1
|
Dai H, Huang Z, Shi F, Li S, Zhang Y, Wu H, Lv Z. Effects of maternal hawthorn-leaf flavonoid supplementation on the intestinal development of offspring chicks. Poult Sci 2024; 103:103969. [PMID: 39047316 PMCID: PMC11318554 DOI: 10.1016/j.psj.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders in maternal generation during the late egg-laying period have adverse effects on neonatal development. The study was conducted to clarify the effects of maternal feeding of hawthorn-leaf flavonoid (HF) on the microbial community and intestinal development of chicks. Breeder hens were fed a basic corn-soybean diet, while the treatment groups were supplemented with 30 or 60 mg/kg HF. The offspring chicks were divided into CON, LHF, and HHF groups according to the maternal treatments. Maternal HF supplementation at 60 mg/kg increased the average daily gain and decreased the feed conversion rate of chicks (P < 0.05), but did not affect the average daily feed intake. HF treatments increased the villus height to crypt depth ratio and up-regulated the protein expressions of PCNA, IGF-1R, PI3K and p-mTOR in the jejunum (P < 0.05) of 1-day-old and 14-day-old chicks. Additionally, maternal HF treatment up-regulated the mRNA expression of tight junction transmembrane proteins (occludin) and scaffolding proteins (ZO-1 and ZO-2) in the jejunum of 1-day-old chicks (P < 0.05). Moreover, the maternal effects of HF on ZO-1 expression could last for 14 d (P < 0.05). Interestingly, dietary HF supplementation altered the vertically transmitted microbial community from breeder hens to chicks, especially increased the relative abundance of probiotics (i.e., Clostridium_sensu_stricto_1) in the meconium of chicks (P < 0.05), which may help with early gut microbiota colonization and intestinal development. In summary, dietary HF supplementation for breeder hens altered the bacterial community of neonates and might promote intestinal development of chicks through the IGF-1R/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hongjian Dai
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Huang
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simeng Li
- College of Biotechnology, Aksu Vocational and Technical College, Aksu 843000, China
| | - Yi Zhang
- School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Haoze Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Liu H, Zeng X, Wang Y, Losiewicz MD, Chen X, Du X, Wang Y, Zhang B, Guo X, Yuan S, Yang F, Zhang H. Chronic Exposure to Environmentally Relevant Concentrations of Microcystin-Leucine Arginine Causes Lung Barrier Damage through PP2A Activity Inhibition and Claudin1 Ubiquitination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10907-10918. [PMID: 36026589 DOI: 10.1021/acs.jafc.2c05207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microcystin-leucine arginine (MC-LR), ubiquitous in water and food, is a threat to public health. In the present study, after C57BL/6J mice were fed with environmental concentrations of MC-LR (0, 1, 30, 60, 90, and 120 μg/L) for 6, 9, and 12 months, it was found that MC-LR could enter into mouse lung tissues and cause microstructural damage, as shown by western blotting and HE staining. Electron microscopy examination showed that MC-LR could damage the lung barrier by disruption of the tight junctions, which was confirmed by the decreased expression of tight junction markers, including Occludin, Claudin1, and ZO-1. In addition, MC-LR also increased the ubiquitination of Claudin1, indicating that MC-LR could disrupt tight junctions by promoting the degradation of Claudin1. Furthermore, MC-LR increased the levels of TNF-α and IL-6 in mouse lung tissues, leading to pneumonia. Importantly, pretreatment with PP2A activator D-erythro-sphingosine (DES) was found to significantly alleviate MC-LR-induced decrease of Occludin and Claudin1 by inhibiting the P-AKT/Snail pathway in vitro. Together, this study revealed that chronic exposure to MC-LR causes lung barrier damage, which involves PP2A activity inhibition and enhancement of Claudin1 ubiquitination. This study broadens the awareness of the toxic effects of MC-LR on the respiratory system, which has deep implications for public health.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio78228, Texas, United States
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio78228, Texas, United States
