1
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
2
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
3
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
4
|
Zhao Z, Li Z, Du F, Wang Y, Wu Y, Lim KL, Li L, Yang N, Yu C, Zhang C. Linking Heat Shock Protein 70 and Parkin in Parkinson's Disease. Mol Neurobiol 2023; 60:7044-7059. [PMID: 37526897 DOI: 10.1007/s12035-023-03481-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects millions of elderly people worldwide and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The precise mechanisms underlying the pathogenesis of PD are still not fully understood, but it is well accepted that the misfolding, aggregation, and abnormal degradation of proteins are the key causative factors of PD. Heat shock protein 70 (Hsp70) is a molecular chaperone that participates in the degradation of misfolded and aggregated proteins in living cells and organisms. Parkin, an E3 ubiquitin ligase, participates in the degradation of proteins via the proteasome pathway. Recent studies have indicated that both Hsp70 and Parkin play pivotal roles in PD pathogenesis. In this review, we focus on discussing how dysregulation of Hsp70 and Parkin leads to PD pathogenesis, the interaction between Hsp70 and Parkin in the context of PD and their therapeutic applications in PD.
Collapse
Affiliation(s)
- Zhongting Zhao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Zheng Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117054, Singapore
| | - Fangning Du
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yixin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Lin Li
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
5
|
Chen XY, Feng SN, Bao Y, Zhou YX, Ba F. Identification of Clec7a as the therapeutic target of rTMS in alleviating Parkinson's disease: targeting neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166814. [PMID: 37495085 DOI: 10.1016/j.bbadis.2023.166814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/25/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease. Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic tool in PD. High-throughput sequencing was performed to screen potential therapeutic targets in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. The candidate gene, Clec7a, was screened out and validated. Clec7a is a pattern recognition receptor involved in neuroinflammation. The higher expression of Clec7a was observed in the substantia nigra (SN) and striatum of PD rats with dopaminergic neurons damage and was mainly localized in the microglial. Adeno-associated virus (AAV)-mediated specific knockdown of Clec7a in microglial alleviated 6-OHDA induced motor deficits and nigrostriatal dopaminergic neuron damage of rats, as evidenced by the increase of tyrosine hydroxylase (TH) -positive neurons in SN, as well as dopaminergic nerve fibers in the striatum. Clec7a knockdown restrained the neuroinflammation by suppressing inflammatory factors (IFN-γ, TNF-α, IL-1β, IL-18, and IL-6) release in SN, which might result from enhanced Arg-1 expression (M2 polarization) and defective inducible nitric oxide synthase (iNOS) expression (M1 polarization). The same phenomena were also observed in the LPS inflammatory rat model of PD. In vitro, α-synuclein fibrils induced upregulation of Clec7a expression and microglia polarization to a pro-inflammatory state of BV2 cells, leading to increased release of cytokines. However, Clec7a knockdown reversed those changes and induced a shift to an anti-inflammatory phenotype in BV2 cells. In conclusion, our study suggested that Clec7a was involved in PD pathogenesis, and its inhibition might protect rats from PD by depressing neuroinflammation through microglial polarization.
Collapse
Affiliation(s)
- Xue-Yun Chen
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Si-Ning Feng
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yin Bao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yu-Xin Zhou
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Fang Ba
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
6
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, Fu M, Wan T, Yuan M. Neuroprotective Roles of Apelin-13 in Neurological Diseases. Neurochem Res 2023; 48:1648-1662. [PMID: 36745269 DOI: 10.1007/s11064-023-03869-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Apelin is a natural ligand for the G protein-coupled receptor APJ, and the apelin/APJ system is widely distributed in vivo. Among the apelin family, apelin-13 is the major apelin isoform in the central nervous system and cardiovascular system, and is involved in the regulation of various physiopathological mechanisms such as apoptosis, neuroinflammation, angiogenesis, and oxidative stress. Apelin is currently being extensively studied in the nervous system, and apelin-13 has been shown to be associated with the onset and progression of a variety of neurological disorders, including stroke, neurodegenerative diseases, epilepsy, spinal cord injury (SCI), and psychiatric diseases. This study summarizes the pathophysiological roles of apelin-13 in the development and progression of neurological related diseases.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiwei Jiang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjie Sun
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Beibei Xia
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Teng Wan
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China. .,Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Dutta A, Phukan BC, Roy R, Mazumder MK, Paul R, Choudhury A, Kumar D, Bhattacharya P, Nath J, Kumar S, Borah A. Garcinia morella extract confers dopaminergic neuroprotection by mitigating mitochondrial dysfunctions and inflammation in mouse model of Parkinson's disease. Metab Brain Dis 2022; 37:1887-1900. [PMID: 35622265 DOI: 10.1007/s11011-022-01001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Dopaminergic neuroprotection is the main interest in designing novel therapeutics against Parkinson's disease (PD). In the process of dopaminergic degeneration, mitochondrial dysfunctions and inflammation are significant. While the existing drugs provide symptomatic relief against PD, a therapy conferring total neuroprotection by targeting multiple degenerative pathways is still lacking. Garcinia morella is a common constituent of Ayurvedic medication and has been used for the treatment of inflammatory disorders. The present study investigates whether administration of G. morella fruit extract (GME) in MPTP mouse model of PD protects against dopaminergic neurodegeneration, including the underlying pathophysiologies, and reverses the motor behavioural abnormalities. Administration of GME prevented the loss of dopaminergic cell bodies in the substantia nigra and its terminals in the corpus striatum of PD mice. Subsequently, reversal of parkinsonian behavioural abnormalities, viz. akinesia, catalepsy, and rearing, was observed along with the recovery of striatal dopamine and its metabolites in the experimental model. Furthermore, reduced activity of the mitochondrial complex II in the nigrostriatal pathway of brain of the mice was restored after the administration of GME. Also, MPTP-induced enhanced activation of Glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) in the nigrostriatal pathway, which are the markers of inflammatory stress, were found to be ameliorated on GME treatment. Thus, our study presented a novel mode of dopaminergic neuroprotection by G. morella in PD by targeting the mitochondrial dysfunctions and neuroinflammation, which are considered to be intricately associated with the loss of dopaminergic neurons.
