1
|
Rosalina R, Weerapreeyakul N, Sutthanut K, Kamwilaisak K, Sakonsinsiri C. Nanocellulose-based Pickering emulsion of sesamolin manifested increased anticancer activity and necrosis in human colon cancer (HCT116) cells. Int J Biol Macromol 2024; 292:139225. [PMID: 39732237 DOI: 10.1016/j.ijbiomac.2024.139225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Sesamolin possesses limited aqueous solubility, a drawback for biological activity study in cancer cell models. This study aimed to enhance sesamolin's ability to fight cancer, as it is a bioactive compound with low water solubility found in sesame. We developed different Pickering emulsion delivery systems and tested their anticancer effects on various cancer cell types. Sesamolin was incorporated into either sesame or olive oil and subsequently formulated as oil in water (o/w) Pickering emulsions stabilized by the carboxylated cellulose nanocrystal (cCNC). The anticancer activity was determined based on cell viability and the induction of cell death mechanisms. The results demonstrated a synergistic effect of the components in the emulsion, including sesamolin, sesame oil, and olive oil, and a decrease in HCT116 viability in a concentration-dependent manner and selectively on cancer cells compared to non-cancerous Vero cells. The primary mode of cell death was predominantly ROS-induced necrosis, with no change in caspase 3/7 activity, indicating the absence of apoptosis. This study first presents the necrotic cell death mechanism induced by sesamolin. The findings reveal that the cCNC emulsion delivery system is safe and appropriate for transporting lipophilic chemicals and can overcome solubility limitations.
Collapse
Affiliation(s)
- Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Khaetthareeya Sutthanut
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Han H, Wang S, Shahbazi MA, Zuhorn IS, Cai Z, Chen J, Li J, Chen Y, Du Y, Bártolo R, Chen L, Santos HA, Cui W. Reactive oxygen species switcher via MnO 2-coated Prussian blue loaded hyaluronic acid methacrylate hydrogel microspheres for local anti-tumor treatment. J Control Release 2024; 378:350-364. [PMID: 39701450 DOI: 10.1016/j.jconrel.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
ROS-induced therapy can eradicate breast tumors when combined with thermal ablation, but excessive ROS also threatens peritumoral tissue with inflammation. To eradicate tumors and avoid inflammatory sequela, it is necessary to generate ROS in treatment stage and scavenge ROS in prognostic stage. However, it is a great challenge to reverse ROS in different stages. Herein, the "ROS switcher" of MnO2-coated Prussian blue (PM) is loaded in hyaluronic acid methacrylate (HAMA) hydrogel microspheres, combining ROS generation by Mn-mediated Fenton-like reaction, and ROS scavenging by Fe3+/2+ electron transfer. Firstly, it is ROS generator that oxidatively damages biomacromolecules in residual tumors, then it is ROS scavenger that reduces pro-inflammatory cytokines and oxidation stress in peritumoral skin. Glucose oxidase is immobilized in HAMA microspheres to enhance ROS supply by catalyzing glucose into H2O2, degrading MnO2 into Mn2+, and providing H2O2 for a Fenton-like reaction. After MnO2 degradation, Prussian blue is gradually exposed and scavenges ROS, thus defending oxidative skin damage and alleviating ROS-stimulated inflammation. In vitro results indicate that the microsphere supplied sustained ROS for up to 5 days, and H2O2-degraded PM (0.2 mg mL-1) scavenged 500 μM H2O2. In vivo results confirm that 4/6 breast tumors were eradicated while pro-inflammatory cytokines were significantly reduced with ROS level in peri-tumoral skin. In summary, ROS switcher is developed by Mn-mediated nano-shell peeling and achieves tumor eradication and post-operative skin repair after thermal ablation of the breast tumor.
Collapse
Affiliation(s)
- Huijie Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands; Department of Biology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124 P. R. China
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Inge S Zuhorn
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Jie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Yu Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Raquel Bártolo
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Hélder A Santos
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
3
|
Mahapatra C, Thakkar R, Kumar R. Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1172. [PMID: 39456426 PMCID: PMC11504047 DOI: 10.3390/antiox13101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses, significantly affects cellular function and viability. It plays a pivotal role in modulating membrane potentials, particularly action potentials (APs), essential for properly functioning excitable cells such as neurons, smooth muscles, pancreatic beta cells, and myocytes. The interaction between oxidative stress and AP dynamics is crucial for understanding the pathophysiology of various conditions, including neurodegenerative diseases, cardiac arrhythmias, and ischemia-reperfusion injuries. This review explores how oxidative stress influences APs, focusing on alterations in ion channel biophysics, gap junction, calcium dynamics, mitochondria, and Interstitial Cells of Cajal functions. By integrating current research, we aim to elucidate how oxidative stress contributes to disease progression and discuss potential therapeutic interventions targeting this interaction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ravindra Thakkar
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Yang X, Cao S, Sun H, Deng Y, Zhang X, Li Y, Ma D, Chen H, Li W. The critical roles of the Zn 2Cys 6 transcription factor Fp487 in the development and virulence of Fusarium pseudograminearum: A potential target for Fusarium crown rot control. Microbiol Res 2024; 285:127784. [PMID: 38824820 DOI: 10.1016/j.micres.2024.127784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yan Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
5
|
Li L, Xu H, Wang Y, Zhang Y, Ye R, Li W, Yang J, Wu J, Li J, Jin E, Cao M, Li X, Li S, Liu C. From inflammation to pyroptosis: Understanding the consequences of cadmium exposure in chicken liver cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116004. [PMID: 38290315 DOI: 10.1016/j.ecoenv.2024.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Hepatotoxicity is frequently observed following acute cadmium (Cd) exposure in chicken. Oxidative stress and subsequent inflammation are regarded as the main reasons for cadmium-induced liver injury. NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome-induced pyroptosis is involved in various inflammatory diseases, including liver injury. Poultry are more susceptible to harmful effects of heavy metals. However, the mechanism of cadmium-induced liver injury in chicken is still elusive. In this study, the effect of cadmium on chicken liver cells and the underlying mechanisms were investigated. The results showed mitochondria was damaged and excessive reactive oxygen species (ROS) were generated in chicken liver cell line LMH after cadmium exposure. Furthermore, cadmium-induced NLRP3 inflammasome activation and the cell membrane rupture indicated LMH cells pyroptosis. The ROS scavengers, acetylcysteine (NAC) and Mito-TEMPO prevented pyroptosis in LMH cells, suggesting that ROS were responsible for the activation of the NLRP3 inflammasome induced by cadmium. Additionally, anti-oxidative transcription factor Nrf2 was inhibited after cadmium exposure, explaining the excessive ROS generation. In summary, our study showed that cadmium leads to ROS generation by inducing mitochondrial damage and inhibiting Nrf2 activity, which promotes NLRP3 inflammasome activation and eventually induces pyroptosis in LMH cells.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Hao Xu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yu Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Ruiqi Ye
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Wen Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jingyi Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jiale Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Mixia Cao
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China.
| | - Chang Liu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China.
