1
|
McDonough J, Singhal NK, Getsy PM, Knies K, Knauss ZT, Mueller D, Bates JN, Damron DS, Lewis SJ. The epigenetic signatures of opioid addiction and physical dependence are prevented by D-cysteine ethyl ester and betaine. Front Pharmacol 2024; 15:1416701. [PMID: 39281282 PMCID: PMC11392886 DOI: 10.3389/fphar.2024.1416701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
We have reported that D,L-thiol esters, including D-cysteine ethyl ester (D-CYSee), are effective at overcoming opioid-induced respiratory depression (OIRD) in rats. Our on-going studies reveal that co-injections of D-CYSee with multi-day morphine injections markedly diminish spontaneous withdrawal that usually occurs after cessation of multiple injections of morphine in rats. Chronically administered opioids are known (1) to alter cellular redox status, thus inducing an oxidative state, and (2) for an overall decrease in DNA methylation, therefore resulting in the transcriptional activation of previously silenced long interspersed elements (LINE-1) retrotransposon genes. The first objective of the present study was to determine whether D-CYSee and the one carbon metabolism with the methyl donor, betaine, would maintain redox control and normal DNA methylation levels in human neuroblastoma cell cultures (SH-SY5Y) under overnight challenge with morphine (100 nM). The second objective was to determine whether D-CYSee and/or betaine could diminish the degree of physical dependence to morphine in male Sprague Dawley rats. Our data showed that overnight treatment with morphine reduced cellular GSH levels, induced mitochondrial damage, decreased global DNA methylation, and increased LINE-1 mRNA expression. These adverse effects by morphine, which diminished the reducing capacity and compromised the maintenance of the membrane potential of SH-SY5Y cells, was prevented by concurrent application of D-CYSee (100 µM) or betaine (300 µM). Furthermore, our data demonstrated that co-injections of D-CYSee (250 μmol/kg, IV) and to a lesser extent, betaine (250 μmol/kg, IV), markedly diminished the development of physical dependence induced by multi-day morphine injections (escalating daily doses of 10-30 mg/kg, IV), as assessed by the lesser number of withdrawal phenomena elicited by the injection of the opioid receptor antagonist, naloxone (1.5 mg/kg, IV). These findings provide evidence that D-CYSee and betaine prevent the appearance of redox alterations and epigenetic signatures commonly seen in neural cells involved in opioid physical dependence/addiction, and lessen development of physical dependence to morphine.
Collapse
Affiliation(s)
- Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Naveen K Singhal
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Knies
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Zackery T Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J Lewis
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Bates JN, Baby SM, Getsy PM, Coffee GA, Hsieh YH, Knauss ZT, Dahan A, Bubier JA, MacFarlane PM, Mueller D, Lewis SJ. L-NAC and L-NAC methyl ester prevent and overcome physical dependence to fentanyl in male rats. Sci Rep 2024; 14:9091. [PMID: 38643270 PMCID: PMC11032344 DOI: 10.1038/s41598-024-59551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
N-acetyl-L-cysteine (L-NAC) is a proposed therapeutic for opioid use disorder. This study determined whether co-injections of L-NAC (500 μmol/kg, IV) or its highly cell-penetrant analogue, L-NAC methyl ester (L-NACme, 500 μmol/kg, IV), prevent acquisition of acute physical dependence induced by twice-daily injections of fentanyl (125 μg/kg, IV), and overcome acquired dependence to these injections in freely-moving male Sprague Dawley rats. The injection of the opioid receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IV), elicited a series of withdrawal phenomena (i.e. behavioral and cardiorespiratory responses, hypothermia and body weight loss) in rats that received 5 or 10 injections of fentanyl and similar numbers of vehicle co-injections. With respect to the development of dependence, the NLX-precipitated withdrawal phenomena were reduced in rats that received had co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme. In regard to overcoming established dependence, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 μg/kg, IV) were reduced in rats that had received co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme beginning with injection 6 of fentanyl. This study provides compelling evidence that co-injections of L-NAC and L-NACme prevent the acquisition of physical dependence and overcome acquired dependence to fentanyl in male rats. The higher efficacy of L-NACme is likely due to its greater cell penetrability in brain regions mediating dependence to fentanyl and interaction with intracellular signaling cascades, including redox-dependent processes, responsible for the acquisition of physical dependence to fentanyl.
Collapse
Affiliation(s)
- James N Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Atelerix Life Sciences Inc., 300 East Main Street, Suite 202, Charlottesville, VA, USA
| | - Santhosh M Baby
- Section of Biology, Galleon Pharmaceuticals, Inc, Horsham, PA, USA
- Translational Sciences Treatment Discovery, Galvani Bioelectronics, Inc, 1250 S Collegeville Rd, Collegeville, PA, USA
| | - Paulina M Getsy
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zackery T Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Peter M MacFarlane
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Stephen J Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, School of Medicine,, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
3
|
Bates JN, Getsy PM, Coffee GA, Baby SM, MacFarlane PM, Hsieh YH, Knauss ZT, Bubier JA, Mueller D, Lewis SJ. Lipophilic analogues of D-cysteine prevent and reverse physical dependence to fentanyl in male rats. Front Pharmacol 2024; 14:1336440. [PMID: 38645835 PMCID: PMC11026688 DOI: 10.3389/fphar.2023.1336440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 04/23/2024] Open
Abstract
We examined whether co-injections of the cell-permeant D-cysteine analogues, D-cysteine ethyl ester (D-CYSee) and D-cysteine ethyl amide (D-CYSea), prevent acquisition of physical dependence induced by twice-daily injections of fentanyl, and reverse acquired dependence to these injections in freely-moving male Sprague Dawley rats. Injection of the opioid receptor antagonist, naloxone HCl (NLX, 1.5 mg/kg, IV), elicited a series of withdrawal phenomena that included cardiorespiratory and behavioral responses, and falls in body weight and body temperature, in rats that received 5 or 10 injections of fentanyl (125 μg/kg, IV), and the same number of vehicle co-injections. Regarding the development of physical dependence, the NLX-precipitated withdrawal phenomena were markedly reduced in fentanyl-injected rats that had received co-injections of D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but not D-cysteine (250 μmol/kg, IV). Regarding reversal of established dependence to fentanyl, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 μg/kg, IV) was markedly reduced in rats that received co-injections of D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but not D-cysteine (250 μmol/kg, IV), starting with injection 6 of fentanyl. This study provides evidence that co-injections of D-CYSee and D-CYSea prevent the acquisition of physical dependence, and reverse acquired dependence to fentanyl in male rats. The lack of effect of D-cysteine suggests that the enhanced cell-penetrability of D-CYSee and D-CYSea into cells, particularly within the brain, is key to their ability to interact with intracellular signaling events involved in acquisition to physical dependence to fentanyl.
Collapse
Affiliation(s)
- James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Campos J, Gleitze S, Hidalgo C, Núñez MT. IP 3R-Mediated Calcium Release Promotes Ferroptotic Death in SH-SY5Y Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:196. [PMID: 38397794 PMCID: PMC10886377 DOI: 10.3390/antiox13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death pathway that involves the depletion of intracellular glutathione (GSH) levels and iron-mediated lipid peroxidation. Ferroptosis is experimentally caused by the inhibition of the cystine/glutamate antiporter xCT, which depletes cells of GSH, or by inhibition of glutathione peroxidase 4 (GPx4), a key regulator of lipid peroxidation. The events that occur between GPx4 inhibition and the execution of ferroptotic cell death are currently a matter of active research. Previous work has shown that calcium release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels contributes to ferroptosis-induced cell death in primary hippocampal neurons. Here, we used SH-SY5Y neuroblastoma cells, which do not express RyR channels, to test if calcium release mediated by the inositol 1,4,5-trisphosphate receptor (IP3R) channel plays a role in this process. We show that treatment with RAS Selective Lethal Compound 3 (RSL3), a GPx4 inhibitor, enhanced reactive oxygen species (ROS) generation, increased cytoplasmic and mitochondrial calcium levels, increased lipid peroxidation, and caused cell death. The RSL3-induced calcium signals were inhibited by Xestospongin B, a specific inhibitor of the ER-resident IP3R calcium channel, by decreasing IP3R levels with carbachol and by IP3R1 knockdown, which also prevented the changes in cell morphology toward roundness induced by RSL3. Intracellular calcium chelation by incubation with BAPTA-AM inhibited RSL3-induced calcium signals, which were not affected by extracellular calcium depletion. We propose that GPx4 inhibition activates IP3R-mediated calcium release in SH-SY5Y cells, leading to increased cytoplasmic and mitochondrial calcium levels, which, in turn, stimulate ROS production and induce lipid peroxidation and cell death in a noxious positive feedback cycle.
