1
|
Cacace J, Luna-Marco C, Hermo-Argibay A, Pesantes-Somogyi C, Hernández-López OA, Pelechá-Salvador M, Bañuls C, Apostolova N, de Miguel-Rodríguez L, Morillas C, Rocha M, Rovira-Llopis S, Víctor VM. Poor glycaemic control in type 2 diabetes compromises leukocyte oxygen consumption rate, OXPHOS complex content and neutrophil-endothelial interactions. Redox Biol 2025; 81:103516. [PMID: 39986115 PMCID: PMC11893319 DOI: 10.1016/j.redox.2025.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025] Open
Abstract
The mitochondrial electron transport chain becomes overloaded in type 2 diabetes (T2D), which increases ROS (Reactive Oxygen Species) production and impairs mitochondrial function. Peripheral blood mononuclear cells (PBMCs) are critical players in the inflammatory process that underlies T2D. Poor glycaemic control in T2D is closely linked to the development of comorbidities. Our aim was to evaluate if glycaemic control in T2D has an impact on the oxygen consumption rates (OCR) of PBMC, OXPHOS complexes and inflammation. We recruited 181 subjects, consisting of 79 healthy controls, 64 patients with T2D and good glycaemic control (HbA1c<7 %), and 38 T2D patients with poor glycaemic control (HbA1c>7 %). We found a decrease in the basal OCR of PBMCs from patients with HbA1c>7 % with respect to controls (p < 0.05). Maximal OCR and spare respiratory capacity were lower in patients with HbA1c>7 % than in controls and patients with HbA1c<7 % (p < 0.05 for all). Mitochondrial ROS levels were higher in T2D patients, and particularly in the HbA1c > 7 group (p < 0.05 HbA1c<7 % vs control, p < 0.001 HbA1c>7 % vs control; p < 0.001 HbA1c > 7 vs HbA1c < 7). With respect to controls, poor glycaemic control in T2D patients was associated with a decrease in mitochondrial complex III and V (p < 0.05 and p < 0.01, respectively) and enhanced neutrophil-endothelial interactions (p < 0.001 vs controls). MPO levels were enhanced in T2D patients in general (p < 0.05 vs controls), and ICAM-1 and VCAM-1 were specifically increased in HbA1c > 7 patients vs controls (p < 0.01 and p < 0.001, respectively). Negative low-to-moderate correlations were found between HbA1c and basal respiration (r = -0.319, p < 0.05), maximal respiration (r = -0.350, p < 0.01) and spare respiratory capacity (r = -0.295, p < 0.05). Our findings suggest that poor glycaemic control during the progression of T2D compromises mitochondrial respiration and OXPHOS complex content in PBMCs. These alterations occur in parallel to enhanced neutrophil-endothelial interactions and adhesion molecule levels, leaving T2D patients with poor glycaemic control at a higher risk of developing vascular diseases.
Collapse
Affiliation(s)
- Julia Cacace
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Clara Luna-Marco
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Catherine Pesantes-Somogyi
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Omar A Hernández-López
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - María Pelechá-Salvador
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Nadezda Apostolova
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain; Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Luis de Miguel-Rodríguez
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| | - Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Víctor M Víctor
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| |
Collapse
|
2
|
Zhang C, Chang X, Zhao D, He Y, Dong G, Gao L. Decoding interaction between mitochondria and endoplasmic reticulum in ischemic myocardial injury: targeting natural medicines. Front Pharmacol 2025; 16:1536773. [PMID: 40093324 PMCID: PMC11906684 DOI: 10.3389/fphar.2025.1536773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Ischemic cardiomyopathy (ICM) is a special type or end stage of coronary heart disease or other irreversible ischemic myocardial injury. Inflammatory damage to coronary vessels is a crucial factor in causing stenosis or occlusion of coronary arteries, resulting in myocardial ischemia and hypoxia, but it is also an aspect of cardioprotection that is often overlooked. This review discusses the mechanisms of vascular injury during ICM, in which inflammation and oxidative stress interact and trigger cell death as the cause of coronary microvascular injury. Imbalances in endoplasmic reticulum function and mitochondrial quality control are important potential drivers of inflammation and oxidative stress. In addition, many studies have confirmed the therapeutic effects of Chinese herbal medicines and their natural monomeric components on vascular injuries. Their mitochondrial quality control and endoplasmic reticulum protection mechanisms as well as their role in combating improvements in vascular endothelial function and attenuating vascular injury are also summarized, with a perspective to provide a reference for pathologic understanding, drug research, and clinical application of ICM-associated coronary microvascular injury.
