1
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
She J, Zhang H, Xu H, Li YY, Wu JC, Han R, Lin F, Wang Y, Sheng R, Gu JH, Qin ZH. Nicotinamide riboside restores nicotinamide adenine dinucleotide levels and alleviates brain injury by inhibiting oxidative stress and neuroinflammation in a mouse model of intracerebral hemorrhage. Mol Neurobiol 2024:10.1007/s12035-024-04335-w. [PMID: 38981960 DOI: 10.1007/s12035-024-04335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hua Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hui Xu
- Department of Pharmacy and Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, China
| | - Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fang Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jin-Hua Gu
- Department of Pharmacy and Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Institute of Health Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science and Technology Tower, Hi-Tech Area, Suzhou, 215163, China.
| |
Collapse
|
3
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
D’Apolito E, Sisalli MJ, Tufano M, Annunziato L, Scorziello A. Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin. Antioxidants (Basel) 2024; 13:547. [PMID: 38790652 PMCID: PMC11117774 DOI: 10.3390/antiox13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.
Collapse
Affiliation(s)
- Elena D’Apolito
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80131 Napoli, Italy;
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| |
Collapse
|
5
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
6
|
Yang X, Wang G. Fasudil mediates neuroprotection in ischemia/reperfusion by modulating the ROCK-PPARα-NOX axis. Acta Cir Bras 2023; 38:e387023. [PMID: 38055403 DOI: 10.1590/acb387023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Cerebral ischemia-reperfusion (I/R) is a neurovascular disorder that leads to brain injury. In mice, Fasudil improves nerve injury induced by I/R. However, it is unclear if this is mediated by increased peroxisome proliferator-activated receptor-α (PPARα) expression and reduced oxidative damage. This study aimed to investigate the neuroprotective mechanism of action of Fasudil. METHODS MCAO (Middle cerebral artery occlusion) was performed in male C57BL/6J wild-type and PPARα KO mice between September 2021 to April 2023. Mice were treated with Fasudil and saline; 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to analyze cerebral infarction. PPARα and Rho-associated protein kinase (ROCK) expression were detected using Western blot, and the expression of NADPH subunit Nox2 mRNA was detected using real-time polymerase chain reaction. The NADPH oxidase activity level and reactive oxygen species (ROS) content were also investigated. RESULTS After cerebral ischemia, the volume of cerebral necrosis was reduced in wild-type mice treated with Fasudil. The expression of PPARα was increased, while ROCK was decreased. Nox2 mRNA expression, NADPH oxidase activity, and ROS content decreased. There were no significant changes in cerebral necrosis volumes, NADPH oxidase activity, and ROS content in the PPARα KO mice treated with Fasudil. CONCLUSIONS In mice, the neuroprotective effect of Fasudil depends on the expression of PPARα induced by ROCK-PPARα-NOX axis-mediated reduction in ROS and associated oxidative damage.
Collapse
Affiliation(s)
- Xitong Yang
- Xitong Yang, Master, Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Guangming Wang
- Guangming Wang, PhD, Professor, Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| |
Collapse
|
7
|
Yang Y, Hao T, Yao X, Che Y, Liu Y, Fang M, Wang Y, Zhou D, Chai H, Li N, Hou Y. Crebanine ameliorates ischemia-reperfusion brain damage by inhibiting oxidative stress and neuroinflammation mediated by NADPH oxidase 2 in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155044. [PMID: 37634486 DOI: 10.1016/j.phymed.2023.155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The urgent challenge for ischemic stroke treatment is the lack of effective neuroprotectants that target multiple pathological processes. Crebanine, an isoquinoline-like alkaloid with superior pharmacological activities, presents itself as a promising candidate for neuroprotection. However, its effects and mechanisms on ischemic stroke remain unknown. METHODS The effects of crebanine on brain damage following ischemic stroke were evaluated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model. Mechanism of action was investigated using both MCAO/R rats and lipopolysaccharide (LPS)-activated BV-2 cells. RESULTS We initially demonstrated that crebanine effectively ameliorated the neurological deficits in MCAO/R rats, while also reducing brain edema and infarction. Treatment with crebanine resulted in the up-regulation of NeuN+ fluorescence density and down-regulation of FJB+ cell count, and mitigated synaptic damage. Crebanine attenuated the hyperactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by downregulating NADP+ and NADPH levels, suppressing gp91phox and p47phox expressions, and reducing p47phox membrane translocation in Iba-1+ cells. Additionally, crebanine reduced the quantity of Iba-1+ cells and protein expression. Correlation analysis has demonstrated that the inhibition of NOX2 activation in microglia is beneficial for mitigating I/R brain injuries. Moreover, crebanine exhibited significant antioxidant properties by down-regulating the expression of superoxide anion and intracellular reactive oxygen species in vivo and in vitro, and reducing lipid and DNA peroxidation. Crebanine exerted anti-inflammatory effect, as evidenced by the reduction in the expressions of nitric oxide, interleukin 1β, tumor necrosis factor α, interleukin 6, and inducible nitric oxide synthase. The effect of crebanine was achieved through the suppression of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway. This is supported by evidence showing reduced NF-κB p65 promoter activity and nucleus translocation, as well as suppressed IκBα phosphorylation and degradation. Additionally, it inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. Importantly, the anti-oxidative stress and neuroinflammation effects of crebanine were further enhanced after silencing gp91phox and p47phox. CONCLUSION Crebanine alleviated the brain damages of MCAO/R rats by inhibiting oxidative stress and neuroinflammation mediated by NOX2 in microglia, implying crebanine might be a potential natural drug for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Tingyu Hao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yue Che
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
8
|
Li Y, Schappell LE, Polizu C, DiPersio J, Tsirka SE, Halterman MW, Nadkarni NA. Evolving Clinical-Translational Investigations of Cerebroprotection in Ischemic Stroke. J Clin Med 2023; 12:6715. [PMID: 37959180 PMCID: PMC10649331 DOI: 10.3390/jcm12216715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Ischemic stroke is a highly morbid disease, with over 50% of large vessel stroke (middle cerebral artery or internal carotid artery terminus occlusion) patients suffering disability despite maximal acute reperfusion therapy with thrombolysis and thrombectomy. The discovery of the ischemic penumbra in the 1980s laid the foundation for a salvageable territory in ischemic stroke. Since then, the concept of neuroprotection has been a focus of post-stroke care to (1) minimize the conversion from penumbra to core irreversible infarct, (2) limit secondary damage from ischemia-reperfusion injury, inflammation, and excitotoxicity and (3) to encourage tissue repair. However, despite multiple studies, the preclinical-clinical research enterprise has not yet created an agent that mitigates post-stroke outcomes beyond thrombolysis and mechanical clot retrieval. These translational gaps have not deterred the scientific community as agents are under continuous investigation. The NIH has recently promoted the concept of cerebroprotection to consider the whole brain post-stroke rather than just the neurons. This review will briefly outline the translational science of past, current, and emerging breakthroughs in cerebroprotection and use of these foundational ideas to develop a novel paradigm for optimizing stroke outcomes.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - Laurel E. Schappell
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA;
| | - Claire Polizu
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - James DiPersio
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA;
| | - Marc W. Halterman
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| | - Neil A. Nadkarni
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA; (Y.L.); (L.E.S.); (C.P.); (J.D.); (M.W.H.)
