1
|
Najjar RS, Grace WW, Siqueira APS, Setka AM, Lu W, Wang S, Feresin RG. Polyphenols have unique cellular effects that are distinct from antioxidant function in Toll-like receptor 4-mediated inflammation in RAW264.7 macrophage-like cells. Nutr Res 2024; 132:136-151. [PMID: 39580917 DOI: 10.1016/j.nutres.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Plant polyphenols are bioactive compounds touted for their antioxidant effects, and this is often the primary attribute used to explain their health benefits. However, we hypothesize that polyphenols have molecular properties independent of antioxidant function. The objective of this study was to investigate whether polyphenols had distinct molecular effects compared to pure antioxidants. RAW 264.7 macrophages were pretreated with either TEMPOL, a superoxide scavenger, N-acetyl cysteine, a hydroxyl radical and hydrogen peroxide scavenger, or polyphenol extracts from blackberry, blueberry, raspberry, strawberry, kale, and baru nut. After 1 hour of pretreatment, cells were treated with lipopolysaccharides (100 ng/mL) for an additional 6 hour. Antioxidants and polyphenol extracts elicited antioxidant effects in vitro; however, polyphenols regulated redox proteins in a distinct, protective manner, whereas antioxidants, TEMPOL, and N-acetyl cysteine, did not. Additionally, distinct effects were observed in downstream Toll-like receptor 4 signaling and transcriptional activity of inflammatory proteins. We conclude that polyphenols have unique molecular effects that are independent of just their free radical scavenging capacity. This work advances our molecular understanding of how polyphenols act to target inflammation.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Wesley W Grace
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Ana P S Siqueira
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Alivia M Setka
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Wen Lu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Malovic E, Ealy A, Miller C, Jang A, Hsu PJ, Sarkar S, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic reader YTHDF2 regulates SEK1( MAP2K4)-JNK-cJUN inflammatory signaling in astrocytes during neurotoxic stress. iScience 2024; 27:110619. [PMID: 39252959 PMCID: PMC11382029 DOI: 10.1016/j.isci.2024.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
As the most abundant glial cells in the central nervous system (CNS), astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress are many and complex. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stressor, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, the neurotoxic stress-induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechanistically, YTHDF2 RIP-sequencing identified MAP2K4 (MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed that Mn-exposed astrocytes mediate proinflammatory responses by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves as a key upstream 'molecular switch' controlling SEK1(MAP2K4)-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
Affiliation(s)
- Emir Malovic
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Alyssa Ealy
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Cameron Miller
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Ahyoung Jang
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Phillip J Hsu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Cody Goeser
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Aleah Kristen Hartman
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Allen Zhu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bharathi Palanisamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Malovic E, Ealy A, Hsu PJ, Sarkar S, Miller C, Rokad D, Goeser C, Hartman AK, Zhu A, Palanisamy B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, He C, Kanthasamy AG. Epitranscriptomic Reader YTHDF2 Regulates SEK1( MAP2K4 )-JNK-cJUN Inflammatory Signaling in Astrocytes during Neurotoxic Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577106. [PMID: 38328119 PMCID: PMC10849634 DOI: 10.1101/2024.01.26.577106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 ( MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream 'molecular switch' controlling SEK1( MAP2K4 )-JNK-cJUN proinflammatory signaling in astrocytes.
Collapse
|
4
|
Kalyanaraman H, Casteel DE, Cabriales JA, Tat J, Zhuang S, Chan A, Dretchen KL, Boss GR, Pilz RB. The Antioxidant/Nitric Oxide-Quenching Agent Cobinamide Prevents Aortic Disease in a Mouse Model of Marfan Syndrome. JACC Basic Transl Sci 2024; 9:46-62. [PMID: 38362350 PMCID: PMC10864892 DOI: 10.1016/j.jacbts.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 02/17/2024]
Abstract
Major pathologic changes in the proximal aorta underlie the life-threatening aortic aneurysms and dissections in Marfan Syndrome; current treatments delay aneurysm development without addressing the primary pathology. Because excess oxidative stress and nitric oxide/protein kinase G signaling likely contribute to the aortopathy, we hypothesized that cobinamide, a strong antioxidant that can attenuate nitric oxide signaling, could be uniquely suited to prevent aortic disease. In a well-characterized mouse model of Marfan Syndrome, cobinamide dramatically reduced elastin breaks, prevented excess collagen deposition and smooth muscle cell apoptosis, and blocked DNA, lipid, and protein oxidation and excess nitric oxide/protein kinase G signaling in the ascending aorta. Consistent with preventing pathologic changes, cobinamide diminished aortic root dilation without affecting blood pressure. Cobinamide exhibited excellent safety and pharmacokinetic profiles indicating it could be a practical treatment. We conclude that cobinamide deserves further study as a disease-modifying treatment of Marfan Syndrome.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Darren E. Casteel
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Justin A. Cabriales
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - John Tat
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Adriano Chan
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | | | - Gerry R. Boss
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Renate B. Pilz
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Russell TM, Richardson DR. The good Samaritan glutathione-S-transferase P1: An evolving relationship in nitric oxide metabolism mediated by the direct interactions between multiple effector molecules. Redox Biol 2023; 59:102568. [PMID: 36563536 PMCID: PMC9800640 DOI: 10.1016/j.redox.2022.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Glutathione-S-transferases (GSTs) are phase II detoxification isozymes that conjugate glutathione (GSH) to xenobiotics and also suppress redox stress. It was suggested that GSTs have evolved not to enhance their GSH affinity, but to better interact with and metabolize cytotoxic nitric oxide (NO). The interactions between NO and GSTs involve their ability to bind and store NO as dinitrosyl-dithiol iron complexes (DNICs) within cells. Additionally, the association of GSTP1 with inducible nitric oxide synthase (iNOS) results in its inhibition. The function of NO in vasodilation together with studies associating GSTM1 or GSTT1 null genotypes with preeclampsia, additionally suggests an intriguing connection between NO and GSTs. Furthermore, suppression of c-Jun N-terminal kinase (JNK) activity occurs upon increased levels of GSTP1 or NO that decreases transcription of JNK target genes such as c-Jun and c-Fos, which inhibit apoptosis. This latter effect is mediated by the direct association of GSTs with MAPK proteins. GSTP1 can also inhibit nuclear factor kappa B (NF-κB) signaling through its interactions with IKKβ and Iκα, resulting in decreased iNOS expression and the stimulation of apoptosis. It can be suggested that the inhibitory activity of GSTP1 within the JNK and NF-κB pathways may be involved in crosstalk between survival and apoptosis pathways and modulating NO-mediated ROS generation. These studies highlight an innovative role of GSTs in NO metabolism through their interaction with multiple effector proteins, with GSTP1 functioning as a "good Samaritan" within each pathway to promote favorable cellular conditions and NO levels.
Collapse
Affiliation(s)
- Tiffany M Russell
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
6
|
Im H, Ju IG, Kim JH, Lee S, Oh MS. Trichosanthis Semen and Zingiberis Rhizoma Mixture Ameliorates Lipopolysaccharide-Induced Memory Dysfunction by Inhibiting Neuroinflammation. Int J Mol Sci 2022; 23:ijms232214015. [PMID: 36430493 PMCID: PMC9692726 DOI: 10.3390/ijms232214015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation, a key pathological contributor to various neurodegenerative diseases, is mediated by microglial activation and subsequent secretion of inflammatory cytokines via the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, neuroinflammation leads to synaptic loss and memory impairment. This study investigated the inhibitory effects of PNP001, a mixture of Trichosanthis Semen and Zingiberis Rhizoma in a ratio of 3:1, on neuroinflammation and neurological deficits induced by lipopolysaccharide (LPS). For the in vitro study, PNP001 was administered in LPS-stimulated BV2 microglial cells, and reduced the pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 by downregulating MAPK signaling. For the in vivo study, ICR mice were orally administered PNP001 for 18 consecutive days, and concurrently treated with LPS (1 mg/kg, i.p.) for 10 days, beginning on the 4th day of PNP001 administration. The remarkably decreased number of activated microglial cells and increased expression of pre- and post-synaptic proteins were observed more in the hippocampus of the PNP001 administered groups than in the LPS-treated group. Furthermore, daily PNP001 administration significantly attenuated long-term memory decline compared with the LPS-treated group. Our study demonstrated that PNP001 inhibits LPS-induced neuroinflammation and its associated memory dysfunction by alleviating microglial activation and synaptic loss.