Collapse
Affiliation(s)
- Ankumoni Dutta
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Behali, Biswanath, Assam, India
| | - Banashree Chetia Phukan
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | | | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, India
| | | | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Joyobrato Nath
- Department of Zoology, Cachar College, Silchar, Assam, India
| | - Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
8
|
Ojha AK, Rajasekaran R, Pandey AK, Dutta A, Seesala VS, Das SK, Chaudhury K, Dhara S. Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges. BIOSENSING, THERANOSTICS, AND MEDICAL DEVICES 2022:345-376. [DOI: 10.1007/978-981-16-2782-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
9
|
Ahuja M, Ammal Kaidery N, Attucks OC, McDade E, Hushpulian DM, Gaisin A, Gaisina I, Ahn YH, Nikulin S, Poloznikov A, Gazaryan I, Yamamoto M, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Bach1 derepression is neuroprotective in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:e2111643118. [PMID: 34737234 PMCID: PMC8694049 DOI: 10.1073/pnas.2111643118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the loss of nigrostriatal dopaminergic neurons. Mounting evidence suggests that Nrf2 is a promising target for neuroprotective interventions in PD. However, electrophilic chemical properties of the canonical Nrf2-based drugs cause irreversible alkylation of cysteine residues on cellular proteins resulting in side effects. Bach1 is a known transcriptional repressor of the Nrf2 pathway. We report that Bach1 levels are up-regulated in PD postmortem brains and preclinical models. Bach1 knockout (KO) mice were protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity and associated oxidative damage and neuroinflammation. Functional genomic analysis demonstrated that the neuroprotective effects in Bach1 KO mice was due to up-regulation of Bach1-targeted pathways that are associated with both Nrf2-dependent antioxidant response element (ARE) and Nrf2-independent non-ARE genes. Using a proprietary translational technology platform, a drug library screen identified a substituted benzimidazole as a Bach1 inhibitor that was validated as a nonelectrophile. Oral administration of the Bach1 inhibitor attenuated MPTP neurotoxicity in pre- and posttreatment paradigms. Bach1 inhibitor-induced neuroprotection was associated with the up-regulation of Bach1-targeted pathways in concurrence with the results from Bach1 KO mice. Our results suggest that genetic deletion as well as pharmacologic inhibition of Bach1 by a nonelectrophilic inhibitor is a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Navneet Ammal Kaidery
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | | | | | - Dmitry M Hushpulian
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Arsen Gaisin
- Integrated Molecular Structure Education and Research Center, Northwestern University, IL 60208
| | - Irina Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612
| | - Young Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Andrey Poloznikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Irina Gazaryan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
- Department of Chemical Enzymology, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai 980-8573, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Bobby Thomas
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425;
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
10
|
Chetia Phukan B, Dutta A, Deb S, Saikia R, Mazumder MK, Paul R, Bhattacharya P, Sandhir R, Borah A. Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson's disease: involvement of anti-inflammatory response. Exp Brain Res 2021; 240:113-122. [PMID: 34633467 DOI: 10.1007/s00221-021-06237-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 09/26/2021] [Indexed: 12/21/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is poorly understood, studies in animal models revealed loss of dopamine and the dopaminergic neurons harbouring the neurotransmitter to be the principal cause behind this neuro-motor disorder. Neuroinflammation with glial cell activation is suggested to play a significant role in dopaminergic neurodegeneration. Several biomolecules have been reported to confer dopaminergic neuroprotection in different animal models of PD, owing to their anti-inflammatory potentials. Garcinol is a tri-isoprenylated benzophenone isolated from Garcinia sp. and accumulating evidences suggest that this molecule could provide neuroprotection by modulating oxidative stress and inflammation. However, direct evidence of dopaminergic neuroprotection by garcinol in the pre-clinical model of PD is not yet reported. The present study aims to investigate whether administration of garcinol in the MPTP mouse model of PD may ameliorate the cardinal motor behavioural deficits and prevent the loss of dopaminergic neurons. As expected, garcinol blocked the parkinsonian motor behavioural deficits which include akinesia, catalepsy, and rearing anomalies in the mice model. Most importantly, the degeneration of dopaminergic cell bodies in the substantia nigra region was significantly prevented by garcinol. Furthermore, garcinol reduced the inflammatory marker, glial fibrillary acidic protein, in the substantia nigra region. Since glial hyperactivation-mediated inflammation is inevitably associated with the loss of dopaminergic neurons, our study suggests the anti-inflammatory role of garcinol in facilitating dopaminergic neuroprotection in PD mice. Hence, in the light of the present study, it is suggested that garcinol is an effective anti-parkinsonian agent to block motor behavioural deficits and dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.,Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Bishwanath Chariali, Assam, India
| | - Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Rubul Saikia
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | | | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
11
|
Angelopoulou E, Paudel YN, Bougea A, Piperi C. Impact of the apelin/APJ axis in the pathogenesis of Parkinson's disease with therapeutic potential. J Neurosci Res 2021; 99:2117-2133. [PMID: 34115895 DOI: 10.1002/jnr.24895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
The pathogenesis of Parkinson's disease (PD) remains elusive. There is still no available disease-modifying strategy against PD, whose management is mainly symptomatic. A growing amount of preclinical evidence shows that a complex interplay between autophagy dysregulation, mitochondrial impairment, endoplasmic reticulum stress, oxidative stress, and excessive neuroinflammation underlies PD pathogenesis. Identifying key molecules linking these pathological cellular processes may substantially aid in our deeper understanding of PD pathophysiology and the development of novel effective therapeutic approaches. Emerging preclinical evidence indicates that apelin, an endogenous neuropeptide acting as a ligand of the orphan G protein-coupled receptor APJ, may play a key neuroprotective role in PD pathogenesis, via inhibition of apoptosis and dopaminergic neuronal loss, autophagy enhancement, antioxidant effects, endoplasmic reticulum stress suppression, as well as prevention of synaptic dysregulation in the striatum, excessive neuroinflammation, and glutamate-induced excitotoxicity. Underlying signaling pathways involve phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin, extracellular signal-regulated kinase 1/2, and inositol requiring kinase 1α/XBP1/C/EBP homologous protein. Herein, we discuss the role of apelin/APJ axis and associated molecular mechanisms on the pathogenesis of PD in vitro and in vivo and provide evidence for its challenging therapeutic potential.