Collapse
Affiliation(s)
- Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800024, Chile
| |
Collapse
|
5
|
Baby SM, May WJ, Young AP, Wilson CG, Getsy PM, Coffee GA, Lewis THJ, Hsieh YH, Bates JN, Lewis SJ. L-cysteine ethylester reverses the adverse effects of morphine on breathing and arterial blood-gas chemistry while minimally affecting antinociception in unanesthetized rats. Biomed Pharmacother 2024; 171:116081. [PMID: 38219385 PMCID: PMC10922989 DOI: 10.1016/j.biopha.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
L-cysteine ethylester (L-CYSee) is a membrane-permeable analogue of L-cysteine with a variety of pharmacological effects. The purpose of this study was to determine the effects of L-CYSee on morphine-induced changes in ventilation, arterial-blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient (i.e., a measure of the index of alveolar gas-exchange), antinociception and sedation in male Sprague Dawley rats. An injection of morphine (10 mg/kg, IV) produced adverse effects on breathing, including sustained decreases in minute ventilation. L-CYSee (500 μmol/kg, IV) given 15 min later immediately reversed the actions of morphine. Another injection of L-CYSee (500 μmol/kg, IV) after 15 min elicited more pronounced excitatory ventilatory responses. L-CYSee (250 or 500 μmol/kg, IV) elicited a rapid and prolonged reversal of the actions of morphine (10 mg/kg, IV) on ABG chemistry (pH, pCO2, pO2, sO2) and A-a gradient. L-serine ethylester (an oxygen atom replaces the sulfur; 500 μmol/kg, IV), was ineffective in all studies. L-CYSee (500 μmol/kg, IV) did not alter morphine (10 mg/kg, IV)-induced sedation, but slightly reduced the overall duration of morphine (5 or 10 mg/kg, IV)-induced analgesia. In summary, L-CYSee rapidly overcame the effects of morphine on breathing and alveolar gas-exchange, while not affecting morphine sedation or early-stage analgesia. The mechanisms by which L-CYSee modulates morphine depression of breathing are unknown, but appear to require thiol-dependent processes.
Collapse
Affiliation(s)
- Santhosh M Baby
- Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, PA, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christopher G Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yee-Hee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
7
|
Bates JN, Getsy PM, Coffee GA, Baby SM, MacFarlane PM, Hsieh YH, Knauss ZT, Bubier JA, Mueller D, Lewis SJ. L-cysteine ethyl ester prevents and reverses acquired physical dependence on morphine in male Sprague Dawley rats. Front Pharmacol 2023; 14:1303207. [PMID: 38111383 PMCID: PMC10726967 DOI: 10.3389/fphar.2023.1303207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023] Open
Abstract
The molecular mechanisms underlying the acquisition of addiction/dependence on morphine may result from the ability of the opioid to diminish the transport of L-cysteine into neurons via inhibition of excitatory amino acid transporter 3 (EAA3). The objective of this study was to determine whether the co-administration of the cell-penetrant L-thiol ester, L-cysteine ethyl ester (L-CYSee), would reduce physical dependence on morphine in male Sprague Dawley rats. Injection of the opioid-receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IP), elicited pronounced withdrawal phenomena in rats which received a subcutaneous depot of morphine (150 mg/kg) for 36 h and were receiving a continuous infusion of saline (20 μL/h, IV) via osmotic minipumps for the same 36 h period. The withdrawal phenomena included wet-dog shakes, jumping, rearing, fore-paw licking, 360° circling, writhing, apneas, cardiovascular (pressor and tachycardia) responses, hypothermia, and body weight loss. NLX elicited substantially reduced withdrawal syndrome in rats that received an infusion of L-CYSee (20.8 μmol/kg/h, IV) for 36 h. NLX precipitated a marked withdrawal syndrome in rats that had received subcutaneous depots of morphine (150 mg/kg) for 48 h) and a co-infusion of vehicle. However, the NLX-precipitated withdrawal signs were markedly reduced in morphine (150 mg/kg for 48 h)-treated rats that began receiving an infusion of L-CYSee (20.8 μmol/kg/h, IV) at 36 h. In similar studies to those described previously, neither L-cysteine nor L-serine ethyl ester (both at 20.8 μmol/kg/h, IV) mimicked the effects of L-CYSee. This study demonstrates that 1) L-CYSee attenuates the development of physical dependence on morphine in male rats and 2) prior administration of L-CYSee reverses morphine dependence, most likely by intracellular actions within the brain. The lack of the effect of L-serine ethyl ester (oxygen atom instead of sulfur atom) strongly implicates thiol biochemistry in the efficacy of L-CYSee. Accordingly, L-CYSee and analogs may be a novel class of therapeutics that ameliorate the development of physical dependence on opioids in humans.
Collapse
Affiliation(s)
- James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
8
|
Zhang X, Xing T, Li J, Zhang L, Gao F. Mitochondrial dysfunction and calcium dyshomeostasis in the pectoralis major muscle of broiler chickens with wooden breast myopathy. Poult Sci 2023; 102:102872. [PMID: 37390551 PMCID: PMC10331480 DOI: 10.1016/j.psj.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023] Open
Abstract
The incidence of wooden breast (WB) meat of commercial broiler chicken has been increasing in recent years. Histological examination found that the occurrence of WB myopathy was accompanied by the pectoralis major (PM) muscle damage. So far, the potential mechanisms are not fully understood. This study aimed to explore the underlying mechanism of the damage of WB-affected PM muscle caused by changes in mitochondrial function, mitochondrial redox status and Ca2+ homeostasis. A total of 80 market-age Arbor Acres male broiler chickens were sampled and categorized into control (CON) and WB groups based on the evaluation of myopathic lesions. PM muscle samples were collected (n = 8 in each group) for histopathological evaluation and biochemical analyses. Ultrastructural examination and histopathological changes suggested the occurrence of PM muscle damage in broiler chickens with WB myopathy. The WB group showed an increased level of reactive oxygen species and enhanced antioxidant capacities in mitochondria of PM muscle. These changes were related to impaired mitochondria morphology and mitochondrial dysfunction. In addition, abnormal expressions of Ca2+ channels led to substantial Ca2+ loss in SR and cytoplasmic Ca2+ overload, as well as Ca2+ accumulation in mitochondria, resulting in Ca2+ dyshomeostasis in PM muscle of broiler chickens with WB myopathy. Combined, these findings indicate that WB myopathy is related to mitochondrial dysfunction, mitochondrial redox status imbalance and Ca2+ dyshomeostasis, leading to WB-affected PM muscle damage.
Collapse
Affiliation(s)
- Xinrui Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaolong Li
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
9
|
Harbin NH, Lustberg DJ, Hurst C, Pare J, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 limits seizure-induced mitochondrial oxidative stress and pathology in hippocampus. Neurobiol Dis 2023; 181:106128. [PMID: 37075948 PMCID: PMC10259180 DOI: 10.1016/j.nbd.2023.106128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. In these neurons, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies showed that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity, possibly affording protection to CA2 PCs. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show that the loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Our proteomics data show that the loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro. As a readout of oxidative stress, we found that RGS14 KO dramatically increased 3- nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we unexpectedly found no differences in neuronal injury in CA2 PCs. However, we observed a striking and surprising lack of microgliosis in CA1 and CA2 of RGS14 KO compared to WT. Together, our data demonstrate a newly appreciated role for RGS14 in limiting intense seizure activity and pathology in hippocampus. Our findings are consistent with a model where RGS14 limits seizure onset and mortality and, after seizure, is upregulated to support mitochondrial function, prevent oxidative stress in CA2 PCs, and promote microglial activation in hippocampus.