| |
Collapse
|
6
|
Piciu F, Balas M, Badea MA, Cucu D. TRP Channels in Tumoral Processes Mediated by Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:1327. [PMID: 37507867 PMCID: PMC10376197 DOI: 10.3390/antiox12071327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The channels from the superfamily of transient receptor potential (TRP) activated by reactive oxygen species (ROS) can be defined as redox channels. Those with the best exposure of the cysteine residues and, hence, the most sensitive to oxidative stress are TRPC4, TRPC5, TRPV1, TRPV4, and TRPA1, while others, such as TRPC3, TRPM2, and TRPM7, are indirectly activated by ROS. Furthermore, activation by ROS has different effects on the tumorigenic process: some TRP channels may, upon activation, stimulate proliferation, apoptosis, or migration of cancer cells, while others inhibit these processes, depending on the cancer type, tumoral microenvironment, and, finally, on the methods used for evaluation. Therefore, using these polymodal proteins as therapeutic targets is still an unmet need, despite their draggability and modulation by simple and mostly unharmful compounds. This review intended to create some cellular models of the interaction between oxidative stress, TRP channels, and inflammation. Although somewhat crosstalk between the three actors was rather theoretical, we intended to gather the recently published data and proposed pathways of cancer inhibition using modulators of TRP proteins, hoping that the experimental data corroborated clinical information may finally bring the results from the bench to the bedside.
Collapse
Affiliation(s)
- Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Dana Cucu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
7
|
Xu Y, Li A, Li X, Deng X, Gao XJ. Zinc Deficiency Induces Inflammation and Apoptosis via Oxidative Stress in the Kidneys of Mice. Biol Trace Elem Res 2023; 201:739-750. [PMID: 35211842 DOI: 10.1007/s12011-022-03166-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Zinc (Zn) is an essential element that regulates not only cellular immunity but also antioxidant and anti-inflammatory agents. The present study investigated the effect of Zn deficiency on renal cell apoptosis and its mechanism. A Zn-deficient kidney model in mice was created by a Zn-deficient diet. Mice were fed diets with different Zn levels for 41 days as follows: normal-Zn group (NG, 34 mg Zn/kg), low-Zn group (LG, 2 mg Zn/kg), and high-Zn group (HG, 100 mg Zn/kg). H&E staining showed that inflammatory cells and many erythrocytes exuded in the renal tissue space of the low-Zn group, and TUNEL staining indicated massive death of kidney cells in the low-Zn group. In the low-Zn group, the levels of oxygen free radicals (ROS) were significantly increased, the antioxidants were significantly decreased, and the total antioxidant capacity was decreased. Moreover, RT-qPCR and ELISA results showed that inflammatory factors (TNF-α, IL-1β, and IL-6) were significantly increased in the low-Zn group. In addition, the levels of p-IκBα, p-NF-κB p65, p-ERK, p-JNK, and p-p38 were significantly increased in the low-Zn group, indicating that zinc deficiency activates NF-κB and MAPK signalling as well as increases its expression. RT-qPCR analysis of apoptosis-related genes, including Bcl-2 Bax, Caspa8, Caspa6, and Caspa3, demonstrated that the expression levels of proapoptotic genes in mouse kidneys were significantly increased. Importantly, the in vitro results were consistent with the in vivo results. Together, these data suggested that zinc deficiency induces renal oxidative stress to activate NF-κB and MAPK signalling, thereby inducing renal cell apoptosis.
Collapse
Affiliation(s)
- Yueqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xian Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
8
|
Liu C, Li P, Zheng J, Wang Y, Wu W, Liu X. Role of necroptosis in airflow limitation in chronic obstructive pulmonary disease: focus on small-airway disease and emphysema. Cell Death Dis 2022; 8:363. [PMID: 35973987 PMCID: PMC9381515 DOI: 10.1038/s41420-022-01154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
Abstract
Airflow limitation with intractable progressive mechanisms is the main disease feature of chronic obstructive pulmonary disease (COPD). The pathological process of airflow limitation in COPD involves necroptosis, a form of programmed necrotic cell death with pro-inflammatory properties. In this paper, the correlations of small-airway disease and emphysema with airflow limitation in COPD were firstly reviewed; then, based on this, the effects of necroptosis on small-airway disease and emphysema were analysed, and the possible mechanisms of necroptosis causing airflow limitation in COPD were explored. The results showed that airflow limitation is caused by a combination of small-airway disease and emphysema. In addition, toxic particulate matter stimulates epithelial cells to trigger necroptosis, and necroptosis promotes the expulsion of cell contents, the abnormal hyperplasia of pro-inflammatory mediators and the insufficient clearance of dead cells by macrophages; these processes, coupled with the interaction of necroptosis and oxidative stress, collectively result in small-airway disease and emphysema in COPD.
Collapse
Affiliation(s)
- Chanjing Liu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jiejiao Zheng
- Department of Rehabilitation Medicine, Huadong Hospital, Shanghai, People's Republic of China
| | - Yingqi Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, People's Republic of China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Molecular Mechanisms of Acute Organophosphate Nephrotoxicity. Int J Mol Sci 2022; 23:ijms23168855. [PMID: 36012118 PMCID: PMC9407954 DOI: 10.3390/ijms23168855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Organophosphates (OPs) are toxic chemicals produced by an esterification process and some other routes. They are the main components of herbicides, pesticides, and insecticides and are also widely used in the production of plastics and solvents. Acute or chronic exposure to OPs can manifest in various levels of toxicity to humans, animals, plants, and insects. OPs containing insecticides were widely used in many countries during the 20th century, and some of them continue to be used today. In particular, 36 OPs have been registered in the USA, and all of them have the potential to cause acute and sub-acute toxicity. Renal damage and impairment of kidney function after exposure to OPs, accompanied by the development of clinical manifestations of poisoning back in the early 1990s of the last century, was considered a rare manifestation of their toxicity. However, since the beginning of the 21st century, nephrotoxicity of OPs as a manifestation of delayed toxicity is the subject of greater attention of researchers. In this article, we present a modern view on the molecular pathophysiological mechanisms of acute nephrotoxicity of organophosphate compounds.
Collapse
|
10
|
Dubé L, Spahis S, Lachaîne K, Lemieux A, Monhem H, Poulin SM, Randoll C, Travaillaud E, Ould-Chikh NEH, Marcil V, Delvin E, Levy E. Specialized Pro-Resolving Mediators Derived from N-3 Polyunsaturated Fatty Acids: Role in Metabolic Syndrome and Related Complications. Antioxid Redox Signal 2022; 37:54-83. [PMID: 35072542 DOI: 10.1089/ars.2021.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.