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Ramaiah MJ, Karthikeyan D, Mathavan S, Yamajala RBRD, Ramachandran S, Vasavi PJ, Chandana NV. Synthesis, in vitro and structural aspects of benzothiazole analogs as anti-oxidants and potential neuroprotective agents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103415. [PMID: 32470609 DOI: 10.1016/j.etap.2020.103415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Catalase, an important antioxidant enzyme, is known to have a neuroprotective role against neurodegenerative disorder. Earlier study has focussed on benzothiazole-triazole hybrid molecules that are larger in size and molecular weight and inhibit the amyloid β (Aβ)-catalase interaction thus aid in neuroprotection. Here we have synthesized the novel benzothiazole molecules with low molecular weight using One-pot methodology and assayed the neuroprotective effects of the synthesized compounds in the U87 MG cell line under H2O2 induced stressed condition and compared with other cell lines such as breast cancer (MCF-7) and macrophage (RAW-264.7) using cell viability assay. These analogs were found to enhance the neuronal cell viability and protect neuronal cells from the ROS mediated neuronal damage induced by H2O2. Furthermore, compounds 6a, 6b, 6c, 6d, and 7a modulate catalase and enhanced the catalase activity up to 90 % during the H2O2 exposure in the U87MG cell line. These analogs (6a, 6b, 6c and 6d) have exhibited strong binding energies of -7.39, -7.52, -6.5 and -7.1 as observed by molecular modeling studies using AutoDockTool-1.5.6. Lig Plot + program using potent analogs 6b and 6c and catalase enzyme indicated the presence of hydrophobic interactions in the catalytic site of catalase enzyme. Furthermore, a simulation study was conducted between ligand and catalase protein by DESMOND software that further strengthens these ligand and enzyme interactions. In silico ADMET study was conducted by the Swiss ADME program revealed the drug-likeliness of these analogs. The present study has identified benzothiazole analogs such as 6b, 6c and 6d have potential catalase modulating activity and is comparable with that of known drug Valproic acid, thus help in neuroprotection. This study can be further taken up for the in vivo animal model study for the possible therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| | - Divyapriya Karthikeyan
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sivagami Mathavan
- Organic Synthesis and Catalysis Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Rajesh B R D Yamajala
- Organic Synthesis and Catalysis Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimathy Ramachandran
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - P Jaya Vasavi
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Nuthakki Venkata Chandana
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
13
|
Microwave enhanced synthesis of halogenated derivatives of L-tyrosine labeled with deuterium in aromatic ring. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThree halogenated derivatives of L-tyrosine, selectively labeled with deuterium in aromatic ring, i.e., 3′-fluoro-[5′-2H]-, 3′-chloro-[5′-2H]-, and 3′-iodo-[2′,5′-2H2]-L-tyrosine, were synthesized using microwave assisted acid-catalyzed isotope exchange between 3′-fluoro-, 3′-chloro- and 3′-iodo-L-tyrosine and heavy water. The degree of deuterium incorporation was confirmed by 1H NMR spectroscopy. The spectroscopic data indicate that isotope exchange depends on the method of heating and the power of microwaves. The deuterium enrichment of 3′-fluoro-[5′-2H]- and 3′-chloro-[5′-2H]-L-tyrosine amounted to 70% and 60%, respectively, while for 3′-iodo-[2′,5′-2H2]-L-tyrosine this value was about 50% and 95% for the 2′- and 5′-position. The isotopomers were obtained in good chemical yields of 50–70%.
Collapse
|
14
|
Zhu Y, Jung W, Wang F, Che C. Drug repurposing against Parkinson's disease by text mining the scientific literature. LIBRARY HI TECH 2020. [DOI: 10.1108/lht-08-2019-0170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeDrug repurposing involves the identification of new applications for existing drugs. Owing to the enormous rise in the costs of pharmaceutical R&D, several pharmaceutical companies are leveraging repurposing strategies. Parkinson's disease is the second most common neurodegenerative disorder worldwide, affecting approximately 1–2 percent of the human population older than 65 years. This study proposes a literature-based drug repurposing strategy in Parkinson's disease.Design/methodology/approachThe literature-based drug repurposing strategy proposed herein combined natural language processing, network science and machine learning methods for analyzing unstructured text data and producing actional knowledge for drug repurposing. The approach comprised multiple computational components, including the extraction of biomedical entities and their relationships, knowledge graph construction, knowledge representation learning and machine learning-based prediction.FindingsThe proposed strategy was used to mine information pertaining to the mechanisms of disease treatment from known treatment relationships and predict drugs for repurposing against Parkinson's disease. The F1 score of the best-performing method was 0.97, indicating the effectiveness of the proposed approach. The study also presents experimental results obtained by combining the different components of the strategy.Originality/valueThe drug repurposing strategy proposed herein for Parkinson's disease is distinct from those existing in the literature in that the drug repurposing pipeline includes components of natural language processing, knowledge representation and machine learning for analyzing the scientific literature. The results of the study provide important and valuable information to researchers studying different aspects of Parkinson's disease.
Collapse
|
15
|
Antonazzo M, Botta M, Bengoetxea H, Ruiz-Ortega JÁ, Morera-Herreras T. Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:229-257. [PMID: 31349929 DOI: 10.1016/bs.irn.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The basal ganglia (BG), an organized network of nuclei that integrates cortical information, play a crucial role in controlling motor function. In fact, movement disorders such as Parkinson's disease (PD) and Huntington's disease (HD) are caused by the degeneration of specific structures within the BG. There is substantial evidence supporting the idea that cannabinoids may constitute novel promising compounds for the treatment of movement disorders as neuroprotective and anti-inflammatory agents. This potential therapeutic role of cannabinoids is based, among other qualities, on their capacity to reduce oxidative injury and excitotoxicity, control calcium influx and limit the toxicity of reactive microglia. The mechanisms involved in these effects are related to CB1 and CB2 receptor activation, although some of the effects are CB receptor independent. Thus, taking into account the aforementioned properties, compounds that act on the endocannabinoid system could be useful as a basis for developing disease-modifying therapies for PD and HD.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - María Botta
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
16
|
Renani PG, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E, Taghizadeh E, Gheibi Hayat SM. Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson's disease and epigenetic-based therapies. J Cell Physiol 2019; 234:19307-19319. [PMID: 30968426 DOI: 10.1002/jcp.28622] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is known as a progressive neurodegenerative disorder associated with the reduction of dopamine-secreting neurons and the formation of Lewy bodies in the substantia nigra and basal ganglia routes. Aging, as well as environmental and genetic factors, are considered as disease risk factors that can make PD as a complex one. Epigenetics means studying heritable changes in gene expression or function, without altering the underlying DNA sequence. Multiple studies have shown the association of epigenetic variations with onset or progression of various types of diseases. DNA methylation, posttranslational modifications of histones and presence of microRNA (miRNA) are among epigenetic processes involved in regulating pathways related to the development of PD. Unlike genetic mutations, most epigenetic variations may be reversible or preventable. Therefore, the return of aberrant epigenetic events in different cells is a growing therapeutic approach to treatment or prevention. Currently, there are several methods for treating PD patients, the most important of which are drug therapies. However, detection of genes and epigenetic mechanisms involved in the disease can develop appropriate diagnosis and treatment of the disease before the onset of disabilities and resulting complications. The main purpose of this study was to review the most important epigenetic molecular mechanisms, epigenetic variations in PD, and epigenetic-based therapies.
