not inspected. Decreased total glutathione levels were noted in the control group, 30 minutes following CO2 evacuation. CONCLUSIONS Our study validates the ischemia-reperfusion mechanism following laparoscopic surgery. The use of an ISPC device decreased the oxidative stress (secondary to relative ischemia-reperfusion insult) following PP, probably due to improved cardiac output and visceral perfusion.
Collapse
Affiliation(s)
- Amitai Bickel
- Department of Surgery, Western Galilee Hospital, Nahariya, Israel.
| | | | | | | |
Collapse
|
27
|
Patterson S, Scullion SMJ, McCluskey JT, Flatt PR, McClenaghan NH. Prolonged exposure to homocysteine results in diminished but reversible pancreatic beta-cell responsiveness to insulinotropic agents. Diabetes Metab Res Rev 2007; 23:324-34. [PMID: 17089371 DOI: 10.1002/dmrr.699] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Plasma homocysteine levels may be elevated in poorly controlled diabetes with pre-existing vascular complications and/or nephropathy. Since homocysteine has detrimental effects on a wide diversity of cell types, the present study examined the effects of long-term homocysteine exposure on the secretory function of clonal BRIN-BD11 beta-cells. METHODS Acute insulin secretory function, cellular insulin content and viability of BRIN-BD11 cells were assessed following long-term (18 h) exposure to homocysteine in culture. RT-PCR and Western blot analysis were used to determine the expression of key beta-cell genes and proteins. Cells were cultured for a further 18 h without homocysteine to determine any long-lasting effects. RESULTS Homocysteine (250-1000 micromol/L) exposure reduced insulin secretion at both moderate (5.6 mmol/L) and stimulatory (16.7 mmol/L) glucose by 48-63%. Similarly, insulin secretory responsiveness to stimulatory concentrations of alanine, arginine, 2-ketoisocaproate, tolbutamide, KCl, elevated Ca2+, forskolin and PMA, GLP-1, GIP and CCK-8 were reduced by 11-62% following culture with 100-250 micromol/L homocysteine. These inhibitory effects could not simply be attributed to changes in cellular insulin content, cell viability, H2O2 generation or any obvious alterations of gene/protein expression for insulin, glucokinase, GLUT2, VDCC, or Kir6.2 and SUR1. Additional culture for 18 h in standard culture media after homocysteine exposure restored secretory responsiveness to all agents tested. CONCLUSION These findings suggest that long-term exposure to high homocysteine levels causes a reversible impairment of pancreatic beta-cell insulinotropic pathways. The in vivo actions of hyperhomocysteinaemia on islet cell function merit investigation.
Collapse
Affiliation(s)
- Steven Patterson
- Diabetes Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, N Ireland, UK.
| | | | | | | | | |
Collapse
|
28
|
Carballal S, Alvarez B, Turell L, Botti H, Freeman BA, Radi R. Sulfenic acid in human serum albumin. Amino Acids 2006; 32:543-51. [PMID: 17061035 DOI: 10.1007/s00726-006-0430-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Sulfenic acid (RSOH) is a central intermediate in both the reversible and irreversible redox modulation by reactive species of an increasing number of proteins involved in signal transduction and enzymatic pathways. In this paper we focus on human serum albumin (HSA), the most abundant plasma protein, proposed to serve antioxidant functions in the vascular compartment. Sulfenic acid in HSA has been previously detected using different methods after oxidation of its single free thiol Cys34 through one- or two-electron mechanisms. Since recent evidence suggests that sulfenic acid in HSA is stabilized within the protein environment, this derivative represents an appropriate model to examine protein sulfenic acid biochemistry, structure and reactivity. Sulfenic acid in HSA could be involved in mixed disufide formation, supporting a role of HSA-Cys34 as an important redox regulator in extracellular compartments.
Collapse
Affiliation(s)
- S Carballal
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|