1
|
Wang H, Kazaleh M, Gioscia-Ryan R, Millar J, Temprano-Sagrera G, Wood S, Van Den Bergh F, Blin MG, Wragg KM, Luna A, Hawkins RB, Soleimanpour SA, Sabater-Lleal M, Shu C, Beard DA, Ailawadi G, Deng JC, Goldstein DR, Salmon M. Deficiency of mitophagy mediator Parkin in aortic smooth muscle cells exacerbates abdominal aortic aneurysm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621201. [PMID: 39554010 PMCID: PMC11565987 DOI: 10.1101/2024.10.30.621201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are a degenerative aortic disease and associated with hallmarks of aging, such as mitophagy. Despite this, the exact associations among mitophagy, aging, and AAA progression remain unknown. In our study, gene expression analysis of human AAA tissue revealed downregulation of mitophagy pathways, mitochondrial structure, and function-related proteins. Human proteomic analyses identified decreased levels of mitophagy mediators PINK1 and Parkin. Aged mice and, separately, a murine AAA model showed reduced mitophagy in aortic vascular smooth muscle cells (VSMCs) and PINK1 and Parkin expression. Parkin knockdown in VSMCs aggravated AAA dilation in murine models, with elevated mitochondrial ROS and impaired mitochondrial function. Importantly, inhibiting USP30, an antagonist of the PINK1/Parkin pathway, increased mitophagy in VSMCs, improved mitochondrial function, and reduced AAA incidence and growth. Our study elucidates a critical mechanism that proposes AAAs as an age-associated disease with altered mitophagy, introducing new potential therapeutic approaches.
Collapse
|
2
|
Singam A, Bhattacharya C, Park S. Aging-related changes in the mechanical properties of single cells. Heliyon 2024; 10:e32974. [PMID: 38994100 PMCID: PMC11238009 DOI: 10.1016/j.heliyon.2024.e32974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.
Collapse
Affiliation(s)
- Amarnath Singam
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Chandrabali Bhattacharya
- Department of Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
3
|
Bian S, Yang L, Zhao D, Lv L, Wang T, Yuan H. HMGB1/TLR4 signaling pathway enhances abdominal aortic aneurysm progression in mice by upregulating necroptosis. Inflamm Res 2023; 72:703-713. [PMID: 36745209 DOI: 10.1007/s00011-023-01694-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE AND DESIGN The age-associated increases in aseptic inflammation and necroptosis are closely related to the emergence of various age-associated diseases. METHODS In this study, the role of HMGB1/TLR4-induced necroptosis in abdominal aortic aneurysm (AAA) formation was investigated. First, the levels of sterile inflammatory mediators (HMGB1, TLR4) and necroptosis markers were measured in the abdominal aortas of young and old C57BL/6JNifdc mice. We observed that sterile inflammatory mediators and necroptosis markers were greatly increased in the abdominal aortas of old mice. Then, angiotensin II (Ang II)-induced AAA model in APOE-/- mice was used in this study. Mice AAA models were treated with the RIP1 inhibitor necrostatin-1 (Nec-1) or the TLR4 inhibitor TAK-242, respectively. RESULTS We found that HMGB1, TLR4, and necroptosis markers were elevated in old mice compared with those in young mice. Same elevation was also found in the development of AAA in APOE-/- mice. In addition, the necroptosis inhibitor Nec-1 alleviated Ang II-induced AAA development while downregulating the expression of HMGB1/TLR4. After blocking TLR4 with TAK-242, the expression of necroptosis markers decreased significantly, and the progression of AAA was also alleviated in APOE-/- mice. CONCLUSIONS Our results indicated that HMGB1/TLR4-mediated necroptosis enhances AAA development in the Ang II-induced AAA model in APOE-/- mice and that TLR4 might be a potential therapeutic target for AAA management.
Collapse
Affiliation(s)
- Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Invasive Therapy, Anqing Municipal Hospital (Anqing Hospital Affiliated to Anhui Medical University), Anqing, China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | | | - Lizhi Lv
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tiezheng Wang
- Department of Medical Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Medical Ultrasound, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China. .,Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Bala R, Verma R, Budhwar S, Prakash N, Sachan S. Fetal hyperhomocysteinemia is associated with placental inflammation and early breakdown of maternal-fetal tolerance in Pre-term birth. Am J Reprod Immunol 2022; 88:e13589. [PMID: 35750632 DOI: 10.1111/aji.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Hyperhomocysteinemia (hypHcy) due to impaired folate metabolism is shown to be a risk factor for preterm birth (PTB) and low birth weight (LBW) in mothers. However, the relationship of fetal hypHcy with adverse pregnancy outcomes is under-represented. The present study aims to investigate the association of fetal hypHcy with oxidative stress and placental inflammation that can contribute to an early breakdown of maternal-fetal tolerance in pre-term birth (PTB). METHODS Cord blood and placenta tissue were collected from PTB and term infant group. Levels of homocysteine, folic acid, vitamin B12 and oxidative stress markers (MDA, T-AOC, 8-OHdG) were measured in cord blood serum using ELISA and respective standard assay kits. Relative expression of candidate genes (TNF-α, IL-6, IL1-β, VEGF-A, MMP2 and MMP9) was also checked using RT-PCR and immunoblotting/immunohistochemistry. RESULTS PTB infants showed significantly higher levels of homocysteine (p = 0.02) and lower levels of vitamin B12 (p = 0.005) as compared to term infants. We also found that PTB infants with hypHcy had lower T-AOC (p = 0.003) and higher MDA (p = 0.04) levels as compared to term infants with normal homocysteine levels. The mRNA and protein levels of TNF-α, VEGF-A, MMP2 and MMP9 were significantly higher in hypHcy PTB infants. CONCLUSION Our results show that fetal hypHcy is associated with oxidative stress and an increase in inflammatory markers in the placenta. Thus, in conclusion, our study demonstrates that fetal hypHcy during pregnancy is a potential risk factor that may initiate an early breakdown of uterine quiescence due to activation of inflammatory processes leading to PTB. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renu Bala
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rachna Verma
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Snehil Budhwar
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Nikita Prakash
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shikha Sachan
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
5
|
Moreno-Fernandez J, Ochoa JJ, De Paco Matallana C, Caño A, Martín-Alvarez E, Sanchez-Romero J, Toledano JM, Puche-Juarez M, Prados S, Ruiz-Duran S, Diaz-Meca L, Carrillo MP, Diaz-Castro J. COVID-19 during Gestation: Maternal Implications of Evoked Oxidative Stress and Iron Metabolism Impairment. Antioxidants (Basel) 2022; 11:184. [PMID: 35204067 PMCID: PMC8868249 DOI: 10.3390/antiox11020184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 has reached pandemic proportions worldwide, with considerable consequences for both health and the economy. In pregnant women, COVID-19 can alter the metabolic environment, iron metabolism, and oxygen supply of trophoblastic cells, and therefore have a negative influence on essential mechanisms of fetal development. The purpose of this study was to investigate, for the first time, the effects of COVID-19 infection during pregnancy with regard to the oxidative/antioxidant status in mothers' serum and placenta, together with placental iron metabolism. Results showed no differences in superoxide dismutase activity and placental antioxidant capacity. However, antioxidant capacity decreased in the serum of infected mothers. Catalase activity decreased in the COVID-19 group, while an increase in 8-hydroxy-2'-deoxyguanosine, hydroperoxides, 15-FT-isoprostanes, and carbonyl groups were recorded in this group. Placental vitamin D, E, and Coenzyme-Q10 also showed to be increased in the COVID-19 group. As for iron-related proteins, an up-regulation of placental DMT1, ferroportin-1, and ferritin expression was recorded in infected women. Due to the potential role of iron metabolism and oxidative stress in placental function and complications, further research is needed to explain the pathogenic mechanism of COVID-19 that may affect pregnancy, so as to assess the short-term and long-term outcomes in mothers' and infants' health.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Clinical Medicine and Public Health Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
| | - Catalina De Paco Matallana
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (L.D.-M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Africa Caño
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain; (A.C.); (S.P.)
| | - Estefania Martín-Alvarez
- Unit of Neonatology, Pediatric Service, Hospital Universitario Materno-Infantil Virgen de las Nieves, 18014 Granada, Spain;
| | - Javier Sanchez-Romero
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (L.D.-M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Sonia Prados
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain; (A.C.); (S.P.)
| | - Susana Ruiz-Duran
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (S.R.-D.); (M.P.C.)
| | - Lucia Diaz-Meca
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (L.D.-M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - María Paz Carrillo
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (S.R.-D.); (M.P.C.)