Collapse
Affiliation(s)
- Pedram G Renani
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Forogh Taheri
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Abdolkarimi
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Elahe Abdollahi
- Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Campos-Acuña J, Elgueta D, Pacheco R. T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease. Front Immunol 2019; 10:239. [PMID: 30828335 PMCID: PMC6384270 DOI: 10.3389/fimmu.2019.00239] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting mainly the dopaminergic neurons of the nigrostriatal pathway, a neuronal circuit involved in the control of movements, thereby the main manifestations correspond to motor impairments. The major molecular hallmark of this disease corresponds to the presence of pathological protein inclusions called Lewy bodies in the midbrain of patients, which have been extensively associated with neurotoxic effects. Importantly, different research groups have demonstrated that CD4+ T-cells infiltrate into the substantia nigra of PD patients and animal models. Moreover, several studies have consistently demonstrated that T-cell deficiency results in a strong attenuation of dopaminergic neurodegeneration in animal models of PD, thus indicating a key role of adaptive immunity in the neurodegenerative process. Recent evidence has shown that CD4+ T-cell response involved in PD patients is directed to oxidised forms of α-synuclein, one of the main constituents of Lewy bodies. On the other hand, most PD patients present a number of non-motor manifestations. Among non-motor manifestations, gastrointestinal dysfunctions result especially important as potential early biomarkers of PD, since they are ubiquitously found among confirmed patients and occur much earlier than motor symptoms. These gastrointestinal dysfunctions include constipation and inflammation of the gut mucosa and the most distinctive pathologic features associated are the loss of neurons of the enteric nervous system and the generation of Lewy bodies in the gut. Moreover, emerging evidence has recently shown a pivotal role of gut microbiota in triggering the development of PD in genetically predisposed individuals. Of note, PD has been positively correlated with inflammatory bowel diseases, a group of disorders involving a T-cell driven inflammation of gut mucosa, which is strongly dependent in the composition of gut microbiota. Here we raised the hypothesis that T-cell driven inflammation, which mediates dopaminergic neurodegeneration in PD, is triggered in the gut mucosa. Accordingly, we discuss how structural components of commensal bacteria or how different mediators produced by gut-microbiota, including short-chain fatty acids and dopamine, may affect the behaviour of T-cells, triggering the development of T-cell responses against Lewy bodies, initially confined to the gut mucosa but later extended to the brain.
Collapse
Affiliation(s)
- Javier Campos-Acuña
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
18
|
Pająk M, Kańska M. Isotope effects in the tyrosinase catalysed hydroxylation of l-tyrosine methyl derivatives. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2018; 54:548-557. [PMID: 30081668 DOI: 10.1080/10256016.2018.1505722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
To investigate isotope effects in the hydroxylation of [3',5'-2H2]-α-methyl- and [3',5'-2H2]-N-methyl-l-tyrosine, they were synthesised using acid catalysed isotope exchange at high temperature. The kinetic and solvent deuterium isotope effects on Vmax and Vmax/Km parameters of tyrosinase in its action on methylated derivatives of l-tyrosine were determined using the non-competitive spectrophotometric method. Lineweaver-Burk plots were used to consider the inhibition type of O-methyl-l-tyrosine, revealing that it is an uncompetitive inhibitor of tyrosinase.
Collapse
Affiliation(s)
| | - Marianna Kańska
- b Department of Biochemistry, 2nd Faculty of Medicine , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
19
|
2-Pentadecyl-2-Oxazoline Reduces Neuroinflammatory Environment in the MPTP Model of Parkinson Disease. Mol Neurobiol 2018; 55:9251-9266. [PMID: 29656363 DOI: 10.1007/s12035-018-1064-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Current pharmacological management of Parkinson disease (PD) does not provide for disease modification, but addresses only symptomatic features. Here, we explore a new approach to neuroprotection based on the use of 2-pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of the fatty acid amide signaling molecule palmitoylethanolamide (PEA), in an experimental model of PD. Daily oral treatment with PEA-OXA (10 mg/kg) significantly reduced behavioral impairments and neuronal cell degeneration of the dopaminergic tract induced by four intraperitoneal injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on 8-week-old male C57 mice. Moreover, PEA-OXA treatment prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities, and decreased α-synuclein aggregation in neurons. PEA-OXA treatment also diminished nuclear factor-κB traslocation, cyclooxygenase-2, and inducible nitric oxide synthase expression and through upregulation of the nuclear factor E2-related factor 2 pathway, induced activation of Mn-superoxide dismutase and heme oxygenase-1. Further, PEA-OXA modulated microglia and astrocyte activation and preserved microtubule-associated protein-2 alterations. In conclusion, pharmacological activation of nuclear factor E2-related factor 2 pathways with PEA-OXA may be effective in the future therapy of PD.
Collapse
|
20
|
Pouresmaeili-Babaki E, Esmaeili-Mahani S, Abbasnejad M, Ravan H. Protective Effect of Neuropeptide Apelin-13 on 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Dopaminergic Cells: Involvement of Its Antioxidant and Antiapoptotic Properties. Rejuvenation Res 2018; 21:162-167. [DOI: 10.1089/rej.2017.1951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elham Pouresmaeili-Babaki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
21
|
Neuropharmacological Potential and Delivery Prospects of Thymoquinone for Neurological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1209801. [PMID: 29743967 PMCID: PMC5883931 DOI: 10.1155/2018/1209801] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa and has various pharmacological activities, such as protection against oxidative stress, inflammation, and infections. In addition, it might be a potential neuropharmacological agent because it exhibits versatile potential for attenuating neurological impairments. It features greater beneficial effects in toxin-induced neuroinflammation and neurotoxicity. In various models of neurological disorders, it demonstrates emergent functions, including safeguarding various neurodegenerative diseases and other neurological diseases, such as stroke, schizophrenia, and epilepsy. TQ also has potential effects in trauma mediating and chemical-, radiation-, and drug-induced central nervous system injuries. Considering the pharmacokinetic limitations, research has concentrated on different TQ novel formulations and delivery systems. Here, we visualize the neuropharmacological potential, challenges, and delivery prospects of TQ, specifically focusing on neurological disorders along with its chemistry, pharmacokinetics, and toxicity.
