1
|
Weintraub SJ, Li Z, Nakagawa CL, Collins JH, Young EM. Oleaginous Yeast Biology Elucidated With Comparative Transcriptomics. Biotechnol Bioeng 2025; 122:677-697. [PMID: 39659041 DOI: 10.1002/bit.28891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Extremophilic yeasts have favorable metabolic and tolerance traits for biomanufacturing- like lipid biosynthesis, flavinogenesis, and halotolerance - yet the connection between these favorable phenotypes and strain genotype is not well understood. To this end, this study compares the phenotypes and gene expression patterns of biotechnologically relevant yeasts Yarrowia lipolytica, Debaryomyces hansenii, and Debaryomyces subglobosus grown under nitrogen starvation, iron starvation, and salt stress. To analyze the large data set across species and conditions, two approaches were used: a "network-first" approach where a generalized metabolic network serves as a scaffold for mapping genes and a "cluster-first" approach where unsupervised machine learning co-expression analysis clusters genes. Both approaches provide insight into strain behavior. The network-first approach corroborates that Yarrowia upregulates lipid biosynthesis during nitrogen starvation and provides new evidence that riboflavin overproduction in Debaryomyces yeasts is overflow metabolism that is routed to flavin cofactor production under salt stress. The cluster-first approach does not rely on annotation; therefore, the coexpression analysis can identify known and novel genes involved in stress responses, mainly transcription factors and transporters. Therefore, this work links the genotype to the phenotype of biotechnologically relevant yeasts and demonstrates the utility of complementary computational approaches to gain insight from transcriptomics data across species and conditions.
Collapse
Affiliation(s)
- Sarah J Weintraub
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Zekun Li
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carter L Nakagawa
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Eric M Young
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Marincean S, Al-Modhafir M, Lawson DB. π-π stacking interactions in tryptophan-lumiflavin-tyrosine: a structural model for riboflavin insertion into riboflavin-binding protein. J Mol Model 2025; 31:38. [PMID: 39775115 DOI: 10.1007/s00894-024-06233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
CONTEXT Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions. Density functional theory (DFT) served as the computation framework for all calculations, utilizing long-range corrected hybrid functionals LC-ωPBE and ωB97XD in conjunction with the 6-311+ +g** basis set. The solvation effects were incorporated through the implementation of the polarizable continuum model (PCM) simulating an aqueous solvent environment. The geometries of the five most stable complexes show exclusively p-p interactions among the aromatic moieties in a displaced parallel plane stacking arrangement with interplanar heights and displacements in the range of 3.22-3.62 Å and 0.50-0.63 Å, respectively, at ωB97XD level. The calculated total energies and binding energies indicate two stabilizing p-p interactions: lumiflavin-tyrosine and lumiflavin-tryptophan, with the later stronger for the more stable complexes by 2 kcal mol-1. The complexes are less entropically favored than the independent molecules as verified by the positive association free Gibbs energies with LC-ωPBE and nearly zero with ωB97XD. Orbital analysis indicates a smaller HOMO-LUMO gap for complexes compared to the individual compounds suggesting a charge transfer component to the interaction. Moreover, the HOMO is localized on tryptophan and HOMO-1 on tyrosine, consistent with the strength of the respective interactions with lumiflavin. METHODS The initial geometry was based on the atom coordinates of the bonding tryptophan-riboflavin-tyrosine region in the protein crystallographic data with the ribityl tail being discarded, leading to a model complex: tryptophan-lumiflavin-tyrosine. The initial conformational search using the Amber force field within the Gabedit led to 30 unique conformations. The subsequent calculations, energy optimization and orbital analysis, were performed in Guassian16 at density functional theory (DFT) level, utilizing long-range corrected hybrid functionals LC-ωPBE and ωB97XD in conjunction with the 6-311+ +g** basis set. The solvent, water, was accounted for using the polarized continuum model (PCM).
Collapse
Affiliation(s)
- Simona Marincean
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
| | - Moina Al-Modhafir
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Daniel B Lawson
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
3
|
La-Rostami F, Scharf A, Albert C, Wax N, Creydt M, Illarionov B, Bacher A, Weber S, Fischer M. Adaptive Laboratory Evolution of Flavin Functionality Identifies Dihydrolipoyl Dehydrogenase as One of the Critical Points for the Activity of 7,8-Didemethyl-Riboflavin as a Surrogate for Riboflavin in Escherichia coli. Molecules 2024; 29:5891. [PMID: 39769980 PMCID: PMC11677807 DOI: 10.3390/molecules29245891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Riboflavin analogs lacking one methyl group (7α or 8α) can still serve as a surrogate for riboflavin in riboflavin-deficient microorganisms or animals. The absence of both methyl groups at once completely abolishes this substitution capability. To elucidate the molecular mechanisms behind this phenomenon, we performed an adaptive laboratory evolution experiment (in triplicate) on an E. coli strain auxotrophic for riboflavin. As a result, the riboflavin requirement of the E. coli strain was reduced ~10-fold in the presence of 7,8-didemethyl-riboflavin. The whole genome sequencing of E. coli strains isolated from three experiments revealed two mutation hotspots: lpdA coding for the flavoenzyme dihydrolipoyl dehydrogenase (LpdA), and ompF coding for the major outer membrane protein. In order to investigate the essentiality of flavin's methyl groups to LpdA, the wild type and mutant variants of lpdA were cloned. At least two lpdA mutants increased the fitness of E. coli, and when 7,8-didemethyl-flavin was added to the growth medium, the increase was significant. To the best of our knowledge, an adaptive laboratory evolution experiment running in triplicate as a tool for the identification of mutation hotspots in the genome of microorganisms exposed to metabolic stress challenges is described here for the first time.