Collapse
Affiliation(s)
- Laurent Dubé
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Karelle Lachaîne
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Hanine Monhem
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Carolane Randoll
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Eva Travaillaud
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Valérie Marcil
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Gastroenterology & Hepatology Unit, Université de Montréal, Montreal, Canada
| |
Collapse
|
11
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
12
|
Statins: Neurobiological underpinnings and mechanisms in mood disorders. Neurosci Biobehav Rev 2021; 128:693-708. [PMID: 34265321 DOI: 10.1016/j.neubiorev.2021.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022]
Abstract
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) treat dyslipidaemia and cardiovascular disease by inhibiting cholesterol biosynthesis. They also have immunomodulatory and anti-inflammatory properties. Beyond cardiovascular disease, cholesterol and inflammation appear to be components of the pathogenesis and pathophysiology of neuropsychiatric disorders. Statins may therefore afford some therapeutic benefit in mood disorders. In this paper, we review the pathophysiology of mood disorders with a focus on pharmacologically relevant pathways, using major depressive disorder and bipolar disorder as exemplars. Statins are discussed in the context of these disorders, with particular focus on the putative mechanisms involved in their anti-inflammatory and immunomodulatory effects. Recent clinical data suggest that statins may have antidepressant properties, however given their interactions with many known biological pathways, it has not been fully elucidated which of these are the major determinants of clinical outcomes in mood disorders. Moreover, it remains unclear what the appropriate dose, or appropriate patient phenotype for adjunctive treatment may be. High quality randomised control trials in concert with complementary biological investigations are needed if the potential clinical effects of statins on mood disorders, as well as their biological correlates, are to be better understood.
Collapse
|
13
|
Zhao S, Chen F, Yin Q, Wang D, Han W, Zhang Y. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol 2020; 11:571810. [PMID: 33324236 PMCID: PMC7723971 DOI: 10.3389/fphys.2020.571810] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 10 years, the crisis of sepsis has remained a great challenge. According to data from 2016, the sepsis-related mortality rate remains high. In addition, sepsis consumes extensive medical resources in intensive care units, and anti-inflammatory agents fail to improve sepsis-associated hyperinflammation and symptoms of immunosuppression. The specific immune mechanism of sepsis remains to be elucidated. Reactive oxygen species (ROS) are triggered by energy metabolism and respiratory dysfunction in sepsis, which not only cause oxidative damage to tissues and organelles, but also directly and indirectly promote NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. NLRP3 inflammasomes enlarge the inflammatory response and trigger apoptosis of immune cells to exacerbate sepsis progression. Inhibiting the negative effects of ROS and NLRP3 inflammasomes therefore provides the possibility of reversing the excessive inflammation during sepsis. In this review, we describe the interaction of ROS and NLRP3 inflammasomes during sepsis, provide prevention strategies, and identify fields that need further study.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Fan Chen
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Gadolinium Oxide Nanoparticles Induce Toxicity in Human Endothelial HUVECs via Lipid Peroxidation, Mitochondrial Dysfunction and Autophagy Modulation. NANOMATERIALS 2020; 10:nano10091675. [PMID: 32859033 PMCID: PMC7559735 DOI: 10.3390/nano10091675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
In spite of the potential preclinical advantage of Gd2O3 nanoparticles (designated here as GO NPs) over gadolinium-based compounds in MRI, recent concerns of gadolinium deposits in various tissues undergoing MRI demands a mechanistic investigation. Hence, we chose human to measure umbilical vein endothelial cells (HUVECs) that line the vasculature and relevant biomarkers due to GO NPs exposure in parallel with the NPs of ZnO as a positive control of toxicity. GO NPs, as measured by TEM, had an average length of 54.8 ± 29 nm and a diameter of 13.7 ± 6 nm suggesting a fiber-like appearance. With not as pronounced toxicity associated with a 24-h exposure, GO NPs induced a concentration-dependent cytotoxicity (IC50 = 304 ± 17 µg/mL) in HUVECs when exposed for 48 h. GO NPs emerged as significant inducer of lipid peroxidation (LPO), reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and autophagic vesicles in comparison to that caused by ZnO NPs at its IC50 for the same exposure time (48 h). While ZnO NPs clearly appeared to induce apoptosis, GO NPs revealed both apoptotic as well as necrotic potentials in HUVECs. Intriguingly, the exogenous antioxidant NAC (N-acetylcysteine) co-treatment significantly attenuated the oxidative imbalance due to NPs preventing cytotoxicity significantly.
Collapse
|
16
|
Jiang BW, Zhang WJ, Wang Y, Tan LP, Bao YL, Song ZB, Yu CL, Wang SY, Liu L, Li YX. Convallatoxin induces HaCaT cell necroptosis and ameliorates skin lesions in psoriasis-like mouse models. Biomed Pharmacother 2019; 121:109615. [PMID: 31707343 DOI: 10.1016/j.biopha.2019.109615] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is considered an immune-mediated inflammatory skin disorder that affects the quality of life of nearly four percent of the world population. Considering the side effects of existing therapeutic drugs and the urgent need for new drug development, we screened more than 250 traditional Chinese medicine compounds to identify drugs that significantly reduced the viability of human HaCaT keratinocytes, a psoriasis-related model cell line. Convallatoxin (CNT) was found to be a highly effective inhibitor of HaCaT cell viability. Subsequent mechanistic studies revealed that CNT induced HaCaT cell death by necroptosis rather than by apoptosis. CNT destroyed the membrane integrity of HaCaT cells, as detected by nuclear propidium iodide (PI) staining and lactate dehydrogenase (LDH) release. Additionally, the intercellular levels of adenosine triphosphate (ATP) were lower in HaCaT cells treated with CNT than in control HaCaT cells, and typical necroptosis-associated characteristics were observed by electron microscopy in cells treated with CNT. Furthermore, compared with control HaCaT cells, CNT-treated HaCaT cells produced more reactive oxygen species (ROS), but this effect was inhibited by the antioxidants N-acetyl-cysteine (NAC), diphenyleneiodonium chloride (DPI), and apocynin and the necroptosis inhibitor Nec-1. In addition, antioxidant treatment attenuated necroptotic cell death, suggesting that CNT-induced HaCaT necroptosis is mediated by oxidative stress. More importantly, CNT ameliorated skin lesions and inflammation in imiquimod (IMQ)- and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced psoriasis-like mouse models. In conclusion, our results demonstrate that CNT is cytotoxic against HaCaT cells in vitro and exerts antipsoriatic activities in two mouse models of psoriasis in vivo, making CNT a potential promising candidate drug for future research.
Collapse
Affiliation(s)
- Bo-Wen Jiang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Wen-Jing Zhang
- Research Centre of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130117, China
| | - Ying Wang
- School of Life Science, Northeast Normal University, Changchun, 130024, China
| | - Li-Ping Tan
- School of Life Science, Northeast Normal University, Changchun, 130024, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China.
| | - Zhen-Bo Song
- School of Life Science, Northeast Normal University, Changchun, 130024, China
| | - Chun-Lei Yu
- Research Centre of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130117, China
| | - Shu-Yue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China.