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang421001, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha410008, Hunan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| |
Collapse
|
3
|
Zhang N, Wang S, Wong CC. Proteomics research of SARS-CoV-2 and COVID-19 disease. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:427-445. [PMID: 37724330 PMCID: PMC10388787 DOI: 10.1515/mr-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 09/20/2023]
Abstract
Currently, coronavirus disease 2019 (COVID-19) is still spreading in a global scale, exerting a massive health and socioeconomic crisis. Deep insights into the molecular functions of the viral proteins and the pathogenesis of this infectious disease are urgently needed. In this review, we comprehensively describe the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and summarize their protein interaction map with host cells. In the protein interaction network between the virus and the host, a total of 787 host prey proteins that appeared in at least two studies or were verified by co-immunoprecipitation experiments. Together with 29 viral proteins, a network of 1762 proximal interactions were observed. We also review the proteomics results of COVID-19 patients and proved that SARS-CoV-2 hijacked the host's translation system, post-translation modification system, and energy supply system via viral proteins, resulting in various immune disorders, multiple cardiomyopathies, and cholesterol metabolism diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Siyuan Wang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Catherine C.L. Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
4
|
Diyya ASM, Thomas NV. Multiple Micronutrient Supplementation: As a Supportive Therapy in the Treatment of COVID-19. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3323825. [PMID: 35355818 PMCID: PMC8960013 DOI: 10.1155/2022/3323825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
During the infection and treatment of the SARS-CoV-2 viral infection, age and comorbidities play a major role in the successful management of COVID-19. The nutritional status changes which occur in the body vary with the age and underlying conditions and has a vital role in the functioning of the immune system and cellular membrane integrity, thus minimizing the vulnerability to the infection. Considering the data already published by eminent researchers, a few micronutrients have shown outstanding results as supportive therapies in the treatment of viral infections. Micronutrient like zinc improves the membrane barrier integrity, has anti-inflammatory activity, and is involved in antibody production. Vitamin A supports the phagocytic activity of macrophages, while vitamin C reduces the worsening of respiratory tract infections by restoring the dysfunctional epithelial barrier of the lungs. Vitamin D, vitamin E, selenium, and omega-3 fatty acid metabolites play a major role in immunomodulation and in the inhibition of proinflammatory cytokine production. Magnesium is involved in the synthesis of antibodies, while copper, vitamin B12, and folate have significant effects on immune cells. A few researchers suggest that iron supplementation has reduced the risk of acquiring respiratory tract infections in children. As the age of the patient increases, the need for micronutrients increases, thus leading to an imbalanced nutritional status which in turn increases the risk and fatality of the infections. The use of micronutrients in modulating the inflammatory, immune responses, and the epithelial barrier integrity is explored during the treatment of viral infections for faster recovery.
Collapse
Affiliation(s)
- A Salomy Monica Diyya
- College of Medicine, Department of Pharmacy, Komar University of Science and Technology, Sulaymaniyah, Kurdistan, Iraq
| | - Noel Vinay Thomas
- College of Science, Department of Biomedical Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan, Iraq
| |
Collapse
|
5
|
The Disruption of the Endothelial Barrier Contributes to Acute Lung Injury Induced by Coxsackievirus A2 Infection in Mice. Int J Mol Sci 2021; 22:ijms22189895. [PMID: 34576058 PMCID: PMC8467819 DOI: 10.3390/ijms22189895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1β, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.