| |
Collapse
|
9
|
Yang Y, Chen R, Che Y, Yao X, Fang M, Wang Y, Zhou D, Li N, Hou Y. Isoamericanin A improves lipopolysaccharide-induced memory impairment in mice through suppression of the nicotinamide adenine dinucleotide phosphateoxidase-dependent nuclear factor kappa B signaling pathway. Phytother Res 2023; 37:3982-4001. [PMID: 37209001 DOI: 10.1002/ptr.7858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia in the elderly. Isoamericanin A (ISOA) is a natural lignan possessing great potential for AD treatment. This study investigated the efficacy of ISOA on memory impairments in the mice intrahippocampal injected with lipopolysaccharide (LPS) and the underlying mechanism. Y-maze and Morris Water Maze data suggested that ISOA (5 and 10 mg/kg) ameliorated short- and long-term memory impairments, and attenuated neuronal loss and lactate dehydrogenase activity. ISOA exerted anti-inflammatory effect demonstrating by the reduction of ionized calcium-binding adapter molecule 1 positive cells and suppression of marker protein and pro-inflammation cytokines expressions induced by LPS. ISOA suppressed the nuclear factor kappa B (NF-κB) signaling pathway by inhibiting IκBα phosphorylation and NF-κB p65 phosphorylation and nuclear translocation. ISOA inhibited superoxide and intracellular reactive oxygen species accumulation by reducing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, demonstrating by suppressing NADP+ and NADPH contents, gp91phox expression, and p47phox expression and membrane translocation. These effects were enhanced in combination with NADPH oxidase inhibitor apocynin. The neuroprotective effect of ISOA was further proved in the in vitro models. Overall, our data revealed a novel pharmacological activity of ISOA: ameliorating memory impairment in AD via inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Ru Chen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yue Che
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
10
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
11
|
Fibroblast growth factor 18 alleviates stress-induced pathological cardiac hypertrophy in male mice. Nat Commun 2023; 14:1235. [PMID: 36871047 PMCID: PMC9985628 DOI: 10.1038/s41467-023-36895-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/-) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.
Collapse
|
12
|
NADPH Oxidases in Aortic Aneurysms. Antioxidants (Basel) 2022; 11:antiox11091830. [PMID: 36139902 PMCID: PMC9495752 DOI: 10.3390/antiox11091830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the infrarenal aorta and are characterized by inflammatory cell infiltration, smooth muscle cell migration and proliferation, and degradation of the extracellular matrix. Oxidative stress and the production of reactive oxygen species (ROS) have been shown to play roles in inflammatory cell infiltration, and smooth muscle cell migration and apoptosis in AAAs. In this review, we discuss the principles of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) signaling and activation. We also discuss the effects of some of the major mediators of NOX signaling in AAAs. Separately, we also discuss the influence of genetic or pharmacologic inhibitors of NADPH oxidases on experimental pre-clinical AAAs. Experimental evidence suggests that NADPH oxidases may be a promising future therapeutic target for developing pharmacologic treatment strategies for halting AAA progression or rupture prevention in the management of clinical AAAs.
Collapse
|
13
|
Intertwined Relation between the Endoplasmic Reticulum and Mitochondria in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3335887. [PMID: 35528523 PMCID: PMC9072026 DOI: 10.1155/2022/3335887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 01/01/2023]
Abstract
In ischemic stroke (IS), accumulation of the misfolded proteins in the endoplasmic reticulum (ER) and mitochondria-induced oxidative stress (OS) has been identified as the indispensable inducers of secondary brain injury. With the increasing recognition of an association between ER stress and OS with ischemic stroke and with the improved understanding of the underlying molecular mechanism, novel targets for drug therapy and new strategies for therapeutic interventions are surfacing. This review discusses the molecular mechanism underlying ER stress and OS response as both causes and consequences of ischemic stroke. We also summarize the latest advances in understanding the importance of ER stress and OS in the pathogenesis of ischemic stroke and discuss potential strategies and clinical trials explicitly aiming to restore mitochondria and ER dynamics after IS.
Collapse
|
14
|
Marín-Prida J, Liberato JL, Llópiz-Arzuaga A, Stringhetta-Padovani K, Pavón-Fuentes N, Leopoldino AM, Cruz OG, González IH, Pérez ML, Espuny AC, Santos WFDSD, Uyemura SA, Pardo-Andreu GL, Pentón-Rol G. Novel Insights into the Molecular Mechanisms Involved in the Neuroprotective Effects of C-Phycocyanin Against Brain Ischemia in Rats. Curr Pharm Des 2022; 28:1187-1197. [PMID: 35524676 DOI: 10.2174/1381612828666220506145542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ischemic stroke produces a large health impact worldwide, with scarce therapeutic options. OBJECTIVE This study aimed to reveal the role of NADPH oxidase and neuroinflammatory genes on the cerebral anti-ischemic effects of C-Phycocyanin (C-PC), the chief biliprotein of Spirulina platensis. METHODS Rats with either focal cerebral ischemia/reperfusion (I/R) or acute brain hypoperfusion, received C-PC at different doses, or a vehicle, for up to 6 h post-stroke. Neurological, behavioral and histochemical parameters were assessed in I/R rats at 24 h. Cerebral gene expression and hippocampal neuron viability were evaluated in hypoperfused rats at acute (24 h) or chronic phases (30 days), respectively. A molecular docking analysis between NOX2 and C-PC-derived Phycocyanobilin (PCB) was also performed. RESULTS C-PC, obtained with a purity of 4.342, significantly reduced the infarct volume and neurologic deficit in a dose-dependent manner, and improved the exploratory activity of the I/R rats. This biliprotein inhibited NOX2 expression, a crucial NAPDH oxidase isoform in the brain, and the superoxide increase produced by the ischemic event. Moreover, C-PC-derived PCB showed a high binding affinity in silico with NOX2. C-PC downregulated the expression of pro-inflammatory genes (IFN-γ, IL-6, IL-17A, CD74, CCL12) and upregulated immune suppressive genes (Foxp3, IL-4, TGF-β) in hypoperfused brain areas. This compound also decreased chronic neuronal death in the hippocampus of hypoperfused rats. CONCLUSION These results suggest that the inhibition of cerebral NADPH oxidase and the improvement of neuroinflammation are key mechanisms mediating the neuroprotective actions of C-PC against brain ischemia.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana
| | - José Luiz Liberato
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Karina Stringhetta-Padovani
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Mariela León Pérez
- Isotopes Center, Ave. Monumental Km 3.5, San José de Las Lajas, Mayabeque, Cuba
| | - Antoni Camins Espuny
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Sergio Akira Uyemura
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Gilberto L Pardo-Andreu
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Giselle Pentón-Rol
- Center for Genetic Engineering and Biotechnology, Havana, Cuba.,Latin American School of Medicine, Playa, Havana, Cuba
| |
Collapse
|
15
|
Mao R, Zong N, Hu Y, Chen Y, Xu Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 2022; 38:1229-1247. [PMID: 35513682 PMCID: PMC9554175 DOI: 10.1007/s12264-022-00859-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ying Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China.