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Yu-Xin Li
- School of Life Science, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
17
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
18
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
19
|
Zhang Z, Xue H, Dong Y, Zhang J, Pan Y, Shi L, Xiong P, Zhu J, Li W, Zheng W, Liu J, Du J. GKN2 promotes oxidative stress-induced gastric cancer cell apoptosis via the Hsc70 pathway. J Exp Clin Cancer Res 2019; 38:338. [PMID: 31382983 PMCID: PMC6683576 DOI: 10.1186/s13046-019-1336-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The GKN2 is a secretory protein, whose levels decrease in gastric cancer. The present study aimed to investigate the expression, function and mechanism of action of GKN2 in gastric cancer. METHODS Molecular biology assays were performed to elucidate the function and underlying mechanisms of GKN2 in gastric cancer under stress-induced condition in vivo and in vitro. Clinical specimens were used to assess the correlation of GKN2 and prognosis. RESULTS We found that overexpression of GKN2 significantly enhanced apoptosis and growth arrest in vitro. GKN2 expression increased in gastric cancer cells exposed to hydrogen peroxide and promoted reactive oxygen species-induced mitochondrial dysfunction and resulted in increased cell apoptosis via inhibition of NF-κB signaling pathway and activation of JNK signaling pathway through the direct interaction of GKN2 with Hsc70. Trefoil factor 1 might contribute to the tumor suppressing effects of GKN2. MiR-216a downregulated GKN2 expression. GKN2 also inhibited xenograft tumor growth and was an independent and significant prognostic factor for patients with gastric cancer treated with oxaliplatin. CONCLUSIONS Taken together, our data indicate that GKN2 may increase sensitivity of GC cells to the drugs which increase ROS levels in tumors. Inhibition of the interaction between GKN2 and Hsc70 could attenuate the effects induced by GKN2. GKN2 overexpression could be used to determine the subgroup of patients to obtain the more favorable outcome of oxaliplatin treatment and may be used as biomarker of the prognosis of this cancer.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Departments of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Hongyuan Xue
- Departments of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Yuanqiang Dong
- Departments of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Jun Zhang
- Departments of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Yida Pan
- Departments of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Liubin Shi
- Departments of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Panpan Xiong
- Departments of Digestive Diseases, Dongfang Hospital, Tongji University, Shanghai, China
| | - Jie Zhu
- Departments of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Wenshuai Li
- Departments of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Wanwei Zheng
- Departments of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Jie Liu
- Departments of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| | - Jianjun Du
- Departments of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040 People’s Republic of China
| |
Collapse
|
20
|
Tsubone TM, Junqueira HC, Baptista MS, Itri R. Contrasting roles of oxidized lipids in modulating membrane microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:660-669. [PMID: 30605637 DOI: 10.1016/j.bbamem.2018.12.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
Abstract
Lipid rafts display a lateral heterogeneity forming membrane microdomains that hold a fundamental role on biological membranes and are indispensable to physiological functions of cells. Oxidative stress in cellular environments may cause lipid oxidation, changing membrane composition and organization, thus implying in effects in cell signaling and even loss of homeostasis. The individual contribution of oxidized lipid species to the formation or disruption of lipid rafts in membranes still remains unknown. Here, we investigate the role of different structures of oxidized phospholipids on rafts microdomains by carefully controlling the membrane composition. Our experimental approach based on fluorescence microscopy of giant unilamellar vesicles (GUV) enables the direct visualization of the impact of hydroperoxidized POPC lipid (referred to as POPCOOH) and shortened chain lipid PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine) on phase separation. We found that the molecular structure of oxidized lipid is of paramount importance on lipid mixing and/or demixing. The hydrophobic mismatch promoted by POPCOOH coupled to its cylindrical molecular shape favor microdomains formation. In contrast, the conical shape of PazePC causes disarrangement of lipid 2D organized platforms. Our findings contribute to better unraveling how oxidized phospholipids can trigger formation or disruption of lipid rafts. As a consequence, phospholipid oxidation may indirectly affect association or dissociation of key biomolecules in the rafts thus altering cell signaling and homeostasis.
Collapse
Affiliation(s)
- Tayana Mazin Tsubone
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | | | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Nordzieke DE, Medraño-Fernandez I. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 2018; 7:antiox7110168. [PMID: 30463362 PMCID: PMC6262572 DOI: 10.3390/antiox7110168] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Membranes are of outmost importance to allow for specific signal transduction due to their ability to localize, amplify, and direct signals. However, due to the double-edged nature of reactive oxygen species (ROS)—toxic at high concentrations but essential signal molecules—subcellular localization of ROS-producing systems to the plasma membrane has been traditionally regarded as a protective strategy to defend cells from unwanted side-effects. Nevertheless, specialized regions, such as lipid rafts and caveolae, house and regulate the activated/inhibited states of important ROS-producing systems and concentrate redox targets, demonstrating that plasma membrane functions may go beyond acting as a securing lipid barrier. This is nicely evinced by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases (NOX), enzymes whose primary function is to generate ROS and which have been shown to reside in specific lipid compartments. In addition, membrane-inserted bidirectional H2O2-transporters modulate their conductance precisely during the passage of the molecules through the lipid bilayer, ensuring time-scaled delivery of the signal. This review aims to summarize current evidence supporting the role of the plasma membrane as an organizing center that serves as a platform for redox signal transmission, particularly NOX-driven, providing specificity at the same time that limits undesirable oxidative damage in case of malfunction. As an example of malfunction, we explore several pathological situations in which an inflammatory component is present, such as inflammatory bowel disease and neurodegenerative disorders, to illustrate how dysregulation of plasma-membrane-localized redox signaling impacts normal cell physiology.
Collapse
Affiliation(s)
- Daniela E Nordzieke
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Iria Medraño-Fernandez
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
22
|
López-Grueso MJ, González-Ojeda R, Requejo-Aguilar R, McDonagh B, Fuentes-Almagro CA, Muntané J, Bárcena JA, Padilla CA. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biol 2018; 21:101049. [PMID: 30639960 PMCID: PMC6327914 DOI: 10.1016/j.redox.2018.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental model. Grx1 or Trx1 silencing caused conspicuous changes in the redox proteome reflected by significant changes in the reduced/oxidized ratios of specific Cys's including several glycolytic enzymes. Cys91 of peroxiredoxin-6 (PRDX6) and Cys153 of phosphoglycerate mutase-1 (PGAM1), that are known to be involved in progression of tumor growth, are reported here for the first time as specific targets of Grx1. A group of proteins increased their CysRED/CysOX ratio upon Trx1 and/or Grx1 silencing, including caspase-3 Cys163, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Cys247 and triose-phosphate isomerase (TPI) Cys255 likely by enhancement of NOS3 auto-oxidation. The activities of several glycolytic enzymes were also significantly affected. Glycolysis metabolic flux increased upon Trx1 silencing, whereas silencing of Grx1 had the opposite effect. Diversion of metabolic fluxes toward synthesis of fatty acids and phospholipids was observed in siRNA-Grx1 treated cells, while siRNA-Trx1 treated cells showed elevated levels of various sphingomyelins and ceramides and signs of increased protein degradation. Glutathione synthesis was stimulated by both treatments. These data indicate that Trx and Grx have both, common and specific protein Cys redox targets and that down regulation of either redoxin has markedly different metabolic outcomes. They reflect the delicate sensitivity of redox equilibrium to changes in any of the elements involved and the difficulty of forecasting metabolic responses to redox environmental changes. Trx1 and Grx1 Cys redox targets are abundant among Glycolytic enzymes. PRDX6-Cys91 and PGAM-Cys153 are specific targets of Grx1. Down regulation of thioredoxin and glutaredoxin have different metabolic outcomes. Glutathione synthesis and membrane lipid composition are sensitive to Trx1 and Grx1 down regulation. Redoxins down regulation also induce target Cys reductive changes under NOS3 overexpression.