Collapse
Affiliation(s)
- N H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - D J Lustberg
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States
| | - C Hurst
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - J Pare
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States.
| | - K M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - A L Waters
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - S M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - Y Smith
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States; Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA, 30322, United States.
| | - N T Seyfried
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - D Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States.
| | - J R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| |
Collapse
|
10
|
Harbin NH, Lustberg DJ, Hurst C, Pare JF, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 is neuroprotective against seizure-induced mitochondrial oxidative stress and pathology in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526349. [PMID: 36778349 PMCID: PMC9915580 DOI: 10.1101/2023.02.01.526349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. There, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies show that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Utilizing proteomics, we saw loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro . As a readout of oxidative stress, we found RGS14 KO dramatically increased 3-nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we observed worse neuronal injury in area CA3 (but none in CA2 or CA1), and a lack of microgliosis in CA1 and CA2 compared to WT. Together, our data demonstrates a newly appreciated neuroprotective role for RGS14 against intense seizure activity in hippocampus. Our findings are consistent with a model where, after seizure, RGS14 is upregulated to support mitochondrial function and prevent oxidative stress in CA2 PCs, limit seizure onset and hippocampal neuronal injury, and promote microglial activation in hippocampus.
Collapse
|
11
|
Getsy PM, Baby SM, May WJ, Bates JN, Ellis CR, Feasel MG, Wilson CG, Lewis THJ, Gaston B, Hsieh YH, Lewis SJ. L-cysteine methyl ester overcomes the deleterious effects of morphine on ventilatory parameters and arterial blood-gas chemistry in unanesthetized rats. Front Pharmacol 2022; 13:968378. [PMID: 36249760 PMCID: PMC9554613 DOI: 10.3389/fphar.2022.968378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
We are developing a series of thiolesters that produce an immediate and sustained reversal of the deleterious effects of opioids, such as morphine and fentanyl, on ventilation without diminishing the antinociceptive effects of these opioids. We report here the effects of systemic injections of L-cysteine methyl ester (L-CYSme) on morphine-induced changes in ventilatory parameters, arterial-blood gas (ABG) chemistry (pH, pCO2, pO2, sO2), Alveolar-arterial (A-a) gradient (i.e., the index of alveolar gas-exchange within the lungs), and antinociception in unanesthetized Sprague Dawley rats. The administration of morphine (10 mg/kg, IV) produced a series of deleterious effects on ventilatory parameters, including sustained decreases in tidal volume, minute ventilation, inspiratory drive and peak inspiratory flow that were accompanied by a sustained increase in end inspiratory pause. A single injection of L-CYSme (500 μmol/kg, IV) produced a rapid and long-lasting reversal of the deleterious effects of morphine on ventilatory parameters, and a second injection of L-CYSme (500 μmol/kg, IV) elicited pronounced increases in ventilatory parameters, such as minute ventilation, to values well above pre-morphine levels. L-CYSme (250 or 500 μmol/kg, IV) also produced an immediate and sustained reversal of the deleterious effects of morphine (10 mg/kg, IV) on arterial blood pH, pCO2, pO2, sO2 and A-a gradient, whereas L-cysteine (500 μmol/kg, IV) itself was inactive. L-CYSme (500 μmol/kg, IV) did not appear to modulate the sedative effects of morphine as measured by righting reflex times, but did diminish the duration, however, not the magnitude of the antinociceptive actions of morphine (5 or 10 mg/kg, IV) as determined in tail-flick latency and hindpaw-withdrawal latency assays. These findings provide evidence that L-CYSme can powerfully overcome the deleterious effects of morphine on breathing and gas-exchange in Sprague Dawley rats while not affecting the sedative or early stage antinociceptive effects of the opioid. The mechanisms by which L-CYSme interferes with the OR-induced signaling pathways that mediate the deleterious effects of morphine on ventilatory performance, and by which L-CYSme diminishes the late stage antinociceptive action of morphine remain to be determined.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Paulina M. Getsy,
| | | | - Walter J. May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Christopher R. Ellis
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Michael G. Feasel
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Christopher G. Wilson
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Garrido Ruiz D, Sandoval-Perez A, Rangarajan AV, Gunderson EL, Jacobson MP. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Biochemistry 2022; 61:2165-2176. [PMID: 36161872 PMCID: PMC9583617 DOI: 10.1021/acs.biochem.2c00349] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cysteine side chains
can exist in distinct oxidation
states depending
on the pH and redox potential of the environment, and cysteine oxidation
plays important yet complex regulatory roles. Compared with the effects
of post-translational modifications such as phosphorylation, the effects
of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid
on protein structure and function remain relatively poorly characterized.
We present an analysis of the role of cysteine reactivity as a regulatory
factor in proteins, emphasizing the interplay between electrostatics
and redox potential as key determinants of the resulting oxidation
state. A review of current computational approaches suggests underdeveloped
areas of research for studying cysteine reactivity through molecular
simulations.
Collapse
Affiliation(s)
- Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Emma L Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| |
Collapse
|
13
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
14
|
Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol 2022; 54:102374. [PMID: 35738088 PMCID: PMC9233275 DOI: 10.1016/j.redox.2022.102374] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are malleable and undergo rapid remodeling in response to increased contractile activity (i.e., exercise) or prolonged periods of muscle inactivity (e.g., prolonged bedrest). Exploration of the cell signaling pathways regulating these skeletal muscle adaptations reveal that redox signaling pathways play a key role in the control of muscle remodeling during both exercise and prolonged muscle inactivity. In this regard, muscular exercise results in an acute increase in the production of reactive oxygen species (ROS) in the contracting fibers; however, this contraction-induced rise in ROS production rapidly declines when contractions cease. In contrast, prolonged muscle disuse results in a chronic elevation in ROS production within the inactive fibers. This difference in the temporal pattern of ROS production in muscle during exercise and muscle inactivity stimulates divergent cell-signaling pathways that activate both genomic and nongenomic mechanisms to promote muscle remodeling. This review examines the role that redox signaling plays in skeletal muscle adaptation in response to both prolonged muscle inactivity and endurance exercise training. We begin with a summary of the sites of ROS production in muscle fibers followed by a review of the cellular antioxidants that are responsible for regulation of ROS levels in the cell. We then discuss the specific redox-sensitive signaling pathways that promote skeletal muscle adaptation in response to both prolonged muscle inactivity and exercise. To stimulate future research, we close with a discussion of unanswered questions in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA.
| | - Matthew Schrager
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA
| |
Collapse
|
15
|
Zeng ZL, Yuan Q, Zu X, Liu J. Insights Into the Role of Mitochondria in Vascular Calcification. Front Cardiovasc Med 2022; 9:879752. [PMID: 35571215 PMCID: PMC9099050 DOI: 10.3389/fcvm.2022.879752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a growing burden in aging societies worldwide, and with a significant increase in all-cause mortality and atherosclerotic plaque rupture, it is frequently found in patients with aging, diabetes, atherosclerosis, or chronic kidney disease. However, the mechanism of VC is still not yet fully understood, and there are still no effective therapies for VC. Regarding energy metabolism factories, mitochondria play a crucial role in maintaining vascular physiology. Discoveries in past decades signifying the role of mitochondrial homeostasis in normal physiology and pathological conditions led to tremendous advances in the field of VC. Therapies targeting basic mitochondrial processes, such as energy metabolism, damage in mitochondrial DNA, or free-radical generation, hold great promise. The remarkably unexplored field of the mitochondrial process has the potential to shed light on several VC-related diseases. This review focuses on current knowledge of mitochondrial dysfunction, dynamics anomalies, oxidative stress, and how it may relate to VC onset and progression and discusses the main challenges and prerequisites for their therapeutic applications.