Collapse
Affiliation(s)
- Chuxin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangtong Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Iadicicco I, Donnarumma M, Galiero R, Acierno C, Sardu C, Russo V, Vetrano E, Conte C, Marfella R, Rinaldi L, Sasso FC. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel) 2025; 14:72. [PMID: 39857406 PMCID: PMC11759781 DOI: 10.3390/antiox14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly increases the risk of cardiovascular disease, which is the leading cause of morbidity and mortality among diabetic patients. A central pathophysiological mechanism linking T2DM to cardiovascular complications is oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Hyperglycemia in T2DM promotes oxidative stress through various pathways, including the formation of advanced glycation end products, the activation of protein kinase C, mitochondrial dysfunction, and the polyol pathway. These processes enhance ROS generation, leading to endothelial dysfunction, vascular inflammation, and the exacerbation of cardiovascular damage. Additionally, oxidative stress disrupts nitric oxide signaling, impairing vasodilation and promoting vasoconstriction, which contributes to vascular complications. This review explores the molecular mechanisms by which oxidative stress contributes to the pathogenesis of cardiovascular disease in T2DM. It also examines the potential of lifestyle modifications, such as dietary changes and physical activity, in reducing oxidative stress and mitigating cardiovascular risks in this high-risk population. Understanding these mechanisms is critical for developing targeted therapeutic strategies to improve cardiovascular outcomes in diabetic patients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Mariarosaria Donnarumma
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100 Potenza, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099 Milan, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
4
|
Xiang H, Lyu Q, Chen S, Ouyang J, Xiao D, Liu Q, Long H, Zheng X, Yang X, Lu H. PACS2/CPT1A/DHODH signaling promotes cardiomyocyte ferroptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:432. [PMID: 39633391 PMCID: PMC11619700 DOI: 10.1186/s12933-024-02514-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES The pathophysiology of diabetic cardiomyopathy (DCM) is a phenomenon of great interest, but its clinical problems have not yet been effectively addressed. Recently, the mechanism of ferroptosis in the pathophysiology of various diseases, including DCM, has attracted widespread attention. Here, we explored the role of PACS2 in ferroptosis in DCM through its downregulation of PACS2 expression. METHODS AND RESULTS Cardiomyocytes were treated with high glucose and palmitic acid (HGPA), and the detection of cardiomyocyte iron ions, lipid peroxides, and reactive oxygen species (ROS) revealed clear ferroptosis during these treatments. Silencing PACS2 downregulated CPT1A expression and upregulated DHODH expression significantly, reversing HGPA-induced ferroptosis. Further silencing of PACS2 with a CPT1A agonist exacerbated cardiomyocyte ferroptosis while promoting mitochondrial damage in cardiomyocytes. Using a mouse model of type 2 diabetes induced by streptozotocin (STZ) and a high-fat diet (HFD), we found that PACS2 deletion reversed these treatment-induced increases in cellular iron ions, impaired cardiac function, mitochondrial damage and ferroptosis in cardiac muscle tissues. CONCLUSIONS The PACS2/CPT1A/DHODH signalling pathway may be involved in ferroptosis in DCM by regulating cardiomyocyte mitochondrial function.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Signal Transduction
- Carnitine O-Palmitoyltransferase/metabolism
- Carnitine O-Palmitoyltransferase/genetics
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/enzymology
- Male
- Mice, Knockout
- Mitochondria, Heart/pathology
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/drug effects
- Reactive Oxygen Species/metabolism
- Palmitic Acid/pharmacology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Diet, High-Fat
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Lyu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Quanjun Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - HaiJiao Long
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinru Zheng
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| | - Hongwei Lu
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Luna-Marco C, Devos D, Cacace J, Fernandez-Reyes M, Díaz-Pozo P, Salazar JD, Solá E, Morillas C, Rocha M, Víctor VM, Rovira-Llopis S. Molecular circadian clock disruption in the leukocytes of individuals with type 2 diabetes and overweight, and its relationship with leukocyte-endothelial interactions. Diabetologia 2024; 67:2316-2328. [PMID: 38981930 PMCID: PMC11446997 DOI: 10.1007/s00125-024-06219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 07/11/2024]
Abstract
AIMS/HYPOTHESIS Alterations in circadian rhythms increase the likelihood of developing type 2 diabetes and CVD. Circadian rhythms are controlled by several core clock genes, which are expressed in nearly every cell, including immune cells. Immune cells are key players in the pathophysiology of type 2 diabetes, and participate in the atherosclerotic process that underlies cardiovascular risk in these patients. The role of the core clock in the leukocytes of people with type 2 diabetes and the inflammatory process associated with it are unknown. We aimed to evaluate whether the molecular clock system is impaired in the leukocytes of type 2 diabetes patients and to explore the mechanism by which this alteration leads to an increased cardiovascular risk in this population. METHODS This is an observational cross-sectional study performed in 25 participants with type 2 diabetes and 28 healthy control participants. Clinical and biochemical parameters were obtained. Peripheral blood leukocytes were isolated using magnetic bead technology. RNA and protein lysates were obtained to assess clock-related gene transcript and protein levels using real-time PCR and western blot, respectively. Luminex XMAP technology was used to assess levels of inflammatory markers. Leukocyte-endothelial interaction assays were performed by perfusing participants' leukocytes or THP-1 cells (with/without CLK8) over a HUVEC monolayer in a parallel flow chamber using a dynamic adhesion system. RESULTS Participants with type 2 diabetes showed increased BMAL1 and NR1D1 mRNA levels and decreased protein levels of circadian locomotor output cycles kaput (CLOCK), cryptochrome 1 (CRY1), phosphorylated basic helix-loop-helix ARNT like 1 (p-BMAL1) and period circadian protein homologue 2 (PER2). Correlation studies revealed that these alterations in clock proteins were negatively associated with glucose, HbA1c, insulin and HOMA-IR levels and leukocyte cell counts. The leukocyte rolling velocity was reduced and rolling flux and adhesion were enhanced in individuals with type 2 diabetes compared with healthy participants. Interestingly, inhibition of CLOCK/BMAL1 activity in leukocytes using the CLOCK inhibitor CLK8 mimicked the effects of type 2 diabetes on leukocyte-endothelial interactions. CONCLUSIONS/INTERPRETATION Our study demonstrates alterations in the molecular clock system in leukocytes of individuals with type 2 diabetes, manifested in increased mRNA levels and decreased protein levels of the core clock machinery. These alterations correlated with the impaired metabolic and proinflammatory profile of the participants with type 2 diabetes. Our findings support a causal role for decreased CLOCK/BMAL1 activity in the increased level of leukocyte-endothelial interactions. Overall, our data suggest that alterations in core clock proteins accelerate the inflammatory process, which may ultimately precipitate the onset of CVD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain
| | - Deédeni Devos
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Julia Cacace
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Meylin Fernandez-Reyes
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Juan D Salazar
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Eva Solá
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Víctor M Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.
- Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
- CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain.
| | - Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.
- Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| |
Collapse
|
6
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Carvalho C, Moreira PI. MitoTempo protects against nε-carboxymethyl lysine-induced mitochondrial dyshomeostasis and neuronal cells injury. Free Radic Biol Med 2024; 220:192-206. [PMID: 38734265 DOI: 10.1016/j.freeradbiomed.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca2+ levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca2+ dyshomeostasis. Moreover, CML increased the protein levels of β-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.
Collapse
Affiliation(s)
- Cristina Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), Portugal; Institute for Interdisciplinary Research (III), University of Coimbra, Portugal.