Collapse
Affiliation(s)
- M J López-Grueso
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - R González-Ojeda
- Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville, Spain
| | - R Requejo-Aguilar
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - B McDonagh
- Dept. of Physiology, School of Medicine, NUI Galway, Ireland
| | | | - J Muntané
- Dept. of Physiology, School of Medicine, NUI Galway, Ireland
| | - J A Bárcena
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
| | - C A Padilla
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| |
Collapse
|
23
|
Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health-Cancer and other associated disorders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:103-114. [PMID: 30199797 DOI: 10.1016/j.etap.2018.08.018] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/21/2018] [Accepted: 08/27/2018] [Indexed: 05/27/2023]
Abstract
Poisoning from pesticides is a global public health problem and accounts for nearly 300,000 deaths worldwide every year. Exposure to pesticides is inevitable; there are different modes through which humans get exposed to pesticides. The mode of exposure is an important factor as it also signifies the concentration of pesticides exposure. Pesticides are used extensively in agricultural and domestic settings. These chemicals are believed to cause many disorders in humans and wildlife. Research from past few decades has tried to answer the associated mechanism of action of pesticides in conjunction with their harmful effects. This perspective considers the past and present research in the field of pesticides and associated disorders. We have reviewed the most common diseases including cancer which are associated with pesticides. Pesticides have shown to be involved in the pathogenesis of Parkinson's and Alzheimer's diseases as well as various disorders of the respiratory and reproductive tracts. Oxidative stress caused by pesticides is an important mechanism through which many of the pesticides exert their harmful effects. Oxidative stress is known to cause DNA damage which in turn may cause malignancies and other disorders. Many pesticides have shown to modulate the gene expression at the level of non-coding RNAs, histone deacetylases, DNA methylation patterns suggesting their role in epigenetics.
Collapse
Affiliation(s)
- Akash Sabarwal
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kunal Kumar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rana P Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
24
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
25
|
Bhat OM, Yuan X, Li G, Lee R, Li PL. Sphingolipids and Redox Signaling in Renal Regulation and Chronic Kidney Diseases. Antioxid Redox Signal 2018; 28:1008-1026. [PMID: 29121774 PMCID: PMC5849286 DOI: 10.1089/ars.2017.7129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023]
Abstract
Significance: Sphingolipids play critical roles in the membrane biology and intracellular signaling events that influence cellular behavior and function. Our review focuses on the cellular mechanisms and functional relevance of the cross talk between sphingolipids and redox signaling, which may be critically implicated in the pathogenesis of different renal diseases. Recent Advances: Reactive oxygen species (ROS) and sphingolipids can regulate cellular redox homeostasis through the regulation of NADPH oxidase, mitochondrial integrity, nitric oxide synthase (NOS), and antioxidant enzymes. Over the last two decades, there have been significant advancements in the field of sphingolipid research, and it was in 2010 for the first time that sphingolipid receptor modulator was exploited as a therapeutic in humans. The cross talk of sphingolipids with redox signaling pathways becomes an important mechanism in the development of many different diseases such as renal diseases. Critical Issues: The critical issues to be addressed in this review are how sphingolipids interact with the redox signaling pathway to regulate renal function and even result in chronic kidney diseases. Ceramide, sphingosine, and sphingosine-1-phosphate (S1P) as main signaling sphingolipids are discussed in more detail. Future Directions: Although sphingolipids and ROS may mediate or modulate cellular responses to physiological and pathological stimuli, more translational studies and mechanistic pursuit in a tissue- or cell-specific way are needed to enhance our understanding of this important topic and to develop effective therapeutic strategies to treat diseases associated with redox signaling and sphingolipid cross talk. Antioxid. Redox Signal. 28, 1008-1026.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - RaMi Lee
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
26
|
Kang JI, Hong JY, Choi JS, Lee SK. Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells. Biomol Ther (Seoul) 2016; 24:320-7. [PMID: 27098859 PMCID: PMC4859796 DOI: 10.4062/biomolther.2015.145] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/02/2015] [Accepted: 12/29/2015] [Indexed: 01/28/2023] Open
Abstract
Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to 25 μM) of CBN induced apoptosis, and high concentration (50 μM) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products.
Collapse
Affiliation(s)
- Ji In Kang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Young Hong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 46241, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Harris G, Palosaari T, Magdolenova Z, Mennecozzi M, Gineste JM, Saavedra L, Milcamps A, Huk A, Collins AR, Dusinska M, Whelan M. Iron oxide nanoparticle toxicity testing using high-throughput analysis and high-content imaging. Nanotoxicology 2016; 9 Suppl 1:87-94. [PMID: 23859183 DOI: 10.3109/17435390.2013.816797] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Applying validated in vitro assays to the study of nanoparticle toxicity is a growing trend in nanomaterial risk assessment. Precise characterisation of reference nanomaterials and a well-regulated in vitro testing system are required to determine the physicochemical descriptors which dictate the toxic potential of nanoparticles. The use of automated, high-throughput technologies to facilitate the identification and prioritisation of nanomaterials which could pose a risk is desirable and developments are underway. In this study, two mammalian fibroblast lines (Balb/c 3T3 and COS-1 cells) were treated with a range of concentrations of iron oxide nanomaterials manufactured for use in medical diagnostics, using an automated platform and high-content-imaging endpoints for cell viability, oxidative stress and DNA damage (double-strand breaks). At the same time, the high-throughput comet assay was employed to measure DNA strand breaks and oxidised bases. Our results show that these methods provide a fast way to determine the toxicity of coated and uncoated iron oxide nanoparticles and, furthermore, to predict the mechanism of toxicity in vitro.
Collapse
Affiliation(s)
- Georgina Harris
- Institute for Health and Consumer Protection European Commission, Joint Research Centre , Ispra (VA) , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Apoptosis or autophagy, that is the question: Two ways for muscle sacrifice towards meat. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol 2015; 53:4638-58. [PMID: 26310971 DOI: 10.1007/s12035-015-9392-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.
Collapse
|
30
|
Muñoz-Atienza E, Araújo C, Lluch N, Hernández PE, Herranz C, Cintas LM, Magadán S. Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes. FISH & SHELLFISH IMMUNOLOGY 2015; 44:214-223. [PMID: 25707601 DOI: 10.1016/j.fsi.2015.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
In aquaculture, several criteria should be considered to select an appropriate probiotic, including the aquatic origin and safety of the strain and its ability to modulate the host immune response. The properties and effects of probiotics are strain-specific and some factors such as viability, dose and duration of diet supplementation may regulate their immunomodulatory activities. In this study, we assessed the in vitro effect of eight heat-inactivated and viable lactic acid bacteria (LAB) of aquatic origin belonging to the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella on the viability and innate immune response of turbot (Scophthalmus maximus L.) leucocytes. Head-kidney leucocytes were incubated with viable and heat-inactivated LAB at different concentrations. After incubation, the viability of leucocytes was evaluated using colorimetric assays (MTT and LDH) and flow cytometry (annexin V/propidium iodide). Heat-inactivated LAB showed no cytotoxic effect while viable LAB exerted variable influence on apoptosis of turbot phagocytes and lymphocytes. Leucocyte respiratory burst activity and phagocytosis were also differentially activated, as viable LAB stimulated leucocytes more efficiently than the heat-inactivated LAB. Our results suggest diverse strain-specific mechanisms of interaction between the evaluated LAB and turbot leucocytes. Furthermore, our work sets up in vitro systems to evaluate the effect of LAB as potential probiotics, which will be useful to develop efficient screening.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain; Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801-Vila Real, Portugal
| | - Nuria Lluch
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), 36390-Vigo, Pontevedra, Spain
| | - Pablo E Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Carmen Herranz
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Luis M Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Susana Magadán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), 36390-Vigo, Pontevedra, Spain.