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| |
Collapse
|
6
|
Wu N, Zheng F, Li N, Han Y, Xiong XQ, Wang JJ, Chen Q, Li YH, Zhu GQ, Zhou YB. RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biol 2021; 48:102204. [PMID: 34883403 PMCID: PMC8661704 DOI: 10.1016/j.redox.2021.102204] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide and vascular smooth muscle cells (VSMCs) migration and proliferation play crucial roles in the vascular remodeling. Vascular remodeling contributes to the development and complications of hypertension. Rho family GTPase 3 (RND3 or RhoE), an atypical small Rho-GTPase, is known to be involved in cancer development and metastasis. However, the roles of RND3 in superoxide production and cardiovascular remodeling are unknown. Here, we uncovered the critical roles of RND3 in attenuating superoxide production, VSMCs migration and proliferation, and vascular remodeling in hypertension and its underline mechanisms. VSMCs were isolated and prepared from thoracic aorta of Male Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). RND3 mRNA and protein expressions in arteries and VSMCs were down-regulated in SHR. RND3 overexpression in VSMCs reduced NAD(P)H oxidase (NOX) activity, NOX1 and NOX2 expressions, mitochondria superoxide generation, and H2O2 production in SHR. Moreover, the RND3 overexpression inhibited VSMCs migration and proliferation in SHR, which were similar to the effects of NOX1 inhibitor ML171 plus NOX2 inhibitor GSK2795039. Rho-associated kinase 1 (ROCK1) and RhoA expressions and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation in VSMCs were increased in SHR, which were prevented by RND3 overexpression. ROCK1 overexpression promoted NOX1 and NOX2 expressions, superoxide and H2O2 production, VSMCs migration and proliferation in both WKY and SHR, which were attenuated by RND3 overexpression. Adenoviral-mediated RND3 overexpression in SHR attenuated hypertension, vascular remodeling and oxidative stress. These results indicate that RND3 attenuates VSMCs migration and proliferation, hypertension and vascular remodeling in SHR via inhibiting ROCK1-NOX1/2 and mitochondria superoxide signaling.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Role of FoxO transcription factors in aging-associated cardiovascular diseases. VITAMINS AND HORMONES 2021; 115:449-475. [PMID: 33706958 DOI: 10.1016/bs.vh.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aging constitutes a major risk factor toward the development of cardiovascular diseases (CVDs). The aging heart undergoes several changes at the molecular, cellular and physiological levels, which diminishes its contractile function and weakens stress tolerance. Further, old age increases the exposure to risk factors such as hypertension, diabetes and hypercholesterolemia. Notably, research in the past decades have identified FoxO subfamily of the forkhead transcription factors as key players in regulating diverse cellular processes linked to cardiac aging and diseases. In the present chapter, we discuss the important role of FoxO in the development of various aging-associated cardiovascular complications such as cardiac hypertrophy, cardiac fibrosis, heart failure, vascular dysfunction, atherosclerosis, hypertension and myocardial ischemia. Besides, we will also discuss the role of FoxO in cardiometabolic alterations, autophagy and proteasomal degradation, which are implicated in aging-associated cardiac dysfunction.
Collapse
|
8
|
Qi HM, Cao Q, Liu Q. TLR4 regulates vascular smooth muscle cell proliferation in hypertension via modulation of the NLRP3 inflammasome. Am J Transl Res 2021; 13:314-325. [PMID: 33527026 PMCID: PMC7847527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Backgroud: Toll-like receptor 4 (TLR4), a key mediator of inflammatory responses, which is associated with vascular remodeling. The association between TLR4 and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the regulation of vascular smooth muscle cell (VSMC) proliferation remains unclear. This study was to explore the role and underlying mechanisms of TLR4 in the proliferation of VSMC in hypertension. METHODS VSMC proliferation after TLR4 overexpression or downregulation was determined by CCK-8, EdU Incorporation and colony formation assays. Western blots were carried out to investigate the expression of TLR4 and NLRP3 inflammasome components in VSMCs. Next, blood pressure measurements and Hematoxylin and Eosin (HE) staining assays were performed in spontaneously hypertensive rats (SHR). Media thickness (M) and diameter lumen (L) were measured as indicators of vascular remodeling. The expression of TLR4, PCNA and NLRP3 inflammasome complex was analyzed by Western blots in the aorta of SHR. RESULTS We showed that TLR4 overexpression with cDNA enhanced, while knockdown of TLR4 with shRNA inhibited Ang II-induced VSMC proliferation. Besides, TLR4 overexpression upregulated the proteion expression of the NLRP3 inflammasome components including NLRP3, ASC and caspase-1, whereas their corresponding levels of expression were observed to decrease in TLR4 shRNA-transfected VSMCs. Knockdown of TLR4 attenuated vascular remodeling, blood pressure (BP) and the levels of NLRP3, ASC, caspase-1, IL-1β and IL-18 in SHR aortas. CONCLUSION This study revealed that TLR4 regulated Ang II-induced VSMC proliferation through modulating the NLRP3 inflammasome. Knockdown of TLR4 attenuated the BP and vascular remodeling by inhibiting the expression of the NLRP3 inflammasome component in SHR. Our results support that TLR4 regulates VSMC proliferation in hypertension via triggering the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hui-Meng Qi
- Department of General Practice, The First Hospital of China Medical UniversityShenyang, China
| | - Qin Cao
- Department of Gastroenterolog, The First Hospital of China Medical UniversityShenyang, China
| | - Qiang Liu
- Department of Nephrology, The First Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
9
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
10
|
Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1810-1821. [PMID: 31109451 DOI: 10.1016/j.bbadis.2018.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
11
|
BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5018410. [PMID: 30805081 PMCID: PMC6362478 DOI: 10.1155/2019/5018410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling in hypertension and several major vascular diseases. B-cell lymphoma 6 (BCL6) functions as a transcriptional repressor. The present study is designed to determine the roles of BCL6 in VSMC proliferation and oxidative stress and underlying mechanism. Angiotensin (Ang) II was used to induce VSMC proliferation and oxidative stress in human VSMCs. Effects of BCL6 overexpression and knockdown were, respectively, investigated in Ang II-treated human VSMCs. Therapeutical effects of BCL6 overexpression on vascular remodeling, oxidative stress, and proliferation were determined in the aorta of spontaneously hypertensive rats (SHR). Ang II reduced BCL6 expression in human VSMCs. BCL6 overexpression attenuated while BCL6 knockdown enhanced the Ang II-induced upregulation of NADPH oxidase 4 (NOX4), production of reactive oxygen species (ROS), and proliferation of VSMCs. BCL6 expression was downregulated in SHR. BCL6 overexpression in SHR reduced NOX4 expression, ROS production, and proliferation of the aortic media of SHR. Moreover, BCL6 overexpression attenuated vascular remodeling and hypertension in SHR. However, BCL6 overexpression had no significant effects on NOX2 expression in human VSMCs or in SHR. We conclude that BCL6 attenuates proliferation and oxidative stress of VSMCs in hypertension.