Collapse
|
6
|
Wang K, Qiu L, Zhu J, Sun Q, Qu W, Yu Y, Zhao Z, Yu Y, Shao G. Environmental contaminant BPA causes intestinal damage by disrupting cellular repair and injury homeostasis in vivo and in vitro. Biomed Pharmacother 2021; 137:111270. [PMID: 33485121 DOI: 10.1016/j.biopha.2021.111270] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Our previous studies have shown that the environmental contaminant bisphenol A (BPA) exhibits strong intestinal toxicity and can readily cause intestinal barrier dysfunction. However, the causal relationship between adverse biological processes of BPA-induced intestinal tissue and the role of key signaling molecules in it requires further investigation. In this study, we established a mouse and intestinal epithelial cell model of BPA treatment to determine the underlying molecular mechanisms of BPA-induced intestinal injury. The results showed that the BPA treatment increased the intestinal permeability and disrupted the barrier function by increasing the chemical marker content and tight junction expression in intestinal tissues and blood circulation. BPA also altered the oxidative and antioxidant status of intestinal epithelial cells by increasing ROS and RNS contents and decreasing the activity levels of SOD, GPx, CAT, and T-AOC. BPA further induced inflammatory responses by upregulating the gene abundance of key factors of the innate immune system (TLR2, TLR4, MyD88, and NF-κB), the transcriptional activity of NF-kB, and the secretion of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α). Moreover, apoptosis was activated by BPA, whereas cell proliferation was inhibited by BPA. Mechanistically, co-treatment of intestinal epithelial cells with BPA using the oxidative stress scavenger NAC, the NF-κB-specific inhibitor JSH-23, and the apoptosis inhibitor Z-VAD-FMK, respectively, showed that BPA activates the innate immune response by inducing oxidative stress. Consequently, apoptosis is promoted, and cell proliferation is inhibited, ultimately disrupting the intestinal barrier function. Our findings provide insight into the pathogenesis of BPA-induced gut injury.
Collapse
Affiliation(s)
- Kai Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Junjia Zhu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Qi Sun
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Wei Qu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Yifeng Yu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Zhenguo Zhao
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Yifeng Yu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Guoyi Shao
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China.
| |
Collapse
|
7
|
Shen CH, Lin JY, Lu CY, Yang SS, Peng CK, Huang KL. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure. BMC Pulm Med 2021; 21:58. [PMID: 33588817 PMCID: PMC7885562 DOI: 10.1186/s12890-021-01408-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Hyperoxia downregulates the tight junction (TJ) proteins of the alveolar epithelium and leads to barrier dysfunction. Previous study has showed that STE20/SPS1-related proline/alanine-rich kinase (SPAK) interferes with the intestinal barrier function in mice. The aim of the present study is to explore the association between SPAK and barrier function in the alveolar epithelium after hyperoxic exposure. METHODS Hyperoxic acute lung injury (HALI) was induced by exposing mice to > 99% oxygen for 64 h. The mice were randomly allotted into four groups comprising two control groups and two hyperoxic groups with and without SPAK knockout. Mouse alveolar MLE-12 cells were cultured in control and hyperoxic conditions with or without SPAK knockdown. Transepithelial electric resistance and transwell monolayer permeability were measured for each group. In-cell western assay was used to screen the possible mechanism of p-SPAK being induced by hyperoxia. RESULTS Compared with the control group, SPAK knockout mice had a lower protein level in the bronchoalveolar lavage fluid in HALI, which was correlated with a lower extent of TJ disruption according to transmission electron microscopy. Hyperoxia down-regulated claudin-18 in the alveolar epithelium, which was alleviated in SPAK knockout mice. In MLE-12 cells, hyperoxia up-regulated phosphorylated-SPAK by reactive oxygen species (ROS), which was inhibited by indomethacin. Compared with the control group, SPAK knockdown MLE-12 cells had higher transepithelial electrical resistance and lower transwell monolayer permeability after hyperoxic exposure. The expression of claudin-18 was suppressed by hyperoxia, and down-regulation of SPAK restored the expression of claudin-18. The process of SPAK suppressing the expression of claudin-18 and impairing the barrier function was mediated by p38 mitogen-activated protein kinase (MAPK). CONCLUSIONS Hyperoxia up-regulates the SPAK-p38 MAPK signal pathway by ROS, which disrupts the TJ of the alveolar epithelium by suppressing the expression of claudin-18. The down-regulation of SPAK attenuates this process and protects the alveolar epithelium against the barrier dysfunction induced by hyperoxia.