| |
Collapse
|
31
|
Zhornik EV, Baranova LA, Drozd ES, Sudas MS, Chau NH, Buu NQ, Dung TTN, Chizhik SA, Volotovski ID. Silver nanoparticles induce lipid peroxidation and morphological changes in human lymphocytes surface. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914030282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Bansal N, Mims J, Kuremsky JG, Olex AL, Zhao W, Yin L, Wani R, Qian J, Center B, Marrs GS, Porosnicu M, Fetrow JS, Tsang AW, Furdui CM. Broad phenotypic changes associated with gain of radiation resistance in head and neck squamous cell cancer. Antioxid Redox Signal 2014; 21:221-36. [PMID: 24597745 PMCID: PMC4060837 DOI: 10.1089/ars.2013.5690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The central issue of resistance to radiation remains a significant challenge in the treatment of cancer despite improvements in treatment modality and emergence of new therapies. To facilitate the identification of molecular factors that elicit protection against ionizing radiation, we developed a matched model of radiation resistance for head and neck squamous cell cancer (HNSCC) and characterized its properties using quantitative mass spectrometry and complementary assays. RESULTS Functional network analysis of proteomics data identified DNA replication and base excision repair, extracellular matrix-receptor interaction, cell cycle, focal adhesion, and regulation of actin cytoskeleton as significantly up- or downregulated networks in resistant (rSCC-61) HNSCC cells. Upregulated proteins in rSCC-61 included a number of cytokeratins, fatty acid synthase, and antioxidant proteins. In addition, the rSCC-61 cells displayed two unexpected features compared with parental radiation-sensitive SCC-61 cells: (i) rSCC-61 had increased sensitivity to Erlotinib, a small-molecule inhibitor of epidermal growth factor receptor; and (ii) there was evidence of mesenchymal-to-epithelial transition in rSCC-61, confirmed by the expression of protein markers and functional assays (e.g., Vimentin, migration). INNOVATION The matched model of radiation resistance presented here shows that multiple signaling and metabolic pathways converge to produce the rSCC-61 phenotype, and this points to the function of the antioxidant system as a major regulator of resistance to ionizing radiation in rSCC-61, a phenomenon further confirmed by analysis of HNSCC tumor samples. CONCLUSION The rSCC-61/SCC-61 model provides the opportunity for future investigations of the redox-regulated mechanisms of response to combined radiation and Erlotinib in a preclinical setting.
Collapse
Affiliation(s)
- Nidhi Bansal
- 1 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Oxygen radicals elicit paralysis and collapse of spinal cord neuron growth cones upon exposure to proinflammatory cytokines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:191767. [PMID: 25050325 PMCID: PMC4090484 DOI: 10.1155/2014/191767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022]
Abstract
A persistent inflammatory and oxidative stress is a hallmark of most chronic CNS pathologies (Alzheimer's (ALS)) as well as the aging CNS orchestrated by the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). Loss of the integrity and plasticity of neuronal morphology and connectivity comprises an early step in neuronal degeneration and ultimate decline of cognitive function. We examined in vitro whether TNFα or IL-1β impaired morphology and motility of growth cones in spinal cord neuron cultures. TNFα and IL-1β paralyzed growth cone motility and induced growth cone collapse in a dose-dependent manner reflected by complete attenuation of neurite outgrowth. Scavenging reactive oxygen species (ROS) or inhibiting NADPH oxidase activity rescued loss of neuronal motility and morphology. TNFα and IL-1β provoked rapid, NOX-mediated generation of ROS in advancing growth cones, which preceded paralysis of motility and collapse of morphology. Increases in ROS intermediates were accompanied by an aberrant, nonproductive reorganization of actin filaments. These findings suggest that NADPH oxidase serves as a pivotal source of oxidative stress in neurons and together with disruption of actin filament reorganization contributes to the progressive degeneration of neuronal morphology in the diseased or aging CNS.
Collapse
|
34
|
Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep 2014; 1:200-208. [PMID: 28962239 PMCID: PMC5598421 DOI: 10.1016/j.toxrep.2014.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022] Open
Abstract
Chrysin (5,7-dihydroxyflavone) is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts. The objective of this study was to investigate the hypolipidemic properties of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Triton WR-1339 was administered intraperitoneally (400 mg/kg) to overnight-fasted mice to develop acute hyperlipidemia. Chrysin was administered orally (10 mg/kg) 30 min before Triton WR-1339. At 24 h after Triton WR-1339 injection, blood samples were collected to measure plasma lipid levels. The hepatic thiobarbituric acid reactive substances (TBARS), carbonyl content, non-protein sulfhydryl (NPSH) and ascorbic acid (AA) levels, as well as catalase (CAT) and superoxide dismutase (SOD) activity were recorded. Chrysin administration significantly decreased total cholesterol levels. In addition, it partially decreased non-high density lipoprotein-cholesterol and triglycerides levels in plasma of hyperlipidaemic mice. In addition chrysin administration prevented the increase on TBARS levels and prevented the decrease in SOD activity induced by Triton WR-1339. These findings indicated that chrysin was able to decrease plasma lipids concentration and that its antioxidant properties was, at least in part, involved in the hypolipidaemic action of chrysin.
Collapse
Affiliation(s)
- Micheli Stéfani Zarzecki
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Stífani M Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Vandreza C Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Mariane Trindade de Paula
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Cristiano Ricardo Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| |
Collapse
|
35
|
Abstract
Traumatic brain injury (TBI) is the most important cause of disability in individuals under the age of 45 years and thus represents a significant social and economic burden. Evidence strongly suggests that oxidative stress is a cornerstone event leading to and propagating secondary injury mechanisms such as excitotoxicity, mitochondrial dysfunction, apoptosis, autophagy, brain edema, and inflammation. TBI has defied conventional approaches to diagnosis and therapy development because of its heterogeneity and complexity. Therefore, it is necessary to explore alternative approaches to therapy development for TBI. The aim of this review is to present a therapeutic approach for TBI, taking into account the evidence supporting the role for oxidative stress in the pathophysiological processes of secondary brain injury. The role of agents such as mitochondria-targeted antioxidants (melatonin and new mitochondria-targeted antioxidants), nicotinamide adenine dinucleotide phosphate (NADPH) inhibitors (antioxidant vitamins and apocynin), and other compounds having mainly antioxidant properties (hydrogen-rich saline, sulforaphane, U-83836E, omega-3, and polyphenols) is covered. The rationale for innovative antioxidant therapies based on current knowledge and particularly the most recent studies regarding this field is discussed. Particular considerations and translational potential of new TBI treatments are examined and a novel therapeutic proposal for TBI is presented.