Collapse
|
22
|
Pająk M, Kańska M. Isotope effects in mechanistic studies of l-tyrosine halogen derivatives hydroxylation catalyzed by tyrosinase. J Radioanal Nucl Chem 2017; 314:2123-2128. [PMID: 29213160 PMCID: PMC5707235 DOI: 10.1007/s10967-017-5526-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/24/2022]
Abstract
The kinetic (KIE) and solvent (SIE) isotope effect methods were used to investigate the mechanism of enzymatic hydroxylation of halogenated derivatives of l-tyrosine to l-DOPA catalyzed by the enzyme tyrosinase (EC 1.14.18.1). The values of deuterium KIE and SIE were obtained using the non-competitive method with spectrophotometric measurements. The Lineweaver–Burk plots were used for determination of the inhibition mode of 3′-iodo-l-tyrosine. Based upon kinetic effects values the mechanism of action of enzyme tyrosinase was proposed.
Collapse
Affiliation(s)
- Małgorzata Pająk
- Department of Chemistry, Warsaw University, Pasteur 1 Str., 02-093 Warsaw, Poland
| | - Marianna Kańska
- Department of Biochemistry, 2nd Faculty of Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Av., 02-091 Warsaw, Poland
| |
Collapse
|
23
|
Resting-state functional connectivity of subthalamic nucleus in different Parkinson's disease phenotypes. J Neurol Sci 2016; 371:137-147. [DOI: 10.1016/j.jns.2016.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/27/2016] [Accepted: 10/21/2016] [Indexed: 11/21/2022]
|
24
|
Gul Z, Demircan C, Bagdas D, Buyukuysal RL. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol. Neurochem Res 2016; 41:2075-85. [DOI: 10.1007/s11064-016-1919-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
|
25
|
Pahrudin Arrozi A, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S. Antioxidant modulation in restoring mitochondrial function in neurodegeneration. Int J Neurosci 2016; 127:218-235. [PMID: 27074540 DOI: 10.1080/00207454.2016.1178261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of disability associated with neurodegeneration worldwide. These diseases are influenced by multiple genetic and environmental factors and share similar mechanisms as both are characterized by accumulation and aggregation of misfolded proteins - amyloid-beta (Aβ) in AD and α-synuclein in PD. Over the past decade, increasing evidence has shown that mitochondrial dysfunction and the generation of reactive oxygen species (ROS) are involved in the pathology of these diseases, and the contributions of these defects to the cellular and molecular changes that eventually cause neuronal death have been explored. Using mitochondrial protective agents, such as antioxidants, to combat ROS provides a new strategy for neurodegenerative treatment. In this review, we highlight the potential of multiple types of antioxidants, including vitamins, phytochemicals, fatty acids and minerals, as well as synthetic antioxidants specifically targeting the mitochondria, which can restore mitochondrial function, in the treatment of neurodegenerative disorders at both the pre-clinical and clinical stages by focusing on AD and PD.
Collapse
Affiliation(s)
- Aslina Pahrudin Arrozi
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | - Wan Zurinah Wan Ngah
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | - Yasmin Anum Mohd Yusof
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | | | - Suzana Makpol
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| |
Collapse
|
26
|
Zhang Z, Miah M, Culbreth M, Aschner M. Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity. Neurochem Res 2016; 41:409-22. [PMID: 26869037 DOI: 10.1007/s11064-016-1844-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
Abstract
Autophagy generally refers to cell catabolic and recycling process in which cytoplasmic components are delivered to lysosomes for degradation. During the last two decades, autophagy research has experienced a recent boom because of a newfound connection between this process and many human diseases. Autophagy plays a significant role in maintaining cellular homeostasis and protects cells from varying insults, including misfolded and aggregated proteins and damaged organelles, which is particularly crucial in neuronal survival. Mounting evidence has implicated autophagic dysfunction in the pathogenesis of several major neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where deficient elimination of abnormal and toxic protein aggregates promotes cellular stress, failure and death. In addition, autophagy has also been found to affect neurotoxicity induced by exposure to essential metals, such as manganese, copper, and iron, and other heavy metals, such as cadmium, lead, and methylmercury. This review examines current literature on the role of autophagy in the mechanisms of disease pathogenesis amongst common neurodegenerative disorders and of metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Mahfuzur Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA.
| |
Collapse
|
27
|
Sensitive analysis of α-synuclein by nonlinear laser wave mixing coupled with capillary electrophoresis. Anal Biochem 2016; 500:51-9. [PMID: 26874019 DOI: 10.1016/j.ab.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/31/2015] [Accepted: 01/13/2016] [Indexed: 01/07/2023]
Abstract
Multi-photon nonlinear laser wave-mixing spectroscopy is a novel absorption-based technique that offers excellent detection sensitivity for biomedical applications, including early diagnosis and investigation of neurodegenerative diseases. α-Synuclein is linked to Parkinson's disease (PD), and characterization of its oligomers and quantification of the protein may contribute to understanding PD. The laser wave-mixing signal has a quadratic dependence on analyte concentration, and hence the technique is effective in monitoring small changes in concentration within biofluids. A wide variety of labels can be employed for laser wave-mixing detection due to its ability to detect both chromophores and fluorophores. In this investigation, two fluorophores and a chromophore are studied and used as labels for the detection of α-synuclein. Wave-mixing detection limits of PD-related protein conjugated with fluorescein isothiocyanate, QSY 35 acetic acid, succinimidyl ester, and Chromeo P503 were determined to be 1.4 × 10(-13) M, 1.4 × 10(-10) M, and 1.9 × 10(-13) M, respectively. Based on the laser probe volume used, the corresponding mass detection limits were determined to be 1.1 × 10(-23) mol, 1.1 × 10(-20) mol, and 1.5 × 10(-23) mol. This study also presents molecular-based separation and quantification of α-synuclein by laser wave mixing coupled with capillary electrophoresis.
Collapse
|
28
|
Dutta D, Mohanakumar KP. Tea and Parkinson's disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits. Neurochem Int 2015; 89:181-90. [DOI: 10.1016/j.neuint.2015.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
|
29
|
Trudler D, Nash Y, Frenkel D. New insights on Parkinson’s disease genes: the link between mitochondria impairment and neuroinflammation. J Neural Transm (Vienna) 2015; 122:1409-19. [DOI: 10.1007/s00702-015-1399-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022]
|
30
|
Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 2015; 10:17. [PMID: 25888232 PMCID: PMC4404240 DOI: 10.1186/s13024-015-0012-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.