Collapse
|
12
|
Akoumianakis I, Antoniades C. Impaired Vascular Redox Signaling in the Vascular Complications of Obesity and Diabetes Mellitus. Antioxid Redox Signal 2019; 30:333-353. [PMID: 29084432 DOI: 10.1089/ars.2017.7421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Oxidative stress, a crucial regulator of vascular disease pathogenesis, may be involved in the vascular complications of obesity, systemic insulin resistance (IR), and diabetes mellitus (DM). Recent Advances: Excessive production of reactive oxygen species in the vascular wall has been linked with vascular disease pathogenesis. Recent evidence has revealed that vascular redox state is dysregulated in cases of obesity, systemic IR, and DM, potentially participating in the well-known vascular complications of these disease entities. Critical Issues: The detrimental effects of obesity and the metabolic syndrome on vascular biology have been extensively described at a clinical level. Further, vascular oxidative stress has often been associated with the presence of obesity and IR as well as with a variety of detrimental vascular phenotypes. However, the mechanisms of vascular redox state regulation under conditions of obesity and systemic IR, as well as their clinical relevance, are not adequately explored. In addition, the notion of vascular IR, and its relationship with systemic parameters of obesity and systemic IR, is not fully understood. In this review, we present all the important components of vascular redox state and the evidence linking oxidative stress with obesity and IR. Future Directions: Future studies are required to describe the cellular effects and the translational potential of vascular redox state in the context of vascular disease. In addition, further elucidation of the direct vascular effects of obesity and IR is required for better management of the vascular complications of DM.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford , Oxford, United Kingdom
| | | |
Collapse
|
13
|
Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:257-284. [PMID: 30466987 DOI: 10.1016/j.phymed.2018.09.204] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood. AIM OF THE STUDY The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola rosea, Eleutherococcus senticosus, Withania somnifera, Rhaponticum carthamoides, and Bryonia alba. MATERIALS AND METHODS To investigate the underlying molecular mechanisms of adaptogens, we conducted RNA sequencing to profile gene expression alterations in T98G neuroglia cells upon treatment of adaptogens and analyzed the relevance of deregulated genes to adaptive stress-response signaling pathways using in silico pathway analysis software. RESULTS AND DISCUSSION At least 88 of the 3516 genes regulated by adaptogens were closely associated with adaptive stress response and adaptive stress-response signaling pathways (ASRSPs), including neuronal signaling related to corticotropin-releasing hormone, cAMP-mediated, protein kinase A, and CREB; pathways related to signaling involving CXCR4, melatonin, nitric oxide synthase, GP6, Gαs, MAPK, neuroinflammation, neuropathic pain, opioids, renin-angiotensin, AMPK, calcium, and synapses; and pathways associated with dendritic cell maturation and G-coupled protein receptor-mediated nutrient sensing in enteroendocrine cells. All samples tested showed significant effects on the expression of genes encoding neurohormones CRH, GNRH, UCN, G-protein-coupled and other transmembrane receptors TLR9, PRLR, CHRNE, GP1BA, PLXNA4, a ligand-dependent nuclear receptor RORA, transmembrane channels, transcription regulators FOS, FOXO6, SCX, STAT5A, ZFPM2, ZNF396, ZNF467, protein kinases MAPK10, MAPK13, MERTK, FLT1, PRKCH, ROS1, TTN), phosphatases PTPRD, PTPRR, peptidases, metabolic enzymes, a chaperone (HSPA6), and other proteins, all of which modulate numerous life processes, playing key roles in several canonical pathways involved in defense response and regulation of homeostasis in organisms. It is for the first time we report that the molecular mechanism of actions of melatonin and plant adaptogens are alike, all adaptogens tested activated the melatonin signaling pathway by acting through two G-protein-coupled membrane receptors MT1 and MT2 and upregulation of the ligand-specific nuclear receptor RORA, which plays a role in intellectual disability, neurological disorders, retinopathy, hypertension, dyslipidemia, and cancer, which are common in aging. Furthermore, melatonin activated adaptive signaling pathways and upregulated expression of UCN, GNRH1, TLR9, GP1BA, PLXNA4, CHRM4, GPR19, VIPR2, RORA, STAT5A, ZFPM2, ZNF396, FLT1, MAPK10, MERTK, PRKCH, and TTN, which were commonly regulated by all adaptogens tested. We conclude that melatonin is an adaptation hormone playing an important role in regulation of homeostasis. Adaptogens presumably worked as eustressors ("stress-vaccines") to activate the cellular adaptive system by inducing the expression of ASRSPs, which then reciprocally protected cells from damage caused by distress. Functional investigation by interactive pathways analysis demonstrated that adaptogens activated ASRSPs associated with stress-induced and aging-related disorders such as chronic inflammation, cardiovascular health, neurodegenerative cognitive impairment, metabolic disorders, and cancer. CONCLUSION This study has elucidated the genome-wide effects of several adaptogenic herbal extracts in brain cells culture. These data highlight the consistent activation of ASRSPs by adaptogens in T98G neuroglia cells. The extracts affected many genes playing key roles in modulation of adaptive homeostasis, indicating their ability to modify gene expression to prevent stress-induced and aging-related disorders. Overall, this study provides a comprehensive look at the molecular mechanisms by which adaptogens exerts stress-protective effects.
Collapse
Affiliation(s)
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
14
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
15
|
NADPH Oxidases and Mitochondria in Vascular Senescence. Int J Mol Sci 2018; 19:ijms19051327. [PMID: 29710840 PMCID: PMC5983750 DOI: 10.3390/ijms19051327] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is the major risk factor in the development of cardiovascular diseases (CVDs), including hypertension, atherosclerosis, and myocardial infarction. Oxidative stress caused by overproduction of reactive oxygen species (ROS) and/or by reduced expression of antioxidant enzymes is a major contributor to the progression of vascular senescence, pathologic remodeling of the vascular wall, and disease. Both oxidative stress and inflammation promote the development of senescence, a process by which cells stop proliferating and become dysfunctional. This review focuses on the role of the mitochondria and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases Nox1 and Nox4 in vascular senescence, and their contribution to the development of atherosclerosis. Recent findings are reviewed, supporting a critical role of the mitochondrial regulator peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1α (PGC-1α), the inflammatory gene nuclear factor κB (NF-κB), zinc, the zinc transporters (ZnTs) ZnT3 and ZnT10, and angiotensin II (Ang II) in mitochondrial function, and their role in telomere stability, which provides new mechanistic insights into a previously proposed unified theory of aging.
Collapse
|
16
|
Samson M, Corbera-Bellalta M, Audia S, Planas-Rigol E, Martin L, Cid MC, Bonnotte B. Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev 2017; 16:833-844. [DOI: 10.1016/j.autrev.2017.05.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022]
|
17
|
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 2017; 175:1279-1292. [PMID: 28430357 DOI: 10.1111/bph.13828] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
ROS are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. In the vascular system, physiological levels of ROS are essential for normal vascular functions including endothelial homeostasis and smooth muscle cell contraction. In contrast, uncontrolled overproduction of ROS resulting from an imbalance of ROS generation and elimination leads to the development of vascular diseases. Excessive ROS cause vascular cell damage, the recruitment of inflammatory cells, lipid peroxidation, activation of metalloproteinases and deposition of extracellular matrix, collectively leading to vascular remodelling. Evidence from a large number of studies has revealed that ROS and oxidative stress are involved in the initiation and progression of numerous vascular diseases including hypertension, atherosclerosis, restenosis and abdominal aortic aneurysm. Furthermore, considerable research has been implemented to explore antioxidants that can reduce ROS production and oxidative stress in order to ameliorate vascular diseases. In this review, we will discuss the nature and sources of ROS, their roles in vascular homeostasis and specific vascular diseases and various antioxidants as well as some of the pharmacological agents that are capable of reducing ROS and oxidative stress. The aim of this review is to provide information for developing promising clinical strategies targeting ROS to decrease cardiovascular risks. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
DNA damage-dependent mechanisms of ageing and disease in the macro- and microvasculature. Eur J Pharmacol 2017; 816:116-128. [PMID: 28347738 DOI: 10.1016/j.ejphar.2017.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
A decline in the function of the macro- and micro-vasculature occurs with ageing. DNA damage also accumulates with ageing, and thus DNA damage and repair have important roles in physiological ageing. Considerable evidence also supports a crucial role for DNA damage in the development and progression of macrovascular disease such as atherosclerosis. These findings support the concept that prolonged exposure to risk factors is a major stimulus for DNA damage within the vasculature, in part via the generation of reactive oxygen species. Genomic instability can directly affect vascular cellular function, leading to cell cycle arrest, apoptosis and premature vascular cell senescence. In contrast, the study of age-related impaired function and DNA damage mechanisms in the microvasculature is limited, although ageing is associated with microvessel endothelial dysfunction. This review examines current knowledge on the role of DNA damage and DNA repair systems in macrovascular disease such as atherosclerosis and microvascular disease. We also discuss the cellular responses to DNA damage to identify possible strategies for prevention and treatment.