Collapse
Affiliation(s)
- Hyeri Im
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Myung Sook Oh
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9436; Fax: +82-2-963-9436
| |
Collapse
|
7
|
Salvatore T, Caturano A, Galiero R, Di Martino A, Albanese G, Vetrano E, Sardu C, Marfella R, Rinaldi L, Sasso FC. Cardiovascular Benefits from Gliflozins: Effects on Endothelial Function. Biomedicines 2021; 9:biomedicines9101356. [PMID: 34680473 PMCID: PMC8533063 DOI: 10.3390/biomedicines9101356] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a known independent risk factor for atherosclerotic cardiovascular disease (CVD) and solid epidemiological evidence points to heart failure (HF) as one of the most common complications of diabetes. For this reason, it is imperative to consider the prevention of CV outcomes as an effective goal for the management of diabetic patients, as important as lowering blood glucose. Endothelial dysfunction (ED) is an early event of atherosclerosis involving adhesion molecules, chemokines, and leucocytes to enhance low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. This abnormal vascular phenotype represents an important risk factor for the genesis of any complication of diabetes, contributing to the pathogenesis of not only macrovascular disease but also microvascular damage. Gliflozins are a novel class of anti-hyperglycemic agents used for the treatment of Type 2 diabetes mellitus (T2DM) that selectively inhibit the sodium glucose transporter 2 (SGLT2) in the kidneys and have provoked large interest in scientific community due to their cardiovascular beneficial effects, whose underlying pathophysiology is still not fully understood. This review aimed to analyze the cardiovascular protective mechanisms of SGLT2 inhibition in patients T2DM and their impact on endothelial function.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (A.C.); (R.G.); (A.D.M.); (G.A.); (E.V.); (C.S.); (R.M.); (L.R.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
8
|
Hu Y, Huang W, Luo Y, Xiang L, Wu J, Zhang Y, Zeng Y, Xu C, Meng X, Wang P. Assessment of the anti-inflammatory effects of three rhubarb anthraquinones in LPS-Stimulated RAW264.7 macrophages using a pharmacodynamic model and evaluation of the structure-activity relationships. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114027. [PMID: 33741438 DOI: 10.1016/j.jep.2021.114027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine, has been used as a strong astringent in China to treat inflammation-related diseases, such as acute pancreatitis, acute cholecystitis, appendicitis and so on. Rhein, emodin and aloe-emodin are the important active anthraquinone in rhubarb, and are considered to be the main ingredients contributing to anti-inflammatory. AIM OF THE STUDY Rhein, emodin and aloe-emodin, anthraquinones with the same parent structure that are found in rhubarb, have beneficial anti-inflammatory effects in vitro and in vivo. Anthraquinone derivatives also have important clinical roles. However, their pharmacodynamic differences and the structure-activity relationships associated with their anti-inflammatory properties have not been systematically explored. The present study was designed to quantify the effects of three rhubarb anthraquinones on inflammation and to explore the structure-activity relationships of these compounds. MATERIALS AND METHODS In this study, we detected NF-κB phosphorylation, iNOS protein expression, and IL-6 and NO production in LPS-stimulated RAW264.7 cells and then calculated median effect equations and built a dynamic pharmacodynamic model to quantitatively evaluate the efficacy of these three anthraquinones. Additionally, to determine the structure-activity relationships, we investigated the physicochemical properties and molecular electrostatic potentials of the drug molecules. RESULTS We found that rhein, emodin, and aloe-emodin exerted at least dual-target (NF-κB, iNOS) inhibition of LPS-induced inflammatory responses. Compared with rhein and emodin, aloe-emodin had a stronger anti-inflammatory effect, and its inhibition of iNOS protein expression was approximately twice that of NF-κB phosphorylation. In addition, aloe-emodin had the strongest hydrophobic effect among the three anthraquinones. CONCLUSIONS Overall, we concluded that the receptor binding the rhubarb anthraquinones had a hydrophobic pocket. Anthraquinone molecules with stronger hydrophobic effects had higher affinity for the receptor, resulting in greater anti-inflammatory activity. These results suggest that the addition of a hydrophobic group is a potential method for structural modification to design anti-inflammatory anthraquinone derivatives with enhanced potency.
Collapse
Affiliation(s)
- Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, Sichuan, China; Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Wen'ge Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Li Xiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jiasi Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yong Zeng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chensi Xu
- Chengdu Pharmoko Tech Corp., Ltd., Chengdu, 610041, China
| | - Xianli Meng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Ping Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
9
|
Tsay TB, Chang WH, Hsu CM, Chen LW. Mechanical ventilation enhances Acinetobacter baumannii-induced lung injury through JNK pathways. Respir Res 2021; 22:159. [PMID: 34022899 PMCID: PMC8140754 DOI: 10.1186/s12931-021-01739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients in intensive care units (ICUs) often received broad-spectrum antibiotic treatment and Acinetobacter baumannii (A.b.) and Pseudomonas aeruginosa (P.a.) were the most common pathogens causing ventilator-associated pneumonia (VAP). This study aimed to examine the effects and mechanism of mechanical ventilation (MV) on A.b.-induced lung injury and the involvement of alveolar macrophages (AMs). METHODS C57BL/6 wild-type (WT) and c-Jun N-terminal kinase knockout (JNK1-/-) mice received MV for 3 h at 2 days after nasal instillation of A.b., P.a. (1 × 106 colony-forming unit, CFU), or normal saline. RESULTS Intranasal instillation of 106 CFU A.b. in C57BL/6 mice induced a significant increase in total cells and protein levels in the bronchoalveolar lavage fluid (BALF) and neutrophil infiltration in the lungs. MV after A.b. instillation increases neutrophil infiltration, interleukin (IL)-6 and vascular cell adhesion molecule (VCAM) mRNA expression in the lungs and total cells, IL-6 levels, and nitrite levels in the BALF. The killing activity of AMs against A.b. was lower than against P.a. The diminished killing activity was parallel with decreased tumor necrosis factor-α production by AMs compared with A.b. Inducible nitric oxide synthase inhibitor, S-methylisothiourea, decreased the total cell number in BALF on mice receiving A.b. instillation and ventilation. Moreover, MV decreased the A.b. and P.a. killing activity of AMs. MV after A.b. instillation induced less total cells in the BALF and nitrite production in the serum of JNK1-/- mice than those of WT mice. CONCLUSION A.b. is potent in inducing neutrophil infiltration in the lungs and total protein in the BALF. MV enhances A.b.-induced lung injury through an increase in the expression of VCAM and IL-6 levels in the BALF and a decrease in the bacteria-killing activity of AMs. A lower inflammation level in JNK1-/- mice indicates that A.b.-induced VAP causes lung injury through JNK signaling pathway in the lungs.
