1
|
Su Y, Jiao Y, Cai S, Xu Y, Wang Q, Chen X. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease. Brain Res Bull 2024; 213:110991. [PMID: 38823725 DOI: 10.1016/j.brainresbull.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have complex pathogenetic mechanisms. Genetic, age, and environmental factors are all related to PD. Due to the unclear pathogenesis of PD and the lack of effective cure methods, it is urgent to find new targets for treating PD patients. Ferroptosis is a form of cell death that is reliant on iron and exhibits distinct morphological and mechanistic characteristics compared to other types of cell death. It encompasses a range of biological processes, including iron/lipid metabolism and oxidative stress. In recent years, research has found that ferroptosis plays a crucial role in the pathophysiological processes of neurodegenerative diseases and stroke. Therefore, ferroptosis is also closely related to PD, This article reviews the core mechanisms of ferroptosis and elucidates the correlation between PD and ferroptosis. In addition, new compounds that have emerged in recent years to exert anti PD effects by inhibiting the ferroptosis signaling pathway were summarized. I hope to further elaborate the relationship between ferroptosis and PD through the review of this article, and provide new strategies for developing PD treatments targeting ferroptosis.
Collapse
Affiliation(s)
- Yan Su
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yue Jiao
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Sheng Cai
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yang Xu
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qi Wang
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Xianwen Chen
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Leow DMK, Cheah IKM, Chen L, Ng YK, Yeo CJJ, Halliwell B, Ong WY. Ergothioneine-Mediated Neuroprotection of Human iPSC-Derived Dopaminergic Neurons. Antioxidants (Basel) 2024; 13:693. [PMID: 38929132 PMCID: PMC11200999 DOI: 10.3390/antiox13060693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Cell death involving oxidative stress and mitochondrial dysfunction is a major cause of dopaminergic neuronal loss in the substantia nigra (SN) of Parkinson's disease patients. Ergothioneine (ET), a natural dietary compound, has been shown to have cytoprotective functions, but neuroprotective actions against PD have not been well established. 6-Hydroxydopamine (6-OHDA) is a widely used neurotoxin to simulate the degeneration of dopaminergic (DA) neurons in Parkinson's disease. In this study, we investigated the protective effect of ET on 6-OHDA treated iPSC-derived dopaminergic neurons (iDAs) and further confirmed the protective effects in 6-OHDA-treated human neuroblastoma SH-SY5Y cells. In 6-OHDA-treated cells, decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial reactive oxygen species (mROS), reduced cellular ATP levels, and increased total protein carbonylation levels were observed. 6-OHDA treatment also significantly decreased tyrosine hydroxylase levels. These effects were significantly decreased when ET was present. Verapamil hydrochloride (VHCL), a non-specific inhibitor of the ET transporter OCTN1 abrogated ET's cytoprotective effects, indicative of an intracellular action. These results suggest that ET could be a potential therapeutic for Parkinson's disease.
Collapse
Affiliation(s)
- Damien Meng-Kiat Leow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Irwin Kee-Mun Cheah
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Lucrecia Chen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yang-Kai Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Crystal Jing-Jing Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- National Neuroscience Institute (NNI), Singapore 308433, Singapore
- Institute of Education in Healthcare and Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen AB51 7HA, UK
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Barry Halliwell
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
3
|
Chen Y, Wu Z, Li S, Chen Q, Wang L, Qi X, Tian C, Yang M. Mapping the Research of Ferroptosis in Parkinson's Disease from 2013 to 2023: A Scientometric Review. Drug Des Devel Ther 2024; 18:1053-1081. [PMID: 38585257 PMCID: PMC10999190 DOI: 10.2147/dddt.s458026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Methods Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.