Collapse
|
31
|
Harikrishna Reddy D, Misra S, Medhi B. Advances in Drug Development for Parkinson's Disease: Present Status. Pharmacology 2014; 93:260-71. [DOI: 10.1159/000362419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
|
32
|
Elyasi L, Eftekhar-Vaghefi SH, Esmaeili-Mahani S. Morphine Protects SH-SY5Y Human Neuroblastoma Cells Against 6-Hydroxydopamine–Induced Cell Damage: Involvement of Anti-Oxidant, Calcium Blocking, and Anti-Apoptotic Properties. Rejuvenation Res 2014; 17:255-63. [DOI: 10.1089/rej.2013.1473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leila Elyasi
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences. Kerman, Iran
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences. Kerman, Iran
| | | | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| |
Collapse
|
33
|
Ghosh B, Zhang C, Smith GM. Bridging between transplantation therapy and neurotrophic factors in Parkinson's disease. Front Biosci (Elite Ed) 2014; 6:225-35. [PMID: 24896204 PMCID: PMC11375561 DOI: 10.2741/e704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) represents a challenging condition where different therapeutic options have evolved over the course of the last 50 years. The potential for therapeutic use of cell transplantation for cell replacement or for gene delivery of neurotrophic factors has received a great deal of attention. Currently, all available treatment options are directed towards the amelioration of symptoms. A greater understanding of the distinctive pathology underlying PD might offer some novel therapeutic approaches. Transplantation of embryonic ventral mesencephalon (VM) dopaminergic neurons has shown promise in animal studies, but similar transplant procedures have shown limited success in clinical trials. One important issue may be the site of transplantation. Previous studies have transplanted VM into the striatum, which is the target of these neurons. With increased understanding of growth and guidance molecule effecting dopaminergic neurons, it may be feasible to place transplants in the damaged substantia nigra and direct the growth of axons into target regions to reconstruction of midbrain dopamine (DA) circuitry. Our established and on-going understanding of the molecular cues which support directed growth of DA neurons form an important basis for the refinement and optimization of VM grafting procedures, and also the development of new procedures based on the use of stem cells. In this review, we discuss transplantation therapy and how selective guidance molecules could be used to reconstruction of nigrostriatal circuit.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, and Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106
| | - Chen Zhang
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, and Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106
| | - George M Smith
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, and Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106
| |
Collapse
|
34
|
Loureiro JA, Gomes B, Coelho MAN, do Carmo Pereira M, Rocha S. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine (Lond) 2014; 9:709-22. [PMID: 24827845 DOI: 10.2217/nnm.14.27] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Development of therapeutics for brain disorders is one of the more difficult challenges to be overcome by the scientific community due to the inability of most molecules to cross the blood-brain barrier (BBB). Antibody-conjugated nanoparticles are drug carriers that can be used to target encapsulated drugs to the brain endothelial cells and have proven to be very promising. They significantly improve the accumulation of the drug in pathological sites and decrease the undesirable side effect of drugs in healthy tissues. We review the systems that have demonstrated promising results in crossing the BBB through receptor-mediated endocytic mechanisms for the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEBABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | | | | | | | | |
Collapse
|
35
|
Trudler D, Weinreb O, Mandel SA, Youdim MBH, Frenkel D. DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J Neurochem 2014; 129:434-47. [PMID: 24355073 DOI: 10.1111/jnc.12633] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/31/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
DJ-1 is an oxidative stress sensor that localizes to the mitochondria when the cell is exposed to oxidative stress. DJ-1 mutations that result in gene deficiency are linked to increased risk of Parkinson's disease (PD). Activation of microglial stress conditions that are linked to PD may result in neuronal death. We postulated that DJ-1 deficiency may increase microglial neurotoxicity. We found that down-regulation of DJ-1 in microglia using an shRNA approach increased cell sensitivity to dopamine as measured by secreted pro-inflammatory cytokines such as IL-1β and IL-6. Furthermore, we discovered that DJ-1-deficient microglia had increased monoamine oxidase activity that resulted in elevation of intracellular reactive oxygen species and nitric oxide leading to increased dopaminergic neurotoxicity. Rasagaline, a monoamine oxidase inhibitor approved for treatment of PD, reduced the microglial pro-inflammatory phenotype and significantly reduced neurotoxicity. Moreover, we discovered that DJ-1-deficient microglia have reduced expression of triggering receptor expressed on myeloid cells 2 (TREM2), previously suggested as a risk factor for pro-inflammation in neurodegenerative diseases. Further studies of DJ-1-mediated cellular pathways in microglia may contribute useful insights into the development of PD providing future avenues for therapeutic intervention
Collapse
Affiliation(s)
- Dorit Trudler
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
36
|
Esmaeili-Mahani S, Vazifekhah S, Pasban-Aliabadi H, Abbasnejad M, Sheibani V. Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Neurochem Int 2013; 63:719-25. [PMID: 24135219 DOI: 10.1016/j.neuint.2013.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by progressive and selective death of midbrain dopaminergic neurons. Pharmacologic treatment of PD can be divided into symptomatic and neuroprotective therapies. Orexin-A (hypocretin-1) is a hypothalamic peptide that exerts its biological effects by stimulation of two specific, membrane-bound orexin receptors. Recent studies have shown that orexin-A has a protective role during neuronal damage. Here, we investigated the effects of orexin-A on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular reactive oxygen species (ROS) was determined by fluorescence spectrophotometry method. Immunoblotting and DNA analysis were also employed to determine the levels of biochemical markers of apoptosis in the cells. The data showed that 6-OHDA could decrease the viability of the cells. In addition, intracellular ROS, activated caspase 3, Bax/Bcl-2 ratio, cytochrome c as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Pretreatment of cells with orexin-A (80pM) elicited protective effect and reduced biochemical markers of cell death. The results suggest that orexin-A has protective effects against 6-OHDA-induced neurotoxicity and its protective effects are accompanied by its antioxidant and anti-apoptotic properties and contribute to our knowledge of the pharmacology of orexin-A.