Collapse
MESH Headings
- Acinetobacter Infections/enzymology
- Acinetobacter Infections/microbiology
- Acinetobacter Infections/pathology
- Acinetobacter baumannii/pathogenicity
- Animals
- Cells, Cultured
- Disease Models, Animal
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lung/enzymology
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/microbiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8/genetics
- Mitogen-Activated Protein Kinase 8/metabolism
- Neutrophil Infiltration
- Nitric Oxide Synthase Type II/metabolism
- Pneumonia, Ventilator-Associated/enzymology
- Pneumonia, Ventilator-Associated/microbiology
- Pneumonia, Ventilator-Associated/pathology
- Respiration, Artificial/adverse effects
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- Ventilator-Induced Lung Injury/enzymology
- Ventilator-Induced Lung Injury/microbiology
- Ventilator-Induced Lung Injury/pathology
- Mice
Collapse
Affiliation(s)
- Tzyy-Bin Tsay
- Department of Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Surgery, Kaohsiung Veterans General Hospital, 386, Ta-Chung 1st Road, Kaohsiung, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
10
|
Yang Z, Wang S, Liu H, Xu S. MAPK/iNOS pathway is involved in swine kidney necrosis caused by cadmium exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116497. [PMID: 33540250 DOI: 10.1016/j.envpol.2021.116497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution in the environment could cause toxic damage to animals and humans. MAPK pathways could regulate their downstream inflammatory factors, and plays a crucial role in necrosis. Since the swine kidney tissue is an important accumulation site of Cd and target organ of its toxic damage, but the damage form of Cd to swine kidney and the role of MAPK pathways in it are still not clear, we selected six week old weaned piglets as the research object, and fed a diet supplemented CdCl2 (20 mg/kg) to establish the model of liver injury induced by Cd. The expressions and phosphorylation of MAPK pathways (ERK, JNK, p38), expression levels of inflammatory factors (TNF-α, NF-κB, iNOS, COX-2 and PTGE) and necrosis related genes (MLKL, RIPK1, RIPK3 and FADD) and heat shock proteins (HSPs) were detected by RT-PCR and Western blot. H.E. staining was used to determine the damage of kidney caused by Cd exposure. The results showed that Cd exposure could activate p38 and JNK pathway phosphorylation, rather than ERK 1/2, up regulated the expressions of inflammatory factors, finally induced programmed necrosis (increasing the expressions of MLKL, RIPK1, RIPK3 and FADD) in swine kidney. Our study elucidated the mechanism of Cd-damage to swine kidney and the relationship among MAPK pathways, inflammatory factors and programmed necrosis in swine.
Collapse
Affiliation(s)
- Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
11
|
Zhao X, Wang Y, Yang J, Liu H, Wang L. MicroRNA‐326 suppresses iNOS expression and promotes autophagy of dopaminergic neurons through the JNK signaling by targeting XBP1 in a mouse model of Parkinson's disease. J Cell Biochem 2019; 120:14995-15006. [PMID: 31135066 DOI: 10.1002/jcb.28761] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Xiao‐Hui Zhao
- Department of Neurology Shanghai University of Medicine & Health Sciences Affiliated Pudong New District People's Hospital Shanghai P. R. China
| | - Yong‐Bing Wang
- Department of General Surgery Shanghai University of Medicine & Health Sciences Affiliated Pudong New District People's Hospital Shanghai P. R. China
| | - Juan Yang
- Department of Neurology Shanghai University of Medicine & Health Sciences Affiliated Pudong New District People's Hospital Shanghai P. R. China
| | - Hui‐Qin Liu
- Department of Neurology Shanghai University of Medicine & Health Sciences Affiliated Pudong New District People's Hospital Shanghai P. R. China
| | - Ling‐Ling Wang
- Department of Neurology Shanghai University of Medicine & Health Sciences Affiliated Pudong New District People's Hospital Shanghai P. R. China
| |
Collapse
|
12
|
Pereira CA, Carneiro FS, Matsumoto T, Tostes RC. Bonus Effects of Antidiabetic Drugs: Possible Beneficial Effects on Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis. Basic Clin Pharmacol Toxicol 2018; 123:523-538. [PMID: 29890033 DOI: 10.1111/bcpt.13054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Camila A. Pereira
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Fernando S. Carneiro
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Takayuki Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Rita C. Tostes
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| |
Collapse
|
13
|
Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 2017; 153:105-115. [PMID: 28923363 DOI: 10.1016/j.ejmech.2017.09.001] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Neuroinflammation is one of the main mechanisms involved in the progression of several neurodegenerative diseases, such as Parkinson, Alzheimer, multiple sclerosis, amyotrophic lateral sclerosis and others. The activation of microglia is the main feature of neuroinflammation, promoting the release of pro-inflammatory cytokines and resulting in the progressive neuronal cell death. Natural compounds, such as flavonoids, possess neuroprotective potential probably related to their ability to modulate the inflammatory responses involved in neurodegenerative diseases. In fact, pure flavonoids (e.g., quercetin, genistein, hesperetin, epigallocatechin-3-gallate) or enriched-extracts, can reduce the expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2), down-regulate inflammatory markers and prevent neural damage. This anti-inflammatory activity is primarily related to the regulation of microglial cells, mediated by their effects on MAPKs and NF-κB signalling pathways, as demonstrated by in vivo and in vitro data. The present work reviews the role of inflammation in neurodegenerative diseases, highlighting the potential therapeutic effects of flavonoids as a promising approach to develop innovative neuroprotective strategy.
Collapse
Affiliation(s)
- Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Stefania Moccia
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| |
Collapse
|
14
|
Chen CH, Chen NF, Feng CW, Cheng SY, Hung HC, Tsui KH, Hsu CH, Sung PJ, Chen WF, Wen ZH. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects. Mar Drugs 2016; 14:md14090160. [PMID: 27598175 PMCID: PMC5039531 DOI: 10.3390/md14090160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). Methods: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. Results: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. Conclusion: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this compound may be a promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Shu-Yu Cheng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Obstetrics and Gynecology and Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung County 90741, Taiwan.
| | - Chi-Hsin Hsu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
15
|
Sun W, Bao J, Lin W, Gao H, Zhao W, Zhang Q, Leung CH, Ma DL, Lu J, Chen X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells. Free Radic Biol Med 2016; 92:61-77. [PMID: 26802903 DOI: 10.1016/j.freeradbiomed.2016.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/01/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Redox signaling plays a fundamental role in maintaining cell physiological activities. A deregulation of this balance through oxidative stress or nitrosative stress has been implicated in cancer. Here, we reported that 2-methoxy-6-acetyl-7-methyl juglone (MAM), a natural naphthoquinone isolated from Polygonum cuspidatum Sieb. et Zucc, caused hydrogen peroxide (H2O2) dependent activation of JNK and induced the expression of inducible nitric oxide synthase (iNOS), thereby leading to nitric oxide (NO) generation in multiple cancer cells. Nitrosative stress induced necroptosis in A549 lung cancer cells, but resulted in caspase-dependent intrinsic apoptosis in B16-F10 melanoma and MCF7 breast cancer cells. In addition, a decrease in GSH/GSSG levels accompanied with increased ROS production was observed. Reversal of ROS generation and cell death in GSH pretreated cells indicated the involvement of GSH depletion in MAM mediated cytotoxicity. In summary, a natural product MAM induced NO-dependent multiple forms of cell death in cancer cells mediated by H2O2-dependent JNK activation in cancer cells. GSH depletion might play an initial role in MAM-induced cytotoxicity.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiaolin Bao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hongwei Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
16
|
Abstract
Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
Collapse
Affiliation(s)
- Fengjin Zhang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou City, People's Republic of China
| | - Linlan Jiang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China
| |
Collapse
|
17
|
Yu HM, Wu Y, Ju P, Wang BH, Yang XD, Wang HM, Xu LC. eNOS-JNK1-AR signaling pathway mediates deltamethrin-induced germ cells apoptosis in testes of adult rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:733-741. [PMID: 25299849 DOI: 10.1016/j.etap.2014.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/26/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this study is to examine germ cells apoptosis and reduction of spermatogenesis which might be induced by deltamethrin (DM). Furthermore, the study is performed to determine if the apoptosis is mediated by the signaling proteins: eNOS, JNK1 and androgen receptor (AR). Fifty-four male SD rats were divided into nine groups (six rats each): blank control group; corn oil treated group; DM treated group; saline treated group; DM+saline treated group; DM+histamine (eNOS specific agonist) treated group; 50% ethanol treated group; DM+50% ethanol group and DM+quercetagetin (JNK1 specific inhibitor) treated group. The experiment was conducted for 15 days. Apoptosis was evaluated by TUNEL; S-nitrosylation of JNK1 was examined by the biotin switch assay; eNOS expression and Ser650 phosphorylation of AR were assessed by immunoblotting and immunohistochemical analysis, respectively. DM treated group showed notable apoptotic cells and reduced production of sperm, while DM plus histamine group and DM plus quercetagetin group showed remarkably decreased apoptosis and improved production of sperm. Administration of DM inhibited spermatogenesis, the activity of eNOS and S-nitrosylation of JNK1. Meanwhile, phosphorylation of AR was shown to be elevated. Histamine and quercetagetin were also examined to have a further confirmation. It is suggested DM-induced germ cells apoptosis and reduction of sperm production were mediated by eNOS-JNK1-AR signaling pathway.