Collapse
Affiliation(s)
- Chih-Hao Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Rd, Neihu 114, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jr-Yu Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yo Lu
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Rd, Neihu 114, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Rd, Neihu 114, Taipei, Taiwan. .,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
8
|
Tian W, Zhang N, Jin R, Feng Y, Wang S, Gao S, Gao R, Wu G, Tian D, Tan W, Chen Y, Gao GF, Wong CCL. Immune suppression in the early stage of COVID-19 disease. Nat Commun 2020; 11:5859. [PMID: 33203833 PMCID: PMC7673112 DOI: 10.1038/s41467-020-19706-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Abstract
The outbreak of COVID-19 has become a worldwide pandemic. The pathogenesis of this infectious disease and how it differs from other drivers of pneumonia is unclear. Here we analyze urine samples from COVID-19 infection cases, healthy donors and non-COVID-19 pneumonia cases using quantitative proteomics. The molecular changes suggest that immunosuppression and tight junction impairment occur in the early stage of COVID-19 infection. Further subgrouping of COVID-19 patients into moderate and severe types shows that an activated immune response emerges in severely affected patients. We propose a two-stage mechanism of pathogenesis for this unusual viral infection. Our data advance our understanding of the clinical features of COVID-19 infections and provide a resource for future mechanistic and therapeutics studies.
Collapse
Affiliation(s)
- Wenmin Tian
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, 100191, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Nan Zhang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, 100191, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Ronghua Jin
- Beijing Youan Hospital, Capital Medical University, 100069, Beijing, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, 100069, Beijing, China
| | - Siyuan Wang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, 100191, Beijing, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, 100191, Beijing, China
| | - Ruqin Gao
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206, Beijing, China
| | - Di Tian
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, 100069, Beijing, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206, Beijing, China.
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, 100191, Beijing, China.
- School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - George Fu Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206, Beijing, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Catherine C L Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, 100191, Beijing, China.
- School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Peking University First Hospital, 100034, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
9
|
Hwang JS, Cha EH, Park B, Ha E, Seo JH. PBN inhibits a detrimental effect of methamphetamine on brain endothelial cells by alleviating the generation of reactive oxygen species. Arch Pharm Res 2020; 43:1347-1355. [PMID: 33200316 DOI: 10.1007/s12272-020-01284-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) is a powerful psychostimulant that is causing serious health problems worldwide owing to imprudent abuses. Recent studies have suggested that METH has deleterious effects on the blood-brain barrier (BBB). A few studies have also been conducted on the mechanisms whereby METH-induced oxidative stress causes BBB dysfunction. We investigated whether N-tert-butyl-α-phenylnitrone (PBN) has protective effects on BBB function against METH exposure in primary human brain microvascular endothelial cells (HBMECs). We found that METH significantly increased reactive oxygen species (ROS) generation in HBMECs. Pretreatment with PBN decreased METH-induced ROS production. With regard to BBB functional integrity, METH exposure elevated the paracellular permeability and reduced the monolayer integrity; PBN treatment reversed these effects. An analysis of the BBB structural properties, by immunostaining junction proteins and cytoskeleton in HBMECs, indicated that METH treatment changed the cellular localization of the tight (ZO-1) and adherens junctions (VE-cadherin) from the membrane to cytoplasm. Furthermore, METH induced cytoskeletal reorganization via the formation of robust stress fibers. METH-induced junctional protein redistribution and cytoskeletal reorganization were attenuated by PBN treatment. Our results suggest that PBN can act as a therapeutic reagent for METH-induced BBB dysfunction by inhibiting excess ROS generation.