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Rose S, Landes RD, Vyas KK, Delhey L, Blossom S. Regulatory T cells and bioenergetics of peripheral blood mononuclear cells linked to pediatric obesity. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00040. [PMID: 38680993 PMCID: PMC11045398 DOI: 10.1097/in9.0000000000000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024]
Abstract
Background Obesity-associated inflammation drives the development of insulin resistance and type 2 diabetes. We sought to identify associations of circulating regulatory T cells (Treg) with the degree of obesity (eg, body mass index Z-score [BMIz]), insulin resistance (homeostatic model of insulin resistance [HOMA-IR]), and glycemic control (HbA1c) in children and adolescents. We further sought to examine associations among bioenergetics of peripheral blood mononuclear cells (PBMCs) and CD4 T cells and BMIz, HOMA-IR, and HbA1c. Methods A total of 65 children and adolescents between the ages 5 and 17 years were studied. HbA1c and fasting levels of plasma glucose and insulin were measured. We quantified circulating Tregs (CD3+CD4+CD25+CD127-FoxP3+) by flow cytometry, and measured mitochondrial respiration (oxygen consumption rate [OCR]) and glycolysis (extracellular acidification rate [ECAR]) in PBMCs and isolated CD4 T cells by Seahorse extracellular flux analysis. Results Tregs (% CD4) are negatively associated with BMIz but positively associated with HOMA-IR. In PBMCs, OCR/ECAR (a ratio of mitochondrial respiration to glycolysis) is positively associated with BMIz but negatively associated with HbA1c. Conclusions In children, Tregs decrease as body mass index increases; however, the metabolic stress and inflammation associated with insulin resistance may induce a compensatory increase in Tregs. The degree of obesity is also associated with a shift away from glycolysis in PBMCs but as HbA1c declines, metabolism shifts back toward glycolysis. Comprehensive metabolic assessment of the immune system is needed to better understand the implications immune cell metabolic alterations in the progression from a healthy insulin-sensitive state toward glucose intolerance in children. Trial registration This observational study was registered at the ClinicalTrials.gov (NCT03960333, https://clinicaltrials.gov/study/NCT03960333?term=NCT03960333&rank=1).
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Reid D. Landes
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kanan K. Vyas
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Leanna Delhey
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sarah Blossom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
9
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
10
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Song Y, Yu H, Sun Q, Pei F, Xia Q, Gao Z, Li X. Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease. Front Pharmacol 2023; 13:1035755. [PMID: 36686673 PMCID: PMC9853208 DOI: 10.3389/fphar.2022.1035755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial biogenesis and dynamics are associated with renal mitochondrial dysfunction and the pathophysiological development of diabetic kidney disease (DKD). Decreased p66Shc expression prevents DKD progression by significantly regulating mitochondrial function. Grape seed proanthocyanidin extract (GSPE) is a potential therapeutic medicine for multiple kinds of diseases. The effect of GSPE on the mitochondrial function and p66Shc in DKD has not been elucidated. Hence, we decided to identify p66Shc as a therapeutic target candidate to probe whether GSPE has a renal protective effect in DKD and explored the underlying mechanisms. METHODS In vivo, rats were intraperitoneally injected with streptozotocin (STZ) and treated with GSPE. Biochemical changes, mitochondrial morphology, the ultrastructure of nephrons, and protein expression of mitochondrial biogenesis (SIRT1, PGC-1α, NRF1, TFAM) and dynamics (DRP1, MFN1) were determined. In vitro, HK-2 cells were transfected with p66Shc and treated with GSPE to evaluate changes in cell apoptosis, reactive oxygen species (ROS), mitochondrial quality, the protein expression. RESULTS In vivo, GSPE significantly improved the renal function of rats, with less proteinuria and a lower apoptosis rate in the injured renal tissue. Besides, GSPE treatment increased SIRT1, PGC-1α, NRF1, TFAM, and MFN1 expression, decreased p66Shc and DRP1 expression. In vitro, overexpression of p66Shc decreased the resistance of HK-2 cells to high glucose toxicity, as shown by increased apoptosis and ROS production, decreased mitochondrial quality and mitochondrial biogenesis, and disturbed mitochondrial dynamic homeostasis, ultimately leading to mitochondrial dysfunction. While GSPE treatment reduced p66Shc expression and reversed these changes. CONCLUSION GSPE can maintain the balance between mitochondrial biogenesis and dynamics by negatively regulating p66Shc expression.
Collapse
Affiliation(s)
- Yiyun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiaoling Sun
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Pei
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Xia
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaoli Gao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Nephrology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China,*Correspondence: Zhaoli Gao, ; Xianhua Li,
| | - Xianhua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Zhaoli Gao, ; Xianhua Li,
| |
Collapse
|
12
|
Kuppuswami J, Senthilkumar GP. Nutri-stress, mitochondrial dysfunction, and insulin resistance-role of heat shock proteins. Cell Stress Chaperones 2023; 28:35-48. [PMID: 36441381 PMCID: PMC9877269 DOI: 10.1007/s12192-022-01314-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Excess nutrient flux into the cellular energy system results in a scenario of cellular metabolic stress in diseases involving insulin resistance, such as type 2 diabetes, referred to as nutri-stress and results in cellular bioenergetic imbalance, which leads to insulin resistance and disease. Under nutri-stress, the heat shock response system is compromised due to metabolic abnormalities that disturb energy homeostasis. Heat shock proteins (HSPs) are the chief protectors of intracellular homeostasis during stress. Heat shock response (HSR) impairment contributes to several metabolic pathways that aggravate chronic hyperglycaemia and insulin resistance, highlighting a central role in disease pathogenesis. This article discusses the role of nutri-stress-related molecular events in causing insulin resistance and the nature of the roles played by heat shock proteins in some of the crucial checkpoints of the molecular networks involved in insulin resistance. Ample evidence suggests that the heat shock machinery regulates critical pathways in mitochondrial function and energy metabolism and that cellular energy status highly influences it. Weakening of HSPs, therefore, leads to loss of their vital cytoprotective functions, propagating nutri-stress in the system. Further research into the mechanistic roles of HSPs in metabolic homeostasis will help widen our understanding of lifestyle diseases, their onset, and complications. These inducible proteins may be crucial to attenuating lifestyle risk factors and disease management.