Collapse
Affiliation(s)
- Hong-min Yu
- School of Public Health, Xuzhou Medical College, Xuzhou, China
| | - Yang Wu
- Department of Radiatiotherapy, Xuzhou Medical College Affiliated Hospital, Xuzhou, China
| | - Pei Ju
- School of Public Health, Xuzhou Medical College, Xuzhou, China
| | - Bing-hua Wang
- School of Public Health, Xuzhou Medical College, Xuzhou, China
| | - Xiang-dong Yang
- School of Public Health, Xuzhou Medical College, Xuzhou, China
| | - Hong-mei Wang
- Department of oncology, Xuzhou Medical College Affiliated Hospital, Xuzhou, China
| | - Li-chun Xu
- School of Public Health, Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
18
|
Eghbalzadeh K, Brixius K, Bloch W, Brinkmann C. Skeletal muscle nitric oxide (NO) synthases and NO-signaling in "diabesity"--what about the relevance of exercise training interventions? Nitric Oxide 2013; 37:28-40. [PMID: 24368322 DOI: 10.1016/j.niox.2013.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/30/2013] [Accepted: 12/17/2013] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus associated with obesity, or "diabesity", coincides with an altered nitric oxide (NO) metabolism in skeletal muscle. Three isoforms of nitric oxide synthase (NOS) exist in human skeletal muscle tissue. Both neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) are constitutively expressed under physiological conditions, producing low levels of NO, while the inducible nitric oxide synthase (iNOS) is strongly up-regulated only under pathophysiological conditions, excessively increasing NO concentrations. Due to chronic inflammation, overweight/obese type 2 diabetic patients exhibit up-regulated protein contents of iNOS and concomitant elevated amounts of NO in skeletal muscle. Low muscular NO levels are important for attaining an adequate cellular redox state--thereby maintaining metabolic integrity--while high NO levels are believed to destroy cellular components and to disturb metabolic processes, e.g., through strongly augmented posttranslational protein S-nitrosylation. Physical training with submaximal intensity has been shown to attenuate inflammatory profiles and iNOS protein contents in the long term. The present review summarizes signaling pathways which induce iNOS up-regulation under pathophysiological conditions and describes molecular mechanisms by which high NO concentrations are likely to contribute to triggering skeletal muscle insulin resistance and to reducing mitochondrial capacity during the development and progression of type 2 diabetes. Based on this information, it discusses the beneficial effects of regular physical exercise on the altered NO metabolism in the skeletal muscle of overweight/obese type 2 diabetic subjects, thus unearthing new perspectives on training strategies for this particular patient group.
Collapse
Affiliation(s)
- Kaveh Eghbalzadeh
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Klara Brixius
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Christian Brinkmann
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany.
| |
Collapse
|
19
|
Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem Cell Biol 2013; 45:1377-88. [DOI: 10.1016/j.biocel.2013.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 01/31/2023]
|
20
|
Biswas N, Mahato SK, Chowdhury AA, Chaudhuri J, Manna A, Vinayagam J, Chatterjee S, Jaisankar P, Chaudhuri U, Bandyopadhyay S. ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells. Apoptosis 2012; 17:612-26. [PMID: 22252531 DOI: 10.1007/s10495-011-0695-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The role of c-Jun N terminal Kinase (JNK) has been well documented in various cellular stresses where it leads to cell death. Similarly, extracellular signal-regulated kinase (ERK) which was identified as a signalling molecule for survival pathway has been shown recently to be involved in apoptosis also. Recently we reported that ICB3E, a synthetic analogue of Piper betle leaf-derived apoptosis-inducing agent hydroxychavicol (HCH), possesses anti-chronic myeloid leukemia (CML) acitivity in vitro and in vivo without insight on mechanism of action. Here we report that ICB3E is three to four times more potent than HCH in inducing apoptosis of leukemic cells without having appreciable effects on normal human peripheral blood mononuclear cells, mouse fibroblast cell line NIH3T3 and monkey kidney epithelial cell line Vero. ICB3E causes early accumulation of mitochondria-derived reactive oxygen species (ROS) in K562 cells. Unlike HCH, ICB3E treatment caused ROS dependent activation of both JNK, ERK and induced the expression of iNOS leading to generation of nitric oxide (NO). This causes cleavage of caspase 9, 3 and PARP leading to apoptosis. Lack of cleavage of caspase 8 and inability of blocking chimera antibody to DR5 or neutralizing antibody to Fas to reverse ICB3E-mediated apoptosis suggest the involvement of only intrinsic pathway. Our data reveal a novel ROS-dependent JNK/ERK-mediated iNOS activation pathway which leads to NO mediated cell death by ICB3E.
Collapse
Affiliation(s)
- Nabendu Biswas
- Division of Cancer and Cell Biology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
ElAli A, Urrutia A, Rubio-Araiz A, Hernandez-Jimenez M, Colado MI, Doeppner TR, Hermann DM. Apolipoprotein-E controls adenosine triphosphate-binding cassette transporters ABCB1 and ABCC1 on cerebral microvessels after methamphetamine intoxication. Stroke 2012; 43:1647-53. [PMID: 22426312 DOI: 10.1161/strokeaha.111.648923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Methamphetamine is a powerful addictive, which has been associated with ischemic stroke and brain hemorrhage in humans. Whether and how methamphetamine influences the expression of tight junctions and adenosine triphosphate-binding cassette transporters, which have previously been shown to be regulated by apolipoprotein-E (ApoE) under conditions of brain ischemia, was unknown. METHODS C57BL/6J mice received intraperitoneal injections of methamphetamine (3 times 4 mg/kg separated by 3 hours) either alone or in combination with the ApoE receptor-2 inhibitor receptor-associated protein (40 μg/kg) or the inducible nitric oxide synthase inhibitor 1400W (5 mg/kg). Animals were euthanized 3 or 24 hours after methamphetamine exposure. Tissue responses were evaluated with Western blots, immunoprecipitation, and immunohistochemistry using total brain and cerebral microvessel extracts. RESULTS Methamphetamine induced a transient activation of stress kinases c-Jun N-terminal kinase 1/2 and p38 in the brain parenchyma and increased intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression on cerebral microvessels without inducing loss of tight junction proteins and without inducing IgG extravasation. Methamphetamine transiently increased the expression of the luminal adenosine triphosphate-binding cassette transporter ABCB1 on cerebral microvessels and reduced the expression of the abluminal transporter ABCC1. Elevated expression of ApoE was noted in the brain parenchyma by methamphetamine, activating ApoE receptor-2 on brain capillaries, deactivating c-Jun N-terminal kinase 1/2 and c-Jun, and regulating ABCB1 and ABCC1 expression. Indeed, ApoE receptor-2 and inducible nitric oxide synthase inhibition prevented the ABCB1 and ABCC1 expression changes. CONCLUSIONS Acute exposure to methamphetamine at doses comparable to those consumed in drug addiction does not induce tight junction breakdown but differentially regulates adenosine triphosphate-binding cassette transporters through the ApoE/ApoE receptor-2/c-Jun N-terminal kinase 1/2 pathway.