Collapse
Affiliation(s)
- Jong Su Hwang
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eun Hye Cha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
10
|
Ng JL, Putra VDL, Knothe Tate ML. In vitro biocompatibility and biomechanics study of novel, Microscopy Aided Designed and ManufacturEd (MADAME) materials emulating natural tissue weaves and their intrinsic gradients. J Mech Behav Biomed Mater 2019; 103:103536. [PMID: 32090942 DOI: 10.1016/j.jmbbm.2019.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
This study conducted biomechanical and biocompatibility tests of textiles and textile composites, created using recursive logic to emulate the properties of natural tissue weaves and their intrinsic mechanical stiffness gradients. Two sets of samples were created, first to test feasibility on textile samples designed as periosteum substitutes with elastane fibers mimicking periosteum's endogenous elastin and nylon fibers substituting for collagen, and then on composites comprising other combinations of suture materials before and after sterilization. In the first part, the bulk tensile mechanical stiffness of elastane-nylon textiles were tuned through respective fiber composition and orientation, i.e., aligned with and orthogonal to loading direction. Cell culture biocompatibility studies revealed no significant differences in proliferation rates of embryonic murine stem cells seeded on textiles compared to collagen membrane controls. Until the 15th day of culture, cells were rarely observed in direct contact with the elastane fibers, similar to previous observations with elastomeric sheets used in periosteum substitute implants. In the second part of the study textile samples were created from FDA-approved medical sutures comprising silk, expanded polytetrafluoroethylene, and polybutester. Biocompatibility and mechanical stiffness were assessed as a function of sterilization/disinfection mode (steam, ethylene oxide, and serial disinfection with ethanol). Cell proliferation rates did not differ significantly from controls, except for silk-suture containing textiles, which showed bacterial contamination and no viable cells after 15 days' culture for all sterilization methods. Sterilization had mixed (mostly not significant) effects on textile stiffness, except for the case of polybutester suture-based textiles that showed a significant increase in stiffness with ethylene oxide sterilization. In general, all textile combinations exhibited significantly higher stiffness than periosteum. Textiles comprising medical sutures of different stiffnesses arranged in engineered patterns offer a novel means to achieve mechanical gradients in medical device materials, emulating those of nature's own.
Collapse
Affiliation(s)
- Joanna L Ng
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia.
| |
Collapse
|
11
|
Feng L, Chen S, Zhang L, Qu W, Chen Z. Bisphenol A increases intestinal permeability through disrupting intestinal barrier function in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112960. [PMID: 31394344 DOI: 10.1016/j.envpol.2019.112960] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 05/28/2023]
Abstract
That an alteration of the intestinal permeability is associated with gut barrier function has been increasingly evident, which plays an important role in human and animal health. Bisphenol A (BPA), an industrial compound used worldwide, has recently been classified as an environmental pollutant. One of our earlier studies has demonstrated that BPA disrupts the intestinal barrier function by inducing apoptosis and inhibiting cell proliferation in the human colonic epithelial cells line. In this study, we investigated the effects of dietary BPA uptake on the colonic barrier function in mice, as well as the intestinal permeability. Dietary BPA uptake was observed to destroy the morphology of the colonic epithelium and increase the pathology score. The levels of endotoxin, diamine peroxidase, D-lactate, and zonulin were found to have been significantly elevated in both plasma and colonic mucosa. A decline in the number of intestinal goblet cells and in mucin 2 gene expression was observed in the mice belonging to the BPA group. The results of immunohistochemistry revealed that the expression of tight junction proteins (ZO-1, occludin, and claudin-1) in colonic epithelium of BPA mice decreased significantly, and their gene abundance was also inhibited. Moreover, dietary BPA uptake was also found to have significantly reduced colonic microbial diversity and altered microbial structural composition. The functional profiles of colonic bacterial community exhibited adverse effects of dietary BPA intake on the endocrine and digestive systems, as well as the transport and catabolism functions. Collectively, our study highlighted that dietary BPA increased the colonic permeability, and this effect was closely related to the disruption of intestinal chemistry and physical and biological barrier functions.
Collapse
Affiliation(s)
- Ling Feng
- Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, Jiangsu, China.