Collapse
Affiliation(s)
- Farshad La-Rostami
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Alexandra Scharf
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Chenyang Albert
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Nils Wax
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| | - Adelbert Bacher
- TUM School of Natural Sciences, Technical University of Munich, Boltzmannstraße 10, 85748 Garching, Germany;
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany;
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (F.L.-R.); (A.S.); (C.A.); (N.W.); (M.C.); (B.I.)
| |
Collapse
|
4
|
Islam F, Basilone N, Yoo V, Ball E, Shilton B. Evolutionary analysis of Quinone Reductases 1 and 2 suggests that NQO2 evolved to function as a pseudoenzyme. Protein Sci 2024; 33:e5234. [PMID: 39584664 PMCID: PMC11586865 DOI: 10.1002/pro.5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Quinone reductases 1 and 2 (NQO1 and NQO2) are paralogous FAD-linked enzymes found in all amniotes. NQO1 and NQO2 have similar structures, and both catalyze the reduction of quinones and other electrophiles; however, the two enzymes differ in their cosubstrate preference. While NQO1 can use both redox couples NADH and NADPH, NQO2 is almost inactive with these cosubstrates and instead must use dihydronicotinamide riboside (NRH) and small synthetic cosubstrates such as N-benzyl-dihydronicotinamide (BNAH) for efficient catalysis. We used ancestral sequence reconstruction to investigate the catalytic properties of a predicted common ancestor and two additional ancestors from each of the evolutionary pathways to extant NQO1 and NQO2. In all cases, the small nicotinamide cosubstrates NRH and BNAH were good cosubstrates for the common ancestor and the enzymes along both the NQO1 and NQO2 lineages. In contrast, with NADH as cosubstrate, extant NQO1 evolved to a catalytic efficiency 100 times higher than the common ancestor, while NQO2 has evolved to a catalytic efficiency 3000 times lower than the common ancestor. The evolutionary analysis combined with site-directed mutagenesis revealed a potential site of interaction for the ADP portion of NAD(P)H in NQO1 that is altered in charge and structure in NQO2. The results indicate that while NQO1 evolved to have greater efficiency with NAD(P)H, befitting an enzymatic function in cells, NQO2 was under selective pressure to acquire extremely low catalytic efficiency with NAD(P)H. These divergent trajectories have implications for the functions of both enzymes.
Collapse
Affiliation(s)
- Faiza Islam
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Nicoletta Basilone
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Vania Yoo
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Eric Ball
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Brian Shilton
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
5
|
Tran QH, Eder OM, Winkler A. Dynamics-driven allosteric stimulation of diguanylate cyclase activity in a red light-regulated phytochrome. J Biol Chem 2024; 300:107217. [PMID: 38522512 PMCID: PMC11035067 DOI: 10.1016/j.jbc.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sensor-effector proteins integrate information from different stimuli and transform this into cellular responses. Some sensory domains, like red-light responsive bacteriophytochromes, show remarkable modularity regulating a variety of effectors. One effector domain is the GGDEF diguanylate cyclase catalyzing the formation of the bacterial second messenger cyclic-dimeric-guanosine monophosphate. While critical signal integration elements have been described for different phytochromes, a generalized understanding of signal processing and communication over large distances, roughly 100 Å in phytochrome diguanylate cyclases, is missing. Here we show that dynamics-driven allostery is key to understanding signal integration on a molecular level. We generated protein variants stabilized in their far-red-absorbing Pfr state and demonstrated by analysis of conformational dynamics using hydrogen-deuterium exchange coupled to mass spectrometry that single amino acid replacements are accompanied by altered dynamics of functional elements throughout the protein. We show that the conformational dynamics correlate with the enzymatic activity of these variants, explaining also the increased activity of a non-photochromic variant. In addition, we demonstrate the functional importance of mixed Pfr/intermediate state dimers using a fast-reverting variant that still enables wild-type-like fold-changes of enzymatic stimulation by red light. This supports the functional role of single protomer activation in phytochromes, a property that might correlate with the non-canonical mixed Pfr/intermediate-state spectra observed for many phytochrome systems. We anticipate our results to stimulate research in the direction of dynamics-driven allosteric regulation of different bacteriophytochrome-based sensor-effectors. This will eventually impact design strategies for the creation of novel sensor-effector systems for enriching the optogenetic toolbox.
Collapse
Affiliation(s)
- Quang Hieu Tran
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
6
|
Zhan X, Zhang K, Wang C, Fan Q, Tang X, Zhang X, Wang K, Fu Y, Liang H. A c-di-GMP signaling module controls responses to iron in Pseudomonas aeruginosa. Nat Commun 2024; 15:1860. [PMID: 38424057 PMCID: PMC10904736 DOI: 10.1038/s41467-024-46149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a bacterial second messenger that modulates various processes including biofilm formation, motility, and host-microbe symbiosis. Numerous studies have conducted comprehensive analysis of c-di-GMP. However, the mechanisms by which certain environmental signals such as iron control intracellular c-di-GMP levels are unclear. Here, we show that iron regulates c-di-GMP levels in Pseudomonas aeruginosa by modulating the interaction between an iron-sensing protein, IsmP, and a diguanylate cyclase, ImcA. Binding of iron to the CHASE4 domain of IsmP inhibits the IsmP-ImcA interaction, which leads to increased c-di-GMP synthesis by ImcA, thus promoting biofilm formation and reducing bacterial motility. Structural characterization of the apo-CHASE4 domain and its binding to iron allows us to pinpoint residues defining its specificity. In addition, the cryo-electron microscopy structure of ImcA in complex with a c-di-GMP analog (GMPCPP) suggests a unique conformation in which the compound binds to the catalytic pockets and to the membrane-proximal side located at the cytoplasm. Thus, our results indicate that a CHASE4 domain directly senses iron and modulates the crosstalk between c-di-GMP metabolic enzymes.
Collapse
Affiliation(s)
- Xueliang Zhan
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Kuo Zhang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chenchen Wang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qiao Fan
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Xiujia Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xi Zhang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Ke Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Fu
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haihua Liang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China.
- University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Fang F, Usselman R, Reijo Pera R. Aging and neuronal death. Aging (Albany NY) 2023; 15:13579-13580. [PMID: 38095614 PMCID: PMC10756123 DOI: 10.18632/aging.205433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Robert Usselman
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | |
Collapse
|
8
|
Denolly S, Stukalov A, Barayeu U, Rosinski AN, Kritsiligkou P, Joecks S, Dick TP, Pichlmair A, Bartenschlager R. Zika virus remodelled ER membranes contain proviral factors involved in redox and methylation pathways. Nat Commun 2023; 14:8045. [PMID: 38052817 DOI: 10.1038/s41467-023-43665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.