Collapse
Affiliation(s)
- Ayman ElAli
- Department of Neurology, University Hospital Essen, Hufelandstr 55, D-45122 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Angiotensin III Induces c-Jun N-terminal Kinase Leading to Proliferation of Rat Astrocytes. Neurochem Res 2012; 37:1475-81. [DOI: 10.1007/s11064-012-0738-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
23
|
Spencer JPE, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012; 33:83-97. [PMID: 22107709 DOI: 10.1016/j.mam.2011.10.016] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/14/2011] [Indexed: 01/01/2023]
Abstract
Neuroinflammatory processes are known to contribute to the cascade of events culminating in the neuronal damage that underpins neurodegenerative disorders such as Parkinson's and Alzheimer's disease. Recently, there has been much interest in the potential neuroprotective effects of flavonoids, a group of plant secondary metabolites known to have diverse biological activity in vivo. With respect to the brain, flavonoids, such as those found in cocoa, tea, berries and citrus, have been shown to be highly effective in preventing age-related cognitive decline and neurodegeneration in both animals and humans. Evidence suggests that flavonoids may express such ability through a multitude of physiological functions, including an ability to modulate the brains immune system. This review will highlight the evidence for their potential to inhibit neuroinflammation through an attenuation of microglial activation and associated cytokine release, iNOS expression, nitric oxide production and NADPH oxidase activity. We will also detail the current evidence indicting that their regulation of these immune events appear to be mediated by their actions on intracellular signaling pathways, including the nuclear factor-κB (NF-κB) cascade and mitogen-activated protein kinase (MAPK) pathway. As such, flavonoids represent important precursor molecules in the quest to develop of a new generation of drugs capable of counteracting neuroinflammation and neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|
24
|
Mamik MK, Banerjee S, Walseth TF, Hirte R, Tang L, Borgmann K, Ghorpade A. HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κB signaling mechanisms. J Neuroinflammation 2011; 8:145. [PMID: 22027397 PMCID: PMC3247131 DOI: 10.1186/1742-2094-8-145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 10/25/2011] [Indexed: 01/06/2023] Open
Abstract
Background Infection with human immunodeficiency virus type-1 (HIV)-1 leads to some form of HIV-1-associated neurocognitive disorders (HAND) in approximately half of the cases. The mechanisms by which astrocytes contribute to HIV-1-associated dementia (HAD), the most severe form of HAND, still remain unresolved. HIV-1-encephalitis (HIVE), a pathological correlate of HAD, affects an estimated 9-11% of the HIV-1-infected population. Our laboratory has previously demonstrated that HIVE brain tissues show significant upregulation of CD38, an enzyme involved in calcium signaling, in astrocytes. We also reported an increase in CD38 expression in interleukin (IL)-1β-activated astrocytes. In the present investigation, we studied regulatory mechanisms of CD38 gene expression in astrocytes activated with HIV-1-relevant stimuli. We also investigated the role of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in astrocyte CD38 regulation. Methods Cultured human astrocytes were transfected with HIV-1YU-2 proviral clone and levels of CD38 mRNA and protein were measured by real-time PCR gene expression assay, western blot analysis and immunostaining. Astrocyte activation by viral transfection was determined by analyzing proinflammatory chemokine levels using ELISA. To evaluate the roles of MAPKs and NF-κB in CD38 regulation, astrocytes were treated with MAPK inhibitors (SB203580, SP600125, U0126), NF-κB interfering peptide (SN50) or transfected with dominant negative IκBα mutant (IκBαM) prior to IL-1β activation. CD38 gene expression and CD38 ADP-ribosyl cyclase activity assays were performed to analyze alterations in CD38 levels and function, respectively. Results HIV-1YU-2-transfection significantly increased CD38 mRNA and protein expression in astrocytes (p < 0.01) in a dose-dependent manner and induced astrocyte activation. IL-β-activation of HIV-1YU-2-transfected astrocytes significantly increased HIV-1 gene expression (p < 0.001). Treatment with MAPK inhibitors or NF-κB inhibitor SN50 abrogated IL-1β-induced CD38 expression and activity in astrocytes without altering basal CD38 levels (p < 0.001). IκBαM transfection also significantly inhibited IL-1β-mediated increases in CD38 expression and activity in astrocytes (p < 0.001). Conclusion The present findings demonstrate a direct involvement of HIV-1 and virus-induced proinflammatory stimuli in regulating astrocyte-CD38 levels. HIV-1YU-2-transfection effectively induced HIV-1p24 protein expression and activated astrocytes to upregulate CCL2, CXCL8 and CD38. In astrocytes, IL-1β-induced increases in CD38 levels were regulated through the MAPK signaling pathway and by the transcription factor NF-κB. Future studies may be directed towards understanding the role of CD38 in response to infection and thus its role in HAND.
Collapse
Affiliation(s)
- Manmeet K Mamik
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Proteasome Inhibitor Reduces Astrocytic iNOS Expression and Functional Deficit after Experimental Intracerebral Hemorrhage in Rats. Transl Stroke Res 2011; 3:146-53. [PMID: 24323759 DOI: 10.1007/s12975-011-0108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is associated with perihematoma inflammation and edema. We have recently shown cell death and a robust activation of the proinflammatory transcription factor, nuclear factor-κB (NF-κB) in brain areas adjacent to the hematoma. Proteasome represents a key component necessary for the activation of NF-κB. The aim of our present study was to examine if selective proteasome inhibition with a clinically relevant agent, PS-519, might influence the ICH pathogenesis, and improve functional outcome. ICH was induced in Sprague-Dawley rats by the double blood injection method. PS-519 was administered intravenously 4 h and 15 min after induction of ICH. Behavioral testing was performed 3, 5, and 7 days later. The animals were sacrificed on day 7, and their brains were evaluated for hemorrhage size and inflammation using immunohistochemistry with antibody to various inflammatory markers. Treatment with PS-519 significantly (p < 0.05) reduced behavioral impairment post-ICH as determined by the footfault test. This effect was not due to difference in ICH volume. The improved functional status of PS-519 treated animals correlated positively (p < 0.01) with reduced expression of astroglial iNOS in areas adjacent to the hemorrhage 7 days post-ICH. No delayed changes in expression of OX-42 and ED-1 (microglia/macrophages marker), or vimentin (intermediate filament; marker of astroglia activation) were detected in animals treated with PS-519. This data suggests that modulation of proteasome-activated processes may represent a strategic target for treatment of ICH in humans.