| | - Sijin Chen
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Lijin Zhang
- Department of Urinary Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Zhigao Chen
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| |
Collapse
|
12
|
Tao S, Bai Y, Li T, Li N, Wang J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. FASEB J 2019; 33:9897-9912. [PMID: 31170357 DOI: 10.1096/fj.201900204rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The deteriorative effect of low birth weight (LBW) on the mucosal permeability of the small intestine in piglets has been widely confirmed. However, whether the hindgut epithelial barrier function in LBW pigs is deteriorated during the growing stage is still unclear. Our study investigated differences in the hindgut epithelial barrier function between LBW and normal birth weight pigs during the growing stage (d 90). Our data demonstrated that the hindgut epithelium of LBW pigs has a high histopathological score, accompanied by decreased antioxidant capacity and increased apoptosis rate, as well as elevated expression and activity of caspase-3. In addition, the number of intestinal goblet cells and gene expression of mucin 2 were significantly down-regulated in LBW pigs. The expression of tight junction proteins (ZO-1 and occludin) was markedly inhibited by the LBW. The mRNA abundance of inflammatory cytokines such as TNF-α, IL-1β, and IL-8 was significantly increased in the hindgut mucosa of LBW pigs. Furthermore, our data revealed that LBW altered the intestinal microbial community in the hindgut mucosa of pigs. Collectively, these finding add to our understanding of the mechanisms responsible for hindgut epithelial barrier dysfunction in LBW pigs during the growing stage and facilitate the development of nutritional intervention strategies.-Tao, S., Bai, Y., Li, T., Li, N., Wang, J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
14
|
Cording J, Arslan B, Staat C, Dithmer S, Krug SM, Krüger A, Berndt P, Günther R, Winkler L, Blasig IE, Haseloff RF. Trictide, a tricellulin-derived peptide to overcome cellular barriers. Ann N Y Acad Sci 2017. [PMID: 28633193 DOI: 10.1111/nyas.13392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of tight junction (TJ) proteins restrict the paracellular permeation of solutes via their extracellular loops (ECLs). Tricellulin tightens tricellular TJs (tTJs) and regulates bicellular TJ (bTJ) proteins. We demonstrate that the addition of recombinantly produced extracellular loop 2 (ECL2) of tricellulin opens cellular barriers. The peptidomimetic trictide, a synthetic peptide derived from tricellulin ECL2, increases the passage of ions, as well as of small and larger molecules up to 10 kDa, between 16 and 30 h after application to human epithelial colorectal adenocarcinoma cell line 2. Tricellulin and lipolysis-stimulated lipoprotein receptor relocate from tTJs toward bTJs, while the TJ proteins claudin-1 and occludin redistribute from bTJs to the cytosol. Analyzing the opening of the tricellular sealing tube by the peptidomimetic using super-resolution stimulated-emission depletion microscopy revealed a tricellulin-free area at the tricellular region. Cis-interactions (as measured by fluorescence resonance energy transfer) of tricellulin-tricellulin (tTJs), tricellulin-claudin-1, tricellulin-marvelD3, and occludin-occludin (bTJs) were strongly affected by trictide treatment. Circular dichroism spectroscopy and molecular modeling suggest that trictide adopts a β-sheet structure, resulting in a peculiar interaction surface for its binding to tricellulin. In conclusion, trictide is a novel and promising tool for overcoming cellular barriers at bTJs and tTJs with the potential to transiently improve drug delivery.
Collapse
Affiliation(s)
- Jimmi Cording
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Basak Arslan
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Christian Staat
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Sophie Dithmer
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Anneliese Krüger
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Philipp Berndt
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Ramona Günther
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Lars Winkler
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Ingolf E Blasig
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Reiner F Haseloff
- Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| |
Collapse
|
15
|
Yang L, Na CL, Luo S, Wu D, Hogan S, Huang T, Weaver TE. The Phosphatidylcholine Transfer Protein Stard7 is Required for Mitochondrial and Epithelial Cell Homeostasis. Sci Rep 2017; 7:46416. [PMID: 28401922 PMCID: PMC5388865 DOI: 10.1038/srep46416] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria synthesize select phospholipids but lack the machinery for synthesis of the most abundant mitochondrial phospholipid, phosphatidylcholine (PC). Although the phospholipid transfer protein Stard7 promotes uptake of PC by mitochondria, the importance of this pathway for mitochondrial and cellular homeostasis represents a significant knowledge gap. Haploinsufficiency for Stard7 is associated with significant exacerbation of allergic airway disease in mice, including an increase in epithelial barrier permeability. To test the hypothesis that Stard7 deficiency leads to altered barrier structure/function downstream of mitochondrial dysfunction, Stard7 expression was knocked down in a bronchiolar epithelial cell line (BEAS-2B) and specifically deleted in lung epithelial cells of mice (Stard7epi∆/∆). Stard7 deficiency was associated with altered mitochondrial size and membrane organization both in vitro and in vivo. Altered mitochondrial structure was accompanied by disruption of mitochondrial homeostasis, including decreased aerobic respiration, increased oxidant stress, and mitochondrial DNA damage that, in turn, was linked to altered barrier integrity and function. Both mitochondrial and barrier defects were largely corrected by targeting Stard7 to mitochondria or treating epithelial cells with a mitochondrial-targeted antioxidant. These studies suggest that Stard7-mediated transfer of PC is crucial for mitochondrial homeostasis and that mitochondrial dysfunction contributes to altered barrier permeability in Stard7-deficient mice.