- Nanjing Neurology Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
16
|
Chen J, Jin J, Li K, Shi L, Wen X, Fang F. Progresses and Prospects of Neuroprotective Agents-Loaded Nanoparticles and Biomimetic Material in Ischemic Stroke. Front Cell Neurosci 2022; 16:868323. [PMID: 35480961 PMCID: PMC9035592 DOI: 10.3389/fncel.2022.868323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke remains the leading cause of death and disability, while the main mechanisms of dominant neurological damage in stroke contain excitotoxicity, oxidative stress, and inflammation. The clinical application of many neuroprotective agents is limited mainly due to their inability to cross the blood-brain barrier (BBB), short half-life and low bioavailability. These disadvantages can be better eliminated/reduced by nanoparticle as the carrier of these drugs. This review expounded the currently hot researched nanomedicines from the perspective of the mechanism of ischemic stroke. In addition, this review describes the bionic nanomedicine delivery strategies containing cells, cell membrane vesicles and exosomes that can effectively avoid the risk of clearance by the reticuloendothelial system. The potential challenges and application prospect for clinical translation of these delivery platforms were also discussed.
Collapse
Affiliation(s)
- Junfa Chen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lin Shi
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xuehua Wen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xuehua Wen,
| | - Fuquan Fang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Fuquan Fang,
| |
Collapse
|
17
|
Wu Q, Gurpinar A, Roberts M, Camelliti P, Ruggieri MR, Wu C. Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre. BIOLOGY 2022; 11:183. [PMID: 35205049 PMCID: PMC8868587 DOI: 10.3390/biology11020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
Oxidative inflammatory damage to specialised brain centres may lead to dysfunction of their associated peripheral organs, such as the bladder. However, the source of reactive oxygen species (ROS) in specific brain regions that regulate bladder function is poorly understood. Of all ROS-generating enzymes, the NADPH oxidase (Nox) family produces ROS as its sole function and offers an advantage over other enzymes as a drug-targetable molecule to selectively control excessive ROS. We investigated whether the Nox 2 subtype is expressed in the micturition regulatory periaqueductal gray (PAG) and Barrington's nucleus (pontine micturition centre, PMC) and examined Nox-derived ROS production in these structures. C57BL/6J mice were used; PAG, PMC, cardiac tissue, and aorta were isolated. Western blot determined Nox 2 expression. Lucigenin-enhanced chemiluminescence quantified real-time superoxide production. Western blot experiments demonstrated the presence of Nox 2 in PAG and PMC. There was significant NADPH-dependent superoxide production in both brain tissues, higher than that in cardiac tissue. Superoxide generation in these brain tissues was significantly suppressed by the Nox inhibitor diphenyleneiodonium (DPI) and also reduced by the Nox-2 specific inhibitor GSK2795039, comparable to aorta. These data provide the first evidence for the presence of Nox 2 and Nox-derived ROS production in micturition centres.
Collapse
Affiliation(s)
- Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Ayse Gurpinar
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Maxwell Roberts
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Michael R Ruggieri
- Department of Anatomy & Cell Biology, Temple University, Philadelphia, PA 19122, USA
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
18
|
Lactate Supply from Astrocytes to Neurons and its Role in Ischemic Stroke-induced Neurodegeneration. Neuroscience 2022; 481:219-231. [PMID: 34843897 DOI: 10.1016/j.neuroscience.2021.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Glucose transported to the brain is metabolized to lactate in astrocytes and supplied to neuronal cells via a monocarboxylic acid transporter (MCT). Lactate is used in neuronal cells for various functions, including learning and memory formation. Furthermore, lactate can block stroke-induced neurodegeneration. We aimed to clarify the effect of astrocyte-produced lactate on stroke-induced neurodegeneration. Previously published in vivo and in vitro animal and cell studies, respectively, were searched in PubMed, ScienceDirect, and Web of Science. Under physiological conditions, lactate production and release by astrocytes are regulated by changes in lactate dehydrogenase (LDH) and MCT expression. Moreover, considering stroke, lactate production and supply are regulated through hypoxia-inducible factor (HIF)-1α expression, especially with hypoxic stimulation, which may promote neuronal apoptosis; contrastingly, neuronal survival may be promoted via HIF-1α. Stroke stimulation could prevent neurodegeneration through the strong enhancement of lactate production, as well as upregulation of MCT4 expression to accelerate lactate supply. However, studies using astrocytes derived from animal stroke models revealed significantly reduced lactate production and MCT expression. These findings suggest that the lack of lactate supply may strongly contribute to hypoxia-induced neurodegeneration. Furthermore, diminished lactate supply from astrocytes could facilitate stroke-induced neurodegeneration. Therefore, astrocyte-derived lactate may contribute to stroke prevention.
Collapse
|
19
|
Wang Y, Cai X, Wu Z, Tang L, Lu L, Xu Y, Bao X. Tetrandrine attenuates ischemia/reperfusion‑induced neuronal damage in the subacute phase. Mol Med Rep 2021; 23:297. [PMID: 33649825 PMCID: PMC7930946 DOI: 10.3892/mmr.2021.11936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke, the third leading cause of disability globally, imposes a notable economic burden. Tetrandrine (Tet), which has been widely used clinically, exhibits potential protective effects against stroke. However, there has been little pre‑clinical research to evaluate the therapeutic effects of Tet on stroke. The present study investigated the beneficial effect of Tet on ischemia‑reperfusion (I/R) injury and its underlying mechanism in rats. Rats were subjected to occlusion of the middle cerebral artery, then treated with Tet (30 mg/kg/day, intraperitoneal) in the subacute phase for 7 days. In order to detect the effects of Tet on the behavior of rats, modified neurological severity score and longa behavior, grasping capability and inclined plane tests were conducted on days 1, 3 and 7 following cerebral ischemia. In addition, neuronal apoptosis in the cortex and hippocampus following ischemia was assessed by Nissl staining and TUNEL assay. Finally, oxidative stress was evaluated by measurement of free radicals and immunofluorescence staining of LC3 was used to assess autophagy. Tet improved neurological function and decreased infarct volume in I/R injury rats. Tet also prevented neuronal apoptosis in the cortex and hippocampus region. In addition, Tet protected against oxidative damage following ischemia, which was reflected by decreased levels of nitric oxide and malondialdehyde and increased levels of glutathione (GSH) and GSH peroxidase. In addition, the expression levels of the autophagy marker LC3 decreased in the Tet treatment group. In conclusion, Tet attenuated I/R‑induced neuronal damage in the subacute phase by decreasing oxidative stress, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xinjun Cai
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhiheng Wu
- School of Clinical Medicine, Wannan Medicial College, Wuhu, Anhui 241002, P.R. China
| | - Leilei Tang
- Department of Pharmacy, Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Lingqun Lu
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yinyin Xu
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
20
|
Xu BY, Sun J, Chen SP, Wang XM, Chen N, Li DY, Chen G, Mei W, Tian YK, Zhou YQ, Ye DW. Nox2 contributes to reactive oxygen species-induced redox imbalance in cancer-induced bone pain. Am J Transl Res 2021; 13:1269-1279. [PMID: 33841655 PMCID: PMC8014423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
We have recently demonstrated that reactive oxygen species (ROS) scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain (CIBP). In the present study, we investigated anti-nociceptive effect of Nox inhibitor apocynin in CIBP in rats. Mechanical allodynia was assessed by Von Frey tests in sham and CIBP group of rats. Western blotting and immunofluorescence technique were conducted to assess the expression levels and cellular localization of Nox2. Results illustrated that after intra-tibial implantation with tumor cells, Nox2 and ROS were both up-regulated in the spinal cord of rats. Injection of apocynin could dose-dependently decrease the abundance of Nox2 and inhibit the development of CIBP. Furthermore, pretreatment with the apocynin could delay the development of CIBP. This study for the first time proved that Nox2 inhibitors could downregulate the production of ROS in CIBP rats, which highlights the fact that Nox inhibitor is an important therapeutic option for CIBP and that, precise targeting inhibitor of different subtypes of Nox enzymes is needed to developed in future.