Collapse
Affiliation(s)
- Jayashree Kuppuswami
- Department of Biochemistry, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | | |
Collapse
|
13
|
Vezza T, Díaz-Pozo P, Canet F, de Marañón AM, Abad-Jiménez Z, García-Gargallo C, Roldan I, Solá E, Bañuls C, López-Domènech S, Rocha M, Víctor VM. The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes. World J Mens Health 2022; 40:399-411. [PMID: 35021300 PMCID: PMC9253806 DOI: 10.5534/wjmh.210146] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dynamics, such as fusion and fission, play a critical role in maintaining cellular metabolic homeostasis. The molecular mechanisms underlying these processes include fusion proteins (Mitofusin 1 [MFN1], Mitofusin 2 [MFN2], and optic atrophy 1 [OPA1]) and fission mediators (mitochondrial fission 1 [FIS1] and dynamin-related protein 1 [DRP1]), which interact with each other to ensure mitochondrial quality control. Interestingly, defects in these proteins can lead to the loss of mitochondrial DNA (mtDNA) integrity, impairment of mitochondrial function, a severe alteration of mitochondrial morphology, and eventually cell death. Emerging evidence has revealed a causal relationship between dysregulation of mitochondria dynamics and age-associated type 2 diabetes, a metabolic disease whose rates have reached an alarming epidemic-like level with the majority of cases (59%) recorded in men aged 65 and over. In this sense, fragmentation of mitochondrial networks is often associated with defects in cellular energy production and increased apoptosis, leading, in turn, to excessive reactive oxygen species release, mitochondrial dysfunction, and metabolic alterations, which can ultimately contribute to β-cell dysfunction and insulin resistance. The present review discusses the processes of mitochondrial fusion and fission and their dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics in this complex metabolic disorder.
Collapse
Affiliation(s)
- Teresa Vezza
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Aranzazu M de Marañón
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia García-Gargallo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ildefonso Roldan
- Service of Cardiology, University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Eva Solá
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| | - Víctor M Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
14
|
Aloysius Dhivya M, Sulochana KN, Devi SRB. High glucose induced inflammation is inhibited by copper chelation via rescuing mitochondrial fusion protein 2 in retinal pigment epithelial cells. Cell Signal 2022; 92:110244. [PMID: 34999205 DOI: 10.1016/j.cellsig.2022.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Altered trace element homeostasis is associated with diabetic complications, and studies have shown elevated copper levels in the serum of individuals with type 1 & 2 diabetes. Copper chelation has been shown to be beneficial by preventing or reversing diabetic organ damage and developing as a new treatment strategy for treating diabetic complications. Diabetic retinopathy is the major vision-threatening complication of diabetes. Recent studies have reported copper to be elevated in the serum of patients with diabetic retinopathy. Here in this study, we attempt to unravel the role of copper chelator penicillamine in retinal pigment epithelial cells exposed to high glucose (HG) and copper as a model for diabetic retinopathy. We have found that high glucose by itself and along with copper alters the mitochondrial morphology, reduces the expression of the mitochondrial fusion protein 2 (MFN2), and induces endoplasmic reticulum (ER) stress and inflammation. Copper chelation with penicillamine reduced all these changes in mitochondria, thereby rescuing the cells from mitochondrial damage and inflammation.
Collapse
Affiliation(s)
- M Aloysius Dhivya
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India; Sastra University, Trichy - Tanjore Road, Thirumalaisamudram, Thanjavur, Tamil Nadu 613401, India
| | - K N Sulochana
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India
| | - S R Bharathi Devi
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India.
| |
Collapse
|
15
|
Finocchietto P, Perez H, Blanco G, Miksztowicz V, Marotte C, Morales C, Peralta J, Berg G, Poderoso C, Poderoso JJ, Carreras MC. Inhibition of Mitochondrial Fission by Drp-1 Blockade by Short-Term Leptin and Mdivi-1 Treatment Improves White Adipose Tissue Abnormalities in Obesity and Diabetes. Pharmacol Res 2021; 178:106028. [PMID: 34896541 DOI: 10.1016/j.phrs.2021.106028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes are chronic diseases characterized by insulin resistance, mitochondrial dysfunction and morphological abnormalities. OBJECTIVE We have investigated if dysregulation of mitochondrial dynamics and biogenesis is involved in an animal model of obesity and diabetes. METHODS The effect of short-term leptin and mdivi-1 -a selective inhibitor of Drp-1 fission-protein- treatment on mitochondrial dynamics and biogenesis was evaluated in epididymal white adipose tissue (WAT) from male ob/ob mice. RESULTS An increase in Drp-1 protein levels and a decrease in Mfn2 and OPA-1 protein expression were observed with enhanced and sustained mitochondrial fragmentation in ob/ob mice compared to wt C57BL/6 animals (p<0.05). The content of mitochondrial DNA and PGC-1α mRNA expression -both parameters of mitochondrial biogenesis- were reduced in ob/ob mice (p<0.05). Treatment with leptin and mdivi-1 significantly increased mitochondrial biogenesis, improved fusion-to-fission balance and attenuated mitochondrial dysfunction, thus inducing white-to-beige adipocyte transdifferentiation. Measurements of glucose and lipid oxidation in adipocytes revealed that both leptin and mdivi-1 increase substrates oxidation while in vivo determination of blood glucose concentration showed decreased levels by 50% in ob/ob mice, almost to the wt level. CONCLUSIONS Pharmacological targeting of Drp-1 fission protein may be a potential novel therapeutic tool for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- P Finocchietto
- Laboratorio de Metabolismo del Oxígeno INIGEM-UBA-CONICET, Buenos Aires, Argentina; Departamento de Medicina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - H Perez
- Laboratorio de Metabolismo del Oxígeno INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - G Blanco
- Laboratorio de Inmunotoxicología (LaITo), IDEHU-CONICET, Universidad de Buenos Aires, Argentina
| | - V Miksztowicz
- Facultad de Medicina, Pontificia Universidad Católica Argentina (UCA), Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina; Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Marotte
- Laboratorio de Metabolismo del Oxígeno INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - C Morales
- Departamento de Patología, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular, Universidad de Buenos Aires, Argentina
| | - J Peralta
- Laboratorio de Metabolismo del Oxígeno INIGEM-UBA-CONICET, Buenos Aires, Argentina; Departamento de Medicina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - G Berg
- Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Poderoso
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - J J Poderoso
- Laboratorio de Metabolismo del Oxígeno INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - M C Carreras
- Laboratorio de Metabolismo del Oxígeno INIGEM-UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
16
|
Huang TT, Sun WJ, Liu HY, Ma HL, Cui BX. p66Shc-mediated oxidative stress is involved in gestational diabetes mellitus. World J Diabetes 2021; 12:1894-1907. [PMID: 34888014 PMCID: PMC8613666 DOI: 10.4239/wjd.v12.i11.1894] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with a heightened level of oxidative stress, which is characterized by the overproduction of reactive oxygen species (ROS) from mitochondria. Previous studies showed that mitochondrial dysfunction is regulated by dynamin-related protein 1 (Drp1) and p66Shc in GDM.