Collapse
Affiliation(s)
- ZL Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuyu Zu
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Jianghua Liu
| |
Collapse
|
16
|
Park K, Lim H, Kim J, Hwang Y, Lee YS, Bae SH, Kim H, Kim H, Kang SW, Kim JY, Lee MS. Lysosomal Ca2+-mediated TFEB activation modulates mitophagy and functional adaptation of pancreatic β-cells to metabolic stress. Nat Commun 2022; 13:1300. [PMID: 35288580 PMCID: PMC8921223 DOI: 10.1038/s41467-022-28874-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractAlthough autophagy is critical for pancreatic β-cell function, the role and mechanism of mitophagy in β-cells are unclear. We studied the role of lysosomal Ca2+ in TFEB activation by mitochondrial or metabolic stress and that of TFEB-mediated mitophagy in β-cell function. Mitochondrial or metabolic stress induced mitophagy through lysosomal Ca2+ release, increased cytosolic Ca2+ and TFEB activation. Lysosomal Ca2+ replenishment by ER- > lysosome Ca2+ refilling was essential for mitophagy. β-cell-specific Tfeb knockout (TfebΔβ-cell) abrogated high-fat diet (HFD)-induced mitophagy, accompanied by increased ROS and reduced mitochondrial cytochrome c oxidase activity or O2 consumption. TfebΔβ-cell mice showed aggravation of HFD-induced glucose intolerance and impaired insulin release. Metabolic or mitochondrial stress induced TFEB-dependent expression of mitophagy receptors including Ndp52 and Optn, contributing to the increased mitophagy. These results suggest crucial roles of lysosomal Ca2+ release coupled with ER- > lysosome Ca2+ refilling and TFEB activation in mitophagy and maintenance of pancreatic β-cell function during metabolic stress.
Collapse
|
17
|
Johnson J, Blackman R, Gross S, Soboloff J. Control of STIM and Orai function by post-translational modifications. Cell Calcium 2022; 103:102544. [PMID: 35151050 PMCID: PMC8960353 DOI: 10.1016/j.ceca.2022.102544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Store-operated calcium entry (SOCE) is mediated by the endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecules (STIM1 and STIM2) and the plasma membrane Orai (Orai1, Orai2, Orai3) Ca2+ channels. Although primarily regulated by ER Ca2+ content, there have been numerous studies over the last 15 years demonstrating that all 5 proteins are also regulated through post-translational modification (PTM). Focusing primarily on phosphorylation, glycosylation and redox modification, this review focuses on how PTMs modulate the key events in SOCE; Ca2+ sensing, STIM translocation, Orai interaction and/or Orai1 activation.
Collapse
|
18
|
Kim YE, Kim J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2021; 14:23002-23021. [PMID: 34962774 DOI: 10.1021/acsami.1c18261] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although reactive oxygen species (ROS) are essential for cellular processes, excessive ROS could be a major cause of various inflammatory diseases because of the oxidation of proteins, DNA, and membrane lipids. It has recently been suggested that the amount of ROS could thus be regulated to treat such physiological disorders. A ROS-scavenging hydrogel is a promising candidate for therapeutic applications because of its high biocompatibility, 3D matrix, and ability to be modified. Approaches to conferring antioxidant properties to normal hydrogels include embedding ROS-scavenging catalytic nanoparticles, modifying hydrogel polymer chains with ROS-adsorbing organic moieties, and incorporating ROS-labile linkers in polymer backbones. Such therapeutic hydrogels can be used for wound healing, cardiovascular diseases, bone repair, ocular diseases, and neurodegenerative disorders. ROS-scavenging hydrogels could eliminate oxidative stress, accelerate the regeneration process, and show synergetic effects with other drugs or therapeutic molecules. In this review, the mechanisms by which ROS are generated and scavenged in the body are outlined, and the effects of high levels of ROS and the resulting oxidative stress on inflammatory diseases are described. Next, the mechanism of ROS scavenging by hydrogels is explained depending on the ROS-scavenging agents embedded within the hydrogel. Lastly, the recent achievements in the development of ROS-scavenging hydrogels to treat various inflammation-associated diseases are presented.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and Neurodegenerative Diseases. Cells 2021; 10:cells10102518. [PMID: 34685498 PMCID: PMC8533710 DOI: 10.3390/cells10102518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Located at the level of the endoplasmic reticulum (ER) membrane, stromal interacting molecule 1 (STIM1) undergoes a complex conformational rearrangement after depletion of ER luminal Ca2+. Then, STIM1 translocates into discrete ER-plasma membrane (PM) junctions where it directly interacts with and activates plasma membrane Orai1 channels to refill ER with Ca2+. Furthermore, Ca2+ entry due to Orai1/STIM1 interaction may induce canonical transient receptor potential channel 1 (TRPC1) translocation to the plasma membrane, where it is activated by STIM1. All these events give rise to store-operated calcium entry (SOCE). Besides the main pathway underlying SOCE, which mainly involves Orai1 and TRPC1 activation, STIM1 modulates many other plasma membrane proteins in order to potentiate the influxof Ca2+. Furthermore, it is now clear that STIM1 may inhibit Ca2+ currents mediated by L-type Ca2+ channels. Interestingly, STIM1 also interacts with some intracellular channels and transporters, including nuclear and lysosomal ionic proteins, thus orchestrating organellar Ca2+ homeostasis. STIM1 and its partners/effectors are significantly modulated in diverse acute and chronic neurodegenerative conditions. This highlights the importance of further disclosing their cellular functions as they might represent promising molecular targets for neuroprotection.
Collapse
|
20
|
Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement. eNeuro 2021; 8:ENEURO.0152-21.2021. [PMID: 34518366 PMCID: PMC8482851 DOI: 10.1523/eneuro.0152-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Forming long-term memories is crucial for adaptive behavior and survival in changing environments. The molecular consolidation processes which underlie the formation of these long-term memories are dependent on protein synthesis in excitatory and SST-expressing neurons. A centrally important, parallel process to this involves the removal of the memory constraint quinone reductase 2 (QR2), which has been recently shown to enhance memory consolidation for novel experiences in the cortex and hippocampus, via redox modulation. However, it is unknown within which cell type in the cortex removal of QR2 occurs, nor how this affects neuronal function. Here, we use novel taste learning in the mouse anterior insular cortex (aIC) to show that similarly to mRNA translation, QR2 removal occurs in excitatory and SST-expressing neurons. Interestingly, both novel taste and QR2 inhibition reduce excitability specifically within SST, but not excitatory neurons. Furthermore, reducing QR2 expression in SST, but not in PV or excitatory neurons, is sufficient to enhance taste memory. Thus, QR2 mediated intrinsic property changes of SST interneurons in the aIC is a central removable factor to allow novel taste memory formation. This previously unknown involvement of QR2 and SST interneurons in resetting aIC activity hours following learning, describes a molecular mechanism to define cell circuits for novel information. Therefore, the QR2 pathway in SST interneurons provides a fresh new avenue by which to tackle age-related cognitive deficits, while shedding new light onto the functional machinations of long-term memory formation for novel information.
Collapse
|
21
|
Grijalva-Guiza RE, Jiménez-Garduño AM, Hernández LR. Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability. Molecules 2021; 26:3557. [PMID: 34200914 PMCID: PMC8230563 DOI: 10.3390/molecules26123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.