Collapse
Affiliation(s)
- Bing-Yang Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhan 430030, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan 430030, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xiao-Mei Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Nan Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Dan-Yang Li
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhan 430030, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan 430030, China
| | - Wei Mei
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Da-Wei Ye
- Cancer Center, Shanxi Bethune Hospital, Shanxi Medical University, Shanxi Academy of Medical SciencesTaiyuan 030032, China
| |
Collapse
|
21
|
He J, Liu J, Huang Y, Tang X, Xiao H, Hu Z. Oxidative Stress, Inflammation, and Autophagy: Potential Targets of Mesenchymal Stem Cells-Based Therapies in Ischemic Stroke. Front Neurosci 2021; 15:641157. [PMID: 33716657 PMCID: PMC7952613 DOI: 10.3389/fnins.2021.641157] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of death worldwide; currently available treatment approaches for ischemic stroke are to restore blood flow, which reduce disability but are time limited. The interruption of blood flow in ischemic stroke contributes to intricate pathophysiological processes. Oxidative stress and inflammatory activity are two early events in the cascade of cerebral ischemic injury. These two factors are reciprocal causation and directly trigger the development of autophagy. Appropriate autophagy activity contributes to brain recovery by reducing oxidative stress and inflammatory activity, while autophagy dysfunction aggravates cerebral injury. Abundant evidence demonstrates the beneficial impact of mesenchymal stem cells (MSCs) and secretome on cerebral ischemic injury. MSCs reduce oxidative stress through suppressing reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation and transferring healthy mitochondria to damaged cells. Meanwhile, MSCs exert anti-inflammation properties by the production of cytokines and extracellular vesicles, inhibiting proinflammatory cytokines and inflammatory cells activation, suppressing pyroptosis, and alleviating blood–brain barrier leakage. Additionally, MSCs regulation of autophagy imbalances gives rise to neuroprotection against cerebral ischemic injury. Altogether, MSCs have been a promising candidate for the treatment of ischemic stroke due to their pleiotropic effect.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Prakash R, Mishra RK, Ahmad A, Khan MA, Khan R, Raza SS. Sivelestat-loaded nanostructured lipid carriers modulate oxidative and inflammatory stress in human dental pulp and mesenchymal stem cells subjected to oxygen-glucose deprivation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111700. [PMID: 33545859 DOI: 10.1016/j.msec.2020.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Stroke remains the leading cause of morbidity and mortality. Stem cell-based therapy offers promising hope for survivors and their families. Despite the clinical translation of stem cell-based therapies in stroke patients for almost two decades, results of these randomized controlled trials are not very optimistic. In these lines, an amalgamation of nanocarriers based drug delivery with stem cells holds great promise in enhancing stroke recovery. In the present study, we treated oxygen-glucose deprivation (OGD) exposed dental pulp stem cells (DPSCs) and mesenchymal stem cells (MSCs) with sivelestat-loaded nanostructured lipid carriers (NLCs). Various physicochemical limitations associated with sivelestat drug applications and its recent inefficacy in the clinical trials necessitates the development of novel delivery approaches for sivelestat. Therefore, to improve its efficacy on the survival of DPSCs and MSCs cell types under OGD insult, the current NLCs were formulated and characterized. Resulting NLCs exhibited a hydrodynamic diameter of 160-180 nm by DLS technique and possessed good PDI values of 0.2-0.3. Their shape, size and surface morphology were corroborated with microscopic techniques like TEM, SEM, and AFM. FTIR and UV-Vis techniques confirmed nanocarrier's loading capacity, encapsulation efficiency of sivelestat, and drug release profile. Oxidative stress in DPSCs and MSCs was assessed by DHE and DCFDA staining, and cell viability was assessed by Trypan blue exclusion test and MTT assay. Results indicated that sivelestat-loaded NLCs protected the loss of cell membrane integrity and restored cell morphology. Furthermore, NLCs successfully defended human DPSCs and MSCs against OGD-induced oxidative and inflammatory stress. In conclusion, modulation of oxidative and inflammatory stress by treatment with sivelestat-loaded NLCs in DPSCs and MSCs provides a novel strategy to rescue stem cells during ischemic stroke.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India
| | - Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | | | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India; Department of Stem Cell Biology and Regenerative Medicine, Era University, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
23
|
Zhang C, He M, Ni L, He K, Su K, Deng Y, Li Y, Xia H. The Role of Arachidonic Acid Metabolism in Myocardial Ischemia-Reperfusion Injury. Cell Biochem Biophys 2020; 78:255-265. [PMID: 32623640 DOI: 10.1007/s12013-020-00928-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Patients with myocardial ischemic diseases or who are undergoing one of various heart treatments, such as open heart surgery, coronary artery bypass grafting, percutaneous coronary artery intervention or drug thrombolysis, face myocardial ischemia-reperfusion injury (MIRI). However, no effective treatment is currently available for MIRI. To improve the prognosis of people with cardiovascular disease, it is important to research the mechanism of MIRI. Arachidonic acid (AA) is one of the focuses of current research. The various metabolic pathways of AA are closely related to the development of cardiovascular disease, and the roles of various metabolites in ischemia-reperfusion injury have gradually been confirmed. AA is mainly metabolized in the cyclooxygenase (COX) pathway, lipoxygenase (LOX) pathway, and cytochrome P450 monooxygenase (CYP) pathway. This paper summarizes the progress of research on these three major AA metabolic pathways with respect to MIRI.
Collapse
Affiliation(s)
- Changjiang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Meiling He
- Department of Medicine, Wuhan University, Wuhan, 420100, PR China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Ke He
- Department of Cardiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, PR China
| | - Ke Su
- Department of Cardiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, PR China
| | - Yinzhi Deng
- Department of Digestive Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, PR China.
| | - Yuanhong Li
- Department of Cardiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, PR China.