Collapse
|
26
|
Weng CJ, Chen MJ, Yeh CT, Yen GC. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. N Biotechnol 2011; 28:767-77. [DOI: 10.1016/j.nbt.2011.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/30/2022]
|
27
|
Wang HH, Hsieh HL, Yang CM. Nitric oxide production by endothelin-1 enhances astrocytic migration via the tyrosine nitration of matrix metalloproteinase-9. J Cell Physiol 2011; 226:2244-56. [PMID: 21660948 DOI: 10.1002/jcp.22560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The deleterious effects of endothelin-1 (ET-1) in the central nervous system (CNS) include disturbance of water homeostasis and blood-brain barrier (BBB) integrity. In the CNS, ischemic injury elicits ET-1 release from astrocytes, behaving through G-protein coupled ET receptors. These considerations raise the question of whether ET-1 influences cellular functions of astrocytes, the major cell type that provides structural and functional support for neurons. Uncontrolled nitric oxide (NO) production has been implicated in sterile brain insults, neuroinflammation, and neurodegenerative diseases, which involve astrocyte activation and neuronal death. However, the detailed mechanisms of ET-1 action related to NO release on rat brain astrocytes (RBA-1) remain unknown. In this study, we demonstrate that exposure of astrocytes to ET-1 results in the inducible nitric oxide synthase (iNOS) up-regulation, NO production, and matrix metalloproteinase-9 (MMP-9) activation in astrocytes. The data obtained with Western blot, reverse transcription-PCR (RT-PCR), and immunofluorescent staining analyses showed that ET-1-induced iNOS expression and NO production were mediated through an ET(B)-dependent transcriptional activation. Engagement of G(i/o)--and G(q) -coupled ET(B) receptors by ET-1 led to activation of c-Src-dependent phosphoinositide 3-kinase (PI3K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK) and then activated transcription factor nuclear factor-κB (NF-κB). The activated NF-κB was translocated into nucleus and thereby promoted iNOS gene transcription. Ultimately, NO production stimulated by ET-1 enhanced the migration of astrocytes through the tyrosine nitration of MMP-9. Taken together, these results suggested that in astrocytes, activation of NF-κB by ET(B)-dependent c-Src, PI3K/Akt, and p42/p44 MAPK signalings is necessary for ET-1-induced iNOS gene up-regulation.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
28
|
CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes. Biochem Biophys Res Commun 2011; 409:687-92. [DOI: 10.1016/j.bbrc.2011.05.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/11/2011] [Indexed: 11/17/2022]
|
29
|
Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y. Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation 2010; 7:46. [PMID: 20712904 PMCID: PMC2936301 DOI: 10.1186/1742-2094-7-46] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/17/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Inflammatory responses in the CNS mediated by activated glial cells play an important role in host-defense but are also involved in the development of neurodegenerative diseases. Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect microglia and astrocyte from inflammatory insults and explored mechanisms underlying different inhibitory effects of resveratrol on microglia and astrocytes. METHODS A murine microglia cell line (N9), primary microglia, or astrocytes were stimulated by LPS with or without different concentrations of resveratrol. The expression and release of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6, MCP-1) and iNOS/NO by the cells were measured by PCR/real-time PCR and ELISA, respectively. The phosphorylation of the MAP kinase superfamily was analyzed by western blotting, and activation of NF-kappaB and AP-1 was measured by luciferase reporter assay and/or electrophoretic mobility shift assay. RESULTS We found that LPS stimulated the expression of TNF-alpha, IL-1beta, IL-6, MCP-1 and iNOS in murine microglia and astrocytes in which MAP kinases, NF-kappaB and AP-1 were differentially involved. Resveratrol inhibited LPS-induced expression and release of TNF-alpha, IL-6, MCP-1, and iNOS/NO in both cell types with more potency in microglia, and inhibited LPS-induced expression of IL-1beta in microglia but not astrocytes. Resveratrol had no effect on LPS-stimulated phosphorylation of ERK1/2 and p38 in microglia and astrocytes, but slightly inhibited LPS-stimulated phosphorylation of JNK in astrocytes. Resveratrol inhibited LPS-induced NF-kappaB activation in both cell types, but inhibited AP-1 activation only in microglia. CONCLUSION These results suggest that murine microglia and astrocytes produce proinflammatory cytokines and NO in response to LPS in a similar pattern with some differences in signaling molecules involved, and further suggest that resveratrol exerts anti-inflammatory effects in microglia and astrocytes by inhibiting different proinflammatory cytokines and key signaling molecules.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Key laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ruimi N, Petrova RD, Agbaria R, Sussan S, Wasser SP, Reznick AZ, Mahajna J. Inhibition of TNFα-induced iNOS expression in HSV-tk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-κB- and MAPK-dependent mechanisms. Mol Biol Rep 2010; 37:3801-12. [PMID: 20224909 DOI: 10.1007/s11033-010-0035-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/24/2010] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) is a gaseous, radical molecule that plays a role in various physiological processes. Previously, we reported that transduction of murine colon cancer cells (MC38) with herpes simplex virus thymidine kinase (HSV-tk) gene resulted in a significant over-expression of cyclooxygenase-2 (COX-2) and activation of NF-kB pathway. In this study we show that TNFα, but not LPS, was significantly able to stimulate the production of NO in HSV-tk transduced 9L glioblastoma cell lines, mediated by the up-regulation of iNOS transcript and iNOS protein. The TNFα-induced up-regulation of iNOS expression was mediated by MAPK and NF-κB signaling pathways as revealed by using selective pharmaceutical inhibitors. A culture liquid extract of the edible and medicinal mushroom Marasmius oreades that was previously shown to inhibit iNOS expression in MCF-7 was utilized to prepare fractions and evaluate their ability to affect TNFα-induced iNOS expression in HSV tk transduced 9L cell lines. While most of the tested fractions were shown to inhibit TNFα-induced iNOS expression, they targeted different signaling pathways in a selective fashion. Here, we report that fraction SiSiF1 interfered with IKBα phosphorylation and consequently interfered with NF-κB activation pathway. SiSiF1 showed minimal interference with the phosphorylation of p38 and JNK proteins. In contrast, fraction SiSiF3 selectively inhibited the phosphorylation of p38 and fractions SiSiF4 and SiSiF5 selectively inhibited the phosphorylation of JNK with no observed effect against IKBα and p38 phosphorylation. Our data illustrate the complexity of iNOS regulation in HSV tk transduced 9L cell lines and also the richness of natural products with bioactive substances that may act synergistically through different signaling pathways to affect iNOS gene expression.
Collapse
Affiliation(s)
- Nili Ruimi
- Migal-Galilee Technology Center, Cancer Drug Discovery Program, P.O. Box 831, Kiryat Shmona, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Yellepeddi VK, Kumar A, Palakurthi S. Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin Drug Deliv 2009; 6:835-50. [DOI: 10.1517/17425240903061251] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Pocivavsek A, Burns MP, Rebeck GW. Low-density lipoprotein receptors regulate microglial inflammation through c-Jun N-terminal kinase. Glia 2009; 57:444-53. [PMID: 18803301 PMCID: PMC2628955 DOI: 10.1002/glia.20772] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apolipoprotein E (apoE) has been implicated in modulating the central nervous system (CNS) inflammatory response. However, the molecular mechanisms involved in apoE-dependent immunomodulation are poorly understood. We hypothesize that apoE alters the CNS inflammatory response by signaling via low-density lipoprotein (LDL) receptors in glia. To address this hypothesis, we used a small bioactive peptide formed from the receptor-binding domain of apoE, apoE peptide (EP), to study LDL receptor signaling in microglia. To model glial activation, we treated primary mouse microglia and the microglial cell line BV2 with lipopolysaccharide (LPS) and studied two inflammatory responses: an increase in nitric oxide production (NO) and a decrease in apoE production. We found that treatment of primary microglia and BV2 cells with EP attenuated LPS-induced NO accumulation and apoE reduction in a dose-dependent manner. Using the receptor-associated protein to block ligand binding to members of the LDL receptor family, we found that EP attenuated both of these LPS-induced inflammatory responses via LDL receptors. We studied two intracellular signaling cascades associated with apoE: c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). LPS induced both ERK and JNK activation, whereas EP induced ERK activation, but drastically reduced JNK activation. Inhibition of JNK with SP600125 reduced LPS-induced NO production and apoE reduction in a dose-dependent manner. Treatment of microglia with suboptimal EP in combination with JNK inhibitor enhanced attenuation of LPS-induced NO production. These data suggest that microglial LDL receptors regulate JNK activation, which is necessary for apoE modulation of the inflammatory response.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Neuroscience, Georgetown University, New Research Building, Washington, District of Columbia 20057-1464, USA
| | | | | |
Collapse
|
33
|
Abstract
The profound hypermetabolic response to burn injury is associated with insulin resistance and hyperglycemia, significantly contributing to the incidence of morbidity and mortality in this patient population. These responses are present in all trauma, surgical, or critically ill patients, but the severity, length, and magnitude is unique for burn patients. Although advances in therapeutic strategies to attenuate the postburn hypermetabolic response have significantly improved the clinical outcome of these patients during the past years, therapeutic approaches to overcome stress-induced hyperglycemia have remained challenging. Intensive insulin therapy has been shown to significantly reduce morbidity and mortality in critically ill patients. High incidence of hypoglycemic events and difficult blood glucose titrations have led to investigation of alternative strategies, including the use of metformin, a biguanide, or fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist. Nevertheless, weaknesses and potential side affects of these drugs reinforces the need for better understanding of the molecular mechanisms underlying insulin resistance postburn that may lead to novel therapeutic strategies further improving the prognosis of these patients. This review aims to discuss the mechanisms underlying insulin resistance induced hyperglycemia postburn and outlines current therapeutic strategies that are being used to modulate hyperglycemia after thermal trauma.