Collapse
Affiliation(s)
- Li Yang
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Shiyu Luo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Simon Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Timothy E Weaver
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| |
Collapse
|
16
|
Schenk GJ, de Vries HE. Altered blood-brain barrier transport in neuro-inflammatory disorders. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 20:5-11. [PMID: 27986224 DOI: 10.1016/j.ddtec.2016.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/13/2016] [Indexed: 01/16/2023]
Abstract
During neurodegenerative and neuroinflammatory disorders of the central nervous system (CNS), such as Alzheimer's disease (AD) and multiple sclerosis (MS), the protective function of the blood-brain barrier (BBB) may be severely impaired. The general neuro-inflammatory response, ranging from activation of glial cells to immune cell infiltration that is frequently associated with such brain diseases may underlie the loss of the integrity and function of the BBB. Consequentially, the delivery and disposition of drugs to the brain will be altered and may influence the treatment efficiency of such diseases. Altered BBB transport of drugs into the CNS during diseases may be the result of changes in both specific transport and non-specific transport pathways. Potential alterations in transport routes like adsorptive mediated endocytosis and receptor-mediated endocytosis may affect drug delivery to the brain. As such, drugs that normally are unable to traverse the BBB may reach their target in the diseased brain due to increased permeability. In contrast, the delivery of (targeted) drugs could be hampered during inflammatory conditions due to disturbed transport mechanisms. Therefore, the inventory of the neuro-inflammatory status of the neurovasculature (or recovery thereof) is of utmost importance in choosing and designing an adequate drug targeting strategy under disease conditions. Within this review we will briefly discuss how the function of the BBB can be affected during disease and how this may influence the delivery of drugs into the diseased CNS.
Collapse
Affiliation(s)
- Geert J Schenk
- Department of Anatomy and Neurosciences, VU University Medical Centre, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Muro S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv Transl Res 2015; 2:169-86. [PMID: 24688886 DOI: 10.1007/s13346-012-0072-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of about fifty life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research University of Maryland, College Park, MD, 20742, USA ; Fischell Dept. of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
18
|
Chen H, Hu Y, Fang Y, Djukic Z, Yamamoto M, Shaheen NJ, Orlando RC, Chen X. Nrf2 deficiency impairs the barrier function of mouse oesophageal epithelium. Gut 2014; 63:711-9. [PMID: 23676441 PMCID: PMC3883925 DOI: 10.1136/gutjnl-2012-303731] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE As a major cellular defence mechanism, the Nrf2/Keap1 pathway regulates expression of genes involved in detoxification and stress response. Here we hypothesise that Nrf2 is involved in oesophageal barrier function and plays a protective role against gastro-oesophageal reflux disease (GERD). DESIGN Human oesophageal biopsy samples, mouse surgical models and Nrf2(-/-) mice were used to assess the role of the Nrf2/Keap1 pathway in oesophageal barrier function. Trans-epithelial electrical resistance (TEER) was measured with mini-Ussing chambers. HE staining and transmission electron microscopy were used to examine tissue morphology, while gene microarray, immunohistochemistry, western blotting and chromatin immunoprecipitation (ChIP) analysis were used to assess gene expression. RESULTS Nrf2 was expressed in normal oesophageal epithelium and activated in GERD of both humans and mice. Nrf2 deficiency and gastro-oesophageal reflux in mice, alone or in combination, reduced TEER and increased intercellular space in oesophageal epithelium. Nrf2 target genes and gene sets associated with oxidoreductase activity, mitochondrial biogenesis and energy production were downregulated in the oesophageal epithelium of Nrf2(-/-) mice. Consistent with the antioxidative function of Nrf2, a DNA oxidative damage marker (8OHdG) dramatically increased in oesophageal epithelial cells of Nrf2(-/-) mice compared with those of wild-type mice. Interestingly, ATP biogenesis, Cox IV (a mitochondrial protein) and Claudin 4 (Cldn4) expression were downregulated in the oesophageal epithelium of Nrf2(-/-) mice, suggesting that energy-dependent tight junction integrity was subject to Nrf2 regulation. ChIP analysis confirmed the binding of Nrf2 to Cldn4 promoter. CONCLUSIONS Nrf2 deficiency impairs oesophageal barrier function through disrupting energy-dependent tight junction.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yuhui Hu
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yu Fang
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA.