Collapse
|
36
|
Cai L, Liao HF, Zhang XJ, Shao Y, Xu M, Yi JL. Acetylcholinesterase function in apoptotic retina pigment epithelial cells induced by H2O2. Int J Ophthalmol 2013; 6:772-7. [PMID: 24392323 DOI: 10.3980/j.issn.2222-3959.2013.06.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/05/2013] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the acetylcholinesterase (AChE) expression involved in retina pigment epithelial (RPE) apoptosis induced by higher concentrations H2O2. METHODS The human retinal pigment epithelium cell line ARPE-19 was from ATCC (Rockville, MD). Cultured ARPE-19 cells were treated with H2O2 at 0, 250, 500, 1 000, 2 000µmol/L and cell viability was measured with MTT assay. AChE expression and DNA fragments were analyzed by immunocytochemistry, TUNEL and PARP-1 Western blotting. RESULTS Immunofluorescence detected AChE exist in the normal human retinal tissue. When H2O2 >500µmol/L, AChE expression showed an increase after 2h, and this concentration was selected for the present study. RPE cell was induced with 1 000µmol/L H2O2 for 2h, compared to the control group, cell activity decline detected by MTT, AChE and PARP-1 protein expression was significantly increased detected by Western blotting. AChE immunofluorescence staining was positive in RPE cell after H2O2 incubate 2h. In addition, pretreatment with 100µmol/L epigallocatechin gallate (EGCG), cell viability increased from 31.20%±3.90% to 70.23%±12.96%. CONCLUSION AChE is weakly expressed in normal human RPE cells. Stimulation with H2O2 caused the stable increase of AChE expression in RPE cells, which may indicate that AChE may be an important role in AMD.
Collapse
Affiliation(s)
- Li Cai
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Hong-Fei Liao
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Xue-Jun Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200000, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Man Xu
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Jing-Lin Yi
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
37
|
Zárate J, Goicoechea E, Pascual J, Echevarría E, Guillén MD. A study of the toxic effect of oxidized sunflower oil containing 4-hydroperoxy-2-nonenal and 4-hydroxy-2-nonenal on cortical TrkA receptor expression in rats. Nutr Neurosci 2013; 12:249-59. [DOI: 10.1179/147683009x423391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Wu X, Hernandez-Enriquez B, Banas M, Xu R, Sesti F. Molecular mechanisms underlying the apoptotic effect of KCNB1 K+ channel oxidation. J Biol Chem 2013; 288:4128-34. [PMID: 23275378 PMCID: PMC3567663 DOI: 10.1074/jbc.m112.440933] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/18/2012] [Indexed: 11/06/2022] Open
Abstract
Potassium (K(+)) channels are targets of reactive oxygen species in the aging nervous system. KCNB1 (formerly Kv2.1), a voltage-gated K(+) channel abundantly expressed in the cortex and hippocampus, is oxidized in the brains of aging mice and of the triple transgenic 3xTg-AD mouse model of Alzheimer's disease. KCNB1 oxidation acts to enhance apoptosis in mammalian cell lines, whereas a KCNB1 variant resistant to oxidative modification, C73A-KCNB1, is cytoprotective. Here we investigated the molecular mechanisms through which oxidized KCNB1 channels promote apoptosis. Biochemical evidence showed that oxidized KCNB1 channels, which form oligomers held together by disulfide bridges involving Cys-73, accumulated in the plasma membrane as a result of defective endocytosis. In contrast, C73A-mutant channels, which do not oligomerize, were normally internalized. KCNB1 channels localize in lipid rafts, and their internalization was dynamin 2-dependent. Accordingly, cholesterol supplementation reduced apoptosis promoted by oxidation of KCNB1. In contrast, cholesterol depletion exacerbated apoptotic death in a KCNB1-independent fashion. Inhibition of raft-associating c-Src tyrosine kinase and downstream JNK kinase by pharmacological and molecular means suppressed the pro-apoptotic effect of KCNB1 oxidation. Together, these data suggest that the accumulation of KCNB1 oligomers in the membrane disrupts planar lipid raft integrity and causes apoptosis via activating the c-Src/JNK signaling pathway.
Collapse
Affiliation(s)
- Xilong Wu
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Berenice Hernandez-Enriquez
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Michelle Banas
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Robin Xu
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Federico Sesti
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| |
Collapse
|
39
|
Li PL, Zhang Y. Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb Exp Pharmacol 2013:171-97. [PMID: 23563657 DOI: 10.1007/978-3-7091-1511-4_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
40
|
Mitochondria-ros crosstalk in the control of cell death and aging. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:329635. [PMID: 22175013 PMCID: PMC3235816 DOI: 10.1155/2012/329635] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/25/2011] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as “redox messengers” in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a “balance of power,” directing the cell towards life or death.
Collapse
|
41
|
Catalgol B, Kartal Ozer N. Lipid rafts and redox regulation of cellular signaling in cholesterol induced atherosclerosis. Curr Cardiol Rev 2011; 6:309-24. [PMID: 22043207 PMCID: PMC3083812 DOI: 10.2174/157340310793566181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 06/13/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023] Open
Abstract
Redox mediated signaling mechanisms play crucial roles in the pathogenesis of several cardiovascular diseases. Atherosclerosis is one of the most important disorders induced mainly by hypercholesterolemia. Oxidation products and related signaling mechanisms are found within the characteristic biomarkers of atherosclerosis. Several studies have shown that redox signaling via lipid rafts play a significant role in the regulation of pathogenesis of many diseases including atherosclerosis. This review attempts to summarize redox signaling and lipid rafts in hypercholesterolemia induced atherosclerosis.
Collapse
Affiliation(s)
- Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Marmara University, 34668 Haydarpasa, Istanbul, Turkey
| | | |
Collapse
|
42
|
Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 2011; 82:249-58. [PMID: 21962882 DOI: 10.1016/j.critrevonc.2011.08.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023] Open
Abstract
Necrosis plays an important role in multiple physiological and pathological processes. Recently, a relatively new form of necrosis has been characterized as "necroptosis". Morphologically, necroptosis exhibits the features of necrosis; however, necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinase 1 and 3 (RIP1 and RIP3) and can be specifically inhibited by necrostatins. Necroptosis has been found to contribute to the regulation of immune system, cancer development as well as cellular responses to multiple stresses. In this review, we will summarize the signaling pathway, biological effects and pathological significance of this specific form of programmed cell death.