Collapse
Affiliation(s)
- Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | | | | | | | | |
Collapse
|
37
|
Dhillon VS, Fenech M. Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013; 759:1-13. [PMID: 24055911 DOI: 10.1016/j.mrrev.2013.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondria are essential for mammalian and human cell function as they generate ATP via aerobic respiration. The proteins required in the electron transport chain are mainly encoded by the circular mitochondrial genome but other essential mitochondrial proteins such as DNA repair genes, are coded in the nuclear genome and require transport into the mitochondria. In this review we summarize current knowledge on the association of point mutations and deletions in the mitochondrial genome that are detrimental to mitochondrial function and are associated with accelerated ageing and neurological disorders including Alzheimer's, Parkinson's, Huntington's and Amyotrophic lateral sclerosis (ALS). Mutations in the nuclear encoded genes that disrupt mitochondrial functions are also discussed. It is evident that a greater understanding of the causes of mutations that adversely affect mitochondrial metabolism is required to develop preventive measures against accelerated ageing and neurological disorders caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Preventative-Health Flagship, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia; CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia.
| | - Michael Fenech
- Preventative-Health Flagship, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia; CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia
| |
Collapse
|
38
|
González H, Contreras F, Prado C, Elgueta D, Franz D, Bernales S, Pacheco R. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:5048-56. [PMID: 23589621 DOI: 10.4049/jimmunol.1203121] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of dopamine receptor D3 (D3R) in PBLs from PD patients has been correlated with disease severity. Moreover, pharmacological evidence has suggested that D3R is involved in IFN-γ production by human CD4(+) T cells. In this study, we examined the role of D3R expressed on CD4(+) T cells in neurodegeneration of dopaminergic neurons in the SN using a mouse model of PD. Our results show that D3R-deficient mice are strongly protected against loss of dopaminergic neurons and microglial activation during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Notably, D3R-deficient mice become susceptible to MPTP-induced neurodegeneration and microglial activation upon transfer of wild-type (WT) CD4(+) T cells. Furthermore, RAG1 knockout mice, which are devoid of T cells and are resistant to MPTP-induced neurodegeneration, become susceptible to MPTP-induced loss of dopaminergic neurons when reconstituted with WT CD4(+) T cells but not when transferred with D3R-deficient CD4(+) T cells. In agreement, experiments analyzing activation and differentiation of CD4(+) T cells revealed that D3R favors both T cell activation and acquisition of the Th1 inflammatory phenotype. These findings indicate that D3R expressed on CD4(+) T cells plays a fundamental role in the physiopathology of MPTP-induced PD in a mouse model.
Collapse
Affiliation(s)
- Hugo González
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
39
|
Subramaniam SR, Ellis EM. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. J Neurosci Res 2012. [DOI: 10.1002/jnr.23164] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Viscomi MT, D’Amelio M. The “Janus-Faced Role” of Autophagy in Neuronal Sickness: Focus on Neurodegeneration. Mol Neurobiol 2012; 46:513-21. [DOI: 10.1007/s12035-012-8296-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
|
41
|
Thomas B, Banerjee R, Starkova NN, Zhang SF, Calingasan NY, Yang L, Wille E, Lorenzo BJ, Ho DJ, Beal MF, Starkov A. Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease. Antioxid Redox Signal 2012; 16:855-68. [PMID: 21529244 PMCID: PMC3292750 DOI: 10.1089/ars.2010.3849] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 01/16/2023]
Abstract
AIMS Mitochondrial damage due to Ca(2+) overload-induced opening of permeability transition pores (PTP) is believed to play a role in selective degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Genetic ablation of mitochondrial matrix protein cyclophilin D (CYPD) has been shown to increase Ca(2+) threshold of PTP in vitro and to prevent cell death in several in vivo disease models. We investigated the role of CYPD in a mouse model of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. RESULTS We demonstrate that in vitro, brain mitochondria isolated from CYPD knockout mice were less sensitive to MPP+ (1-methyl-4-phenyl-pyridinium ion)-induced membrane depolarization, and free radical generation compared to wild-type mice. CYPD knockout mitochondria isolated from ventral midbrain of mice treated with MPTP in vivo exhibited less damage as judged from respiratory chain Complex I activity, State 3 respiration rate, and respiratory control index than wild-type mice, whereas assessment of apoptotic markers showed no differences between the two genotypes. However, CYPD knockout mice were significantly resistant only to an acute regimen of MPTP neurotoxicity in contrast to the subacute and chronic MPTP paradigms. INNOVATION Inactivation of CYPD is beneficial in preserving mitochondrial functions only in an acute insult model of MPTP-induced dopaminergic neurotoxicity. CONCLUSION Our results suggest that CYPD deficiency distinguishes the modes of dopaminergic neurodegeneration in various regimens of MPTP-neurotoxicity.
Collapse
Affiliation(s)
- Bobby Thomas
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee JA. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 2012; 21:1-8. [PMID: 22438673 PMCID: PMC3294068 DOI: 10.5607/en.2012.21.1.1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Neurons have highly dynamic cellular processes for their proper functions such as cell growth, synaptic formation, or synaptic plasticity by regulating protein synthesis and degradation. Therefore, the quality control of proteins in neurons is essential for their physiology and pathology. Autophagy is a cellular degradation pathway by which cytosolic components are sequestered in autophagosomes and degraded upon their fusion with lysosomal components. Thus, the autophagic pathway may play important roles in neuronal cell survival and neuronal function under physiological condition and pathological conditions. Recent several findings suggest that the loss of basal autophagy or imbalance of autophagic flux leads to neurodegeneration. Autophagosomes accumulate abnormally in affected neurons of several neurodegenerative diseases such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), or Frontotemporal dementia (FTD). Thus, the understanding how autophagy is associated with several neurological diseases would be the first step for new therapeutic intervention in neurological disorders. In this review, I will discuss the molecular mechanism of autophagy in neurons and autophagy-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-A Lee
- Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811, Korea
| |
Collapse
|
43
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|
44
|
Xiong Y, Uys JD, Tew KD, Townsend DM. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal 2011; 15:233-70. [PMID: 21235352 PMCID: PMC3110090 DOI: 10.1089/ars.2010.3540] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox homeostasis governs a number of critical cellular processes. In turn, imbalances in pathways that control oxidative and reductive conditions have been linked to a number of human disease pathologies, particularly those associated with aging. Reduced glutathione is the most prevalent biological thiol and plays a crucial role in maintaining a reduced intracellular environment. Exposure to reactive oxygen or nitrogen species is causatively linked to the disease pathologies associated with redox imbalance. In particular, reactive oxygen species can differentially oxidize certain cysteine residues in target proteins and the reversible process of S-glutathionylation may mitigate or mediate the damage. This post-translational modification adds a tripeptide and a net negative charge that can lead to distinct structural and functional changes in the target protein. Because it is reversible, S-glutathionylation has the potential to act as a biological switch and to be integral in a number of critical oxidative signaling events. The present review provides a comprehensive account of how the S-glutathionylation cycle influences protein structure/function and cellular regulatory events, and how these may impact on human diseases. By understanding the components of this cycle, there should be opportunities to intervene in stress- and aging-related pathologies, perhaps through prevention and diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | |
Collapse
|
45
|
Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G, Padovani A. The role of mitochondria in neurodegenerative diseases. J Neurol 2011; 258:1763-74. [PMID: 21604203 DOI: 10.1007/s00415-011-6104-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/07/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Mitochondria are implicated in several metabolic pathways including cell respiratory processes, apoptosis, and free radical production. Mitochondrial abnormalities have been documented in neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, and amyotrophic lateral sclerosis. Several studies have demonstrated that mitochondrial impairment plays an important role in the pathogenesis of this group of disorders. In this review, we discuss the role of mitochondria in the main neurodegenerative diseases and review the updated knowledge in this field.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital Spedali Civili, Pz.le Spedali Civili 1, 25100, Brescia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Parkinson’s disease is a neurodegenerative movement disorder characterized by loss of midbrain dopaminergic neurons leading to motor abnormalities and autonomic dysfunctions. Despite intensive research, the etiology of Parkinson’s disease remains poorly understood leaving us with no effective therapeutic options. However, the recent identification of genes linked to heritable forms of Parkinson’s disease has revolutionized research in the field and has begun to provide new clues to disease pathogenesis. Here we discuss these recent genetic advances and highlight their significance in our quest to better understand common underlying disease mechanisms that will help us identify innovative neuroprotective therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Bobby Thomas
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University 525 East 68th Street, A-501, New York, NY 10065 USA
| | | |
Collapse
|
47
|
Finsterer J. Parkinson's syndrome and Parkinson's disease in mitochondrial disorders. Mov Disord 2011; 26:784-91. [PMID: 21384429 DOI: 10.1002/mds.23651] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/17/2010] [Accepted: 01/03/2011] [Indexed: 02/04/2023] Open
Abstract
In the majority of cases, mitochondrial disorders are multisystem conditions that most frequently affect the skeletal muscle, followed by the central nervous system. One of the clinical manifestations of central nervous system involvement is Parkinson's syndrome (PS). Evidence for an association of mitochondrial defects with PS comes from mitochondrial disorder patients who have developed Parkinson's syndrome and from Parkinson's syndrome patients who have developed a mitochondrial disorder. In addition, there are a number of patients with Parkinson's syndrome or Parkinson's disease (PD) who later develop subclinical immunohistological or biochemical indications of mitochondrial defects or accumulates mitochondrial DNA mutations within various cerebral regions. There are also Parkinson's syndrome patients who present with elevated cerebrospinal-fluid lactate by magnetic resonance spectroscopy. Furthermore, it has been shown that mutations in genes causing PD, such as PINK1, parkin, DJ1, alpha-synuclein, and LRRK2, also cause mitochondrial dysfunction, which is one of the reasons why they are called mitochondrial nigropathies. Parkinson's syndrome in patients with a mitochondrial disorder may also result from oxidative stress or exogenous toxins. Treatment of mitochondrial Parkinson's syndrome is not at variance with the treatment of Parkinson's syndrome due to other causes, but because of the multisystem nature of mitochondrial disorders, mitochondrial Parkinson's syndrome requires additional therapeutic support.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Danube University, Krems, Austria.
| |
Collapse
|
48
|
Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci 2010; 33:541-9. [PMID: 20947179 DOI: 10.1016/j.tins.2010.09.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved intracellular pathway involved in the elimination of proteins and organelles by lysosomes. Known originally as an adaptive response to nutrient deprivation in mitotic cells, autophagy is now recognized as an arbiter of neuronal survival and death decisions in neurodegenerative diseases. Studies using postmortem human tissue, genetic and toxin-induced animal and cellular models indicate that many of the etiological factors associated with neurodegenerative disorders can perturb the autophagy process. Emerging data support the view that dysregulation of autophagy might play a critical role in the pathogenesis of neurodegenerative disorders. In this review, we highlight the pathophysiological roles of autophagy and its potential therapeutic implications in debilitating neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's, Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
- Rebecca Banerjee
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68(th) Street, A-501, New York, NY 10065
| | | | | |
Collapse
|
49
|
Kanthasamy A, Jin H, Mehrotra S, Mishra R, Kanthasamy A, Rana A. Novel cell death signaling pathways in neurotoxicity models of dopaminergic degeneration: relevance to oxidative stress and neuroinflammation in Parkinson's disease. Neurotoxicology 2010; 31:555-61. [PMID: 20005250 PMCID: PMC2888638 DOI: 10.1016/j.neuro.2009.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/02/2009] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder characterized by extensive degeneration of dopaminergic neurons in the nigrostriatal system. Neurochemical and neuropathological analyses clearly indicate that oxidative stress, mitochondrial dysfunction, neuroinflammation and impairment of the ubiquitin-proteasome system (UPS) are major mechanisms of dopaminergic degeneration. Evidence from experimental models and postmortem PD brain tissues demonstrates that apoptotic cell death is the common final pathway responsible for selective and irreversible loss of nigral dopaminergic neurons. Epidemiological studies imply both environmental neurotoxicants and genetic predisposition are risk factors for PD, though the cellular mechanisms underlying selective dopaminergic degeneration remain unclear. Recent progress in signal transduction research is beginning to unravel the complex mechanisms governing dopaminergic degeneration. During the 12th International Neurotoxicology meeting, discussion at one symposium focused on several key signaling pathways of dopaminergic degeneration. This review summarizes two novel signaling pathways of nigral dopaminergic degeneration that have been elucidated using neurotoxicity models of PD. Dr. Anumantha Kanthasamy described a cell death pathway involving the novel protein kinase C delta isoform (PKCdelta) in oxidative stress-induced apoptotic cell death in experimental models of PD. Dr. Ajay Rana presented his recent work on the role of mixed lineage kinase-3 (MLK3) in neuroinflammatory processes in neurotoxic cell death. Collectively, PKCdelta and MLK3 signaling pathways provide new understanding of neurodegenerative processes in PD, and further exploration of these pathways may translate into effective neuroprotective drugs for the treatment of PD.
Collapse
Affiliation(s)
- Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Xie W, Wan OW, Chung KKK. New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2010; 1802:935-41. [PMID: 20674742 DOI: 10.1016/j.bbadis.2010.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/20/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder that affects increasing number of elderly in the world population. The disease is caused by a selective degeneration of dopaminergic neurons in the substantia nigra pars compacta with the molecular mechanism underlying this neurodegeneration still not fully understood. However, various studies have shown that mitochondrial dysfunction and abnormal protein aggregation are two of the major contributors for PD. In fact this notion has been supported by recent studies on genes that are linked to familial PD (FPD). For instance, FPD linked gene products such as PINK1 and parkin have been shown to play critical roles in the quality control of mitochondria, whereas α-synuclein has been found to be the major protein aggregates accumulated in PD patients. These findings suggest that further understanding of how dysfunction of these pathways in PD will help develop new approaches for the treatment of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Weilin Xie
- Section of Biochemistry and Cell Biology, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | |
Collapse
|