Collapse
Affiliation(s)
- Yingfan Chen
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhenhui Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Qi Chen
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Liang Wang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiaorong Qi
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Chujiao Tian
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
5
|
Jiang X, Wu K, Ye XY, Xie T, Zhang P, Blass BE, Bai R. Novel druggable mechanism of Parkinson's disease: Potential therapeutics and underlying pathogenesis based on ferroptosis. Med Res Rev 2023. [PMID: 36924451 DOI: 10.1002/med.21939] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/07/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Genetics, age, environmental factors, and oxidative stress have all been implicated in the development of Parkinson's disease (PD); however, a complete understanding of its pathology remains elusive. At present, there is no cure for PD, and currently available therapeutics are insufficient to meet patient needs. Ferroptosis, a distinctive iron-dependent cell death mode characterized by lipid peroxidation and oxidative stress, has pathophysiological features similar to those of PD, including iron accumulation, reactive oxygen species-induced oxidative damage, and mitochondrial dysfunction. Ferroptosis has been identified as a specific pathway of neuronal death and is closely related to the pathogenesis of PD. Despite the similarities in the biological targets involved in PD pathogenesis and ferroptosis, the relationship between novel targets in PD and ferroptosis has been neglected in the literature. In this review, the mechanism of ferroptosis is discussed, and the potential therapeutic targets implicated in both PD and ferroptosis are compared. Furthermore, the anti-PD effects of several ferroptosis inhibitors, as well as clinical studies thereof, and the identification of novel lead compounds for the treatment of PD and the inhibition of ferroptosis are reviewed. It is hoped that this review can promote research to further elucidate the relationship between ferroptosis and PD and provide new strategies for the development of novel ferroptosis-targeting PD therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China.,Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Kaiyu Wu
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Xiang-Yang Ye
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Tian Xie
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Pengfei Zhang
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Iron Brain Menace: The Involvement of Ferroptosis in Parkinson Disease. Cells 2022; 11:3829. [PMID: 36497089 PMCID: PMC9735800 DOI: 10.3390/cells11233829] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Pao Chien Hospital, Pingtung 90064, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
9
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232213678. [PMID: 36430157 PMCID: PMC9696602 DOI: 10.3390/ijms232213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The underlying causes of Parkinson's disease are complex, and besides recent advances in elucidating relevant disease mechanisms, no disease-modifying treatments are currently available. One proposed pathophysiological hallmark is mitochondrial dysfunction, and a plethora of evidence points toward the interconnected nature of mitochondria in neuronal homeostasis. This also extends to iron and neuromelanin metabolism, two biochemical processes highly relevant to individual disease manifestation and progression. Modern neuroimaging methods help to gain in vivo insights into these intertwined pathways and may pave the road to individualized medicine in this debilitating disorder. In this narrative review, we will highlight the biological rationale for studying these pathways, how distinct neuroimaging methods can be applied in patients, their respective limitations, and which challenges need to be overcome for successful implementation in clinical studies.