Collapse
Affiliation(s)
- Rosa Edith Grijalva-Guiza
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | | | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
22
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
23
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
24
|
Abstract
A number of diseases and conditions have been associated with prolonged or persistent exposure to non-physiological levels of reactive oxygen species (ROS). Similarly, ROS underproduction due to loss-of-function mutations in superoxide or hydrogen peroxide (H2O2)-generating enzymes is a risk factor or causative for certain diseases. However, ROS are required for basic cell functions; in particular the diffusible second messenger H2O2 that serves as signaling molecule in redox processes. This activity sets H2O2 apart from highly reactive oxygen radicals and influences the approach to drug discovery, clinical utility, and therapeutic intervention. Here we review the chemical and biological fundamentals of ROS with emphasis on H2O2 as a signaling conduit and initiator of redox relays and propose an integrated view of physiological versus non-physiological reactive species. Therapeutic interventions that target persistently altered ROS levels should include both selective inhibition of a specific source of primary ROS and careful consideration of a targeted pro-oxidant approach, an avenue that is still underdeveloped. Both strategies require attention to redox dynamics in complex cellular systems, integration of the overall spatiotemporal cellular environment, and target validation to yield effective and safe therapeutics. The only professional primary ROS producers are NADPH oxidases (NOX1-5, DUOX1-2). Many other enzymes, e.g., xanthine oxidase (XO), monoamine oxidases (MAO), lysyl oxidases (LO), lipoxygenase (LOX), and cyclooxygenase (COX), produce superoxide and H2O2 secondary to their primary metabolic function. Superoxide is too reactive to disseminate, but H2O2 is diffusible, only limited by adjacent PRDXs or GPXs, and can be apically secreted and imported into cells through aquaporin (AQP) channels. H2O2 redox signaling includes oxidation of the active site thiol in protein tyrosine phosphatases, which will inhibit their activity and thereby increase tyrosine phosphorylation on target proteins. Essential functions include the oxidative burst by NOX2 as antimicrobial innate immune response; gastrointestinal NOX1 and DUOX2 generating low H2O2 concentrations sufficient to trigger antivirulence mechanisms; and thyroidal DUOX2 essential for providing H2O2 reduced by TPO to oxidize iodide to an iodinating form which is then attached to tyrosyls in TG. Loss-of-function (LoF) variants in TPO or DUOX2 cause congenital hypothyroidism and LoF variants in the NOX2 complex chronic granulomatous disease.
Collapse
|
25
|
Abstract
One of the most fascinating aspects of mitochondria is their remarkable ability to accumulate and store large amounts of calcium in the presence of phosphate leading to mitochondrial calcification. In this paper, we briefly address the mechanisms that regulate mitochondrial calcium homeostasis followed by the extensive review on the formation and characterization of intramitochondrial calcium phosphate granules leading to mitochondrial calcification and its relevance to physiological and pathological calcifications of body tissues.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Gibhardt CS, Cappello S, Bhardwaj R, Schober R, Kirsch SA, Bonilla Del Rio Z, Gahbauer S, Bochicchio A, Sumanska M, Ickes C, Stejerean-Todoran I, Mitkovski M, Alansary D, Zhang X, Revazian A, Fahrner M, Lunz V, Frischauf I, Luo T, Ezerina D, Messens J, Belousov VV, Hoth M, Böckmann RA, Hediger MA, Schindl R, Bogeski I. Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry. Cell Rep 2020; 33:108292. [PMID: 33086068 DOI: 10.1016/j.celrep.2020.108292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.
Collapse
Affiliation(s)
- Christine Silvia Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabrina Cappello
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland
| | - Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria; Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Sonja Agnes Kirsch
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Zuriñe Bonilla Del Rio
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Stefan Gahbauer
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Bochicchio
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Magdalena Sumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christian Ickes
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dalia Alansary
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Xin Zhang
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Aram Revazian
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Marc Fahrner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Victoria Lunz
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Ting Luo
- VIB-VUB Center for Structural Biology, Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezerina
- VIB-VUB Center for Structural Biology, Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vsevolod Vadimovich Belousov
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany; Pirogov Russian National Research Medical University, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Rainer Arnold Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | | | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
27
|
Chen Z, Zheng P, Han S, Zhang J, Li Z, Zhou S, Jia G. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. NANOSCALE 2020; 12:20033-20046. [PMID: 32996981 DOI: 10.1039/d0nr05591c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dietary and environmental exposure to titanium dioxide nanoparticles (TiO2 NPs) can cause low-dose and long-term oral exposure in the population, posing a potential adverse health risk. Oxidative stress is considered to be the primary effect of TiO2 NPs through biological interaction. In the present study, we conducted an animal experiment to investigate the element distribution and oxidative stress in Sprague-Dawley rats after oral exposure to TiO2 NPs at daily doses of 0, 2, 10, and 50 mg kg-1 for 90 days. Through the detection of Ti element content in various tissues, limited absorption and distribution of TiO2 NPs in rats was found. However, orally ingested TiO2 NPs still induced tissue-specific oxidative stress and imbalance of elements. Liver tissue was the most sensitive tissue to TiO2 NP-induced oxidative stress, showing decreased reduced glutathione (GSH), increased oxidized glutathione (GSSG) and decreased ratio of GSH/GSSG as well as accumulation of lipid peroxidation (malondialdehyde, MDA) in liver tissues of rats after TiO2 NP exposure (10 and 50 mg kg-1). Meanwhile, oral exposure to TiO2 NPs caused a significant reduction in metal elements such as Mg, Ca and Co in various tissues. Through bioinformatics analysis, the tissue specificity and correlation between the imbalance of elements and oxidative stress were statistically confirmed, but it was difficult to understand the causal relationship. Disorder of element distribution and oxidative stress may lead to a series of subsequent adverse health effects and the tissue specificity would partly explain the target effects of TiO2 NPs.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Zejun Li
- National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
28
|
Li P, Cai X, Xiao N, Ma X, Zeng L, Zhang LH, Xie L, Du B. Sacha inchi ( Plukenetia volubilis L.) shell extract alleviates hypertension in association with the regulation of gut microbiota. Food Funct 2020; 11:8051-8067. [PMID: 32852030 DOI: 10.1039/d0fo01770a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysbiosis of gut microbiota has been implicated in the pathogenesis of hypertension. A definite relationship between gut microbiota and hypertension remains intriguing. Here, we show that the Sacha inchi (Plukenetia volubilis L.) shell extract (SISE) intervention significantly reduced systolic blood pressures in spontaneous hypertensive rats (SHR), attenuated the oxidative damage and modulated plasma calcium homeostasis and left ventricular hypertrophy in both SHR and high-salt diet Wistar-Kyoto rats. SISE reshaped the gut microbiome and metabolome, particularly by improving the prevalence of Roseburia and dihydrofolic acid levels in the gut. Transcriptome analyses showed that the protective effects of SISE were accompanied by the modulation of renal molecular pathways, beneficial for cardiovascular functions such as the L-type voltage-dependent calcium channel (LTCC), a key regulator of calcium signaling. Overall, the results have shown that dietary SISE can alleviate hypertension regulating the gut microbiota, and Ca2+ signaling might be a potential target for spontaneous hypertension.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaowei Ma
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liping Zeng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
| | - Lanhua Xie
- Expert Research Station of Bing Du, Pu'er City, Yunnan 665000, China.
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China and Expert Research Station of Bing Du, Pu'er City, Yunnan 665000, China.
| |
Collapse
|
29
|
The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020; 2020:5793817. [PMID: 32789026 PMCID: PMC7334772 DOI: 10.1155/2020/5793817] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.
Collapse
|
30
|
Muscarinic-Dependent miR-182 and QR2 Expression Regulation in the Anterior Insula Enables Novel Taste Learning. eNeuro 2020; 7:ENEURO.0067-20.2020. [PMID: 32217627 PMCID: PMC7266141 DOI: 10.1523/eneuro.0067-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
In a similar manner to other learning paradigms, intact muscarinic acetylcholine receptor (mAChR) neurotransmission or protein synthesis regulation in the anterior insular cortex (aIC) is necessary for appetitive taste learning. Here we describe a parallel local molecular pathway, where GABAA receptor control of mAChR activation causes upregulation of miRNA-182 and quinone reductase 2 (QR2) mRNA destabilization in the rodent aIC. Damage to long-term memory by prevention of this process, with the use of mAChR antagonist scopolamine before novel taste learning, can be rescued by local QR2 inhibition, demonstrating that QR2 acts downstream of local muscarinic activation. Furthermore, we prove for the first time the presence of endogenous QR2 cofactors in the brain, establishing QR2 as a functional reductase there. In turn, we show that QR2 activity causes the generation of reactive oxygen species, leading to modulation in Kv2.1 redox state. QR2 expression reduction therefore is a previously unaccounted mode of mAChR-mediated inflammation reduction, and thus adds QR2 to the cadre of redox modulators in the brain. The concomitant reduction in QR2 activity during memory consolidation suggests a complementary mechanism to the well established molecular processes of this phase, by which the cortex gleans important information from general sensory stimuli. This places QR2 as a promising new target to tackle neurodegenerative inflammation and the associated impediment of novel memory formation in diseases such as Alzheimer’s disease.