Collapse
|
34
|
Porphyromonas gingivalis, gamma interferon, and a proapoptotic fibronectin matrix form a synergistic trio that induces c-Jun N-terminal kinase 1-mediated nitric oxide generation and cell death. Infect Immun 2008; 76:5514-23. [PMID: 18838522 DOI: 10.1128/iai.00625-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During infection and inflammation, bacterial and inflammatory proteases break down extracellular matrices into macromolecular fragments. Fibronectin fragments are associated with disease severity in arthritis and periodontitis. The mechanisms by which these fragments contribute to disease pathogenesis are unclear. One likely mechanism is that fibronectin fragments induce apoptosis of resident cells, which can be further modulated by nitric oxide. Nitric oxide levels are increased at inflammatory sites in periodontitis patients. The aim of this study was to examine whether a proapoptotic fibronectin matrix (AFn) exerts its action by inducing nitric oxide and whether priming by bacterial and inflammatory components exacerbates this mechanism. Our data demonstrate that AFn increased the levels of nitric oxide and inducible nitric oxide synthase (iNOS) dose and time dependently in periodontal ligament (PDL) cells. These effects and apoptosis were inhibited by iNOS suppression and enhanced by iNOS overexpression. Nitric oxide and iNOS induction were paralleled by increased c-Jun N-terminal kinase 1 (JNK-1) phosphorylation. JNK-1 overexpression enhanced the expression of nitric oxide and iNOS, whereas inhibiting JNK-1 by small interfering RNA or a kinase mutant reversed these findings. Priming PDL cells with Porphyromonas gingivalis, its lipopolysaccharide (LPS), or gamma interferon (IFN-gamma) further increased nitric oxide levels and apoptosis. Escherichia coli and Streptococcus mutans induced lesser effects. Gingival fibroblasts and neutrophils responded to a lesser degree to these stimuli, whereas keratinocytes were resistant to apoptosis. Thus, proapoptotic matrices trigger nitric oxide release via JNK-1, promoting further apoptosis in host cells. LPS and IFN-gamma accentuate this mechanism, suggesting that during inflammation, the affected matrices and bacterial and inflammatory components combined exert a greater pathogenic effect on host cells.
Collapse
|
35
|
Hwang J, Zheng LT, Ock J, Lee MG, Kim SH, Lee HW, Lee WH, Park HC, Suk K. Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology 2008; 55:826-34. [PMID: 18639562 DOI: 10.1016/j.neuropharm.2008.06.045] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 05/26/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may contribute to neuronal cell death. Inhibition of glial activation may alleviate neurodegeneration under these conditions. In the present study, the antiinflammatory and neuroprotective effects of tricyclic antidepressants were investigated using cultured brain cells as a model. The results showed that clomipramine and imipramine significantly decreased the production of nitric oxide or tumor necrosis factor-alpha (TNF-alpha) in microglia and astrocyte cultures. Clomipramine and imipramine also attenuated the expression of inducible nitric oxide synthase and proinflammatory cytokines such as interleukin-1beta and TNF-alpha at mRNA levels. In addition, clomipramine and imipramine inhibited IkappaB degradation, nuclear translocation of the p65 subunit of NF-kappaB, and phosphorylation of p38 mitogen-activated protein kinase in the lipopolysaccharide-stimulated microglia cells. Moreover, clomipramine and imipramine were neuroprotective as the drugs reduced microglia-mediated neuroblastoma cell death in a microglia/neuron co-culture. Therefore, these results imply that clomipramine and imipramine have antiinflammatory and neuroprotective effects in the central nervous system by modulating glial activation.
Collapse
Affiliation(s)
- Jaegyu Hwang
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Joong-gu, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Isakovic A, Harhaji L, Dacevic M, Trajkovic V. Adenosine rescues glioma cells from cytokine-induced death by interfering with the signaling network involved in nitric oxide production. Eur J Pharmacol 2008; 591:106-13. [DOI: 10.1016/j.ejphar.2008.06.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/12/2008] [Accepted: 06/22/2008] [Indexed: 01/22/2023]
|
37
|
Abstract
Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects on the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by improving cognitive function. It is likely that flavonoids exert such effects, through selective actions on different components of a number of protein kinase and lipid kinase signalling cascades, such as the phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase (MAPK) pathways. This review explores the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to underlie neurological effects through their ability to affect the activation state of target molecules and/or by modulating gene expression. Future research directions are outlined in relation to the precise site(s) of action of flavonoids within signalling pathways and the sequence of events that allow them to regulate neuronal function.
Collapse
|
38
|
Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int Immunopharmacol 2008; 8:484-94. [DOI: 10.1016/j.intimp.2007.12.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 11/18/2022]
|
39
|
Clark MA, Guillaume G, Pierre-Louis HC. Angiotensin II induces proliferation of cultured rat astrocytes through c-Jun N-terminal kinase. Brain Res Bull 2008; 75:101-6. [DOI: 10.1016/j.brainresbull.2007.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
|
40
|
Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. J Biol Chem 2007; 282:24120-30. [PMID: 17581824 DOI: 10.1074/jbc.m611435200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone fragility induced by chronic glucocorticoid excess is due, at least in part, to induction of osteocyte apoptosis through direct actions on these cells. However, the molecular mechanism by which glucocorticoids shorten osteocyte life span has remained heretofore unknown. We report that apoptosis of osteocytic MLO-Y4 cells induced by the synthetic glucocorticoid dexamethasone is abolished by the glucocorticoid receptor antagonist RU486, but not by inhibition of protein or RNA synthesis. Dexamethasone-induced apoptosis is preceded by a decrease in the number of cytoplasmic processes, an indicator of cell detachment. In addition, the focal adhesion kinase FAK prevents dexamethasone-induced apoptosis, whereas the FAK-related kinase Pyk2 increases the basal levels of apoptosis. Dexamethasone-induced apoptosis is also prevented in cells expressing kinase-deficient or phosphorylation-defective (Y402F) dominant negative mutants of Pyk2. Consistent with the requirement of tyrosine 402, dexamethasone induces rapid Pyk2 phosphorylation in this residue. Moreover, knocking down Pyk2 expression abolishes apoptosis and cell detachment induced by dexamethasone, and transfection with human Pyk2 rescues both responses. Furthermore, induction of apoptosis as well as cell detachment by dexamethasone is abolished by inhibiting the activity of JNK, a recognized downstream target of Pyk2 activation. These results demonstrate that glucocorticoids promote osteocyte apoptosis via a receptor-mediated mechanism that does not require gene transcription and that is mediated by rapid activation of Pyk2 and JNK, followed by inside-out signaling that leads to cell detachment-induced apoptosis or anoikis.