Collapse
Affiliation(s)
- Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alina N Rosinski
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sebastian Joecks
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Scribani Rossi C, Eckartt K, Scarchilli E, Angeli S, Price-Whelan A, Di Matteo A, Chevreuil M, Raynal B, Arcovito A, Giacon N, Fiorentino F, Rotili D, Mai A, Espinosa-Urgel M, Cutruzzolà F, Dietrich LEP, Paone A, Paiardini A, Rinaldo S. Molecular insights into RmcA-mediated c-di-GMP consumption: Linking redox potential to biofilm morphogenesis in Pseudomonas aeruginosa. Microbiol Res 2023; 277:127498. [PMID: 37776579 DOI: 10.1016/j.micres.2023.127498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.
Collapse
Affiliation(s)
- Chiara Scribani Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Kelly Eckartt
- Department of Biological Sciences, Columbia University, New York, USA
| | - Elisabetta Scarchilli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, I-00185 Rome, Italy
| | - Maelenn Chevreuil
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection. Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, USA
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Fernández-Juárez V, Hallstrøm S, Pacherres CO, Wang J, Coll-Garcia G, Kühl M, Riemann L. Biofilm formation and cell plasticity drive diazotrophy in an anoxygenic phototrophic bacterium. Appl Environ Microbiol 2023; 89:e0102723. [PMID: 37882569 PMCID: PMC10686084 DOI: 10.1128/aem.01027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The contribution of non-cyanobacterial diazotrophs (NCDs) to total N2 fixation in the marine water column is unknown, but their importance is likely constrained by the limited availability of dissolved organic matter and low O2 conditions. Light could support N2 fixation and growth by NCDs, yet no examples from bacterioplankton exist. In this study, we show that the phototrophic NCD, Rhodopseudomonas sp. BAL398, which is a member of the diazotrophic community in the surface waters of the Baltic Sea, can utilize light. Our study highlights the significance of biofilm formation for utilizing light and fixing N2 under oxic conditions and the role of cell plasticity in regulating these processes. Our findings have implications for the general understanding of the ecology and importance of NCDs in marine waters.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Hallstrøm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Cesar O. Pacherres
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jiaqi Wang
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillem Coll-Garcia
- Microbiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Islam F, Leung KK, Walker MD, Al Massri S, Shilton BH. The Unusual Cosubstrate Specificity of NQO2: Conservation Throughout the Amniotes and Implications for Cellular Function. Front Pharmacol 2022; 13:838500. [PMID: 35517822 PMCID: PMC9065289 DOI: 10.3389/fphar.2022.838500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
Human Quinone Reductase 2 (NQO2) is a pharmacological target and has appeared in numerous screening efforts as an off-target interactor with kinase-targeted drugs. However the cellular functions of NQO2 are not known. To gain insight into the potential cellular functions of NQO2, we have carried out a detailed evolutionary analysis. One of the most striking characteristics of NQO2 is that it uses conventional dihydronicotinamide cosubstrates, NADH and NADPH, extremely inefficiently, raising questions about an enzymatic function in cells. To characterize the ability of NQO2 to serve as an enzyme, the NQO2 gene was disrupted in HCT116 cells. These NQO2 knockouts along with the parental cells were used to demonstrate that cellular NQO2 is unable to catalyze the activation of the DNA cross-linking reagent, CB1954, without the addition of exogenous dihydronicotinamide riboside (NRH). To find whether the unusual cosubstrate specificity of NQO2 has been conserved in the amniotes, recombinant NQO2 from a reptile, Alligator mississippiensis, and a bird, Anas platyrhynchos, were cloned, purified, and their catalytic activity characterized. Like the mammalian enzymes, the reptile and bird NQO2 were efficient catalysts with the small and synthetic cosubstrate N-benzyl-1,4-dihydronicotinamide but were inefficient in their use of NADH and NADPH. Therefore, the unusual cosubstrate preference of NQO2 appears to be conserved throughout the amniotes; however, we found that NQO2 is not well-conserved in the amphibians. A phylogenetic analysis indicates that NQO1 and NQO2 diverged at the time, approximately 450 MYA, when tetrapods were beginning to evolve.
Collapse
Affiliation(s)
- Faiza Islam
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Kevin K Leung
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew D Walker
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Shahed Al Massri
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Brian H Shilton
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
13
|
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021; 41:101950. [PMID: 33774477 PMCID: PMC8027776 DOI: 10.1016/j.redox.2021.101950] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the multiple functions of NQO1, its established roles in redox processes and potential roles in redox control that are currently emerging. NQO1 has attracted interest due to its roles in cell defense and marked inducibility during cellular stress. Exogenous substrates for NQO1 include many xenobiotic quinones. Since NQO1 is highly expressed in many solid tumors, including via upregulation of Nrf2, the design of compounds activated by NQO1 and NQO1-targeted drug delivery have been active areas of research. Endogenous substrates have also been proposed and of relevance to redox stress are ubiquinone and vitamin E quinone, components of the plasma membrane redox system. Established roles for NQO1 include a superoxide reductase activity, NAD+ generation, interaction with proteins and their stabilization against proteasomal degradation, binding and regulation of mRNA translation and binding to microtubules including the mitotic spindles. We also summarize potential roles for NQO1 in regulation of glucose and insulin metabolism with relevance to diabetes and the metabolic syndrome, in Alzheimer's disease and in aging. The conformation and molecular interactions of NQO1 can be modulated by changes in the pyridine nucleotide redox balance suggesting that NQO1 may function as a redox-dependent molecular switch.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
14
|
Redzic JS, Duff MR, Blue A, Pitts TM, Agarwal P, Eisenmesser EZ. Modulating Enzyme Function via Dynamic Allostery within Biliverdin Reductase B. Front Mol Biosci 2021; 8:691208. [PMID: 34095235 PMCID: PMC8173106 DOI: 10.3389/fmolb.2021.691208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
The biliverdin reductase B (BLVRB) class of enzymes catalyze the NADPH-dependent reduction of multiple flavin substrates and are emerging as critical players in cellular redox regulation. However, the role of dynamics and allostery have not been addressed, prompting studies here that have revealed a position 15 Å away from the active site within human BLVRB (T164) that is inherently dynamic and can be mutated to control global micro-millisecond motions and function. By comparing the inherent dynamics through nuclear magnetic resonance (NMR) relaxation approaches of evolutionarily distinct BLVRB homologues and by applying our previously developed Relaxation And Single Site Multiple Mutations (RASSMM) approach that monitors both the functional and dynamic effects of multiple mutations to the single T164 site, we have discovered that the most dramatic mutagenic effects coincide with evolutionary changes and these modulate coenzyme binding. Thus, evolutionarily changing sites distal to the active site serve as dynamic "dials" to globally modulate motions and function. Despite the distal dynamic and functional coupling modulated by this site, micro-millisecond motions span an order of magnitude in their apparent kinetic rates of motions. Thus, global dynamics within BLVRB are a collection of partially coupled motions tied to catalytic function.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Denver, CO, United States
| | - Michael R Duff
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, United States
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
15
|
Abstract
Redox titration of flavoproteins allows to detect and analyze (1) the determinants of the stabilization of individual redox forms of the flavin by the protein; (2) the binding of the redox-active cofactor to the protein; (3) the effects of other components of the systems (such as micro- or macromolecular interactors) on parameters 1 and 2; (4) the pattern of electron flow to and from the flavin cofactor to other redox-active chemical species, including those present in the protein itself or in its physiological partners. This overview presents and discusses the fundamentals of the methodological approaches most commonly used for these purposes, and illustrates how data may be obtained in a reliable way, and how they can be read and interpreted.