Collapse
|
31
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
32
|
Ghoneum A, Abdulfattah AY, Warren BO, Shu J, Said N. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics. Int J Mol Sci 2020; 21:E3100. [PMID: 32354000 PMCID: PMC7247161 DOI: 10.3390/ijms21093100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Bailey Olivia Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- The Third Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
33
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2301] [Impact Index Per Article: 575.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Rousset F, Nacher-Soler G, Coelho M, Ilmjarv S, Kokje VBC, Marteyn A, Cambet Y, Perny M, Roccio M, Jaquet V, Senn P, Krause KH. Redox activation of excitatory pathways in auditory neurons as mechanism of age-related hearing loss. Redox Biol 2020; 30:101434. [PMID: 32000019 PMCID: PMC7016250 DOI: 10.1016/j.redox.2020.101434] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing (ARHL) loss affects a large part of the human population with a major impact on our aging societies. Yet, underlying mechanisms are not understood, and no validated therapy or prevention exists. NADPH oxidases (NOX), are important sources of reactive oxygen species (ROS) in the cochlea and might therefore be involved in the pathogenesis of ARHL. Here we investigate ARHL in a mouse model. Wild type mice showed early loss of hearing and cochlear integrity, while animals deficient in the NOX subunit p22phox remained unaffected up to six months. Genes of the excitatory pathway were down-regulated in p22phox-deficient auditory neurons. Our results demonstrate that NOX activity leads to upregulation of genes of the excitatory pathway, to excitotoxic cochlear damage, and ultimately to ARHL. In the absence of functional NOXs, aging mice conserve hearing and cochlear morphology. Our study offers new insights into pathomechanisms and future therapeutic targets of ARHL. Mice devoid of NADPH oxidase (NOX) activity are protected from age-related hearing loss. Cochlear NOX expression shows a similar pattern in mouse and human. NOX3, the predominant NOX isoform in the cochlea, is mostly expressed in auditory neurons. NOX-deficient auditory neurons show decreased transcription of glutamatergic pathway and are protected from excitotoxicity. NOX-mediated gene regulation within auditory neurons contributes to age-related hearing loss.
Collapse
Affiliation(s)
- Francis Rousset
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| | - German Nacher-Soler
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Marta Coelho
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Sten Ilmjarv
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Vivianne Beatrix Christina Kokje
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Antoine Marteyn
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Yves Cambet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; READS Unit, Faculty of Medicine, University of Geneva, Switzerland
| | - Michael Perny
- Department of Biomedical Research (DBMR), University of Bern, Switzerland; Department of Otorhinolaryngology, Inselspital Bern, Switzerland
| | - Marta Roccio
- Department of Biomedical Research (DBMR), University of Bern, Switzerland; Department of Otorhinolaryngology, Inselspital Bern, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; READS Unit, Faculty of Medicine, University of Geneva, Switzerland
| | - Pascal Senn
- Hearing and Olfaction Research Laboratory, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Switzerland
| | - Karl Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
35
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
36
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Electrophilic Signaling: The Role of Reactive Carbonyl Compounds. BIOCHEMISTRY (MOSCOW) 2019; 84:S206-S224. [PMID: 31213203 DOI: 10.1134/s0006297919140128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive carbonyl compounds (RCC) are a group of compounds with clearly pronounced electrophilic properties that facilitate their spontaneous reactions with numerous nucleophilic reaction sites in proteins, lipids, and nucleic acids. The biological functions of RCC are determined by their concentration and governed by the hormesis (biphasic reaction) principle. At low concentrations, RCC act as signaling molecules activating defense systems against xenobiotics and oxidizers, and at high concentrations, they exhibit the cytotoxic effect. RCC participate in the formation of cell adaptive response via intracellular signaling pathways involving regulation of gene expression and cytoplasmic mechanisms related to the structure-functional rearrangements of proteins. Special attention in this review is given to the functioning of electrophiles as mediators of cell general adaption syndrome manifested as the biphasic response. The hypothesis is proposed that electrophilic signaling can be a proto-signaling system.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - K B Shumaev
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - A F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
37
|
Capera J, Serrano-Novillo C, Navarro-Pérez M, Cassinelli S, Felipe A. The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int J Mol Sci 2019; 20:ijms20030734. [PMID: 30744118 PMCID: PMC6386995 DOI: 10.3390/ijms20030734] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
Ion channels are transmembrane proteins that conduct specific ions across biological membranes. Ion channels are present at the onset of many cellular processes, and their malfunction triggers severe pathologies. Potassium channels (KChs) share a highly conserved signature that is necessary to conduct K⁺ through the pore region. To be functional, KChs require an exquisite regulation of their subcellular location and abundance. A wide repertoire of signatures facilitates the proper targeting of the channel, fine-tuning the balance that determines traffic and location. These signature motifs can be part of the secondary or tertiary structure of the protein and are spread throughout the entire sequence. Furthermore, the association of the pore-forming subunits with different ancillary proteins forms functional complexes. These partners can modulate traffic and activity by adding their own signatures as well as by exposing or masking the existing ones. Post-translational modifications (PTMs) add a further dimension to traffic regulation. Therefore, the fate of a KCh is not fully dependent on a gene sequence but on the balance of many other factors regulating traffic. In this review, we assemble recent evidence contributing to our understanding of the spatial expression of KChs in mammalian cells. We compile specific signatures, PTMs, and associations that govern the destination of a functional channel.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
38
|
Gibhardt CS, Vultur A, Bogeski I. Measuring Calcium and ROS by Genetically Encoded Protein Sensors and Fluorescent Dyes. Methods Mol Biol 2019; 1925:183-196. [PMID: 30674028 DOI: 10.1007/978-1-4939-9018-4_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative modifications of cellular building blocks such as proteins, lipids, and DNA have a major impact on cell behavior, fate, and clinical outcome. Reactive oxygen species (ROS) are important factors that influence these redox processes. Calcium ion (Ca2+) dynamics and signals are also essential regulators of key cellular processes. Therefore, the combined and precise monitoring of ROS and Ca2+ in single cells, with a high spatial and temporal resolution and in physiological environments, is essential to better understand their functional impact. Here, we describe protocols to detect one of the most prominent ROS (hydrogen peroxide, H2O2) using genetically encoded protein sensors and fluorescent dyes. We also provide guidelines on how to simultaneously detect Ca2+ and H2O2 and how to examine the influence of Ca2+ signals on cellular ROS production and vice versa.
Collapse
Affiliation(s)
- Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Adina Vultur
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
39
|
Development of a Gas-Tight Microfluidic System for Raman Sensing of Single Pulmonary Arterial Smooth Muscle Cells Under Normoxic/Hypoxic Conditions. SENSORS 2018; 18:s18103238. [PMID: 30261634 PMCID: PMC6210661 DOI: 10.3390/s18103238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Acute hypoxia changes the redox-state of pulmonary arterial smooth muscle cells (PASMCs). This might influence the activity of redox-sensitive voltage-gated K+-channels (Kv-channels) whose inhibition initiates hypoxic pulmonary vasoconstriction (HPV). However, the molecular mechanism of how hypoxia—or the subsequent change in the cellular redox-state—inhibits Kv-channels remains elusive. For this purpose, a new multifunctional gas-tight microfluidic system was developed enabling simultaneous single-cell Raman spectroscopic studies (to sense the redox-state under normoxic/hypoxic conditions) and patch-clamp experiments (to study the Kv-channel activity). The performance of the system was tested by optically recording the O2-content and taking Raman spectra on murine PASMCs under normoxic/hypoxic conditions or in the presence of H2O2. Oxygen sensing showed that hypoxic levels in the gas-tight microfluidic system were achieved faster, more stable and significantly lower compared to a conventional open system (1.6 ± 0.2%, respectively 6.7 ± 0.7%, n = 6, p < 0.001). Raman spectra revealed that the redistribution of biomarkers (cytochromes, FeS, myoglobin and NADH) under hypoxic/normoxic conditions were improved in the gas-tight microfluidic system (p-values from 0.00% to 16.30%) compared to the open system (p-value from 0.01% to 98.42%). In conclusion, the new redox sensor holds promise for future experiments that may elucidate the role of Kv-channels during HPV.