Collapse
Affiliation(s)
- Benjamin Matis Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
10
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Coenzyme Q10 and Parkinsonian Syndromes: A Systematic Review. J Pers Med 2022; 12:jpm12060975. [PMID: 35743757 PMCID: PMC9225264 DOI: 10.3390/jpm12060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has an important role as an antioxidant. Being that oxidative stress is one of the mechanisms involved in the pathogenesis of Parkinson’s disease (PD) and other neurodegenerative diseases, several studies addressed the concentrations of CoQ10 in the different tissues of patients with PD and other parkinsonian syndromes (PS), trying to elucidate their value as a marker of these diseases. Other studies addressed the potential therapeutic role of CoQ10 in PD and PS. We underwent a systematic review and a meta-analysis of studies measuring tissue CoQ10 concentrations which shows that, compared with controls, PD patients have decreased CoQ10 levels in the cerebellar cortex, platelets, and lymphocytes, increased total and oxidized CoQ10 levels in the cerebrospinal fluid and a non-significant trend toward decreased serum/plasma CoQ10 levels. Patients with multiple system atrophy (MSA) showed decreased CoQ10 levels in the cerebellar cortex, serum/plasma, cerebrospinal fluid, and skin fibroblasts. Patients with Lewy body dementia (LBD) showed decreased cerebellar cortex CoQ10, and those with progressive supranuclear palsy (PSP) had decreased CoQ10 levels in the cerebrospinal fluid. A previous meta-analysis of studies addressing the therapeutic effects of CoQ10 in PD showed a lack of improvement in patients with early PD. Results of the treatment with CoQ10 in PSP should be considered preliminary. The potential role of CoQ10 therapy in the MSA and selected groups of PD patients deserves future studies.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10, E28500 Arganda del Rey, Spain;
- Correspondence: or ; Tel.: +34-636968395; Fax: +34-913280704
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10, E28500 Arganda del Rey, Spain;
| | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
11
|
Wang ZL, Yuan L, Li W, Li JY. Ferroptosis in Parkinson’s disease: glia–neuron crosstalk. Trends Mol Med 2022; 28:258-269. [DOI: 10.1016/j.molmed.2022.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
|
12
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
13
|
Ghasemloo E, Mostafavi H, Hosseini M, Forouzandeh M, Eskandari M, Mousavi SS. Neuroprotective effects of coenzyme Q10 in Parkinson's model via a novel Q10/miR-149-5p/MMPs pathway. Metab Brain Dis 2021; 36:2089-2100. [PMID: 34357552 DOI: 10.1007/s11011-021-00795-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease in which the understanding of the underlying molecular mechanisms can be constructive in the diagnosis and treatment. Matrix metalloproteinase (MMPs) elevation and damage to the blood-brain barrier (BBB) are critical mechanisms involved in the PD separation. Studies have revealed that changes in miR-149-5p and CoQ10 are associated with BBB damage, and CoQ10 can affect the levels of some miRs. Hence, in the present study, we aimed to evaluate CoQ10 and miR-149-5p mimic on miR-149-5p, MMPs and TH expression, and behavioral functions of the PD models. PD was induced by injection of 6-OHDA into the rats' Medial Forbrain Bundle (MFB). The behavioral tests, including the Rotation test, Rotarod test, and Open field test, have been directed two weeks after PD induction. Next, the MiR-149-5p mimic (miR-mimic) and CoQ10 have been administered to rats. The same behavioral tests have been evaluated two weeks after administration to investigate the effect of miR-149-5p mimic and CoQ10. The rats were followed extra four weeks, and the behavioral tests have performed again. Finally, the expression of MMPs and miR-149-5p genes was measured using RT-qPCR, and tyrosine hydroxylase (TH) was assessed through immunohistochemistry analysis. According to the obtained results, the level of miR-149-5p has decreased, followed by PD induction in rats. RT-qPCR analysis has represented upregulation and downregulation of miR-149-5p and MMP-2,9, respectively, after miR-mimic and CoQ10 treatment. The treated rats have also represented improved motor function and increased TH + cells in the striatum according to the behavioral tests and immunohistochemistry assay. Taking together miR-149 and CoQ10 has shown to have an impressive potential to prevent damage to dopaminergic neurons caused by 6-OHDA injection through reducing MMP-2,9, increased TH expression, and improved motor function.