Collapse
Affiliation(s)
- Francesco Bonomi
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy.
| | - Stefania Iametti
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Janda E, Nepveu F, Calamini B, Ferry G, Boutin JA. Molecular Pharmacology of NRH:Quinone Oxidoreductase 2: A Detoxifying Enzyme Acting as an Undercover Toxifying Enzyme. Mol Pharmacol 2020; 98:620-633. [DOI: 10.1124/molpharm.120.000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
|
17
|
Campbell AC, Stiers KM, Martin Del Campo JS, Mehra-Chaudhary R, Sobrado P, Tanner JJ. Trapping conformational states of a flavin-dependent N-monooxygenase in crystallo reveals protein and flavin dynamics. J Biol Chem 2020; 295:13239-13249. [PMID: 32723870 DOI: 10.1074/jbc.ra120.014750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Indexed: 11/06/2022] Open
Abstract
The siderophore biosynthetic enzyme A (SidA) ornithine hydroxylase from Aspergillus fumigatus is a fungal disease drug target involved in the production of hydroxamate-containing siderophores, which are used by the pathogen to sequester iron. SidA is an N-monooxygenase that catalyzes the NADPH-dependent hydroxylation of l-ornithine through a multistep oxidative mechanism, utilizing a C4a-hydroperoxyflavin intermediate. Here we present four new crystal structures of SidA in various redox and ligation states, including the first structure of oxidized SidA without NADP(H) or l-ornithine bound (resting state). The resting state structure reveals a new out active site conformation characterized by large rotations of the FAD isoalloxazine around the C1-'C2' and N10-C1' bonds, coupled to a 10-Å movement of the Tyr-loop. Additional structures show that either flavin reduction or the binding of NADP(H) is sufficient to drive the FAD to the in conformation. The structures also reveal protein conformational changes associated with the binding of NADP(H) and l-ornithine. Some of these residues were probed using site-directed mutagenesis. Docking was used to explore the active site of the out conformation. These calculations identified two potential ligand-binding sites. Altogether, our results provide new information about conformational dynamics in flavin-dependent monooxygenases. Understanding the different active site conformations that appear during the catalytic cycle may allow fine-tuning of inhibitor discovery efforts.
Collapse
Affiliation(s)
- Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Kyle M Stiers
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA; Department of Chemistry, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
18
|
Sjulstok E, Solov'yov IA. Structural Explanations of Flavin Adenine Dinucleotide Binding in Drosophila melanogaster Cryptochrome. J Phys Chem Lett 2020; 11:3866-3870. [PMID: 32330039 DOI: 10.1021/acs.jpclett.0c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cryptochrome proteins are thought to be involved in light-sensitive magnetoreception in migratory birds triggered by flavin adenine dinucleotide (FAD) light absorption. A recent study, however, calls into question the ability of vertebrate cryptochrome proteins to bind FAD, rendering them unlikely to function as magnetoreceptive proteins. In this Letter, we investigate the structural changes occurring in Drosophila melanogaster cryptochrome, upon key amino acid mutations, which reduce FAD binding. Through computational analysis we have now suggested why some mutations do not preclude FAD binding in all vertebrate cryptochrome proteins.
Collapse
Affiliation(s)
- Emil Sjulstok
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University, Carl von Ossietzky str. 9-11, 26111 Oldenburg, Germany
| |
Collapse
|
19
|
Korasick DA, Campbell AC, Christgen SL, Chakravarthy S, White TA, Becker DF, Tanner JJ. Redox Modulation of Oligomeric State in Proline Utilization A. Biophys J 2019; 114:2833-2843. [PMID: 29925020 DOI: 10.1016/j.bpj.2018.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 10/28/2022] Open
Abstract
Homooligomerization of proline utilization A (PutA) bifunctional flavoenzymes is intimately tied to catalytic function and substrate channeling. PutA from Bradyrhizobium japonicum (BjPutA) is unique among PutAs in that it forms a tetramer in solution. Curiously, a dimeric BjPutA hot spot mutant was previously shown to display wild-type catalytic activity despite lacking the tetrameric structure. These observations raised the question of what is the active oligomeric state of BjPutA. Herein, we investigate the factors that contribute to tetramerization of BjPutA in vitro. Negative-stain electron microscopy indicates that BjPutA is primarily dimeric at nanomolar concentrations, suggesting concentration-dependent tetramerization. Further, sedimentation-velocity analysis of BjPutA at high (micromolar) concentration reveals that although the binding of active-site ligands does not alter oligomeric state, reduction of the flavin adenine dinucleotide cofactor results in dimeric protein. Size-exclusion chromatography coupled with multiangle light scattering and small-angle x-ray scattering analysis also reveals that reduced BjPutA is dimeric. Taken together, these results suggest that the BjPutA oligomeric state is dependent upon both enzyme concentration and the redox state of the flavin cofactor. This is the first report, to our knowledge, of redox-linked oligomerization in the PutA family.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Shelbi L Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois
| | - Tommi A White
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Department of Chemistry, University of Missouri, Columbia, Missouri.