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China. .,Institute of Cardiovascular Diseases, Wuhan University, Wuhan, 430060, PR China.
| |
Collapse
|
24
|
Cervellati C, Trentini A, Pecorelli A, Valacchi G. Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery. Antioxid Redox Signal 2020; 33:191-210. [PMID: 32143546 DOI: 10.1089/ars.2020.8076] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Accumulating evidence suggests that inflammation is a major contributor in the pathogenesis of several highly prevalent, but also rare, neurological diseases. In particular, the neurodegenerative processes of Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease (PD), and multiple sclerosis (MS) are fueled by neuroinflammation, which, in turn, is accompanied by a parallel systemic immune dysregulation. This cross-talk between periphery and the brain becomes substantial when the blood-brain barrier loses its integrity, as often occurs in the course of these diseases. It has been hypothesized that the perpetual bidirectional flux of inflammatory mediators is not a mere "static" collateral effect of the neurodegeneration, but represents a proactive phenomenon sparking and driving the neuropathological processes. However, the upstream/downstream relationship between inflammatory events and neurological pathology is still unclear. Recent Advances: Solid recent evidence clearly suggests that metabolic factors, systemic infections, Microbiota dysbiosis, and oxidative stress are implicated, although to a different extent, in the development in brain diseases. Critical Issues: Here, we reviewed the most solid published evidence supporting the implication of the axis systemic inflammation-neuroinflammation-neurodegeneration in the pathogenesis of AD, VAD, PD, and MS, highlighting the possible cause of the putative downstream component of the axis. Future Directions: Reaching a definitive clinical/epidemiological appreciation of the etiopathogenic significance of the connection between peripheral and brain inflammation in neurologic disorders is pivotal since it could open novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Effects of the Insulted Neuronal Cells-Derived Extracellular Vesicles on the Survival of Umbilical Cord-Derived Mesenchymal Stem Cells following Cerebral Ischemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9768713. [PMID: 32724498 PMCID: PMC7382764 DOI: 10.1155/2020/9768713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) engraftment is a potential therapy for cerebral ischemic stroke. However, the harsh microenvironment induced by cerebral ischemia/reperfusion restricts the survival rate and therapeutic efficiency of the engrafted UC-MSCs. In this study, we explored whether small extracellular vesicles (EVs) derived from injured neuronal cells following exposure to cerebral ischemia/reperfusion insult affect the survival of transplanted UC-MSCs. To establish a simulation of cerebral ischemia/reperfusion microenvironment comprising engrafted UC-MSCs and neuronal cells, we cocultured EVs derived from injured N2A cells, caused by exposure to oxygen-glucose deprivation and reperfusion (OGD/R) insult, with UC-MSCs in a conditioned medium. Coculture of UC-MSCs with EVs exacerbated the OGD/R-induced apoptosis and oxidative stress. Suppression of EVs-release via knock-down of Rab27a effectively protected the UC-MSCs from OGD/R-induced insult. Moreover, hypoxia preconditioning not only elevated the survival of UC-MSCs but also improved the paracrine mechanism of injured N2A cells. Altogether, these results show that EVs from injured N2A cells exacerbates OGD/R-induced injury on transplanted UC-MSCs in vitro. Hypoxia preconditioning enhances the survival of the engrafted-UC-MSCs; hence, thus could be an effective approach for improving UC-MSCs therapy in ischemic stroke.
Collapse
|
26
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
27
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
28
|
Immune response mediates the cardiac damage after subarachnoid hemorrhage. Exp Neurol 2019; 323:113093. [PMID: 31676318 DOI: 10.1016/j.expneurol.2019.113093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 10/25/2019] [Indexed: 11/23/2022]
Abstract
Cardiac dysfunction is a common adverse effect of subarachnoid hemorrhage (SAH). Autopsy of SAH patients shows immunocyte infiltration into the heart. In this study, a SAH model of endovascular perforation was performed in adult male mice in order to test whether SAH causes cardiac dysfunction in non-primary cardiac disease young adult male mice and whether immune response mediates SAH induced cardiac and neurological deficit. Splenectomy was performed on a subpopulation of mice one week prior to induction of the SAH. Neurological functional tests, transthoracic Doppler echocardiography, immunofluorescent staining, and flow cytometry were performed to investigate neurological and cardiac function and immune/inflammatory effects of SAH in mice with or without splenectomy. We found that SAH significantly induces ventricular fibrillation and cardiac dysfunction identified by significantly reduced left ventricular ejection fraction, left ventricular fractional shortening, decreased heart rate, as well as increased macrophage and neutrophil infiltration into heart and inflammatory factor expression in the heart compared to sham control mice. SAH also induces neurological deficit, increases astrocyte and microglial activity, and inflammatory cell infiltration into brain as well as up-regulates inflammatory factor expression in the brain tissue. Splenectomy not only significantly improves neurological function, but also reduces cardiac dysfunction compared to SAH alone mice. Splenectomy in SAH mice significantly reduces inflammatory cell infiltration, and decreases NADPH oxidase-2 and macrophage chemokine protein-1 expression in heart and brain when compared to non-splenectomy SAH mice. Our data suggest that, SAH induces acute cardiac dysfunction in non-primary cardiac disease mice. Secondary immune response may play an important role in mediating brain-heart damage after SAH.
Collapse
|
29
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
30
|
Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci 2019; 13:1036. [PMID: 31611768 PMCID: PMC6777147 DOI: 10.3389/fnins.2019.01036] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Stroke is a major cause of death and adult disability. However, therapeutic options remain limited. Numerous pathways underlie acute responses of brain tissue to stroke. Early events following ischemic damage include reactive oxygen species (ROS)-mediated oxidative stress and glutamate-induced excitotoxicity, both of which contribute to rapid cell death within the infarct core. A subsequent cascade of inflammatory events escalates damage progression. This review explores potential neuroprotective strategies for targeting key steps in the cascade of ischemia–reperfusion (I/R) injury. NADPH oxidase (NOX) inhibitors and several drugs currently approved by the U.S. Food and Drug Administration including glucose-lowering agents, antibiotics, and immunomodulators, have shown promise in the treatment of stroke in both animal experiments and clinical trials. Ischemic conditioning, a phenomenon by which one or more cycles of a short period of sublethal ischemia to an organ or tissue protects against subsequent ischemic events in another organ, may be another potential neuroprotective strategy for the treatment of stroke by targeting key steps in the I/R injury cascade.
Collapse
Affiliation(s)
- Qianwen Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Liu L, Anderson GA, Fernandez TG, Doré S. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke. Front Neurosci 2019; 13:294. [PMID: 31068769 PMCID: PMC6491687 DOI: 10.3389/fnins.2019.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. However, effective therapeutic approaches are still limited. The disruption of blood supply triggers complicated temporal and spatial events involving hemodynamic, biochemical, and neurophysiologic changes, eventually leading to pathological disturbance and diverse clinical symptoms. Ginseng (Panax ginseng), a popular herb distributed in East Asia, has been extensively used as medicinal and nutritional supplements for a variety of disorders worldwide. In recent years, ginseng has displayed attractive beneficial effects in distinct neurological disorders including stroke, involving multiple protective mechanisms. In this article, we reviewed the literature on ginseng studies in the experimental stroke field, particularly focusing on the in vivo evidence on the preventive or therapeutic efficacy and mechanisms of ginseng and ginsenosides in various stroke models of mice and rats. We also summarized the efficacy and underlying mechanisms of ginseng and ginsenosides on short- and long-term stroke outcomes.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Gigi A Anderson
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
El Khashab IH, Abdelsalam RM, Elbrairy AI, Attia AS. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2019; 112:108619. [DOI: 10.1016/j.biopha.2019.108619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/26/2023] Open
|
33
|
RP001 hydrochloride improves neurological outcome after subarachnoid hemorrhage. J Neurol Sci 2019; 399:6-14. [PMID: 30738334 DOI: 10.1016/j.jns.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) results in neurological damage, acute cardiac damage and has a high mortality rate. Immunoresponse in the acute phase after SAH plays a key role in mediating vasospasm, edema, inflammation and neuronal damage. The S1P/S1PR pathway impacts multiple cellular functions, exerts anti-inflammatory and anti-apoptotic effects, promotes remyelination, and improves outcome in several central nervous system (CNS) diseases. RP001 hydrochloride is a novel S1PR agonist, which sequesters lymphocytes within their secondary tissues and prevents infiltration of immune cells into the CNS thereby reducing immune response. In this study, we investigated whether RP001 attenuates neuronal injury after SAH by reducing inflammation. S1PRs, specifically S1PR1, 3 not only exerts anti-inflammatory effects, but also decreases heart rate and induces atrioventricular conduction abnormalities. Therefore, we also tested whether RP001 treatment of SAH regulates cardiac functional outcome. Male adult C57BL/6 mice were subjected to SAH, and neurological function tests, echocardiography, and immunohistochemical analysis were performed. SAH induces neurological deficits and acute cardiac dysfunction compared to sham control mice. Treatment of SAH with a low-dose of RP001 induces better neurological outcome and cardiac function compared to a high-dose of RP001. Low-dose-RP001 treatment significantly decreases apoptosis, white matter damage, blood brain barrier permeability, microglial/astrocyte activation, macrophage chemokine protein-1, matrix metalloproteinase-9 and NADPH oxidase-2 expression in the brain compared to SAH control mice. Our findings indicate that low-dose of RP001 alleviates neurological damage after SAH, in part by decreasing neuroinflammation.