Collapse
Affiliation(s)
- Elham Ghasemloo
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Mostafavi
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Masoumeh Hosseini
- Laboratory Expert Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mehdi Eskandari
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Saeid Mousavi
- Animal Science Research Department, Zanjan Agricultural and Natural Resources Research and Education Center, AREEO, Zanjan, Iran
| |
Collapse
|
14
|
Merashli M, Bucci T, Pastori D, Pignatelli P, Arcaro A, Gentile F, Marottoli V, Ames PRJ. Isoprostanes in systemic lupus erythematosus and antiphospholipid syndrome: A systematic review and meta-analysis. Autoimmun Rev 2021; 20:102821. [PMID: 33872768 DOI: 10.1016/j.autrev.2021.102821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Mira Merashli
- Department of Rheumatology, American University of Beirut, Bliss, Beirut, Lebanon
| | - Tommaso Bucci
- Department of General Surgery, Surgical Specialties and Organ Transplantation "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Daniele Pastori
- Prima Clinica Medica, Atherothrombosis Centre, Department of Clinical, Internal Medicine, Anaesthesiologic, & Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- Prima Clinica Medica, Atherothrombosis Centre, Department of Clinical, Internal Medicine, Anaesthesiologic, & Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Arcaro
- Department of Medicine & Health Sciences 'V.Tiberio', University of Molise, Campobasso, Italy
| | - Fabrizio Gentile
- Department of Medicine & Health Sciences 'V.Tiberio', University of Molise, Campobasso, Italy
| | | | - Paul R J Ames
- Immune Response and Vascular Disease Unit, CEDOC, Nova University Lisbon, Rua Camara Pestana, Lisbon, Portugal; Department of Haematology, Dumfries Royal Infirmary, Cargenbridge, Dumfries, UK.
| |
Collapse
|
15
|
Lister T. Nutrition and Lifestyle Interventions for Managing Parkinson's Disease: A Narrative Review. J Mov Disord 2020; 13:97-104. [PMID: 32498495 PMCID: PMC7280935 DOI: 10.14802/jmd.20006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 01/20/2023] Open
Abstract
The etiology of Parkinson's disease (PD) is not fully understood, but environmental toxin overexposure, increased intestinal permeability, and dysbiosis related to nutrition and lifestyle habits are thought to be contributors. Considering these nutrition and lifestyle implications, there is a lack of practice-based programs utilizing interventions for managing symptoms or slowing the progression of the disease. The purpose of this narrative review was to identify relevant research related to nutrition and lifestyle interventions for PD, evaluate the research utilizing the evidence analysis process of the Academy of Nutrition and Dietetics to assess the quality of each research article, and group the research into categories. A grading of recommendations assessment, development and evaluation (GRADE) of either good, fair, limited, or not assignable was allocated to each category of research, including diet patterns, vitamin D, B-complex, omega-3 fatty acids, coenzyme Q10, probiotics, physical activity, stress, and sleep. An intervention based on the research presented in the review may be utilized for coaching people with PD on symptom management.
Collapse
Affiliation(s)
- Tracy Lister
- Maryland University of Integrative Health, Laurel, MD, USA
| |
Collapse
|
16
|
Coenzyme Q10 increases absence seizures in WAG/Rij rats: The role of the nitric oxide pathway. Epilepsy Res 2019; 154:69-73. [DOI: 10.1016/j.eplepsyres.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 01/11/2023]
|
17
|
Hormozi M, Mirzaei R, Nakhaee A, payandeh A, Izadi S, Haghighi JD. Effects of coenzyme Q10 supplementation on oxidative stress and antioxidant enzyme activity in glazers with occupational cadmium exposure: A randomized, double-blind, placebo-controlled crossover clinical trial. Toxicol Ind Health 2018; 35:32-42. [DOI: 10.1177/0748233718809256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, there is a growing interest for the use of antioxidants as a preventive agent against cadmium (Cd) intoxication. The current study aimed to investigate the effects of dietary coenzyme Q10 supplementation on oxidative stress and antioxidant enzymes activity in Cd-exposed glazers. In a randomized, double-blind, placebo-controlled 2-month crossover clinical trial, coenzyme Q10 (60 mg twice daily) or placebo was administrated to 40 male glazers occupationally exposed to Cd. The subjects were randomly assigned to the placebo and coenzyme Q10 groups ( n = 20 in each group). Total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) as well as malondialdehyde (MDA) in the serum of glazers were measured at baseline and at the end of both intervention phases. The primary outcomes were the changes in serum levels of MDA, TAC and the activities of SOD, CAT, and GPx during administration with coenzyme Q10 versus placebo. Compared with placebo, treatment to coenzyme Q10 was associated with a significant reduction in serum MDA levels ( p < 0.001) While, there was no significant effect on the serum TAC levels ( p = 0.096). Also, the activity antioxidant enzymes of SOD ( p < 0.001) and GPx ( p = 0.003) were significantly higher and the CAT activity ( p < 0.001) was lower after 2-month coenzyme Q10 administration compared with placebo. Data demonstrated that coenzyme Q10 supplementation at a dose of 60 mg (twice daily) is effective in reducing oxidative stress marker level (MDA) and improving antioxidant enzymes activity in glazers exposed to Cd. However, further research is needed to assess coenzyme Q10 as a possible dietary intervention in Cd-exposed workers. Trial Registration: Iranian Registry of Clinical Trials Registration Number: IRCT2016061228407N1 ( www.who.int/ictrp/network/irct/en/ ).