| |
Collapse
|
20
|
Abstract
Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | | | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
21
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
22
|
Christgen SL, Zhu W, Sanyal N, Bibi B, Tanner JJ, Becker DF. Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A. Biochemistry 2017; 56:6292-6303. [PMID: 29090935 PMCID: PMC6044449 DOI: 10.1021/acs.biochem.7b01008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli proline utilization A (EcPutA) is the archetype of trifunctional PutA flavoproteins, which function both as regulators of the proline utilization operon and bifunctional enzymes that catalyze the four-electron oxidation of proline to glutamate. EcPutA shifts from a self-regulating transcriptional repressor to a bifunctional enzyme in a process known as functional switching. The flavin redox state dictates the function of EcPutA. Upon proline oxidation, the flavin becomes reduced, triggering a conformational change that causes EcPutA to dissociate from the put regulon and bind to the cellular membrane. Major structure/function domains of EcPutA have been characterized, including the DNA-binding domain, proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase catalytic domains, and an aldehyde dehydrogenase superfamily fold domain. Still lacking is an understanding of the membrane-binding domain, which is essential for EcPutA catalytic turnover and functional switching. Here, we provide evidence for a conserved C-terminal motif (CCM) in EcPutA having a critical role in membrane binding. Deletion of the CCM or replacement of hydrophobic residues with negatively charged residues within the CCM impairs EcPutA functional and physical membrane association. Furthermore, cell-based transcription assays and limited proteolysis indicate that the CCM is essential for functional switching. Using fluorescence resonance energy transfer involving dansyl-labeled liposomes, residues in the α-domain are also implicated in membrane binding. Taken together, these experiments suggest that the CCM and α-domain converge to form a membrane-binding interface near the PRODH domain. The discovery of the membrane-binding region will assist efforts to define flavin redox signaling pathways responsible for EcPutA functional switching.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Weidong Zhu
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Nikhilesh Sanyal
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Bushra Bibi
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
23
|
Tornmalm J, Widengren J. Label-free monitoring of ambient oxygenation and redox conditions using the photodynamics of flavin compounds and transient state (TRAST) spectroscopy. Methods 2017; 140-141:178-187. [PMID: 29179988 DOI: 10.1016/j.ymeth.2017.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022] Open
Abstract
Transient state (TRAST) monitoring can determine population dynamics of long-lived, dark transient states of fluorescent molecules, detecting only the average fluorescence intensity from a sample, when subject to different excitation pulse trains. Like Fluorescence Correlation Spectroscopy (FCS), TRAST unites the detection sensitivity of fluorescence with the environmental sensitivity of long-lived non-fluorescent states, but does not rely on detection of stochastic fluorescence fluctuations from individual molecules. Relaxed requirements on noise suppression, detection quantum yield and time-resolution of the instrument, as well as on fluorescence brightness of the molecules studied, make TRAST broadly applicable, opening also for investigations based on less bright, auto-fluorescent molecules. In this work, we applied TRAST to study the transient state population dynamics within the auto-fluorescent coenzymes flavin adenine dinucleotide (FAD) and flavin-mononucleotide (FMN). From the experimental TRAST data, we defined state models, and determined rate parameters for triplet state and redox transitions within FMN and FAD, stacking and un-stacking rates of external redox active quenching agents and by the adenine moiety of FAD itself. TRAST experiments were found to be well capable to resolve these transitions in FMN and FAD, and to track how the transitions are influenced by ambient oxygenation and redox conditions. This work demonstrates that TRAST provides a useful tool to follow local oxygenation and redox conditions via FMN and FAD fluorescence, and forms the basis for measurements on flavo-proteins and of redox and metabolic conditions in more complex environments, such as in live cells.
Collapse
Affiliation(s)
- Johan Tornmalm
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, 106 91 Stockholm, Sweden.
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, 106 91 Stockholm, Sweden.
| |
Collapse
|
24
|
Liu LK, Becker DF, Tanner JJ. Structure, function, and mechanism of proline utilization A (PutA). Arch Biochem Biophys 2017; 632:142-157. [PMID: 28712849 DOI: 10.1016/j.abb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
25
|
Moxley MA, Zhang L, Christgen S, Tanner JJ, Becker DF. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein. Biochemistry 2017; 56:3078-3088. [PMID: 28558236 DOI: 10.1021/acs.biochem.7b00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proline utilization A from Escherichia coli (EcPutA) is a multifunctional flavoenzyme that oxidizes proline to glutamate through proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) activities, while also switching roles as a DNA-bound transcriptional repressor and a membrane-bound catabolic enzyme. This phenomenon, termed functional switching, occurs through a redox-mediated mechanism in which flavin reduction triggers a conformational change that increases EcPutA membrane binding affinity. Structural studies have shown that reduction of the FAD cofactor causes the ribityl moiety to undergo a crankshaft motion, indicating that the orientation of the ribityl chain is a key element of PutA functional switching. Here, we test the role of a conserved histidine that bridges from the FAD pyrophosphate to the backbone amide of a conserved leucine residue in the PRODH active site. An EcPutA mutant (H487A) was characterized by steady-state and rapid-reaction kinetics, and cell-based reporter gene experiments. The catalytic activity of H487A is severely diminished (>50-fold) with membrane vesicles as the electron acceptor, and H487A exhibits impaired lipid binding and in vivo transcriptional repressor activity. Rapid-reaction kinetic experiments demonstrate that H487A is 3-fold slower than wild-type EcPutA in a conformational change step following reduction of the FAD cofactor. Furthermore, the reduction potential (Em) of H487A is ∼40 mV more positive than that of wild-type EcPutA, and H487A has an attenuated ability to catalyze the reverse PRODH chemical step of reoxidation by P5C. In this process, significant red semiquinone forms in contrast to the same reaction with wild-type EcPutA, in which facile two-electron reoxidation occurs without the formation of a measurable amount of semiquinone. These results indicate that His487 is critically important for the proline/P5C chemical step, conformational change kinetics, and functional switching in EcPutA.
Collapse
Affiliation(s)
- Michael A Moxley
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Lu Zhang
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Shelbi Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
26
|
Arentson BW, Hayes EL, Zhu W, Singh H, Tanner JJ, Becker DF. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA. Biosci Rep 2016; 36:e00413. [PMID: 27742866 PMCID: PMC5293562 DOI: 10.1042/bsr20160435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs.
Collapse
Affiliation(s)
- Benjamin W Arentson
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Erin L Hayes
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Weidong Zhu
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
- Protein Technologies and Assays, Research and Development, MilliporeSigma, 2909 Laclede Avenue, St. Louis, MO 63103, U.S.A
| | - John J Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
| |
Collapse
|
27
|
The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii. Appl Microbiol Biotechnol 2016; 101:1521-1534. [PMID: 27796435 DOI: 10.1007/s00253-016-7931-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.