AIM The aim was to investigate the expression of Drp1 and p66Shc and their possible mechanisms in the pathogenesis of GDM.
METHODS A total of 30 pregnant women, 15 with GDM and 15 without GDM, were enrolled. Peripheral blood mononuclear cells and placental tissue were collected. The human JEG3 trophoblast cell line was cultivated in 5.5 mmol/L or 30 mmol/L glucose and transfected with wild-type (wt)-p66Shc and p66Shc siRNA. P66Shc and Drp1 mRNA levels were detected by quantitative real-time polymerase chain reaction. The expression of p66Shc and Drp1 was assayed by immunohistochemistry and western blotting. ROS was assayed by dihydroethidium staining.
RESULTS The p66Shc mRNA level was increased in the serum (P < 0.01) and placentas (P < 0.01) of women with GDM, and the expression of Drp1 mRNA and protein were also increased in placentas (P < 0.05). In JEG3 cells treated with 30 mmol/L glucose, the mRNA and protein expression of p66Shc and Drp1 were increased at 24 h (both P < 0.05), 48 h (both P < 0.01) and 72 h (both P < 0.001). ROS expression was also increased. High levels of Drp1 and ROS expression were detected in JEG3 cells transfected with wt-p66Shc (P < 0.01), and low levels were detected in JEG3 cells transfected with p66Shc siRNA (P < 0.05).
CONCLUSION The upregulated expression of Drp1 and p66shc may contribute to the occurrence and development of GDM. Regulation of the mitochondrial fusion-fission balance could be a novel strategy for GDM treatment.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong Province, China
- Department of Obstetrics, Taian City Central Hospital, Taian 271000, Shandong Province, China
| | - Wen-Juan Sun
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong Province, China
| | - Hai-Ying Liu
- Department of Obstetrics and Gynecology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266000, Shandong Province, China
| | - Hong-Li Ma
- Department of Obstetrics, Taian City Central Hospital, Taian 271000, Shandong Province, China
| | - Bao-Xia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong Province, China
| |
Collapse
|
17
|
A Novel Microfluidic Device for the Neutrophil Functional Phenotype Analysis: Effects of Glucose and Its Derivatives AGEs. MICROMACHINES 2021; 12:mi12080944. [PMID: 34442566 PMCID: PMC8399494 DOI: 10.3390/mi12080944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022]
Abstract
Neutrophil dysfunction is closely related to the pathophysiology of patients with diabetes mellitus, but existing immunoassays are difficult to implement in clinical applications, and neutrophil’s chemotaxis as a functional biomarker for diabetes mellitus prognostic remains largely unexplored. Herein, a novel microfluidic device consisted of four independent test units with four cell docking structures was developed to study the neutrophil chemotaxis, which allowed multiple cell migration observations under a single field of view (FOV) and guaranteed more reliable results. In vitro studies, the chemotaxis of healthy neutrophils to N-Formyl-Met-Leu-Phe (fMLP) gradient (0, 10, 100, and 1000 nM) was concentration-dependent. The distinct promotion or suppression in the chemotaxis of metformin or pravastatin pretreated cells were observed after exposure to 100 nM fMLP gradient, indicating the feasibility and efficiency of this novel microfluidic device for clinically relevant evaluation of neutrophil functional phenotype. Further, the chemotaxis of neutrophils pretreated with 25, 50, or 70 mM of glucose was quantitatively lower than that of the control groups (i.e., 5 mM normal serum level). Neutrophils exposed to highly concentrated advanced glycation end products (AGEs) (0.2, 0.5, or 1.0 μM; 0.13 μM normal serum AGEs level), a product of prolonged hyperglycemia, showed that the higher the AGEs concentration was, the weaker the migration speed became. Specifically, neutrophils exposed to high concentrations of glucose or AGEs also showed a stronger drifting along with the flow, further demonstrating the change of neutrophil chemotaxis. Interestingly, adding the N-benzyl-4-chloro-N-cyclohexylbenzamide (FPS-ZM1) (i.e., high-affinity RAGE inhibitor) into the migration medium with AGEs could hinder the binding between AGEs and AGE receptor (RAGE) located on the neutrophil, thereby keeping the normal chemotaxis of neutrophils than the ones incubated with AGEs alone. These results revealed the negative effects of high concentrations of glucose and AGEs on the neutrophil chemotaxis, suggesting that patients with diabetes should manage serum AGEs and also pay attention to blood glucose indexes. Overall, this novel microfluidic device could significantly characterize the chemotaxis of neutrophils and have the potential to be further improved into a tool for risk stratification of diabetes mellitus.