Collapse
|
40
|
Abstract
SIGNIFICANCE RNA is a heterogeneous class of molecules with the minority being protein coding. Noncoding RNAs (ncRNAs) are involved in translation and epigenetic control mechanisms of gene expression. Recent Advances: In recent years, the number of identified ncRNAs has dramatically increased and it is now clear that ncRNAs provide a complex layer of differential gene expression control. CRITICAL ISSUES NcRNAs exhibit interplay with redox regulation. Redox regulation alters the expression of ncRNAs; conversely, ncRNAs alter the expression of generator and effector systems of redox regulation in a complex manner, which will be the focus of this review article. FUTURE DIRECTIONS Understanding the role of ncRNA in redox control will lead to the development of new strategies to alter redox programs. Given that many ncRNAs (particularly microRNAs [miRNAs]) change large gene sets, these molecules are attractive drug candidates; already, now miRNAs can be targeted in patients. Therefore, the development of ncRNA therapies focusing on these molecules is an attractive future strategy. Antioxid. Redox Signal. 29, 793-812.
Collapse
Affiliation(s)
- Matthias S Leisegang
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
41
|
Bozem M, Knapp P, Mirčeski V, Slowik EJ, Bogeski I, Kappl R, Heinemann C, Hoth M. Electrochemical Quantification of Extracellular Local H 2O 2 Kinetics Originating from Single Cells. Antioxid Redox Signal 2018; 29:501-517. [PMID: 28314376 PMCID: PMC6056260 DOI: 10.1089/ars.2016.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS H2O2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local hydrogen peroxide concentrations ([H2O2]) originating from single cells is required. RESULTS Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H2O2] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H2O2] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H2O2] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H2O2 to an unstimulated MC, the local [H2O2] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H2O2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H2O2 separately. Local extracellular [H2O2] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 29, 501-517.
Collapse
Affiliation(s)
- Monika Bozem
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Phillip Knapp
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Valentin Mirčeski
- 2 Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Kiril i Metodij University , Skopje, Macedonia
| | - Ewa J Slowik
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Ivan Bogeski
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany .,3 Cardiovascular Physiology, University Medical Center, University of Göttingen , Göttingen, Germany
| | - Reinhard Kappl
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | | | - Markus Hoth
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| |
Collapse
|
42
|
Mirzakhalili E, Epureanu BI, Gourgou E. A mathematical and computational model of the calcium dynamics in Caenorhabditis elegans ASH sensory neuron. PLoS One 2018; 13:e0201302. [PMID: 30048509 PMCID: PMC6062085 DOI: 10.1371/journal.pone.0201302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
We propose a mathematical and computational model that captures the stimulus-generated Ca2+ transients in the C. elegans ASH sensory neuron. The rationale is to develop a tool that will enable a cross-talk between modeling and experiments, using modeling results to guide targeted experimental efforts. The model is built based on biophysical events and molecular cascades known to unfold as part of neurons' Ca2+ homeostasis mechanism, as well as on Ca2+ signaling events. The state of ion channels is described by their probability of being activated or inactivated, and the remaining molecular states are based on biochemically defined kinetic equations or known biochemical motifs. We estimate the parameters of the model using experimental data of hyperosmotic stimulus-evoked Ca2+ transients detected with a FRET sensor in young and aged worms, unstressed and exposed to oxidative stress. We use a hybrid optimization method composed of a multi-objective genetic algorithm and nonlinear least-squares to estimate the model parameters. We first obtain the model parameters for young unstressed worms. Next, we use these values of the parameters as a starting point to identify the model parameters for stressed and aged worms. We show that the model, in combination with experimental data, corroborates literature results. In addition, we demonstrate that our model can be used to predict ASH response to complex combinations of stimulation pulses. The proposed model includes for the first time the ASH Ca2+ dynamics observed during both "on" and "off" responses. This mathematical and computational effort is the first to propose a dynamic model of the Ca2+ transients' mechanism in C. elegans neurons, based on biochemical pathways of the cell's Ca2+ homeostasis machinery. We believe that the proposed model can be used to further elucidate the Ca2+ dynamics of a key C. elegans neuron, to guide future experiments on C. elegans neurobiology, and to pave the way for the development of more mathematical models for neuronal Ca2+ dynamics.
Collapse
Affiliation(s)
- Ehsan Mirzakhalili
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bogdan I. Epureanu
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eleni Gourgou
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Geriatrics, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lam A, Karekar P, Shah K, Hariharan G, Fleyshman M, Kaur H, Singh H, Gururaja Rao S. Drosophila Voltage-Gated Calcium Channel α1-Subunits Regulate Cardiac Function in the Aging Heart. Sci Rep 2018; 8:6910. [PMID: 29720608 PMCID: PMC5932002 DOI: 10.1038/s41598-018-25195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Ion channels maintain numerous physiological functions and regulate signaling pathways. They are the key targets for cellular reactive oxygen species (ROS), acting as signaling switches between ROS and ionic homeostasis. We have carried out a paraquat (PQ) screen in Drosophila to identify ion channels regulating the ROS handling and survival in Drosophila melanogaster. Our screen has revealed that α1-subunits (D-type, T-type, and cacophony) of voltage-gated calcium channels (VGCCs) handle PQ-mediated ROS stress differentially in a gender-based manner. Since ROS are also involved in determining the lifespan, we discovered that the absence of T-type and cacophony decreased the lifespan while the absence of D-type maintained a similar lifespan to that of the wild-type strain. VGCCs are also responsible for electrical signaling in cardiac cells. The cardiac function of each mutant was evaluated through optical coherence tomography (OCT), which revealed that α1-subunits of VGCCs are essential in maintaining cardiac rhythmicity and cardiac function in an age-dependent manner. Our results establish specific roles of α1-subunits of VGCCs in the functioning of the aging heart.
Collapse
Affiliation(s)
- Alexander Lam
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Priyanka Karekar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kajol Shah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Girija Hariharan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Michelle Fleyshman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Harmehak Kaur
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA. .,Division of Cardiology, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
44
|
Demidchik V. ROS-Activated Ion Channels in Plants: Biophysical Characteristics, Physiological Functions and Molecular Nature. Int J Mol Sci 2018; 19:E1263. [PMID: 29690632 PMCID: PMC5979493 DOI: 10.3390/ijms19041263] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, School of Food Science and Engineering, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030 Minsk, Belarus.
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376 St. Petersburg, Russia.
| |
Collapse
|
45
|
Abstract
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Collapse
Affiliation(s)
- Sue Goo Rhee
- 1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea
| | - Hyun Ae Woo
- 2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea
| | - Dongmin Kang
- 3 Department of Life Science, Ewha Womans University , Seoul, Korea
| |
Collapse
|
46
|
Zhang X, Gibhardt CS, Cappello S, Zimmermann KM, Vultur A, Bogeski I. Measuring Mitochondrial ROS in Mammalian Cells with a Genetically Encoded Protein Sensor. Bio Protoc 2018; 8:e2705. [PMID: 34179249 DOI: 10.21769/bioprotoc.2705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/02/2022] Open
Abstract
Reactive oxygen species (ROS) are not only known for their toxic effects on cells, but they also play an important role as second messengers. As such, they control a variety of cellular functions such as proliferation, metabolism, differentiation and apoptosis. Thus, ROS are involved in the regulation of multiple physiological and pathophysiological processes. It is now apparent that there are transient and local changes in ROS in the cell; in so-called 'microdomains' or in specific cellular compartments, which affect signaling events. These ROS hotspots need to be studied in more depth to understand their function and regulation. Therefore, it is necessary to identify and quantify redox signals in single cells with high spatial and temporal resolution. Genetically encoded fluorescence-based protein sensors provide such necessary tools to examine redox-signaling processes. A big advantage of these sensors is the possibility to target them specifically. Mitochondria are essential for energy metabolism and are one of the major sources of ROS in mammalian cells. Therefore, the evaluation of redox potential and ROS production in these organelles is of great interest. Herein, we provide a protocol for the real-time visualization of mitochondrial hydrogen peroxide (H2O2) using the H2O2-specific ratiometric sensor mitoHyPer in adherent mammalian cells.