Collapse
|
19
|
Wu Y, Leng Y, Meng Q, Xue R, Zhao B, Zhan L, Xia Z. Suppression of Excessive Histone Deacetylases Activity in Diabetic Hearts Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondria Apoptosis Pathway. J Diabetes Res 2017; 2017:8208065. [PMID: 28191472 PMCID: PMC5278197 DOI: 10.1155/2017/8208065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Background. Histone deacetylases (HDACs) play a pivotal role in signaling modification and gene transcriptional regulation that are essential for cardiovascular pathophysiology. Diabetic hearts with higher HDACs activity were more vulnerable to myocardial ischemia/reperfusion (MI/R) injury compared with nondiabetic hearts. We are curious about whether suppression of excessive HDACs activity in diabetic heart protects against MI/R injury. Methods. Diabetic rats were subjected to 45 min of ischemia, followed by 3 h of reperfusion. H9C2 cardiomyocytes were exposed to high glucose for 24 h, followed by 4 h of hypoxia and 2 h of reoxygenation (H/R). Results. Both MI/R injury and diabetes mellitus elevated myocardium HDACs activity. MI/R induced apoptotic cell death was significantly decreased in diabetic rats treated with HDACs inhibitor trichostatin A (TSA). TSA administration markedly moderated dissipation of mitochondrial membrane potential, protected the integrity of mitochondrial permeability transition pore (mPTP), and decreased cell apoptosis. Notably, cotreatment with Akt inhibitor partly or absolutely inhibited the protective effect of TSA in vivo and in vitro. Furthermore, TSA administration activated Akt/Foxo3a pathway, leading to Foxo3a cytoplasm translocation and attenuation proapoptosis protein Bim expression. Conclusions. Both diabetes mellitus and MI/R injury increased cardiac HDACs activity. Suppression of HDACs activity triggered protective effects against MI/R and H/R injury under hyperglycemia conditions through Akt-modulated mitochondrial apoptotic pathways via Foxo3a/Bim.
Collapse
Affiliation(s)
- Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Rui Xue
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Liying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
- *Zhongyuan Xia:
| |
Collapse
|
20
|
Lee MH, Han MH, Lee DS, Park C, Hong SH, Kim GY, Hong SH, Song KS, Choi IW, Cha HJ, Choi YH. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int J Mol Med 2016; 39:399-406. [PMID: 28035409 DOI: 10.3892/ijmm.2016.2837] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
In the present study, we investigated the cytoprotective efficacy of morin, a natural flavonoid, against oxidative stress and elucidated the underlying mechanisms in C2C12 myoblasts. Our results indicated that morin treatment prior to hydrogen peroxide (H2O2) exposure significantly increased cell viability and prevented the generation of reactive oxygen species. H2O2-induced comet-like DNA formation and γH2AX phosphorylation were also markedly suppressed by morin with a parallel inhibition of apoptosis in C2C12 myoblasts, suggesting that morin prevented H2O2-induced cellular DNA damage. Furthermore, morin markedly enhanced the expression of heme oxygenase-1 (HO-1) associated with the induction and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of Kelch-like ECH-associated protein 1 (Keap1) expression. Notably, these events were eliminated by transient transfection with Nrf2‑specific small interfering RNA. Additional experiments demonstrated that the activation of the Nrf2/HO-1 pathway by morin was mediated by the extracellular signal‑regulated kinase (ERK) signaling cascade. This phenomenon was confirmed with suppressed Nrf2 phosphorylation and consequently diminished HO-1 expression in cells treated with a pharmacological inhibitor of ERK. Collectively, these results demonstrated that morin augments the cellular antioxidant defense capacity through the activation of Nrf2/HO‑1 signaling, which involves the activation of the ERK pathway, thereby protecting C2C12 myoblasts from H2O2-induced oxidative cytotoxicity.
Collapse
Affiliation(s)
- Moon Hee Lee
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Min Ho Han
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Kyoung Seob Song
- Department of Physiology, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 608-737, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
21
|
Mitochondrial ferritin protects the murine myocardium from acute exhaustive exercise injury. Cell Death Dis 2016; 7:e2475. [PMID: 27853170 PMCID: PMC5260894 DOI: 10.1038/cddis.2016.372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Mitochondrial ferritin (FtMt) is a mitochondrially localized protein possessing ferroxidase activity and the ability to store iron. FtMt overexpression in cultured cells protects against oxidative damage by sequestering redox-active, intracellular iron. Here, we found that acute exhaustive exercise significantly increases FtMt expression in the murine heart. FtMt gene disruption decreased the exhaustion exercise time and altered heart morphology with severe cardiac mitochondrial injury and fibril disorganization. The number of apoptotic cells as well as the levels of apoptosis-related proteins was increased in the FtMt−/− mice, though the ATP levels did not change significantly. Concomitant to the above was a high ‘uncommitted' iron level found in the FtMt−/− group when exposed to acute exhaustion exercise. As a result of the increase in catalytic metal, reactive oxygen species were generated, leading to oxidative damage of cellular components. Taken together, our results show that the absence of FtMt, which is highly expressed in the heart, increases the sensitivity of mitochondria to cardiac injury via oxidative stress.
Collapse
|
22
|
Gliemann L, Nyberg M, Hellsten Y. Effects of exercise training and resveratrol on vascular health in aging. Free Radic Biol Med 2016; 98:165-176. [PMID: 27085843 DOI: 10.1016/j.freeradbiomed.2016.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/16/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease is a leading cause of death in the western world with aging being one of the strongest predictors of cardiovascular events. Aging is associated with impaired vascular function due to endothelial dysfunction and altered redox balance, partly caused by an increased formation of reactive oxygen species combined with a reduction in the endogenous antioxidant capacity. The consequence of these alterations is a reduced bioavailability of nitric oxide (NO) with implications for aspects such as control of vascular tone and low grade inflammation. However, it is not only aging per se but also the accumulative influence of physical inactivity and other life-style factors, which negatively affect the vascular system. Regular physical activity improves NO bioavailability, the redox balance and the plasma lipid profile and, at a functional level, reduces or even reverses a majority of the observed detrimental effects of aging on vascular function. The effects of aging and physical activity on vascular function are, in part, related to alterations in cellular signaling through sirtuin-1, AMPK and the estrogen receptor. The polyphenol resveratrol can activate these same pathways and has, in animals and in vitro models, been shown to act as a partial mimetic of physical activity. However, support for beneficial effects of resveratrol in human is weak and studies even show that resveratrol supplementation, similarly to supplementation with other antioxidants, can counteract the positive effects of physical activity. Regular physical activity remains the most effective way of maintaining and improving vascular health status and caution should be taken regarding potential interference of supplements on training adaptations.
Collapse
Affiliation(s)
- Lasse Gliemann
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
23
|
Sun HJ, Zhao MX, Ren XS, Liu TY, Chen Q, Li YH, Kang YM, Wang JJ, Zhu GQ. Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury via ROS/NFκB/MMP-9 Pathway. Antioxid Redox Signal 2016; 24:1045-57. [PMID: 26952533 DOI: 10.1089/ars.2015.6475] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Media-to-intima migration of vascular smooth muscle cells (VSMCs) is critical to intimal thickening in atherosclerosis and restenosis after coronary angioplasty. The aim of this study is to determine the effects of salusin-β on VSMC migration and intimal hyperplasia after vascular injury and the underlying mechanism. RESULTS In vitro, salusin-β promoted VSMC migration, which was attenuated by matrix metalloproteinase (MMP)-9 inhibition. Inhibition or knockdown of p65-nuclear factor kappa beta (NFκB) in VSMCs suppressed salusin-β-induced MMP-9 expression and VSMC migration. Salusin-β increased NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production, which were prevented by NOX2-small interfering RNA (siRNA) transfection. Salusin-β-induced p65-NFκB translocation, MMP-9 expression, and VSMC migration were inhibited by ROS scavenger, NADPH oxidase inhibitor, or NOX2-siRNA. In vivo, carotid artery ligation-induced vascular injury resulted in intimal hyperplasia in injured artery in rats. Salusin-β was upregulated in the injured carotid arteries of rats, which was attributed to reduced miR-133a-3p expression. Knockdown of salusin-β with siRNA attenuated the vascular injury-induced intimal thickening, p65-NFκB nuclear translocation, and NOX2 and MMP-9 expressions in rats. INNOVATION Salusin-β is a critical modulator in VSMC migration and neointima formation in response to vascular injury. CONCLUSIONS Salusin-β promotes VSMC migration and vascular injury-induced intimal hyperplasia via MMP-9 accumulation due to NOX2 activation, followed by ROS production, IκBα phosphorylation and degradation, and p65-NFκB translocation. We propose that salusin-β may be important in the VSMC migration and neointima of some vascular diseases. Antioxid. Redox Signal. 24, 1045-1057.
Collapse
Affiliation(s)
- Hai-Jian Sun
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Ming-Xia Zhao
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Xing-Sheng Ren
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Tong-Yan Liu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Qi Chen
- 2 Department of Pathophysiology, Nanjing Medical University , Nanjing, China
| | - Yue-Hua Li
- 2 Department of Pathophysiology, Nanjing Medical University , Nanjing, China
| | - Yu-Ming Kang
- 3 Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine , Xi'an, China
| | - Jue-Jin Wang
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Guo-Qing Zhu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| |
Collapse
|
24
|
Oxidative Stress in Placenta: Health and Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:293271. [PMID: 26693479 PMCID: PMC4676991 DOI: 10.1155/2015/293271] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022]
Abstract
During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed.