,Department of Cardiovascular and Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zorka Djukic
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan 980-8575
| | - Nicholas J. Shaheen
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Roy C. Orlando
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA.
,Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
,Corresponding authors: Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA. Tel: 919-530-6425; Fax: 919-530-7780;
| |
Collapse
|
19
|
Paul D, Cowan AE, Ge S, Pachter JS. Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res 2012; 86:1-10. [PMID: 23261753 DOI: 10.1016/j.mvr.2012.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 12/24/2022]
Abstract
Tight junctions (TJs) feature critically in maintaining the integrity of the blood-brain barrier (BBB), and undergo significant disruption during neuroinflammatory diseases. Accordingly, the expression and distribution of CLN-5, a prominent TJ protein in central nervous system (CNS) microvessels and BBB determinant, has been shown to parallel physiological and pathophysiological changes in microvascular function. However, efforts to quantify CLN-5 within the CNS microvasculature in situ, by using conventional two-dimensional immunohistochemical analysis of thin sections, are encumbered by the tortuosity of capillaries and distorted diameters of inflamed venules. Herein, we describe a novel contour-based 3D image visualization and quantification method, employing high-resolution confocal z-stacks from thick immunofluorescently-stained thoraco-lumbar spinal cord cryosections, to analyze CLN-5 along the junctional regions of different-sized CNS microvascular segments. Analysis was performed on spinal cords of both healthy mice, and mice experiencing experimental autoimmune encephalomyelitis (EAE), an animal model of the neuroinflammatory disease multiple sclerosis. Results indicated that, under normal conditions, the density of CLN-5 staining (CLN-5 intensity/ endothelial surface area) was greatest in the capillaries and smaller venules, and least in the larger venules. This heterogeneity in junctional CLN-5 staining was exacerbated during EAE, as spinal venules revealed a significant loss of junctional CLN-5 staining that was associated with focal leukocyte extravasation, while adjacent capillaries exhibited neither CLN-5 loss nor infiltrating leukocytes. However, despite only venules displaying these behaviors, both capillaries and venules evidenced leakage of IgG during disease, further underscoring the heterogeneity of the inflammatory response in CNS microvessels. This method should be readily adaptable to analyzing other junctional proteins of the CNS and peripheral microvasculature, and serve to highlight their role(s) in health and disease.
Collapse
Affiliation(s)
- Debayon Paul
- Blood-Brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
20
|
Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, Blasig IE. Sodium Caprate Transiently Opens Claudin-5-Containing Barriers at Tight Junctions of Epithelial and Endothelial Cells. Mol Pharm 2012; 9:2523-33. [DOI: 10.1021/mp3001414] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- G. Del Vecchio
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - C. Tscheik
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - K. Tenz
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - H. C. Helms
- Department of Pharmacy, Faculty
of Medicines and Health, University of Copenhagen, Copenhagen, Denmark
| | - L. Winkler
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - R. Blasig
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - I. E. Blasig
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| |
Collapse
|