Collapse
|
28
|
Valladares RB, Graves C, Wright K, Gardner CL, Lorca GL, Gonzalez CF. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein. Front Microbiol 2015; 6:716. [PMID: 26236298 PMCID: PMC4500961 DOI: 10.3389/fmicb.2015.00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023] Open
Abstract
Host and commensals crosstalk, mediated by reactive oxygen species (ROS), has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B) whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS) sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold). Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB, and FMN) were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions.
Collapse
Affiliation(s)
- Ricardo B Valladares
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Christina Graves
- Department of Periodontology, College of Medicine, University of Florida Gainesville, FL, USA
| | - Kaitlyn Wright
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| |
Collapse
|
29
|
Hamdane D, Bou-Nader C, Cornu D, Hui-Bon-Hoa G, Fontecave M. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond. Biochemistry 2015; 54:4354-64. [PMID: 26120776 DOI: 10.1021/acs.biochem.5b00501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-catalyzed reactions often rely on a noncovalently bound cofactor whose reactivity is tuned by its immediate environment. Flavin cofactors, the most versatile catalyst encountered in biology, are often maintained within the protein throughout numbers of complex ionic and aromatic interactions. Here, we have investigated the role of π-π stacking and hydrogen bond interactions between a tyrosine and the isoalloxazine moiety of the flavin adenine dinucleotide (FAD) in an FAD-dependent RNA methyltransferase. Combining several static and time-resolved spectroscopies as well as biochemical approaches, we showed that aromatic stacking is assisted by a hydrogen bond between the phenol group and the amide of an adjacent active site loop. A mechanism of recognition and binding of the redox cofactor is proposed.
Collapse
Affiliation(s)
- Djemel Hamdane
- †Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Charles Bou-Nader
- †Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - David Cornu
- ‡INSERM U779, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Gaston Hui-Bon-Hoa
- §Plateforme IMAGIF, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de le terrasse, 91191 Gif Sur Yvette, France
| | - Marc Fontecave
- †Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
30
|
Tanner JJ, Boechi L, Andrew McCammon J, Sobrado P. Structure, mechanism, and dynamics of UDP-galactopyranose mutase. Arch Biochem Biophys 2014; 544:128-41. [PMID: 24096172 PMCID: PMC3946560 DOI: 10.1016/j.abb.2013.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/16/2022]
Abstract
The flavoenzyme UDP-galactopyranose mutase (UGM) is a key enzyme in galactofuranose biosynthesis. The enzyme catalyzes the 6-to-5 ring contraction of UDP-galactopyranose to UDP-galactofuranose. Galactofuranose is absent in humans yet is an essential component of bacterial and fungal cell walls and a cell surface virulence factor in protozoan parasites. Thus, inhibition of galactofuranose biosynthesis is a valid strategy for developing new antimicrobials. UGM is an excellent target in this effort because the product of the UGM reaction represents the first appearance of galactofuranose in the biosynthetic pathway. The UGM reaction is redox neutral, which is atypical for flavoenzymes, motivating intense examination of the chemical mechanism and structural features that tune the flavin for its unique role in catalysis. These studies show that the flavin functions as nucleophile, forming a flavin-sugar adduct that facilitates galactose-ring opening and contraction. The 3-dimensional fold is novel and conserved among all UGMs, however the larger eukaryotic enzymes have additional secondary structure elements that lead to significant differences in quaternary structure, substrate conformation, and conformational flexibility. Here we present a comprehensive review of UGM three-dimensional structure, provide an update on recent developments in understanding the mechanism of the enzyme, and summarize computational studies of active site flexibility.
Collapse
Affiliation(s)
- John J Tanner
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, MO, United States.
| | - Leonardo Boechi
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - J Andrew McCammon
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States; Howard Hughes Medical Institute, Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
31
|
Abstract
(1)H-, (11)B-, (13)C-, (15)N-, (17)O-, (19)F-, and (31)P-NMR chemical shifts of flavocoenzymes and derivatives of it, as well as of alloxazines and isoalloxazinium salts, from NMR experiments performed under various experimental conditions (e.g., dependence of the chemical shifts on temperature, concentration, solvent polarity, and pH) are reported. Also solid-state (13)C- and (15)N-NMR experiments are described revealing the anisotropic values of corresponding chemical shifts. These data, in combination with a number of coupling constants, led to a detailed description of the electronic structure of oxidized and reduced flavins. The data also demonstrate that the structure of oxidized flavin can assume a configuration deviating from coplanarity, depending on substitutions in the isoalloxazine ring, while that of reduced flavin exhibits several configurations, from almost planar to quite bended. The complexes formed between oxidized flavin and metal ions or organic molecules revealed three coordination sites with metal ions (depending on the chemical nature of the ion), and specific interactions between the pyrimidine moiety of flavin and organic molecules, mimicking specific interactions between apoflavoproteins and their coenzymes. Most NMR studies on flavoproteins were performed using (13)C- and (15)N-substituted coenzymes, either specifically enriched in the pterin moiety of flavin or uniformly labeled flavins. The chemical shifts of free flavins are used as a guide in the interpretation of the chemical shifts observed in flavoproteins. Although the hydrogen-bonding pattern in oxidized and reduced flavoproteins varies considerably, no correlation is obvious between these patterns and the corresponding redox potentials. In all reduced flavoproteins the N(1)H group of the flavocoenzyme is deprotonated, an exception is thioredoxin reductase. Three-dimensional structures of only a few flavoproteins, mostly belonging to the family of flavodoxins, have been solved. Also the kinetics of unfolding and refolding of flavodoxins has been investigated by NMR techniques. In addition, (31)P-NMR data of all so far studied flavoproteins and some (19)F-NMR spectra are discussed.