Collapse
|
25
|
Wang C, Wen J, Zhou Y, Li L, Cui X, Wang J, Pan L, Ye Z, Liu P, Wu L. Apelin induces vascular smooth muscle cells migration via a PI3K/Akt/FoxO3a/MMP-2 pathway. Int J Biochem Cell Biol 2015; 69:173-82. [PMID: 26494002 DOI: 10.1016/j.biocel.2015.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022]
Abstract
Apelin is an adipokine that has a critical role in the development of atherosclerosis, which may offer potential for therapy. Because migration of vascular smooth muscle cells (VSMCs) is a key event in the development of atherosclerosis, understanding its effect on the atherosclerotic vasculature is needed. Here we investigated the effect of apelin on VSMC migration and the possible signaling mechanism. In cultured rat VSMCs, apelin dose- and time-dependently promoted VSMC migration. Apelin increased the phosphorylation of Akt, whereas LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and an Akt1/2 kinase inhibitor blocked the apelin-induced VSMC migration. Apelin dose-dependently induced phosphorylation of Forkhead box O3a (FoxO3a) and promoted its translocation from the nucleus to cytoplasm, which were blocked by LY294002 and Akt1/2 kinase inhibitor. Furthermore, apelin increased matrix metalloproteinase 2 (MMP-2) expression and gelatinolytic activity. Overexpression of a constitutively active, phosphorylation-resistant mutant, TM-FoxO3a, in VSMCs abrogated the effect of apelin on MMP-2 expression and VSMC migration. ARP101, an inhibitor of MMP-2, suppressed apelin-induced VSMC migration. Moreover, the levels of apelin, phosphorylated Akt, FoxO3a, and MMP-2 were higher in human carotid-artery atherosclerotic plaque than in adjacent normal vessels. We demonstrate that PI3K/Akt/FoxO3a signaling may be involved in apelin inducing VSMC migration. Phosphorylation of FoxO3a plays a central role in mediating the apelin-induced MMP-2 activation and VSMC migration.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yun Zhou
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Xiaobing Cui
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing 100191, China
| | - Jinyu Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Lin Pan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Liling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
26
|
Uryga AK, Bennett MR. Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol 2015; 594:2115-24. [PMID: 26174609 DOI: 10.1113/jp270923] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis.
Collapse
Affiliation(s)
- Anna K Uryga
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Box 110, Cambridge, CB2 0QQ, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Box 110, Cambridge, CB2 0QQ, UK
| |
Collapse
|
27
|
Yu Z, Morimoto K, Yu J, Bao W, Okita Y, Okada K. Endogenous superoxide dismutase activation by oral administration of riboflavin reduces abdominal aortic aneurysm formation in rats. J Vasc Surg 2015; 64:737-45. [PMID: 26070605 DOI: 10.1016/j.jvs.2015.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Vitamin B2 (riboflavin) reportedly has an antioxidant effect through superoxide dismutase (SOD) activation. However, the effect of riboflavin on abdominal aortic aneurysm (AAA) has never been investigated. In the present study, we examined the hypothesis that riboflavin has a protective effect on AAA formation in an experimental rat model. METHODS The AAA model, which was induced with intraluminal elastase and extraluminal calcium chloride, was created in 36 rats. The 36 rats were divided into a riboflavin group (group R; 25 mg/kg/d), and control group (carboxymethyl cellulose). Riboflavin administration by gastric gavage once per day was started at 3 days before aneurysm preparation. On day 3, SOD activity in aneurysm walls was assayed. On day 7, reactive oxygen species (ROS) levels were semiquantified by dihydroethidium staining, and the oxidation product of DNA produced by ROS, 8-hydroxydeoxyguanosine (8-OHdG), was measured by immunohistochemical staining. Histopathologic examination (hematoxylin/eosin and elastica Van Gieson staining) was performed on day 28, and the AAA dilatation ratio was calculated to evaluate the protective effect of riboflavin. RESULTS On day 3, SOD activity was significantly increased in aneurysm walls by riboflavin administration (370 ± 204 U/mL in normal, 334 ± 86 U/mL in control, 546 ± 143 U/mL in group R; P = .021). On day 7, ROS levels and 8-OHdG-positive cells in aneurysm walls were significantly decreased by riboflavin treatment (ROS levels: 1.0 ± 0.1 in normal, 4.5 ± 0.4 in control, 3.1 ± 0.5 in group R, P < .01; 8-OHdG-positive cells: 30 ± 2 cells in normal, 148 ± 20 cells in control, 109 ± 15 cells in group R, P < .01). Riboflavin treatment significantly reduced matrix metalloproteinase (MMP)-9 messenger RNA expression in aneurysm walls (relative expression: MMP-9: 0.4 ± 0.7 in normal, 2.6 ± 1.3 in control, 0.5 ± 0.3 in group R, P < .01). On day 28, the aortic walls were less dilated and had higher elastin content in group R than in control (dilatation ratio: 194.9% ± 10.9% in control, 158.6% ± 2.5% in group R; P <.01). CONCLUSIONS Riboflavin treatment prevents AAA formation in a rat model through an antioxidant effect and might be a potent pharmacologic agent for AAA treatment in clinical practice.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Administration, Oral
- Animals
- Antioxidants/administration & dosage
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Calcium Chloride
- DNA Damage
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Dilatation, Pathologic
- Disease Models, Animal
- Enzyme Activation
- Enzyme Activators/administration & dosage
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Inflammation Mediators/metabolism
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Oxidative Stress/drug effects
- Pancreatic Elastase
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Riboflavin/administration & dosage
- Superoxide Dismutase/metabolism
- Time Factors
Collapse
Affiliation(s)
- Zhenhai Yu
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Morimoto
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jie Yu
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wulan Bao
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Okita
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Okada
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
28
|
Prahalathan P, Kumar S, Raja B. Effect of morin, a flavonoid against DOCA-salt hypertensive rats: a dose dependent study. Asian Pac J Trop Biomed 2015; 2:443-8. [PMID: 23569947 DOI: 10.1016/s2221-1691(12)60073-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/05/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To determine the protective effect of morin, a flavonoid against deoxycorticosterone acetate (DOCA)-salt induced hypertension in male Wistar rats. METHODS Hypertension was induced in uninephrectomized rats by weekly twice subcutaneous injection of DOCA (25 mg/kg bw) and 1% NaCl in the drinking water for six consecutive weeks. Effect of morin against DOCA-salt induced hypertension was evaluated by measuring blood pressure and performing biochemical estimations and histopathological examination of renal tissues. RESULTS DOCA-salt hypertensive rats showed considerably increased systolic and diastolic blood pressure, serum hepatic marker enzyme activities such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transpeptidase (GGT) and renal function markers (urea, uric acid and creatinine) in plasma. Oral administration of morin (25, 50 and 75 mg/kg bw) brought back all the above parameters to near normal level. Histopathology of kidney also confirmed the biochemical findings of this study. The effect at a dose of 50 mg/kg bw of morin was more pronounced than that of the other two doses (25 and 75 mg/kg bw). CONCLUSIONS These findings indicate that morin exhibits strong antihypertensive effect against DOCA-salt induced hypertension.
Collapse
Affiliation(s)
- P Prahalathan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| | | | | |
Collapse
|
29
|
Monk BA, George SJ. The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour--A Mini-Review. Gerontology 2014; 61:416-26. [PMID: 25471382 DOI: 10.1159/000368576] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Ageing is a prominent risk factor for atherosclerosis and cardiovascular disease. Vascular smooth muscle cells (VSMCs) are an integral part of atherosclerotic plaque formation, progression and subsequent rupture. Emerging evidence suggests that VSMC behaviour is modified by age, which in turn may affect disease outcome in the elderly. In this review, we discuss the effect of age on VSMC behaviour, proliferation, migration, apoptosis, inflammation, extracellular matrix synthesis and calcification. In addition, we discuss the multiple signalling factors underlying these behavioural changes including angiotensin-II, matrix metalloproteinases, monocyte chemotactic protein-1, and transforming growth factor-β1. Understanding the molecular processes underpinning altered VSMC behaviour with age, may lead to the identification of novel therapeutic targets for suppressing atherosclerosis in the elderly population.