Collapse
Affiliation(s)
- Maryam Hormozi
- Department of Occupational Health, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramazan Mirzaei
- Department of Occupational Health, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nakhaee
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl payandeh
- Department of Epidemiology & Biostatistics, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahrokh Izadi
- Department of Epidemiology & Biostatistics, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javid Dehghan Haghighi
- Department of Community Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
18
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
19
|
Teixeira FG, Gago MF, Marques P, Moreira PS, Magalhães R, Sousa N, Salgado AJ. Safinamide: a new hope for Parkinson's disease? Drug Discov Today 2018; 23:736-744. [PMID: 29339106 DOI: 10.1016/j.drudis.2018.01.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
The loss of dopaminergic neurons (DAn) and reduced dopamine (DA) production underlies the reasoning behind the gold standard treatment for Parkinson's disease (PD) using levodopa (L-DOPA). Recently licensed by the European Medicine Agency (EMA) and US Food and Drug Administration (FDA), safinamide [a monoamine oxidase B (MOA-B) inhibitor] is an alternative to L-DOPA; as we discuss here, it enhances dopaminergic transmission with decreased secondary effects compared with L-DOPA. In addition, nondopaminergic actions (neuroprotective effects) have been reported, with safinamide inhibiting glutamate release and sodium/calcium channels, reducing the excitotoxic input to dopaminergic neuronal death. Effects of safinamide have been correlated with the amelioration of non-motor symptoms (NMS), although these remain under discussion. Overall, safinamide can be considered to have potential antidyskinetic and neuroprotective effects and future trials and/or studies should be performed to provide further evidence for its potential as an anti-PD drug.
Collapse
Affiliation(s)
- Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Miguel F Gago
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Neurology Department, Hospital da Senhora da Oliveira, EPE, Guimarães, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Gupta BK, Kumar S, Kaur H, Ali J, Baboota S. Attenuation of Oxidative Damage by Coenzyme Q 10 Loaded Nanoemulsion Through Oral Route for the Management of Parkinson's Disease. Rejuvenation Res 2017; 21:232-248. [PMID: 28844183 DOI: 10.1089/rej.2017.1959] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a well-known antioxidant molecule which is used in the treatment of neurodegenerative disorders, but due to poor solubility it suffers with the drawback of low oral bioavailability. The aim of present study was to prepare and characterize CoQ10 loaded nanoemulsion to improve the oral bioavailability. Prepared formulation was studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology by transmission electron microscopy, and in vitro release study. Optimized formulation (A10) showed spherical droplets with mean diameter of 60.00 ± 15 nm, PDI of 0.121 ± 0.053, and zeta potential values of -24.40 ± 0.16 mV. Prepared nanoemulsion exhibited good transmittance (100.50% ± 0.86%), refractive index (1.41 ± 0.02), and viscosity (30.54 ± 2.86 cP). Various behavioral tests like forced swimming test, locomotor activity test, catalepsy, muscle coordination test, and akinesia test performed in haloperidol challenged rats and treated with CoQ10 nanoemulsion significantly improved the behavioral activities in comparison to CoQ10 suspension by reducing nigrostriatal dopamine depletion and thereby helping in the treatment of Parkinson's disease. Biochemical estimation data showed that CoQ10 nanoemulsion was helpful in elevating the decreased content of glutathione and reducing the increased content of thiobarbituric acid reactive substances. Improved CoQ10 release was obtained with nanoemulsions. Pharmacokinetic study results revealed that nanoemulsion exhibited 1.81 times enhancement in bioavailability in comparison to CoQ10 suspension.