Collapse
Affiliation(s)
- Xin Zhang
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, University of Göttingen, Göttingen, Germany.,Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Christine Silvia Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Sabrina Cappello
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, University of Göttingen, Göttingen, Germany
| | | | - Adina Vultur
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, University of Göttingen, Göttingen, Germany
| |
Collapse
|
47
|
Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, Breves SL, Zhang X, Tripathi A, Palaniappan P, Riitano MF, Worth AM, Seelam A, Carvalho E, Subbiah R, Jaña F, Soboloff J, Peng Y, Cheung JY, Joseph SK, Caplan J, Rajan S, Stathopulos PB, Madesh M. Mitochondrial Ca 2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. Mol Cell 2017; 65:1014-1028.e7. [PMID: 28262504 DOI: 10.1016/j.molcel.2017.01.032] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.
Collapse
Affiliation(s)
- Zhiwei Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Naveed Siddiqui
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Solomon Lynch
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Neeharika Nemani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah L Breves
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xueqian Zhang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aparna Tripathi
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Palaniappan Palaniappan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Massimo F Riitano
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alison M Worth
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajay Seelam
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Edmund Carvalho
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ramasamy Subbiah
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Fabián Jaña
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jonathan Soboloff
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Sudarsan Rajan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
48
|
Rodenbeck SD, Zarse CA, McKenney-Drake ML, Bruning RS, Sturek M, Chen NX, Moe SM. Intracellular calcium increases in vascular smooth muscle cells with progression of chronic kidney disease in a rat model. Nephrol Dial Transplant 2017; 32:450-458. [PMID: 27510531 PMCID: PMC5837609 DOI: 10.1093/ndt/gfw274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) exhibit phenotypic plasticity, promoting vascular calcification and increasing cardiovascular risk. Changes in VSMC intracellular calcium ([Ca 2+ ] i ) are a major determinant of plasticity, but little is known about changes in [Ca 2+ ] i in chronic kidney disease (CKD). We have previously demonstrated such plasticity in aortas from our rat model of CKD and therefore sought to examine changes in [Ca 2+ ] i during CKD progression. Materials and Methods We examined freshly isolated VSMCs from aortas of normal rats, Cy/+ rats (CKD) with early and advanced CKD, and advanced CKD rats treated without and with 3% calcium gluconate (CKD + Ca 2+ ) to lower parathyroid hormone (PTH) levels. [Ca 2+ ] i was measured with fura-2. Results Cy/+ rats developed progressive CKD, as assessed by plasma levels of blood urea nitrogen, calcium, phosphorus, parathyroid hormone and fibroblast growth factor 23. VSMCs isolated from rats with CKD demonstrated biphasic alterations in resting [Ca 2+ ] i : VSMCs from rats with early CKD exhibited reduced resting [Ca 2+ ] i , while VSMCs from rats with advanced CKD exhibited elevated resting [Ca 2+ ] i . Caffeine-induced sarcoplasmic reticulum (SR) Ca 2+ store release was modestly increased in early CKD and was more drastically increased in advanced CKD. The advanced CKD elevation in SR Ca 2+ store release was associated with a significant increase in the activity of the sarco-endoplasmic reticulum Ca 2+ ATPase (SERCA); however, SERCA2a protein expression was decreased in advanced CKD. Following SR Ca 2+ store release, recovery of [Ca 2+ ] i in the presence of caffeine and extracellular Ca 2+ was attenuated in VSMCs from rats with advanced CKD. This impairment, together with reductions in expression of the Na + /Ca 2+ exchanger, suggest a reduction in Ca 2+ extrusion capability. Finally, store-operated Ca 2+ entry (SOCE) was assessed following SR Ca 2+ store depletion. Ca 2+ entry during recovery from caffeine-induced SR Ca 2+ store release was elevated in advanced CKD, suggesting a role for exacerbated SOCE with progressing CKD. Conclusions With progressive CKD in the Cy/+ rat there is increased resting [Ca 2+ ] i in VSMCs due, in part, to increased SOCE and impaired calcium extrusion from the cell. Such changes may predispose VSMCs to phenotypic changes that are a prerequisite to calcification.
Collapse
Affiliation(s)
- Stacey Dineen Rodenbeck
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chad A. Zarse
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
| | - Mikaela L. McKenney-Drake
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca S. Bruning
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neal X. Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
| | - Sharon M. Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
49
|
Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, Hu X, Gao Q, Yang M, Lawas M, Delling M, Marugan J, Ferrer M, Xu H. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 2016; 7:12109. [PMID: 27357649 PMCID: PMC4931332 DOI: 10.1038/ncomms12109] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 05/24/2016] [Indexed: 01/03/2023] Open
Abstract
Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes ‘host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca2+-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca2+ release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell. Reactive oxygen species (ROS) damage cell components, necessitating their clearance through autophagy. Here, the authors show that ROS can induce autophagy by triggering TRPML1 to release Ca2+ from the lysosomal lumen, in turn activating the autophagy and lysosomal biogenesis regulator TFEB.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Xiping Cheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Lu Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Junsheng Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Raul Calvo
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Qiong Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Meimei Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Maria Lawas
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| | - Markus Delling
- The Department of Cardiology, Children's Hospital Boston, Enders 1350, 320 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institute of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
50
|
Saul S, Gibhardt CS, Schmidt B, Lis A, Pasieka B, Conrad D, Jung P, Gaupp R, Wonnenberg B, Diler E, Stanisz H, Vogt T, Schwarz EC, Bischoff M, Herrmann M, Tschernig T, Kappl R, Rieger H, Niemeyer BA, Bogeski I. A calcium-redox feedback loop controls human monocyte immune responses: The role of ORAI Ca2+ channels. Sci Signal 2016; 9:ra26. [PMID: 26956485 DOI: 10.1126/scisignal.aaf1639] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In phagocytes, pathogen recognition is followed by Ca(2+) mobilization and NADPH oxidase 2 (NOX2)-mediated "oxidative burst," which involves the rapid production of large amounts of reactive oxygen species (ROS). We showed that ORAI Ca(2+) channels control store-operated Ca(2+) entry, ROS production, and bacterial killing in primary human monocytes. ROS inactivate ORAI channels that lack an ORAI3 subunit. Staphylococcal infection of mice reduced the expression of the gene encoding the redox-sensitive Orai1 and increased the expression of the gene encoding the redox-insensitive Orai3 in the lungs or in bronchoalveolar lavages. A similar switch from ORAI1 to ORAI3 occurred in primary human monocytes exposed to bacterial peptides in culture. These alterations in ORAI1 and ORAI3 abundance shifted the channel assembly toward a more redox-insensitive configuration. Accordingly, silencing ORAI3 increased the redox sensitivity of the channel and enhanced oxidation-induced inhibition of NOX2. We generated a mathematical model that predicted additional features of the Ca(2+)-redox interplay. Our results identified the ORAI-NOX2 feedback loop as a determinant of monocyte immune responses.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Christine S Gibhardt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Barbara Schmidt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany. Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany. Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Bastian Pasieka
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - David Conrad
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Rosmarie Gaupp
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Bodo Wonnenberg
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ebru Diler
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Thomas Vogt
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Eva C Schwarz
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Thomas Tschernig
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ivan Bogeski
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany.
| |
Collapse
|