Collapse
|
18
|
Chang X, Lochner A, Wang HH, Wang S, Zhu H, Ren J, Zhou H. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Am J Cancer Res 2021; 11:6766-6785. [PMID: 34093852 PMCID: PMC8171103 DOI: 10.7150/thno.60143] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer in all blood vessels to maintain the structural integrity and microcirculation function for coronary microvasculature. Impaired endothelial function is demonstrated in various cardiovascular diseases including myocardial infarction (MI), which is featured by reduced myocardial blood flow as a result of epicardial coronary obstruction, thrombogenesis, and inflammation. In this context, understanding the cellular and molecular mechanisms governing the function of coronary ECs is essential for the early diagnosis and optimal treatment of MI. Although ECs contain relatively fewer mitochondria compared with cardiomyocytes, they function as key sensors of environmental and cellular stress, in the regulation of EC viability, structural integrity and function. Mitochondrial quality control (MQC) machineries respond to a broad array of stress stimuli to regulate fission, fusion, mitophagy and biogenesis in mitochondria. Impaired MQC is a cardinal feature of EC injury and dysfunction. Hence, medications modulating MQC mechanisms are considered as promising novel therapeutic options in MI. Here in this review, we provide updated insights into the key role of MQC mechanisms in coronary ECs and microvascular dysfunction in MI. We also discussed the option of MQC as a novel therapeutic target to delay, reverse or repair coronary microvascular damage in MI. Contemporary available MQC-targeted therapies with potential clinical benefits to alleviate coronary microvascular injury during MI are also summarized.
Collapse
|
19
|
Post A, Groothof D, Schutten JC, Flores‐Guerrero JL, Swarte JC, Douwes RM, Kema IP, de Boer RA, Garcia E, Connelly MA, Wallimann T, Dullaart RPF, Franssen CFM, Bakker SJL. Plasma creatine and incident type 2 diabetes in a general population-based cohort: The PREVEND study. Clin Endocrinol (Oxf) 2021; 94:563-574. [PMID: 33348429 PMCID: PMC8048485 DOI: 10.1111/cen.14396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Type 2 diabetes is associated with both impaired insulin action at target tissues and impaired insulin secretion in pancreatic beta cells. Mitochondrial dysfunction may play a role in both insulin resistance and impaired insulin secretion. Plasma creatine has been proposed as a potential marker for mitochondrial dysfunction. We aimed to investigate the association between plasma creatine and incident type 2 diabetes. METHODS We measured fasting plasma creatine concentrations by nuclear magnetic resonance spectroscopy in participants of the general population-based PREVEND study. The study outcome was incident type 2 diabetes, defined as a fasting plasma glucose ≥7.0 mmol/L (126 mg/dl); a random sample plasma glucose ≥11.1 mmol/L (200 mg/dl); self-report of a physician diagnosis or the use of glucose-lowering medications based on a central pharmacy registration. Associations of plasma creatine with type 2 diabetes were quantified using Cox proportional hazards models and were adjusted for potential confounders. RESULTS We included 4735 participants aged 52 ± 11 years, of whom 49% were male. Mean plasma creatine concentrations were 36.7 ± 17.6 µmol/L, with lower concentrations in males than in females (30.4 ± 15.1 µmol/L vs. 42.7 ± 17.7 µmol/L; p for difference <.001). During 7.3 [6.2-7.7] years of follow-up, 235 (5.4%) participants developed type 2 diabetes. Higher plasma creatine concentrations were associated with an increased risk of incident type 2 diabetes (HR per SD change: 1.27 [95% CI: 1.11-1.44]; p < .001), independent of potential confounders. This association was strongly modified by sex (p interaction <.001). Higher plasma creatine was associated with an increased risk of incident type 2 diabetes in males (HR: 1.40 [1.17-1.67]; p < .001), but not in females (HR: 1.10 [0.90-1.34]; p = .37). CONCLUSION Fasting plasma creatine concentrations are lower in males than in females. Higher plasma creatine is associated with an increased risk of type 2 diabetes in males.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Dion Groothof
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Joëlle C. Schutten
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jose L. Flores‐Guerrero
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Casper Swarte
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rianne M. Douwes
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ido P. Kema
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (LabCorp)MorrisvilleNCUSA
| | - Marge A. Connelly
- Laboratory Corporation of America Holdings (LabCorp)MorrisvilleNCUSA
| | | | - Robin P. F. Dullaart
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Casper F. M. Franssen
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
20
|
Yang K, Bai Y, Yu N, Lu B, Han G, Yin C, Pang Z. Huidouba Improved Podocyte Injury by Down-Regulating Nox4 Expression in Rats With Diabetic Nephropathy. Front Pharmacol 2021; 11:587995. [PMID: 33390962 PMCID: PMC7774310 DOI: 10.3389/fphar.2020.587995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN), as the most common microvascular complication of diabetes mellitus (DM), has become one of the leading causes of end-stage renal disease (ESRD). Numerous studies have indicated that podocyte loss plays an important role in the development of DN and can even cause proteinuria in the early stage of DN. In the study, we found that Huidouba (HDB) significantly decreased the level of fasting blood glucose (FBG), the ratio of microalbumin to urine creatine (mAlb/Ucr), serum creatine (Scr), serum urea nitrogen (BUN), and malondialdehyde (MDA) in the kidney and downregulated the expression of Nox4 predominantly located in glomerular tissue while upregulating nephrin and WT1 expression in DN rats. In addition, HDB could also reduce podocyte damage and glomerular basement membrane (GBM) pathologic changes, as shown by transmission electron microscopy (TEM). In vitro study showed that HDB could inhibit high glucose (HG)-induced Reactive Oxygen Species (ROS) production and protect against podocyte apoptosis by downregulated Nox4 expression in podocytes. These results may provide a scientific basis for developing HDB as a potential folk medicine for the treatment of DN.