Collapse
Affiliation(s)
- Franz Müller
- , Wylstrasse 13, CH-6052, Hergiswil, Switzerland,
| |
Collapse
|
32
|
Moxley MA, Sanyal N, Krishnan N, Tanner JJ, Becker DF. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA). J Biol Chem 2013; 289:3639-51. [PMID: 24352662 DOI: 10.1074/jbc.m113.523704] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PutA (proline utilization A) is a large bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains that catalyze the oxidation of l-proline to l-glutamate in two successive reactions. In the PRODH active site, proline undergoes a two-electron oxidation to Δ(1)-pyrroline-5-carboxlylate, and the FAD cofactor is reduced. In the P5CDH active site, l-glutamate-γ-semialdehyde (the hydrolyzed form of Δ(1)-pyrroline-5-carboxylate) undergoes a two-electron oxidation in which a hydride is transferred to NAD(+)-producing NADH and glutamate. Here we report the first kinetic model for the overall PRODH-P5CDH reaction of a PutA enzyme. Global analysis of steady-state and transient kinetic data for the PRODH, P5CDH, and coupled PRODH-P5CDH reactions was used to test various models describing the conversion of proline to glutamate by Escherichia coli PutA. The coupled PRODH-P5CDH activity of PutA is best described by a mechanism in which the intermediate is not released into the bulk medium, i.e., substrate channeling. Unexpectedly, single-turnover kinetic experiments of the coupled PRODH-P5CDH reaction revealed that the rate of NADH formation is 20-fold slower than the steady-state turnover number for the overall reaction, implying that catalytic cycling speeds up throughput. We show that the limiting rate constant observed for NADH formation in the first turnover increases by almost 40-fold after multiple turnovers, achieving half of the steady-state value after 15 turnovers. These results suggest that EcPutA achieves an activated channeling state during the approach to steady state and is thus a new example of a hysteretic enzyme. Potential underlying causes of activation of channeling are discussed.
Collapse
Affiliation(s)
- Michael A Moxley
- From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | | | | | | | | |
Collapse
|
33
|
Yamada M, Tamada T, Takeda K, Matsumoto F, Ohno H, Kosugi M, Takaba K, Shoyama Y, Kimura S, Kuroki R, Miki K. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer. J Mol Biol 2013; 425:4295-306. [PMID: 23831226 DOI: 10.1016/j.jmb.2013.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
NADH-Cytochrome b5 reductase (b5R), a flavoprotein consisting of NADH and flavin adenine dinucleotide (FAD) binding domains, catalyzes electron transfer from the two-electron carrier NADH to the one-electron carrier cytochrome b5 (Cb5). The crystal structures of both the fully reduced form and the oxidized form of porcine liver b5R were determined. In the reduced b5R structure determined at 1.68Å resolution, the relative configuration of the two domains was slightly shifted in comparison with that of the oxidized form. This shift resulted in an increase in the solvent-accessible surface area of FAD and created a new hydrogen-bonding interaction between the N5 atom of the isoalloxazine ring of FAD and the hydroxyl oxygen atom of Thr66, which is considered to be a key residue in the release of a proton from the N5 atom. The isoalloxazine ring of FAD in the reduced form is flat as in the oxidized form and stacked together with the nicotinamide ring of NAD(+). Determination of the oxidized b5R structure, including the hydrogen atoms, determined at 0.78Å resolution revealed the details of a hydrogen-bonding network from the N5 atom of FAD to His49 via Thr66. Both of the reduced and oxidized b5R structures explain how backflow in this catalytic cycle is prevented and the transfer of electrons to one-electron acceptors such as Cb5 is accelerated. Furthermore, crystallographic analysis by the cryo-trapping method suggests that re-oxidation follows a two-step mechanism. These results provide structural insights into the catalytic cycle of b5R.
Collapse
Affiliation(s)
- Mitsugu Yamada
- Molecular Biology Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Menard N, Hériot Y, Le Mest Y, Reinaud O, Le Poul N, Colasson B. Electrochemically Driven Cup-and-Ball CuIand CuIIComplexes. Chemistry 2013; 19:10611-8. [DOI: 10.1002/chem.201301141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 11/10/2022]
|
35
|
Leung KKK, Shilton BH. Chloroquine binding reveals flavin redox switch function of quinone reductase 2. J Biol Chem 2013; 288:11242-51. [PMID: 23471972 DOI: 10.1074/jbc.m113.457002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quinone reductase 2 (NQO2) is an FAD-linked enzyme and the only known human target of two antimalarial drugs, primaquine (PQ) and chloroquine (CQ). The structural differences between oxidized and reduced NQO2 and the structural basis for inhibition by PQ and CQ were investigated by x-ray crystallography. Structures of oxidized NQO2 in complex with PQ and CQ were solved at 1.4 Å resolution. CQ binds preferentially to reduced NQO2, and upon reduction of NQO2-CQ crystals, the space group changed from P2(1)2(1)2(1) to P2(1), with 1-Å decreases in all three unit cell dimensions. The change in crystal packing originated in the negative charge and 4-5º bend in the reduced isoalloxazine ring of FAD, which resulted in a new mode of CQ binding and closure of a flexible loop (Phe(126)-Leu(136)) over the active site. This first structure of a reduced quinone reductase shows that reduction of the FAD cofactor and binding of a specific inhibitor lead to global changes in NQO2 structure and is consistent with a functional role for NQO2 as a flavin redox switch.
Collapse
Affiliation(s)
- Kevin K K Leung
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
36
|
Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W. Single-molecule experiments reveal the flexibility of a Per-ARNT-Sim domain and the kinetic partitioning in the unfolding pathway under force. Biophys J 2012; 102:2149-57. [PMID: 22824279 DOI: 10.1016/j.bpj.2012.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022] Open
Abstract
Per-ARNT-Sim (PAS) domains serve as versatile binding motifs in many signal-transduction proteins and are able to respond to a wide spectrum of chemical or physical signals. Despite their diverse functions, PAS domains share a conserved structure. It has been suggested that the structure of PAS domains is flexible and thus adaptable to many binding partners. However, direct measurement of the flexibility of PAS domains has not yet been provided. Here, we quantitatively measure the mechanical unfolding of a PAS domain, ARNT PAS-B, using single-molecule atomic force microscopy. Our force spectroscopy results indicate that the structure of ARNT PAS-B can be unraveled under mechanical forces as low as ~30 pN due to its broad potential well for the mechanical unfolding transition of ~2 nm. This allows the PAS-B domain to extend by up to 75% of its resting end-to-end distance without unfolding. Moreover, we found that the ARNT PAS-B domain unfolds in two distinct pathways via a kinetic partitioning mechanism. Sixty-seven percent of ARNT PAS-B unfolds through a simple two-state pathway, whereas the other 33% unfolds with a well-defined intermediate state in which the C-terminal β-hairpin is detached. We propose that the structural flexibility and force-induced partial unfolding of PAS-B domains may provide a unique mechanism for them to recruit diverse binding partners and lower the free-energy barrier for the formation of the binding interface.