Collapse
|
34
|
Shen J, Rastogi R, Geng X, Ding Y. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen Res 2019; 14:948-953. [PMID: 30761998 PMCID: PMC6404502 DOI: 10.4103/1673-5374.250568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
35
|
Chu SF, Zhang Z, Zhou X, He WB, Chen C, Luo P, Liu DD, Ai QD, Gong HF, Wang ZZ, Sun HS, Feng ZP, Chen NH. Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol Sin 2019; 40:13-25. [PMID: 30262824 PMCID: PMC6318278 DOI: 10.1038/s41401-018-0154-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/18/2018] [Indexed: 01/12/2023] Open
Abstract
Ginsenoside Rg1 (Rg1), a saponin extracted from Panax ginseng, has been well documented to be effective against ischemic/reperfusion (I/R) neuronal injury. However, the underlying mechanisms remain obscure. In the present study, we investigated the roles of Nrf2 and miR-144 in the protective effects of Rg1 against I/R-induced neuronal injury. In OGD/R-treated PC12 cells, Rg1 (0.01-1 μmol/L) dose-dependently attenuated the cell injury accompanied by prolonging nuclear accumulation of Nrf2, enhancing the transcriptional activity of Nrf2, as well as promoting the expression of ARE-target genes. The activation of the Nrf2/ARE pathway by Rg1 was independent of disassociation with Keap1, but resulted from post-translational regulations. Knockdown of Nrf2 abolished all the protective changes of Rg1 in OGD/R-treated PC12 cells. Furthermore, Rg1 treatment significantly decreased the expression of miR-144, which downregulated Nrf2 production by targeting its 3'-untranlated region after OGD/R. Knockdown of Nrf2 had no effect on the expression of miR-144, suggesting that miR-144 was an upstream regulator of Nrf2. We revealed that there was a direct binding between Nrf2 and miR-144 in PC12 cells. Application of anti-miR-144 occluded the activation of the Nrf2/ARE pathway by Rg1 in OGD/R-treated PC12 cells. In tMCAO rats, administration of Rg1 (20 mg/kg) significantly alleviated ischemic injury, and activated Nrf2/ARE pathway. The protective effects of Rg1 were abolished by injecting of AAV-HIF-miR-144-shRNA into the predicted ischemic penumbra. In conclusion, our results demonstrate that Rg1 alleviates oxidative stress after I/R through inhibiting miR-144 activity and subsequently promoting the Nrf2/ARE pathway at the post-translational level.
Collapse
Affiliation(s)
- Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Bin He
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Piao Luo
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dan-Dan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qi-di Ai
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hai-Fan Gong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
36
|
Li Z, Yulei J, Yaqing J, Jinmin Z, Xinyong L, Jing G, Min L. Protective effects of tetramethylpyrazine analogue Z-11 on cerebral ischemia reperfusion injury. Eur J Pharmacol 2018; 844:156-164. [PMID: 30502344 DOI: 10.1016/j.ejphar.2018.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
The aim of our study was to investigate the effects of a new synthetic compound (E) -1- (E) -1- (2- hydroxy -5- chlorophenyl) -3- (3, 5, 6- three methyl pyrazine -2- based) -2- propylene -1 ketone, Z-11, a tetramethylpyrazine analogue, on cerebral ischemia reperfusion injury and the underlying mechanism. 240-260 g adult male Wistar rats were subjected to middle cerebral artery occlusion for 2 h, followed by 22 h of reperfusion. Z-11 (1.7, 3.4 and 6.8 mg/kg, i.p.), Edaravone (3 mg/kg, i.p.) and DMSO (1‰, i.p.) was administered at 2 h after the onset of ischemia. The rats' neurological score, infarct volume, and body weight change were tested, and some oxidative stress markers such as superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were evaluated after 22 h of reperfusion. Results showed that neurologic deficit, infarct volume and body weight change were ameliorated after cerebral ischemia reperfusion, and that Z-11 exhibits an excellent effect at a dosage of 6.8 mg/kg. This dose also reduced the content of MDA, and upregulated SOD activity and GSH content. Similarly, 6.8 mg/kg Z-11 treatment inhibited the reactive oxygen species content and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, with the protein levels of Ras-related C3 botulinum toxin substrate1(Rac-1) and mitogenic oxidase (Nox2) downregulated even further. Moreover, the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream anti-oxidant protein heme oxygenase-1 (HO-1) were upregulated. This indicates that Z-11 could play a protective role in cerebral ischemia-reperfusion injury, and that the protective effect of Z-11 may be related to improvements in the antioxidant capacity of brain tissue. The mechanisms are associated with enhancing oxidant defence systems via the activation of Nrf2/HO-1 and Rac-1/NADPH oxidase pathways.
Collapse
Affiliation(s)
- Zhai Li
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Jia Yulei
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Ji Yaqing
- Department of Neurology, Eighth People's Hospital Affiliated to Qiingdao University, Qingdao 266003, China
| | - Zou Jinmin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Liu Xinyong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Gao Jing
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liu Min
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
37
|
8e Protects against Acute Cerebral Ischemia by Inhibition of PI3Kγ-Mediated Superoxide Generation in Microglia. Molecules 2018; 23:molecules23112828. [PMID: 30384445 PMCID: PMC6278485 DOI: 10.3390/molecules23112828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
The inflammatory response mediated by microglia plays a critical role in the progression of ischemic stroke. Phosphoinositide 3-kinase gamma (PI3Kγ) has been implicated in multiple inflammatory and autoimmune diseases, making it a promising target for therapeutic intervention. The aim of this study was to evaluate the efficacy of 8e, a hydrogen sulfide (H2S) releasing derivative of 3-n-butylphthalide (NBP), on brain damage and PI3Kγ signaling following cerebral ischemia injury. 8e significantly reduced sensorimotor deficits, focal infarction, brain edema and neural apoptosis at 72 h after transient middle cerebral artery occlusion (tMCAO). The NOX2 isoform of the NADPH oxidase family is considered a major enzymatic source of superoxide. We found that the release of superoxide, together with the expression of NOX2 subunits p47phox, p-p47phox, and the upstream PI3Kγ/AKT signaling were all down-regulated by 8e, both in the penumbral region of the rat brain and in the primary cultured microglia subjected to oxygen-glucose deprivation (OGD). With the use of siRNA and pharmacological inhibitors, we further demonstrated that 8e regulates the formation of superoxide in activated microglia through the PI3Kγ/AKT/NOX2 signaling pathway and subsequently prevents neuronal death in neighboring neurons. Our experimental data indicate that 8e is a potential candidate for the treatment of ischemic stroke and PI3Kγ-mediated neuroinflammation.