Collapse
Affiliation(s)
- KunBao Yang
- School of Pharmacy, Minzu University of China, Beijing, China.,Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Hebei, China
| | - YingHui Bai
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Ning Yu
- The Affiliated Hospital of Chengde Medical University, Hebei, China
| | - BiNan Lu
- School of Pharmacy, Minzu University of China, Beijing, China
| | - GuiYan Han
- The Affiliated Hospital of Chengde Medical University, Hebei, China
| | - ChangJiang Yin
- Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Hebei, China
| | - ZongRan Pang
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
21
|
Salvatore T, Pafundi PC, Galiero R, Rinaldi L, Caturano A, Vetrano E, Aprea C, Albanese G, Di Martino A, Ricozzi C, Imbriani S, Sasso FC. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020; 9:biomedicines9010003. [PMID: 33375185 PMCID: PMC7822116 DOI: 10.3390/biomedicines9010003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Concetta Aprea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
22
|
Li A, Gao M, Jiang W, Qin Y, Gong G. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 2020; 8:584800. [PMID: 33392184 PMCID: PMC7773778 DOI: 10.3389/fcell.2020.584800] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the powerhouse organelles of cells; they participate in ATP generation, calcium homeostasis, oxidative stress response, and apoptosis. Thus, maintenance of mitochondrial function is critical for cellular functions. As highly dynamic organelles, the function of mitochondria is dynamically regulated by their fusion and fission in many cell types, which regulate mitochondrial morphology, number, distribution, metabolism, and biogenesis in cells. Mature rod-shaped cardiomyocytes contain thousands of end-to-end contacted spheroid mitochondria. The movement of mitochondria in these cells is limited, which hinders the impetus for research into mitochondrial dynamics in adult cardiomyocytes. In this review, we discuss the most recent progress in mitochondrial dynamics in mature (adult) cardiomyocytes and the relationship thereof with heart diseases.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Rocha M, Apostolova N, Diaz-Rua R, Muntane J, Victor VM. Mitochondria and T2D: Role of Autophagy, ER Stress, and Inflammasome. Trends Endocrinol Metab 2020; 31:725-741. [PMID: 32265079 DOI: 10.1016/j.tem.2020.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) is one of the main current threats to human health. Both T2D and its numerous clinical complications are related to mitochondrial dysfunction and oxidative stress. Over the past decade, great progress has been made in extending our knowledge about the signaling events regulated by mitochondria. However, the links among mitochondrial impairment, oxidative stress, autophagy, endoplasmic reticulum (ER) stress, and activation of the inflammasome still need to be clarified. In light of this deficit, we aim to provide a review of the existing literature concerning the complicated crosstalk between mitochondrial impairment, autophagy, ER stress, and the inflammasome in the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | | | - Ruben Diaz-Rua
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntane
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Seville, Spain; Department of General Surgery, University Hospital 'Virgen del Rocío'/CSIC/University of Seville/IBiS/CSIC/University of Seville, Spain
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
24
|
Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 2020; 34:101517. [PMID: 32535544 PMCID: PMC7296337 DOI: 10.1016/j.redox.2020.101517] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a very prevalent, multisystemic, chronic metabolic disorder closely related to atherosclerosis and cardiovascular diseases. It is characterised by mitochondrial dysfunction and the presence of oxidative stress. Metformin is one of the safest and most effective anti-hyperglycaemic agents currently employed as first-line oral therapy for T2D. It has demonstrated additional beneficial effects, unrelated to its hypoglycaemic action, on weight loss and several diseases, such as cancer, cardiovascular disorders and metabolic diseases, including thyroid diseases. Despite the vast clinical experience gained over several decades of use, the mechanism of action of metformin is still not fully understood. This review provides an overview of the existing literature concerning the beneficial mitochondrial and vascular effects of metformin, which it exerts by diminishing oxidative stress and reducing leukocyte-endothelium interactions. Specifically, we describe the molecular mechanisms involved in metformin's effect on gluconeogenesis, its capacity to interfere with major metabolic pathways (AMPK and mTORC1), its action on mitochondria and its antioxidant effects. We also discuss potential targets for therapeutic intervention based on these molecular actions.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain; CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain.
| | - Francesca Iannantuoni
- Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Aleksandra Gruevska
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain
| | - Jordi Muntane
- Institute of Biomedicine of Seville (IBiS), University Hospital "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Milagros Rocha
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Victor M Victor
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
25
|
Peyravi A, Yazdanpanahi N, Nayeri H, Hosseini SA. The effect of endurance training with crocin consumption on the levels of MFN2 and DRP1 gene expression and glucose and insulin indices in the muscle tissue of diabetic rats. J Food Biochem 2019; 44:e13125. [PMID: 31849103 DOI: 10.1111/jfbc.13125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the effect of crocin consumption, high-intensity interval training (HIIT), and low-intensity continuous training (LICT) and their interactive effect on the gene expression of Mfn2 and Drp1 in the skeletal muscle and serum glucose and insulin indices in high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic rats. Fifty-six adult rats were divided into eight groups of seven subjects: crocin consumption, HIIT, LICT, HIIT with crocin, LICT with crocin, diabetic control, healthy control, and sham (placebo). At the end of the course (5 months), metabolic indices were measured. Moreover, the Mfn2 and Drp1 gene expression levels in all groups were measured using RT-PCR. The statistical analysis showed that in the exercise training (HIIT and LICT) and the crocin consumption groups, the glucose and insulin indices significantly improved (p = .005). Moreover, in these groups, the levels of gene expression of Mfn2 and Drp1 significantly increased and decreased, respectively (p = .001). Exercise training and crocin consumption appear to, either in combination or individually, have a beneficial effect on mitochondrial dynamics and diabetes by improving the mitochondrial fusion and fission indices (Mfn2 and Drp1), and by modifying the insulin resistance index and glucose homeostasis. PRACTICAL APPLICATIONS: Mfn2 and Drp1, as the main regulators of the mitochondrial fusion and fission, play an important role in maintaining mitochondrial dynamics and type 2 diabetes. Thus, the regulation of mitochondrial dynamics is an intricate process that retains the balance between mitochondrial fission and fusion, and any disturbance in this balance can lead to mitochondrial-associated diseases including insulin resistance and T2D. There is evidence that herbal antioxidants Including crocin and exercise training help improve the mitochondrial activity and insulin sensitivity in T2D. Considering the importance of the two Drp1 and Mfn1 genes in the mitochondrial dynamic pathway and coding the proteins that play a key role in relation to T2D, this study primarily examined the interactive effects of endurance training (HIIT and LICT) along with crocin consumption on the expression the genes mentioned above; the results obtained in this study can provide a new approach to the treatment of HFD + STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Abdolnabi Peyravi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Yazdanpanahi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hashem Nayeri