Collapse
|
30
|
Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc Cell 2014; 6:19. [PMID: 25243060 PMCID: PMC4169693 DOI: 10.1186/2045-824x-6-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022] Open
Abstract
A decline in the function of the microvasculature occurs with ageing. An impairment of endothelial properties represents a main aspect of age-related microvascular alterations. Endothelial dysfunction manifests itself through a reduced angiogenic capacity, an aberrant expression of adhesion molecules and an impaired vasodilatory function. Increased expression of adhesion molecules amplifies the interaction with circulating factors and inflammatory cells. The latter occurs in both conduit arteries and resistance arterioles. Age-related impaired function also associates with phenotypic alterations of microvascular cells, such as endothelial cells, smooth muscle cells and pericytes. Age-related morphological changes are in most of cases organ-specific and include microvascular wall thickening and collagen deposition that affect the basement membrane, with the consequent perivascular fibrosis. Data from experimental models indicate that decreased nitric oxide (NO) bioavailability, caused by impaired eNOS activity and NO inactivation, is one of the causes responsible for age-related microvascular endothelial dysfunction. Consequently, vasodilatory responses decline with age in coronary, skeletal, cerebral and vascular beds. Several therapeutic attempts have been suggested to improve microvascular function in age-related end-organ failure, and include the classic anti-atherosclerotic and anti-ischemic treatments, and also new innovative strategies. Change of life style, antioxidant regimens and anti-inflammatory treatments gave the most promising results. Research efforts should persist to fully elucidate the biomolecular basis of age-related microvascular dysfunction in order to better support new therapeutic strategies aimed to improve quality of life and to reduce morbidity and mortality among the elderly patients.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Alessandra Bielli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Gaetano Arcuri
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Amedeo Ferlosio
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| |
Collapse
|
31
|
Yang CM, Hsieh HL, Yu PH, Lin CC, Liu SW. IL-1β Induces MMP-9-Dependent Brain Astrocytic Migration via Transactivation of PDGF Receptor/NADPH Oxidase 2-Derived Reactive Oxygen Species Signals. Mol Neurobiol 2014; 52:303-17. [DOI: 10.1007/s12035-014-8838-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/28/2014] [Indexed: 01/14/2023]
|
32
|
Soto ME, Soria-Castro E, Lans VG, Ontiveros EM, Mejía BIH, Hernandez HJM, García RB, Herrera V, Pérez-Torres I. Analysis of oxidative stress enzymes and structural and functional proteins on human aortic tissue from different aortopathies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:760694. [PMID: 25101153 PMCID: PMC4102031 DOI: 10.1155/2014/760694] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 01/15/2023]
Abstract
The role of oxidative stress in different aortopathies is evaluated. Thirty-two tissue samples from 18 men and 14 women were divided into: 4 control (C) subjects, 11 patients with systemic arterial hypertension (SAH), 4 with variants of Marfan's syndrome (MV), 9 with Marfan's syndrome (M), 2 with Turner's syndrome, and 2 with Takayasu's arteritis (TA). Aorta fragments were homogenized. Lipoperoxidation (LPO), copper-zinc and manganese superoxide dismutase (Mn and Cu-Zn-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), endothelial nitric oxide synthase (eNOS), nitrates and nitrites (NO3(-)/NO2(-)), and type IV collagen, and laminin were evaluated. There was an increase in Mn- and Cu-Zn-SOD activity in SAH, MV, M, and Turner's syndrome. There was also an increase in CAT activity in M and Turner' syndrome. GPx and GST activity decreased and LPO increased in all groups. eNOS was decreased in SAH, MV, and M and NO3 (-)/NO2 (-) were increased in SAH and TA. Type IV collagen was decreased in Turner's syndrome and TA. Laminin γ-1 was decreased in MV and increased in M. In conclusion, similarities and differences in oxidative stress in the different aortopathies studied including pathologies with aneurysms were found with alterations in SOD, CAT, GPx, GST, and eNOS activity that modify subendothelial basement membrane proteins.
Collapse
Affiliation(s)
- María Elena Soto
- Immunology Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Elizabeth Soria-Castro
- Pathology Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Verónica Guarner Lans
- Physiology Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Eleazar Muruato Ontiveros
- Cardiovascular Surgery Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Benjamín Iván Hernández Mejía
- Cardiovascular Surgery Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Humberto Jorge Martínez Hernandez
- Cardiovascular Surgery Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Rodolfo Barragán García
- Cardiovascular Surgery Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Valentín Herrera
- Cardiovascular Surgery Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| | - Israel Pérez-Torres
- Pathology Department, National Institute of Cardiology "Ignacio Chavez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 Mexico City, DF, Mexico
| |
Collapse
|
33
|
Zhang L, Zhou M, Qin G, Weintraub NL, Tang Y. MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochem Biophys Res Commun 2014; 446:952-8. [PMID: 24650666 DOI: 10.1016/j.bbrc.2014.03.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Oxidative stress contributes to endothelial cell (EC) dysfunction, which is prevalent in ageing and atherosclerosis. MicroRNAs (miRs) are small, non-coding RNAs that post-transcriptionally regulate gene expression and play a key role in fine-tuning EC functional responses, including apoptosis and angiogenesis. MiR-92a is highly expressed in young endothelial cells in comparison with senescent endothelial cells, which exhibit increased oxidative stress and apoptosis. However, the impact of miR-92a treatment on EC viability and angiogenesis under oxidative stress is unknown. Hydrogen peroxide (H2O2) was used to induce oxidative stress in human umbilical vein endothelial cells (HUVEC). Pre-miR-92a treatment decreased H2O2-induced apoptosis of HUVEC as determined by TUNEL assay. Pre-miR-92a treatment enhanced capillary tube formation by HUVEC under oxidative stress, which was blocked by LY294002, an inhibitor of Akt phosphorylation. Interestingly, we also observed that inhibition of miR-92a by anti-miR-92a antisense can also enhance angiogenesis in HUVEC with and without oxidative stress exposure. Our results show that perturbation of miR-92a levels outside of its narrow "homeostatic" range may trigger endothelial cell angiogenesis, suggesting that the role of miR-92a in regulating angiogenesis is controversial and may vary depending on the experimental model and method of regulating miR-92a.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Vascular Biology Center, Department of Medicine, Medical College of Georgia/Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Mi Zhou
- Department of Cardiac Surgery, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Department of Medicine-Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Medicine, Medical College of Georgia/Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Department of Medicine, Medical College of Georgia/Georgia Regents University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA.
| |
Collapse
|
34
|
Abstract
Over the past few decades, research on the peptide hormone, relaxin, has significantly improved our understanding of its biological actions under physiological and diseased conditions. This has facilitated the conducting of clinical trials to explore the use of serelaxin (human recombinant relaxin). Acute heart failure (AHF) is a very difficult to treat clinical entity, with limited success so far in developing new drugs to combat it. A recent phase-III RELAX-AHF trial using serelaxin therapy given during hospitalization revealed acute (ameliorated dyspnea) and chronic (improved 180-day survival) effects. Although these findings support a substantial improvement by serelaxin therapy over currently available therapies for AHF, they also raise key questions and stimulate new hypotheses. To facilitate the development of serelaxin as a new drug for heart disease, joint efforts of clinicians, research scientists and pharmacological industries are necessary to study these questions and hypotheses. In this review, after providing a brief summary of clinical findings and the pathophysiology of AHF, we present a working hypothesis of the mechanisms responsible for the observed efficacy of serelaxin in AHF patients. The existing clinical and preclinical data supporting our hypotheses are summarized and discussed. The development of serelaxin as a drug provides an excellent example of the bilateral nature of translational research.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Monash University
| | | | | | | |
Collapse
|
35
|
Delbosc S, Diallo D, Dejouvencel T, Lamiral Z, Louedec L, Martin-Ventura JL, Rossignol P, Leseche G, Michel JB, Meilhac O. Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm. Cardiovasc Res 2013; 100:307-15. [PMID: 23955602 DOI: 10.1093/cvr/cvt194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a particular form of atherothrombotic disease characterized by the dilation of the aortic wall and the presence of an intraluminal thrombus (ILT). The objective of the present study was to evaluate the pro-oxidant properties of the ILT and to characterize the anti-oxidant capacity of high-density lipoproteins (HDLs). METHODS AND RESULTS Our results show that ILT, adventitia, and plasma from AAA patients contained high concentrations of lipid and protein oxidation products. Mediators produced within or released by the thrombus and the adventitia were shown to induce reactive oxygen species (ROS) production by cultured aortic smooth muscle cells (AoSMCs) and to trigger the onset of apoptosis (an increase in mitochondrial membrane potential). Iron chelation limited these effects. Both concentration and functionality of HDLs were altered in AAA patients. Plasma levels of Apo A-I were lower, and small HDL subclasses were decreased in AAA patients. Circulating HDLs in AAA patients displayed an impaired capacity to inhibit copper-induced low-density lipoprotein oxidation and AoSMC ROS production. Western blot analyses of HDLs demonstrated that myeloperoxidase is associated with HDL particles in AAA patients. CONCLUSION ILT and adventitia are a source of pro-oxidant products, in particular haemoglobin, which may impact on the wall stability/rupture in AAA. In addition, HDLs from AAA patients exhibit an impaired anti-oxidant activity. In this context, restoring HDL functionality may represent a new therapeutic option in AAA.