Collapse
|
38
|
Russo E, Nguyen H, Lippert T, Tuazon J, Borlongan CV, Napoli E. Mitochondrial targeting as a novel therapy for stroke. Brain Circ 2018; 4:84-94. [PMID: 30450413 PMCID: PMC6187947 DOI: 10.4103/bc.bc_14_18] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
Stroke is a main cause of mortality and morbidity worldwide. Despite the increasing development of innovative treatments for stroke, most are unsuccessful in clinical trials. In recent years, an encouraging strategy for stroke therapy has been identified in stem cells transplantation. In particular, grafting cells and their secretion products are leading with functional recovery in stroke patients by promoting the growth and function of the neurovascular unit – a communication framework between neurons, their supply microvessels along with glial cells – underlying stroke pathology and recovery. Mitochondrial dysfunction has been recently recognized as a hallmark in ischemia/reperfusion neural damage. Emerging evidence of mitochondria transfer from stem cells to ischemic-injured cells points to transfer of healthy mitochondria as a viable novel therapeutic strategy for ischemic diseases. Hence, a more in-depth understanding of the cellular and molecular mechanisms involved in mitochondrial impairment may lead to new tools for stroke treatment. In this review, we focus on the current evidence of mitochondrial dysfunction in stroke, investigating favorable approaches of healthy mitochondria transfer in ischemic neurons, and exploring the potential of mitochondria-based cellular therapy for clinical applications. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed.
Collapse
Affiliation(s)
- Eleonora Russo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Hung Nguyen
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Trenton Lippert
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Julian Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
39
|
NADPH oxidase 2 (NOX2): A key target of oxidative stress-mediated platelet activation and thrombosis. Trends Cardiovasc Med 2018; 28:429-434. [DOI: 10.1016/j.tcm.2018.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
|
40
|
Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment. Int J Mol Sci 2018; 19:ijms19072127. [PMID: 30037107 PMCID: PMC6073421 DOI: 10.3390/ijms19072127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Stroke remains a major cause of death and disability in the United States and around the world. Solid safety and efficacy profiles of novel stroke therapeutics have been generated in the laboratory, but most failed in clinical trials. Investigations into the pathology and treatment of the disease remain a key research endeavor in advancing scientific understanding and clinical applications. In particular, cell-based regenerative medicine, specifically stem cell transplantation, may hold promise as a stroke therapy, because grafted cells and their components may recapitulate the growth and function of the neurovascular unit, which arguably represents the alpha and omega of stroke brain pathology and recovery. Recent evidence has implicated mitochondria, organelles with a central role in energy metabolism and stress response, in stroke progression. Recognizing that stem cells offer a source of healthy mitochondria—one that is potentially transferrable into ischemic cells—may provide a new therapeutic tool. To this end, deciphering cellular and molecular processes underlying dysfunctional mitochondria may reveal innovative strategies for stroke therapy. Here, we review recent studies capturing the intimate participation of mitochondrial impairment in stroke pathology, and showcase promising methods of healthy mitochondria transfer into ischemic cells to critically evaluate the potential of mitochondria-based stem cell therapy for stroke patients.
Collapse
|
41
|
Rama Rao KV, Iring S, Younger D, Kuriakose M, Skotak M, Alay E, Gupta RK, Chandra N. A Single Primary Blast-Induced Traumatic Brain Injury in a Rodent Model Causes Cell-Type Dependent Increase in Nicotinamide Adenine Dinucleotide Phosphate Oxidase Isoforms in Vulnerable Brain Regions. J Neurotrauma 2018; 35:2077-2090. [PMID: 29648986 PMCID: PMC6098412 DOI: 10.1089/neu.2017.5358] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a leading cause of morbidity in soldiers on the battlefield and in training sites with long-term neurological and psychological pathologies. Previous studies from our laboratory demonstrated activation of oxidative stress pathways after blast injury, but their distribution among different brain regions and their impact on the pathogenesis of bTBI have not been explored. The present study examined the protein expression of two isoforms: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 (NOX1, NOX2), corresponding superoxide production, a downstream event of NOX activation, and the extent of lipid peroxidation adducts of 4-hydroxynonenal (4HNE) to a range of proteins. Brain injury was evaluated 4 h after the shock-wave exposure, and immunofluorescence signal quantification was performed in different brain regions. Expression of NOX isoforms displayed a differential increase in various brain regions: in hippocampus and thalamus, there was the highest increase of NOX1, whereas in the frontal cortex, there was the highest increase of NOX2 expression. Cell-specific analysis of changes in NOX expression with respect to corresponding controls revealed that blast resulted in a higher increase of NOX1 and NOX 2 levels in neurons compared with astrocytes and microglia. Blast exposure also resulted in increased superoxide levels in different brain regions, and such changes were reflected in 4HNE protein adduct formation. Collectively, this study demonstrates that primary blast TBI induces upregulation of NADPH oxidase isoforms in different regions of the brain parenchyma and that neurons appear to be at higher risk for oxidative damage compared with other neural cells.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- 1 Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| | - Stephanie Iring
- 1 Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| | - Daniel Younger
- 1 Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| | - Matthew Kuriakose
- 1 Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| | - Maciej Skotak
- 1 Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| | - Eren Alay
- 1 Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| | - Raj K Gupta
- 2 Department of Defense Blast Injury Research Program Coordinating Office, United States Army Medical Research and Materiel Command , Fort Detrick, Maryland
| | - Namas Chandra
- 1 Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| |
Collapse
|
42
|
Li XQ, Cai LM, Liu J, Ma YL, Kong YH, Li H, Jiang M. Liquiritin suppresses UVB‑induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF‑κB and MAPK/caspase signaling pathways. Int J Mol Med 2018; 42:1445-1459. [PMID: 29901082 PMCID: PMC6089709 DOI: 10.3892/ijmm.2018.3720] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/09/2018] [Indexed: 12/03/2022] Open
Abstract
Solar ultraviolet B (UVB) radiation is known to trigger inflammation, oxidative stress and apoptotic responses through various signaling pathways, which eventually lead to skin cancer. The present study investigated whether liquiritin suppresses UVB-induced skin injury in viv and in vitr using SKH-1 hairless mice and HACAT cells, respectively. The animals were exposed to UVB irradiation (180 mJ/cm2) for 20 min, followed by liquiritin treatment. The findings indicated that UVB exposure resulted in the excessive release of pro-inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, IL-6 and cyclooxygenase (COX)2, which were dependent on the toll-like receptor (TLR)4/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway. Oxidative stress was also observed, evidenced by reduced antioxidants and elevated oxidants. Apoptosis, examined using terminal deoxynucleotidyl transferase dUTP nick end labeling and crystal violet staining, suggested that UVB irradiation caused cell death in viv and in vitro, which was closely associated with p38/c-Jun N-terminal kinase and caspase activity. Of note, liquiritin treatment in mice and cells exposed to UVB showed reduced inflammatory response, oxidative stress and apoptosis through inhibiting the activation of TLR4/MyD88/NF-κB mitogen-activated protein kinases and caspase pathways, and downregulating the release of oxidants. Overall, the data revealed that liquiritin may be a useful compound against UVB-induced skin injury.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Li-Min Cai
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jing Liu