Collapse
Affiliation(s)
- Lillian I Plotkin
- Division of Endocrinology and Metabolism, the Center for Osteoporosis and Metabolic Bone Diseases, the Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | | | |
Collapse
|
41
|
Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, Lee JD, Choi YH, Kim GY. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 2007; 7:1092-101. [PMID: 17570326 DOI: 10.1016/j.intimp.2007.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 04/06/2007] [Accepted: 04/06/2007] [Indexed: 01/21/2023]
Abstract
Bee venom (BV), well known as a traditional Oriental medicine, has been shown to exhibit anti-arthritic and anti-carcinogenic effects. However, the molecular mechanisms responsible for the anti-inflammatory activity of BV have not been elucidated in microglia. In the present study, we investigated the anti-inflammatory effect of BV and its major component, melittin (MEL), on lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicate that BV and MEL suppress LPS-induced nitric oxide (NO) and inducible NO synthase (iNOS) expression in a dose-dependent manner, without causing cytotoxicity in BV2 microglia. Moreover, BV and MEL suppressed LPS-induced activation of nuclear factor kappa B (NF-kappaB) by blocking degradation of IkappaBalpha and phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, which resulted in inhibition of iNOS expression. Our data also indicate that BV and MEL exert anti-inflammatory effects by suppressing the transcription of cyclooxygenase (COX)-2 genes and proinflammatory cytokines, such as interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha. BV and MEL also attenuated the production of prostaglandin E(2) (PGE(2)). These results demonstrate that BV and MEL possess a potent suppressive effect on proinflammatory responses of BV2 microglia and suggest that these compounds may offer substantial therapeutic potential for treatment of neurodegenerative diseases that are accompanied by microglial activation.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Faculty of Applied Marine Science, Cheju National University, Jeju-si, Jeju Special Self-Governing Province 690-756, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bogoyevitch MA. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays 2007; 28:923-34. [PMID: 16937364 DOI: 10.1002/bies.20458] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family. In mammalian genomes, three genes encode the JNK family. To evaluate JNK function, mice have been created with deletions in one or more of three Jnk genes. Initial studies on jnk1(-/-) or jnk2(-/-) mice have shown roles for these JNKs in the immune system whereas studies on jnk3(-/-) mice have highlighted roles for JNK3 in the nervous system. Further studies have highlighted the contributions of JNK1 and/or JNK2 to a range of biological and pathological processes. These include bone remodelling and joint disease, inflammatory and autoimmune diseases, obesity, diabetes, cardiovascular disease, liver disease and tumorigenesis in addition to effects in neurons. These results emphasise the differences in the roles played by JNK isoforms in vivo and suggest that the design of JNK inhibitors for subsequent therapeutic uses may benefit from selective inhibition of individual JNK isoforms.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
43
|
Abstract
Insulin resistance is a major causative factor for type 2 diabetes and is associated with increased risk of cardiovascular disease. Despite intense investigation for a number of years, molecular mechanisms underlying insulin resistance remain to be determined. Recently, chronic inflammation has been highlighted as a culprit for obesity-induced insulin resistance. Nonetheless, upstream regulators and downstream effectors of chronic inflammation in insulin resistance remain unclarified. Inducible nitric oxide synthase (iNOS), a mediator of inflammation, has emerged as an important player in insulin resistance. Obesity is associated with increased iNOS expression in insulin-sensitive tissues in rodents and humans. Inhibition of iNOS ameliorates obesity-induced insulin resistance. However, molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Protein S-nitrosylation, a covalent attachment of NO moiety to thiol sulfhydryls, has emerged as a major mediator of a broad array of NO actions. S-nitrosylation is elevated in patients with type 2 diabetes, and increased S-nitrosylation of insulin signaling molecules, including insulin receptor, insulin receptor substrate-1, and Akt/PKB, has been shown in skeletal muscle of obese, diabetic mice. Akt/PKB is reversibly inactivated by S-nitrosylation. Based on these findings, S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- Masao Kaneki
- Department of Anesthesia & Critical Care, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
44
|
Moon DO, Kim KC, Jin CY, Han MH, Park C, Lee KJ, Park YM, Choi YH, Kim GY. Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Int Immunopharmacol 2006; 7:222-9. [PMID: 17178390 DOI: 10.1016/j.intimp.2006.10.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/27/2006] [Accepted: 10/04/2006] [Indexed: 02/01/2023]
Abstract
Upon activation, microglia release proinflammatory mediators that play important roles in eliciting neuroinflammatory responses associated with neurodegenerative diseases. The anti-inflammatory properties of eicosapentaenoic acid (EPA) have been known, however, the effects responsible for lipopolysaccharide (LPS)-induced activation remain poorly understood in microglia. In the present study, we investigated the effects of EPA on the expression of proinflammatory mediators in LPS-stimulated BV2 microglia. EPA significantly inhibited the release of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and proinflammatory cytokines such as interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. EPA also attenuated the production of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and proinflammatory cytokines at mRNA and/or protein levels. Moreover, EPA suppressed NF-kappaB activation by blocking IkappaB degradation, and also blocked the mitogen-activated protein kinases (MAPKs) such as ERK, p38 and JNK, and the Akt pathway. The anti-inflammatory properties of EPA may be useful for ameliorating neurodegenerative diseases as well as suppressing LPS-induced shock.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Faculty of Applied Marine Science, Cheju National University, Jeju, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Van Buren G, Camp ER, Yang AD, Gray MJ, Fan F, Somcio R, Ellis LM. The role of nitric oxide in mediating tumour blood flow. Expert Opin Ther Targets 2006; 10:689-701. [PMID: 16981826 DOI: 10.1517/14728222.10.5.689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) is a ubiquitous molecule with a myriad of physiological and pathophysiological roles. It has numerous direct and indirect effects on tumour vasculature as both a regulatory and effector molecule. NO affects tumour blood flow through its effects on tumour angiogenesis, vascular tone and vascular permeability, partly via its interaction with vascular endothelial growth factor. In this review, the authors examine the basic tenants of NO biology, the association of NO with tumour progression, and the role NO plays in mediating alterations in vascular functions in tumours.
Collapse
Affiliation(s)
- George Van Buren
- University of Texas, MD Anderson Cancer Center, Department of Surgical Oncology, Houston, TX 77230, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang D, Song L, Li J, Wu K, Huang C. Coordination of JNK1 and JNK2 is critical for GADD45alpha induction and its mediated cell apoptosis in arsenite responses. J Biol Chem 2006; 281:34113-23. [PMID: 16973625 DOI: 10.1074/jbc.m602821200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arsenite is a well documented environmental pathogen, whereas it has also been applied as medication to treat various neoplasmas. The pathogenic and therapeutic effects of arsenite are associated with cellular apoptotic responses. However, the molecular mechanisms of arsenite-induced apoptosis are not very well understood. Our previous study has shown that arsenite exposure is able to activate JNKs, which subsequently mediate the apoptotic outcome. The present study further revealed that the coordination of JNK1 and JNK2 was critical for the arsenite-induced expression of GADD45alpha (growth arrest and DNA damage 45alpha), which in turn mediated the cellular apoptosis. The arsenite-induced apoptosis and GADD45alpha expression were significantly impaired in mouse embryonic fibroblasts deficient in either jnk1 (JNK1-/-) or jnk2 (JNK2-/-). Knockdown of GADD45alpha by its specific small interfering RNA also dramatically reduced the apoptotic responses, and overexpression of GADD45alpha in either JNK1-/- or JNK2-/- mouse embryonic fibroblasts partially resensitized the cell death. Furthermore, it was found that the regulation of GADD45alpha by JNK1 and JNK2 was achieved through mediating the activation of c-Jun, since in the JNK1-/- and JNK2-/- cells the c-Jun activation was impaired, and overexpression of the dominant negative mutant of c-Jun (TAM67) in wild type cells could also block GADD45alpha induction as well as cellular apoptosis. Our results demonstrate that the coordination of JNK1 and JNK2 is critical for c-Jun/GADD45alpha-mediated cellular apoptosis induced by arsenite.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | |
Collapse
|
47
|
|