Collapse
|
43
|
Campoio T, Oliveira F, Otton R. Oxidative stress in human lymphocytes treated with fatty acid mixture: Role of carotenoid astaxanthin. Toxicol In Vitro 2011; 25:1448-56. [DOI: 10.1016/j.tiv.2011.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 01/09/2023]
|
44
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
45
|
Nakashima I, Kawamoto Y, Takeda K, Kato M. Control of genetically prescribed protein tyrosine kinase activities by environment-linked redox reactions. Enzyme Res 2011; 2011:896567. [PMID: 21755044 PMCID: PMC3132499 DOI: 10.4061/2011/896567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
Recent observations on environment-linked control of genetically prescribed signaling systems for either cell activation or cell death have been reviewed with a focus on the regulation of activities of protein tyrosine kinases (PTKs). The environment-linked redox reactions seem to primarily affect cell surface receptors and cell membrane lipid rafts, and they induce generation of reactive oxygen species (ROS) in cells. ROS thus generated might upregulate the catalytic activities of PTKs through inactivating protein tyrosine phosphatases that dephosphorylate and inactivate autophosphorylated PTKs. Recent evidence has, however, demonstrated that ROS could also directly oxidize SH groups of genetically conserved specific cysteines on PTKs, sometimes producing disulfide-bonded dimers of PTK proteins, either for upregulation or downregulation of their catalytic activities. The basic role of the redox reaction/covalent bond-mediated modification of protein tertiary structure-linked noncovalent bond-oriented signaling systems in living organisms is discussed.
Collapse
Affiliation(s)
- Izumi Nakashima
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | | | | | | |
Collapse
|
46
|
Soria EA, Eynard AR, Bongiovanni GA. Modulation of early stress-related biomarkers in cytoplasm by the antioxidants silymarin and quercetin using a cellular model of acute arsenic poisoning. Basic Clin Pharmacol Toxicol 2011; 107:982-7. [PMID: 20735377 DOI: 10.1111/j.1742-7843.2010.00615.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several pathologies (e.g. cancer and diabetes) are increased in arsenic-exposed populations, with oxidative stress being a major toxicological mechanism. Since the flavonoids silymarin (S) and quercetin (Q) are antioxidants and may protect cells, it would be valuable to develop a model which allows assessing the potential of xenobiotic against arsenic cytotoxicity in an efficient and rapid way. Thus, the oxidant production [e.g. reactive oxygen species and reactive nitrogen species (RNS)], the molecular parameters of biological response [e.g. plasma membrane composition, actin microfilaments and activated diphosphorilated c-Jun N-terminal kinase (JNK)] and cellular viability were determined in CHO-K1 cells treated with arsenite (As), S and Q. Arsenic caused loss of the cellular viability in a time-dependent manner. This effect was accompanied by a lipid hydroperoxide (LHP) formation, with no RNS induction or ganglioside content changes being found. Both flavonoids counteracted oxidative damage. Despite all treatments had unspecific responses on nitrite cellular release along the time, there was no relation between them and the cellular viability. Arsenic induced cytoplasmic microfilament rearrangement (tight perinuclear distribution with projections, stress fibres and pseudopodia) which was reversed by S. Also, activated JNK showed a similar distribution to actin. Contrarily, Q caused a dysmorphic granular pattern, thus behaving as a toxic agent. Summing up, toxic levels of arsenic disturb the redox homeostasis with LHP induction and early triggering of stress responses in cytoskeleton and cell signalling. Using the proposed model, only S showed to protect cells from arsenical cytotoxicity without own toxic properties. Thus, S might be considered for modulation of the human arsenic susceptibility.
Collapse
Affiliation(s)
- Elio A Soria
- Cellular Biology Institute, Faculty of Medicine, National University of Cordoba, Argentina
| | | | | |
Collapse
|
47
|
Abstract
NF-κB proteins are a family of transcription factors that are of central importance in inflammation and immunity. NF-κB also plays important roles in other processes, including development, cell growth and survival, and proliferation, and is involved in many pathological conditions. Reactive Oxygen Species (ROS) are created by a variety of cellular processes as part of cellular signaling events. While certain NF-κB-regulated genes play a major role in regulating the amount of ROS in the cell, ROS have various inhibitory or stimulatory roles in NF-κB signaling. Here we review the regulation of ROS levels by NF-κB targets and various ways in which ROS have been proposed to impact NF-κB signaling pathways.
Collapse
Affiliation(s)
- Michael J Morgan
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, RM1130, Bethesda, MD 20892, USA
| | | |
Collapse
|
48
|
Kim SH, Han YJ, Park JH, Yoo SJ. Glutamate Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Primary Rat Astrocytes. ACTA ACUST UNITED AC 2010. [DOI: 10.4235/jkgs.2010.14.4.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sung Ho Kim
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Yong Jae Han
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Jae Hwang Park
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Su Jin Yoo
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| |
Collapse
|
49
|
Li GY, Fan B, Zheng YC. Calcium overload is a critical step in programmed necrosis of ARPE-19 cells induced by high-concentration H₂O₂. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2010; 23:371-377. [PMID: 21112485 DOI: 10.1016/s0895-3988(10)60078-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/20/2010] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Oxidative stress plays an important role in retinal pigmental epithelium (RPE) death during aging and the development of age-related macular degeneration. Although early reports indicate that reactive oxygen species (ROS) including H₂O₂ can trigger apoptosis at lower concentrations and necrosis at higher concentrations, the exact molecular mechanism of RPE death is still unclear. The purpose of this study was to investigate the molecular pathways involved in RPE death induced by exogenous ROS, especially at higher concentrations. METHODS Cultured ARPE-19 cells were treated with H₂O₂ at different concentrations and cell viability was measured with the MTT assay. Cell death was morphologically studied by microscopy using APOPercentage assay and PI staining. Furthermore, the impact of oxidative stress on ARPE-19 cells was assessed by HO-1 and PARP-1 Western blotting and by the protection of antioxidant EGCG. Calcium influx was determined using the fura-2 calcium indicator and the role of intracellular calcium overload in ARPE-19 cell death was evaluated following cobalt treatment to block calcium effects. RESULTS H₂O₂ reduced the viability of ARPE-19 cells in a concentration-dependent manner, which was presented as a typical s-shaped curve. Cell death caused by high concentrations of H₂O₂ was confirmed to be programmed necrosis. Morphologically, dying ARPE-19 cells were extremely swollen and lost the integrity of their plasma membrane, positively detected with APOPercentage assay and PI staining. 24-hour treatment with 500 μmol/L H₂O₂ induced remarkable up-regulation of HO-1 and PARP-1 in ARPE-19 cells. Moreover, antioxidant treatment using EGCG effectively protected cells from H₂O₂-induced injury, increasing cell viability from 14.17%±2.31% to 85.77%±4.58%. After H₂O₂ treatment, intracellular calcium levels were highly elevated with a maximum concentration of 1200 nM. Significantly, the calcium channel inhibitor cobalt was able to blunt this calcium influx and blocked the necrotic pathway, rescuing the ARPE-19 cell from H₂O₂-induced death. CONCLUSIONS At high concentrations, H₂O₂ induces ARPE-19 cell death through a regulated necrotic pathway with calcium overload as a critical step in the cell death program.
Collapse
Affiliation(s)
- Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, Jilin, China.
| | | | | |
Collapse
|
50
|
Quiros Y, Vicente-Vicente L, Morales AI, Lopez-Novoa JM, Lopez-Hernandez FJ. An Integrative Overview on the Mechanisms Underlying the Renal Tubular Cytotoxicity of Gentamicin. Toxicol Sci 2010; 119:245-56. [DOI: 10.1093/toxsci/kfq267] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|