Collapse
Affiliation(s)
- Bijay Kumar Gupta
- 1 Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi, India
| | - Shobhit Kumar
- 1 Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi, India
| | - Harleen Kaur
- 2 Department of Computer Science and Engineering, Faculty of Engineering and Technology, Jamia Hamdard (Hamdard University) , New Delhi, India
| | - Javed Ali
- 1 Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi, India
| | - Sanjula Baboota
- 1 Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi, India
| |
Collapse
|
21
|
Role of Diet and Nutritional Supplements in Parkinson's Disease Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6405278. [PMID: 29081890 PMCID: PMC5610862 DOI: 10.1155/2017/6405278] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The goal of this study is to describe modifiable lifestyle variables associated with reduced rate of Parkinson's disease (PD) progression. METHODS The patient-reported outcomes in PD (PRO-PD) were used as the primary outcome measure, and a food frequency questionnaire (FFQ) was used to assess dietary intake. In this cross-sectional analysis, regression analysis was performed on baseline data to identify the nutritional and pharmacological interventions associated with the rate of PD progression. All analyses were adjusted for age, gender, and years since diagnosis. RESULTS 1053 individuals with self-reported idiopathic PD were available for analysis. Foods associated with the reduced rate of PD progression included fresh vegetables, fresh fruit, nuts and seeds, nonfried fish, olive oil, wine, coconut oil, fresh herbs, and spices (P < 0.05). Foods associated with more rapid PD progression include canned fruits and vegetables, diet and nondiet soda, fried foods, beef, ice cream, yogurt, and cheese (P < 0.05). Nutritional supplements coenzyme Q10 and fish oil were associated with reduced PD progression (P = 0.026 and P = 0.019, resp.), and iron supplementation was associated with faster progression (P = 0.022). DISCUSSION These are the first data to provide evidence that targeted nutrition is associated with the rate of PD progression.
Collapse
|
22
|
Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Prog Neurobiol 2017; 156:69-89. [PMID: 28457671 DOI: 10.1016/j.pneurobio.2017.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored.
Collapse
Affiliation(s)
- Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
23
|
Zhu ZG, Sun MX, Zhang WL, Wang WW, Jin YM, Xie CL. The efficacy and safety of coenzyme Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol Sci 2016; 38:215-224. [DOI: 10.1007/s10072-016-2757-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
|
24
|
Ito K, Watanabe C, Nakamura A, Oikawa-Tada S, Murata M. Reduced Coenzyme Q10 Decreases Urinary 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Concentrations in Healthy Young Female Subjects. J Med Food 2015; 18:835-40. [DOI: 10.1089/jmf.2014.3302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kimiko Ito
- Department of Life Science, Tsu City College, Tsu, Mie, Japan
| | - Chigusa Watanabe
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akari Nakamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Saeko Oikawa-Tada
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
25
|
Abdel-Salam OME. Drug therapy for Parkinson’s disease: An update. World J Pharmacol 2015; 4:117-143. [DOI: 10.5497/wjp.v4.i1.