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yan-Li Ma
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ying-Hui Kong
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - He Li
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ming Jiang
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
43
|
Sun JB, Li Y, Cai YF, Huang Y, Liu S, Yeung PK, Deng MZ, Sun GS, Zilundu PL, Hu QS, An RX, Zhou LH, Wang LX, Cheng X. Scutellarin protects oxygen/glucose-deprived astrocytes and reduces focal cerebral ischemic injury. Neural Regen Res 2018; 13:1396-1407. [PMID: 30106052 PMCID: PMC6108207 DOI: 10.4103/1673-5374.235293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxidative effects and has been used to treat cardiovascular and cerebrovascular diseases in China. However, the mechanisms by which scutellarin mediates neuroprotection in cerebral ischemia remain unclear. The interaction between scutellarin and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) was assessed by molecular docking study, which showed that scutellarin selectively binds to NOX2 with high affinity. Cultures of primary astrocytes isolated from the cerebral cortex of neonatal Sprague-Dawley rats were pretreated with 2, 10 or 50 μM scutellarin for 30 minutes. The astrocytes were then subjected to oxygen/glucose deprivation by incubation for 2 hours in glucose-free Dulbecco's modified Eagle's medium in a 95% N2/5% CO2 incubator, followed by simulated reperfusion for 22 hours. Cell viability was assessed by cell counting kit-8 assay. Expression levels of NOX2, connexin 43 and caspase-3 were assessed by western blot assay. Reactive oxygen species were measured spectrophotometrically. Pretreatment with 10 or 50 μM scutellarin substantially increased viability, reduced the expression of NOX2 and caspase-3, increased the expression of connexin 43, and diminished the levels of reactive oxygen species in astrocytes subjected to ischemia-reperfusion. We also assessed the effects of scutellarin in vivo in the rat transient middle cerebral artery occlusion model of cerebral ischemia-reperfusion injury. Rats were given intraperitoneal injection of 100 mg/kg scutellarin 2 hours before surgery. The Bederson scale was used to assess neurological deficit, and 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct size. Western blot assay was used to assess expression of NOX2 and connexin 43 in brain tissue. Enzyme-linked immunosorbent assay was used to detect 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosin (3-NT) in brain tissue. Immunofluorescence double staining was used to determine the co-expression of caspase-3 and NeuN. Pretreatment with scutellarin improved the neurological function of rats with focal cerebral ischemia, reduced infarct size, diminished the expression of NOX2, reduced levels of 8-OHdG, 4-HNE and 3-NT, and reduced the number of cells co-expressing caspase-3 and NeuN in the injured brain tissue. Furthermore, we examined the effect of the NOX2 inhibitor apocynin. Apocynin substantially increased connexin 43 expression in vivo and in vitro. Collectively, our findings suggest that scutellarin protects against ischemic injury in vitro and in vivo by downregulating NOX2, upregulating connexin 43, decreasing oxidative damage, and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Jing-Bo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Li
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Shu Liu
- Department of Anatomy, An Hui Medical University, Hefei, Anhui Province, China
| | - Patrick Kk Yeung
- Department of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min-Zhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Guang-Shun Sun
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Prince Lm Zilundu
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qian-Sheng Hu
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rui-Xin An
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Hua Zhou
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Xin Wang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
44
|
Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice. Curr Med Sci 2017; 37:744-749. [DOI: 10.1007/s11596-017-1798-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/09/2017] [Indexed: 12/19/2022]
|
45
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
46
|
Ya BL, Li HF, Wang HY, Wu F, Xin Q, Cheng HJ, Li WJ, Lin N, Ba ZH, Zhang RJ, Liu Q, Li YN, Bai B, Ge F. 5-HMF attenuates striatum oxidative damage via Nrf2/ARE signaling pathway following transient global cerebral ischemia. Cell Stress Chaperones 2017; 22:55-65. [PMID: 27812888 PMCID: PMC5225060 DOI: 10.1007/s12192-016-0742-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown 5-hydroxymethyl-2-furfural (5-HMF) has favorable biological effects, and its neuroprotection in a variety of neurological diseases has been noted. Our previous study showed that treatment of 5-HMF led to protection against permanent global cerebral ischemia. However, the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the neuroprotective effect of 5-HMF and elucidate the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway mechanism in the striatum after transient global cerebral ischemia. C57BL/6 mice were subjected to bilateral common carotid artery occlusion for 20 min and sacrificed 24 h after reperfusion. 5-HMF (12 mg/kg) or an equal volume of vehicle was intraperitoneally injected 30 min before ischemia and 5 min after the onset of reperfusion. At 24 h after reperfusion, neurological function was evaluated by neurological disability status scale, locomotor activity test and inclined beam walking test. Histological injury of the striatum was observed by cresyl violet staining and terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) staining. Oxidative stress was evaluated by the carbonyl groups introduced into proteins, and malondialdehyde (MDA) levels. An enzyme-linked immunosorbent assay (ELISA)-based measurement was used to detect Nrf2 DNA binding activity. Nrf2 and its downstream ARE pathway protein expression such as heme oxygenase-1, NAD (P)H:quinone oxidoreductase 1, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modulatory subunit were detected by western blot. Our results showed that 5-HMF treatment significantly ameliorated neurological deficits, reduced brain water content, attenuated striatum neuronal damage, decreased the carbonyl groups and MDA levels, and activated Nrf2/ARE signaling pathway. Taken together, these results demonstrated that 5-HMF exerted significant antioxidant and neuroprotective effects following transient cerebral ischemia, possibly through the activation of the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Bai-Liu Ya
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Hong-Fang Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272129, People's Republic of China
| | - Hai-Ying Wang
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Fei Wu
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Qing Xin
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Hong-Ju Cheng
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Wen-Juan Li
- School of Forensic and Laboratory Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Na Lin
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Zai-Hua Ba
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Ru-Juan Zhang
- Jining First People's Hospital, Jining, Shandong, 272011, People's Republic of China
| | - Qian Liu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Ya-Nan Li
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Bo Bai
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China
| | - Feng Ge
- Department of Physiology, Jining Medical University, 16 He-hua Street, Bei-hu District, Jining, Shandong, 272067, People's Republic of China.
| |
Collapse
|
47
|
Bonaventura A, Liberale L, Vecchié A, Casula M, Carbone F, Dallegri F, Montecucco F. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. Int J Mol Sci 2016; 17:1967. [PMID: 27898011 PMCID: PMC5187767 DOI: 10.3390/ijms17121967] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
48
|
NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention. Healthcare (Basel) 2015; 3:233-51. [PMID: 27417759 PMCID: PMC4939544 DOI: 10.3390/healthcare3020233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.
Collapse
|
49
|
Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia – Revisited – The bad ugly and good: Implications to the heart and brain. Sleep Med Rev 2015; 20:27-45. [DOI: 10.1016/j.smrv.2014.07.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022]
|
50
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|