Collapse
Affiliation(s)
- Sandrine Delbosc
- INSERM U698, Hemostasis, Bio-engineering and Cardiovascular Remodeling, Hôpital Bichat, 46 Rue Henri Huchard, 75018 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marín C, Yubero-Serrano EM, López-Miranda J, Pérez-Jiménez F. Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet. Int J Mol Sci 2013; 14:8869-89. [PMID: 23615475 PMCID: PMC3676761 DOI: 10.3390/ijms14058869] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022] Open
Abstract
Aging is a condition which favors the development of atherosclerosis, which has been associated with a breakdown in repair processes that occurs in response to cell damage. The dysregulation of the biological systems associated with aging are produced partly through damage which accumulates over time. One major source of this injury is oxidative stress, which can impair biological structures and the mechanisms by which they are repaired. These mechanisms are based on the pathogenesis of endothelial dysfunction, which in turn is associated with cardiovascular disease, carcinogenesis and aging. The dependent dysfunction of aging has been correlated with a reduction in the number and/or functional activity of endothelial progenitor cells, which could hinder the repair and regeneration of the endothelium. In addition, aging, inflammation and oxidative stress are endogenous factors that cause telomere shortening, which is dependent on oxidative cell damage. Moreover, telomere length correlates with lifestyle and the consumption of a healthy diet. Thus, diseases associated with aging and age may be caused by the long-term effects of oxidative damage, which are modified by genetic and environmental factors. Considering that diet is a very important source of antioxidants, in this review we will analyze the relationship between oxidative stress, aging, and the mechanisms which may be involved in a higher survival rate and a lower incidence of the diseases associated with aging in populations which follow a healthy diet.
Collapse
Affiliation(s)
- Carmen Marín
- Lipids and Atherosclerosis Unit, Maimonides Institute for Research in Biomedicina at Cordoba (IMIBIC)/Reina Sofia University Hospital/University of Cordoba and CIBER Fisiopatologia Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Cordoba, 14004, Spain.
| | | | | | | |
Collapse
|
37
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
38
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
39
|
Lamers D, Schlich R, Horrighs A, Cramer A, Sell H, Eckel J. Differential impact of oleate, palmitate, and adipokines on expression of NF-κB target genes in human vascular smooth muscle cells. Mol Cell Endocrinol 2012; 362:194-201. [PMID: 22750100 DOI: 10.1016/j.mce.2012.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/04/2012] [Accepted: 06/19/2012] [Indexed: 11/28/2022]
Abstract
It is widely accepted that obesity is a major risk factor for the development of atherosclerosis. In this context, adipose tissue produces a variety of adipokines and releases free fatty acids, contributing to a chronic-low grade inflammation state implicated in vascular complications. In this study, we investigated the role of adipokines, oleic acid (OA), palmitic acid (PA), and the combinations on activation of NF-κB target genes in human vascular smooth muscle cells (SMC) to assess the hypothesis of synergistic interactions between these molecules. Adipocyte-conditioned medium (CM), generated from human adipocytes, in combination with low concentrations of OA, but not PA, induces SMC proliferation and activation of the transcription factor NF-κB in a synergistic way. Combined treatment of CM and OA further regulates a set of downstream NF-κB target genes including angiopoietin-1, activin A, and MMP-1, all critically involved in SMC dysfunction. This suggests that the lipotoxic potential of fatty acids is substantially enhanced by the presence of adipocyte-derived factors.
Collapse
Affiliation(s)
- Daniela Lamers
- Paul-Langerhans-Group, Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Pathogénie de l’artérite à cellules géantes. Presse Med 2012; 41:937-47. [DOI: 10.1016/j.lpm.2012.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/12/2022] Open
|
41
|
Kim HY, Jeong DW, Park HS, Lee TY, Kim HS. Comparison of 12-lipoxygenase expression in vascular smooth muscle cells from old normotensive Wistar-Kyoto rats with spontaneously hypertensive rats. Hypertens Res 2012; 36:65-73. [PMID: 22875070 DOI: 10.1038/hr.2012.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular aging and essential hypertension cause similar structural and molecular modifications in the vasculature. The 12-lipoxygenase (LO) pathway of arachidonic acid metabolism is linked to cell growth and the pathology of hypertension. Thus, elevated expression of 12-LO has been observed in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). In the present study, we investigated the differences in 12-LO expression and activity between VSMCs from old normotensive Wistar-Kyoto rats (old WKY, 90-week old) and SHR (13-week old). The protein and mRNA expression of basal or angiotensin II (Ang II)-induced 12-LO in old WKY VSMCs were higher than those in SHR VSMCs. The degradation rate of 12-LO mRNA in old WKY VSMCs was slower than that in SHR VSMCs. However, basal or Ang II-induced 12-LO mRNAs in both old WKY and SHR VSMCs decayed more rapidly than that in young WKY (13-week old) VSMCs. Higher expression of 12-LO in old WKY VSMCs than in SHR VSMCs was correlated with the expression level of Ang II subtype 1 receptor (AT(1)R). The reduced levels of nitric oxide (NO) in old WKY and SHR VSMCs compared with young WKY VSMCs were similar, and there was no significant difference in NO production between old WKY and SHR VSMCs transfected with 12-LO siRNA. In addition, in contrast to the proliferation of SHR VSMCs, the proliferation of old WKY VSMCs was not dependent on 12-LO activation. These results suggest that the potential role of 12-LO in normotensive aging vasculature may be different from that in SHR vasculature.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | | | | | | | | |
Collapse
|
42
|
Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 17:375-408. [PMID: 22304503 PMCID: PMC3353819 DOI: 10.1089/ars.2011.4198] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
43
|
Disruption of Nrf2/ARE signaling impairs antioxidant mechanisms and promotes cell degradation pathways in aged skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1038-50. [DOI: 10.1016/j.bbadis.2012.02.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 11/21/2022]
|
44
|
Patrushev N, Seidel-Rogol B, Salazar G. Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS One 2012; 7:e33211. [PMID: 22427991 PMCID: PMC3299759 DOI: 10.1371/journal.pone.0033211] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/11/2012] [Indexed: 12/18/2022] Open
Abstract
Senescence, a hallmark of mammalian aging, is associated with the onset and progression of cardiovascular disease. Angiotensin II (Ang II) signaling and zinc homeostasis dysfunction are increased with age and are linked to cardiovascular disease, but the relationship among these processes has not been investigated. We used a model of cellular senescence induced by Ang II in vascular smooth muscle cells (VSMCs) to explore the role of zinc in vascular dysfunction. We found that Ang II-induced senescence is a zinc-dependent pathway mediated by the downregulation of the zinc transporters ZnT3 and ZnT10, which work to reduce cytosolic zinc. Zinc mimics Ang II by increasing reactive oxygen species (ROS), activating NADPH oxidase activity and Akt, and by downregulating ZnT3 and ZnT10 and inducing senescence. Zinc increases Ang II-induced senescence, while the zinc chelator TPEN, as well as overexpression of ZnT3 or ZnT10, decreases ROS and prevents senescence. Using HEK293 cells, we found that ZnT10 localizes in recycling endosomes and transports zinc into vesicles to prevent zinc toxicity. Zinc and ZnT3/ZnT10 downregulation induces senescence by decreasing the expression of catalase. Consistently, ZnT3 and ZnT10 downregulation by siRNA increases ROS while downregulation of catalase by siRNA induces senescence. Zinc, siZnT3 and siZnT10 downregulate catalase by a post-transcriptional mechanism mediated by decreased phosphorylation of ERK1/2. These data demonstrate that zinc homeostasis dysfunction by decreased expression of ZnT3 or ZnT10 promotes senescence and that Ang II-induced senescence is a zinc and ROS-dependent process. Our studies suggest that zinc might also affect other ROS-dependent processes induced by Ang II, such as hypertrophy and migration of smooth muscle cells.