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, affecting about 1% of the population above the age of 65. PD is characterized by a selective degeneration of the dopaminergic neurons of the substantia nigra pars compacta. This results in a marked loss of striatal dopamine and the development of the characteristic features of the disease, i.e., bradykinesia, rest tremor, rigidity, gait abnormalities and postural instability. Other types of neurons/neurotransmitters are also involved in PD, including cholinergic, serotonergic, glutamatergic, adenosine, and GABAergic neurotransmission which might have relevance to the motor, non-motor, neuropsychiatric and cognitive disturbances that occur in the course of the disease. The treatment of PD relies on replacement therapy with levodopa (L-dopa), the precursor of dopamine, in combination with a peripheral decarboxylase inhibitor (carbidopa or benserazide). The effect of L-dopa, however, declines over time together with the development of motor complications especially dyskinesia in a significant proportion of patients within 5 years of therapy. Other drugs include dopamine-receptor-agonists, catechol-O-methyltransferase inhibitors, monoamine oxidase type B (MAO-B) inhibitors, anticholinergics and adjuvant therapy with the antiviral drug and the N-methyl-D-aspartate glutamate receptor antagonist amantadine. Although, these medications can result in substantial improvements in parkinsonian symptoms, especially during the early stages of the disease, they are often not successful in advanced disease. Moreover, dopaminergic cell death continues over time, emphasizing the need for neuroprotective or neuroregenerative therapies. In recent years, research has focused on non-dopaminergic approach such as the use of A2A receptor antagonists: istradefylline and preladenant or the calcium channel antagonist isradipine. Safinamide is a selective and reversible inhibitor of MAO-B, a glutamate receptor inhibitor as well as sodium and calcium channel blocker. Minocycline and pioglitazone are other agents which have been shown to prevent dopaminergic nigral cell loss in animal models of PD. There is also an evidence to suggest a benefit from iron chelation therapy with deferiprone and from the use of antioxidants or mitochondrial function enhancers such as creatine, alpha-lipoic acid, l-carnitine, and coenzyme Q10.
Collapse
|
26
|
Agrawal AG, Kumar A, Gide PS. Formulation development and in vivo hepatoprotective activity of self nanoemulsifying drug delivery system of antioxidant coenzyme Q 10.. Arch Pharm Res 2014. [PMID: 25503273 DOI: 10.1007/s12272-014-0497-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/08/2014] [Indexed: 01/18/2023]
Abstract
Coenzyme Q10 (CQ10) is known as an endogenous cellular antioxidant, naturally found in every cell of the human body and plays an important role in maintaining human health. It is widely used as a nutritional supplement and pharmaceutical drug for various disorders like diabetes mellitus, carcinomas, neurodegenerative disorders etc. However, CQ10 is practically insoluble even in the presence of 5 % sodium lauryl sulfate in water and poorly absorbed from the gastrointestinal tract. The present research is aimed to formulate and evaluate self nanoemulsifying drug delivery system (SNEDDS) of CQ10 primarily to improve its aqueous solubility, dissolution velocity as well as hepatoprotective activity and thus enhancing its nutraceutical and pharmaceutical values. Robustness to dilution, thermodynamic stability study, droplet size analysis and drug release were adopted to optimize liquid SNEDDS. Droplet size of the SNEDDS was found to be size less than 200 nm and appeared round in shape without aggregation under transmission electron microscopy examination. Liquid SNEDDS were adsorbed on porous carrier to get solid SNEDDS (S-SNEDDS). S-SNEDDS gave rapid (>90 %) drug release within 30 min while pure drug was not practically dissolved within 1 h. In vivo hepatoprotective activity showed that S-SNEDDS achieved the most liver protection as compared to the pure drug. Further S-SNEDDS was successfully converted to self nanoemulsifying mouth dissolving tablet. The enhanced solubility, dissolution velocity as well as hepatoprotective activity of CQ10, unravels the potential of S-SNEDDS as suitable carrier for enhancing nutraceutical and pharmaceutical values of CQ10.
Collapse
Affiliation(s)
- Anuj G Agrawal
- Cachet Pharmaceutical Pvt. Ltd, An ALKEM Group, Baddi, Dist. Solan, 173205, India,
| | | | | |
Collapse
|