Collapse
Affiliation(s)
- Xiang Gao
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Luo M, Arentson BW, Srivastava D, Becker DF, Tanner JJ. Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release. Biochemistry 2012; 51:10099-108. [PMID: 23151026 DOI: 10.1021/bi301312f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of proline to Δ(1)-pyrroline-5-carboxylate, which is the first step of proline catabolism. Here, we report the structures of proline dehydrogenase from Deinococcus radiodurans in the oxidized state complexed with the proline analogue L-tetrahydrofuroic acid and in the reduced state with the proline site vacant. The analogue binds against the si face of the FAD isoalloxazine and is protected from bulk solvent by helix α8 and the β1-α1 loop. The FAD ribityl chain adopts two conformations in the E-S complex, which is unprecedented for flavoenzymes. One of the conformations is novel for the PRODH superfamily and may contribute to the low substrate affinity of Deinococcus PRODH. Reduction of the crystalline enzyme-inhibitor complex causes profound structural changes, including 20° butterfly bending of the isoalloxazine, crankshaft rotation of the ribityl, shifting of α8 by 1.7 Å, reconfiguration of the β1-α1 loop, and rupture of the Arg291-Glu64 ion pair. These changes dramatically open the active site to facilitate product release and allow electron acceptors access to the reduced flavin. The structures suggest that the ion pair, which is conserved in the PRODH superfamily, functions as the active site gate. Mutagenesis of Glu64 to Ala decreases the catalytic efficiency 27-fold, which demonstrates the importance of the gate. Mutation of Gly63 decreases the efficiency 140-fold, which suggests that flexibility of the β1-α1 loop is essential for optimal catalysis. The large conformational changes that are required to form the E-S complex suggest that conformational selection plays a role in substrate recognition.
Collapse
Affiliation(s)
- Min Luo
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Cellular redox states can regulate cell metabolism, growth, differentiation, motility, apoptosis, signaling pathways, and gene expressions etc. A growing body of literature suggest the importance of redox status for cancer progression. While most studies on redox state were done on cells and tissue lysates, it is important to understand the role of redox state in a tissue in vivo/ex vivo and image its heterogeneity. Redox scanning is a clinical-translatable method for imaging tissue mitochondrial redox potential with a submillimeter resolution. Redox scanning data in mouse models of human cancers demonstrate a correlation between mitochondrial redox state and tumor metastatic potential. I will discuss the significance of this correlation and possible directions for future research.
Collapse
Affiliation(s)
- Lin Z Li
- Molecular Imaging Laboratory, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Dhatwalia R, Singh H, Oppenheimer M, Sobrado P, Tanner JJ. Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation. Biochemistry 2012; 51:4968-79. [PMID: 22646091 PMCID: PMC3426654 DOI: 10.1021/bi300498c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.
Collapse
Affiliation(s)
- Richa Dhatwalia
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
40
|
Losi A, Gärtner W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:49-72. [PMID: 22136567 DOI: 10.1146/annurev-arplant-042811-105538] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photoreceptor flavoproteins of the LOV, BLUF, and cryptochrome families are ubiquitous among the three domains of life and are configured as UVA/blue-light systems not only in plants-their original arena-but also in prokaryotes and microscopic algae. Here, we review these proteins' structure and function, their biological roles, and their evolution and impact in the living world, and underline their growing application in biotechnologies. We present novel developments such as the interplay of light and redox stimuli, emerging enzymatic and biological functions, lessons on evolution from picoalgae, metagenomics analysis, and optogenetics applications.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics, University of Parma, Parma, Italy.
| | | |
Collapse
|
41
|
Moxley MA, Becker DF. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein. Biochemistry 2011; 51:511-20. [PMID: 22148640 DOI: 10.1021/bi201603f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli catalyzes the oxidation of proline to glutamate in two reaction steps using separate proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains. Here, the kinetic mechanism of PRODH in PutA is studied by stopped-flow kinetics to determine microscopic rate constants for the proline:ubiquinone oxidoreductase mechanism. Stopped-flow data for proline reduction of the flavin cofactor (reductive half-reaction) and oxidation of reduced flavin by CoQ(1) (oxidative half-reaction) were best-fit by a double exponential from which maximum observable rate constants and apparent equilibrium dissociation constants were determined. Flavin semiquinone was not observed in the reductive or oxidative reactions. Microscopic rate constants for steps in the reductive and oxidative half-reactions were obtained by globally fitting the stopped-flow data to a simulated mechanism that includes a chemical step followed by an isomerization event. A microscopic rate constant of 27.5 s(-1) was determined for proline reduction of the flavin cofactor followed by an isomerization step of 2.2 s(-1). The isomerization step is proposed to report on a previously identified flavin-dependent conformational change [Zhang, W. et al. (2007) Biochemistry 46, 483-491] that is important for PutA functional switching but is not kinetically relevant to the in vitro mechanism. Using CoQ(1), a soluble analogue of ubiquinone, a rate constant of 5.4 s(-1) was obtained for the oxidation of flavin, thus indicating that this oxidative step is rate-limiting for k(cat) during catalytic turnover. Steady-state kinetic constants calculated from the microscopic rate constants agree with the experimental k(cat) and k(cat)/K(m) parameters.
Collapse
Affiliation(s)
- Michael A Moxley
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | | |
Collapse
|
42
|
Abstract
This review focuses on thiol/disulfide redox switches that regulate heme binding to proteins and modulate their activities. The importance of redox switches in metabolic regulation and the general mechanism by which redox switches modulate activity are discussed. Methods are described to characterize heme-binding sites and to assess their physiological relevance. For thiol/disulfide interconversion to regulate activity of a system, the redox process must be reversible at the ambient redox potentials found within the cell; thus, methods (and their limitations) are discussed that can address the physiological relevance of a redox switch. We review recent results that define a mechanism for how thiol/disulfide redox switches that control heme binding can regulate the activities of an enzyme, heme oxygenase-2, and an ion channel, the BK potassium channel. The redox switches on these proteins are composed of different types of Cys-containing motifs that have opposite effects on heme affinity, yet have complementary effects on hypoxia sensing. Finally, a model is proposed to describe how the redox switches on heme oxygenase-2 and the BK channel form an interconnected system that is poised to sense oxygen levels in the bloodstream and to elicit the hypoxic response when oxygen levels drop below a threshold value.
Collapse
Affiliation(s)
- Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| | | |
Collapse
|