Collapse
Affiliation(s)
| | | | - Gloria Salazar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis 2012; 222:314-23. [PMID: 22307089 DOI: 10.1016/j.atherosclerosis.2012.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/19/2022]
Abstract
Atherosclerosis (As) is now widely appreciated to represent a chronic inflammatory reaction of the vascular wall in response to dyslipidemia and endothelial distress involving the inflammatory recruitment of leukocytes and the activation of resident vascular cells. MicroRNAs (miRNAs) are a group of endogenous, small (~22 nucleotides in length) non-coding RNA molecules, which function specifically by base pairing with mRNA of genes, thereby induce translation repressions of the genes within metazoan cells. Recently, the function of miR-27, one of the miRNAs, in the initiation and progression of atherosclerosis has been identified. In vivo and in vitro studies suggest that miR-27 may serve as a diagnostic and prognostic marker for atherosclerosis. More recently, studies have identified important roles for miR-27 in angiogenesis, adipogenesis, inflammation, lipid metabolism, oxidative stress, insulin resistance and type 2 diabetes, etc. In this review, we focus on the role of miR-27 in the development of vulnerable atherosclerotic plaques, potential as a disease biomarker and novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wu-Jun Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | | | | | | | | |
Collapse
|
46
|
Yu ZW, Li D, Ling WH, Jin TR. Role of nuclear factor (erythroid-derived 2)-like 2 in metabolic homeostasis and insulin action: A novel opportunity for diabetes treatment? World J Diabetes 2012; 3:19-28. [PMID: 22253942 PMCID: PMC3258535 DOI: 10.4239/wjd.v3.i1.19] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/18/2011] [Accepted: 01/09/2012] [Indexed: 02/05/2023] Open
Abstract
Redox balance is fundamentally important for physiological homeostasis. Pathological factors that disturb this dedicated balance may result in oxidative stress, leading to the development or aggravation of a variety of diseases, including diabetes mellitus, cardiovascular diseases, metabolic syndrome as well as inflammation, aging and cancer. Thus, the capacity of endogenous free radical clearance can be of patho-physiological importance; in this regard, the major reactive oxygen species defense machinery, the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system needs to be precisely modulated in response to pathological alterations. While oxidative stress is among the early events that lead to the development of insulin resistance, the activation of Nrf2 scavenging capacity leads to insulin sensitization. Furthermore, Nrf2 is evidently involved in regulating lipid metabolism. Here we summarize recent findings that link the Nrf2 system to metabolic homeostasis and insulin action and present our view that Nrf2 may serve as a novel drug target for diabetes and its complications.
Collapse
Affiliation(s)
- Zhi-Wen Yu
- Zhi-Wen Yu, Dan Li, Wen-Hua Ling, Tian-Ru Jin, Guandong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, Public Health Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | |
Collapse
|
47
|
Muthusamy VR, Kannan S, Sadhaasivam K, Gounder SS, Davidson CJ, Boeheme C, Hoidal JR, Wang L, Rajasekaran NS. Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med 2012; 52:366-76. [PMID: 22051043 PMCID: PMC3800165 DOI: 10.1016/j.freeradbiomed.2011.10.440] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/08/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of cardiovascular diseases, including myocardial hypertrophy and infarction. Although impairment of antioxidant defense mechanisms has been thought to provoke oxidative stress-induced myocardial dysfunction, it has been difficult to clearly demonstrate. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive, basic leucine zipper protein that regulates the transcription of several antioxidant genes. We previously reported that sustained activation of Nrf2 upregulates transcription of a number of endogenous antioxidants in the heart. Here, we show that acute exercise stress (AES) results in activation of Nrf2/ARE (antioxidant response element) signaling and subsequent enhancement of antioxidant defense pathways in wild-type (WT) mouse hearts, while oxidative stress, along with blunted defense mechanisms, was observed in Nrf2-/- mice. We also find that AES is associated with increased trans-activation of ARE-containing genes in exercised animals when compared to age-matched sedentary WT mice. However, enhanced oxidative stress in response to AES was observed in Nrf2-/- mice due to lower basal expression and marked attenuation of the transcriptional induction of several antioxidant genes. Thus, AES induces ROS and promotes Nrf2 function, but disruption of Nrf2 increases susceptibility of the myocardium to oxidative stress. Our findings suggest the basis for a nonpharmacological approach to activate Nrf2/ARE signaling, which might be a potential therapeutic target to protect the heart from oxidative stress-induced cardiovascular complications.
Collapse
Affiliation(s)
- Vasanthi R. Muthusamy
- Division of Cardiology & Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Sankaranarayanan Kannan
- Department of Pediatric Research, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamal Sadhaasivam
- Division of Cardiology & Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Sellamuthu S. Gounder
- Division of Cardiology & Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Christopher J. Davidson
- Division of Cardiology & Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Christoph Boeheme
- EPR Facility, Department of Physics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - John R. Hoidal
- Division of Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Li Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Namakkal Soorappan Rajasekaran
- Division of Cardiology & Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
- Corresponding author at: Room 4A100, School of Medicine Building, Divisions of Cardiology & Pulmonary, Department of Internal Medicine, University of Utah Health Science Center, Salt Lake City, UT 84132., Fax: +1 801 5857734., (N.S. Rajasekaran)
| |
Collapse
|
48
|
Sagai M, Bocci V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med Gas Res 2011; 1:29. [PMID: 22185664 PMCID: PMC3298518 DOI: 10.1186/2045-9912-1-29] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/20/2011] [Indexed: 01/06/2023] Open
Abstract
The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not.Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1).Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.
Collapse
Affiliation(s)
- Masaru Sagai
- Department of Physiology, Viale A, Moro 2, 53100, University of Siena, Italy.
| | | |
Collapse
|
49
|
Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J. Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 2011; 15:2867-908. [PMID: 21457107 DOI: 10.1089/ars.2010.3685] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Cellular redox homeostasis is the first line of defense against diverse stimuli and is crucial for various biological processes. Reactive oxygen species (ROS), byproducts of numerous cellular events, may serve in turn as signaling molecules to regulate cellular processes such as proliferation, differentiation, and apoptosis. However, when overproduced ROS fail to be scavenged by the antioxidant system, they may damage cellular components, giving rise to senescent, degenerative, or fatal lesions in cells. Accordingly, this review not only covers general mechanisms of ROS production under different conditions, but also focuses on various types of ROS-involved diseases, including atherosclerosis, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, and cancer. In addition, potentially therapeutic agents and approaches are reviewed in a relatively comprehensive manner. However, due to the complexity of ROS and their cellular impacts, we believe that the goal to design more effective approaches or agents may require a better understanding of mechanisms of ROS production, particularly their multifaceted impacts in disease at biochemical, molecular, genetic, and epigenetic levels. Thus, it requires additional tools of omics in systems biology to achieve such a goal. Antioxid. Redox Signal. 15, 2867-2908.
Collapse
Affiliation(s)
- Yuxing Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
50
|
Song Y, Shen H, Schenten D, Shan P, Lee PJ, Goldstein DR. Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2011; 32:103-9. [PMID: 22034510 DOI: 10.1161/atvbaha.111.236349] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Increased circulating cytokine levels are a prominent feature of aging that may contribute to atherosclerosis. However, the role vascular cells play in chronic inflammation induced by aging is not clear. Here, we examined the role of aging on inflammatory responses of vascular cells. METHODS AND RESULTS In an ex vivo culture system, we examined the inflammatory response of aortas from young (2-4 months) and aged (16-18 months) mice under nonstimulatory conditions. We found that basal levels of interleukin-6 were increased in aged aortas. Aged aortic vascular smooth muscle cells (VSMC) exhibited a higher basal secretion of interleukin-6 than young VSMC. Gene and protein expression analysis revealed that aged VSMC exhibited upregulation of chemokines (eg, CCL2), adhesion molecules (eg, intracellular adhesion molecule 1), and innate immune receptors (eg, Toll-like receptor [TLR] 4), which all contribute to atherosclerosis. Using VSMC from aged TL4(-/-) and Myd88(-/-) mice, we demonstrate that signaling via TLR4 and its signal adaptor, MyD88, are in part responsible for the age-elevated basal interleukin-6 response. CONCLUSIONS Aging induces a proinflammatory phenotype in VSMC due in part to increased signaling of TLR4 and MyD88. Our results provide a potential explanation as to why aging leads to chronic inflammation and enhanced atherosclerosis.
Collapse
Affiliation(s)
- Yang Song
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|