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Seyyed Ali Hosseini
- Department of Sport Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
26
|
Soares CD, Carlos R, Mota MVB, de Carvalho MGF, de Lima Morais TM, de Almeida OP, Altemani A. Bilateral multiple oncocytic cysts of the parotid gland in type 2 diabetes patients. Histopathology 2019; 76:613-624. [PMID: 31677302 DOI: 10.1111/his.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/27/2022]
Abstract
AIMS The hallmarks of type 2 diabetes (T2D) are hyperglycaemia and insulin resistance. These factors, at the cellular level, are associated with mitochondrial dysfunction and increased glucose uptake. Such events are poorly explored in the context of the salivary glands. In this study, we present a series of eight cases of a distinct salivary gland lesion characterised by multiple oncocytic cysts, and we provide new pathological insights regarding its pathogenesis. METHODS AND RESULTS Seven patients (87.5%) had confirmed T2D, and obesity was identified in five (62.5%) patients. Clinically, the patients showed bilateral parotid gland swelling with recurrent episodes of pain and enlargement. Imaging examination revealed multiple cystic lesions in both parotid glands. Microscopically, the parotid glands showed multiple cysts of different sizes, lined by oncocytic epithelial cells. Intraluminally, strongly eosinophilic glass-like crystalloid material was observed. Immunohistochemical studies were performed, and the most notable finding was glucose transporter 1 (GLUT1) overexpression in the oncocytic cysts which is not observed in any other oncocytic lesion of patients without T2D. In addition, high expressions of mitochondrial antigen, fission 1 protein and mitofusin-2 were observed in the oncocytic epithelium of the cysts. Furthermore, most of the oncocytic cysts showed a pattern of cytokeratin expression consistent with striated ducts. CONCLUSIONS These results strongly suggest that T2D is associated with alterations in GLUT1 expression in the cells of striated ducts with mitochondrial dysfunction, causing a hyperplastic process characterised by multiple oncocytic cysts. For this lesion, the designation of 'diabetes-associated-bilateral multiple oncocytic cysts of the parotid gland' is proposed.
Collapse
Affiliation(s)
- Ciro D Soares
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Roman Carlos
- Pathology Division, Centro Clínico de Cabeza y Cuello/Hospital Herrera Llerandi, Guatemala City, Guatemala
| | - Marcelo V B Mota
- Pathology Department, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria G F de Carvalho
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Thayná M de Lima Morais
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Oslei P de Almeida
- Oral Pathology Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Albina Altemani
- Pathology Department, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
27
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
28
|
Chang W, Xiao D, Ao X, Li M, Xu T, Wang J. Increased Dynamin‐Related Protein 1–Dependent Mitochondrial Fission Contributes to High‐Fat‐Diet‐Induced Cardiac Dysfunction and Insulin Resistance by Elevating Tafazzin in Mouse Hearts. Mol Nutr Food Res 2019; 63:e1801322. [DOI: 10.1002/mnfr.201801322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Wenguang Chang
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Dandan Xiao
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Xiang Ao
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Mengyang Li
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Tao Xu
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Jianxun Wang
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| |
Collapse
|
29
|
Widlansky ME, Hill RB. Mitochondrial regulation of diabetic vascular disease: an emerging opportunity. Transl Res 2018; 202:83-98. [PMID: 30144425 PMCID: PMC6218302 DOI: 10.1016/j.trsl.2018.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related vascular complication rates remain unacceptably high despite guideline-based medical therapies that are significantly more effective in individuals without diabetes. This critical gap represents an opportunity for researchers and clinicians to collaborate on targeting mechanisms and pathways that specifically contribute to vascular pathology in patients with diabetes mellitus. Dysfunctional mitochondria producing excessive mitochondrial reactive oxygen species (mtROS) play a proximal cell-signaling role in the development of vascular endothelial dysfunction in the setting of diabetes. Targeting the mechanisms of production of mtROS or mtROS themselves represents an attractive method to reduce the prevalence and severity of diabetic vascular disease. This review focuses on the role of mitochondria in the development of diabetic vascular disease and current developments in methods to improve mitochondrial health to improve vascular outcomes in patients with DM.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - R Blake Hill
- Department of Biochemisty, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
30
|
The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7514383. [PMID: 30363990 PMCID: PMC6186363 DOI: 10.1155/2018/7514383] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Background Mitochondrial dynamics (mtDYN) has been proposed as a bridge between mitochondrial dysfunction and insulin resistance (IR), which is involved in the pathogenesis of type 2 diabetes (T2D). Our previous study has identified that mitochondrial DNA (mtDNA) haplogroup B4 is a T2D-susceptible genotype. Using transmitochondrial cybrid model, we have confirmed that haplogroup B4 contributes to cellular IR as well as a profission mtDYN, which can be reversed by antioxidant treatment. However, the causal relationship between mtDYN and cellular IR pertaining to T2D-susceptible haplogroup B4 remains unanswered. Methods To dissect the mechanisms between mtDYN and IR, knockdown or overexpression of MFN1, MFN2, DRP1, and FIS1 was performed using cybrid B4. We then examined the mitochondrial network and mitochondrial oxidative stress (mtROS) as well as insulin signaling IRS-AKT pathway and glucose transporters (GLUT) translocation to plasma membrane stimulated by insulin. We employed Drp1 inhibitor, mdivi-1, to interfere with endogenous expression of fission to validate the pharmacological effects on IR. Results Overexpression of MFN1 or MFN2 increased mitochondrial network and reduced mtROS, while knockdown had an opposing effect. In contrast, overexpression of DRP1 or FIS1 decreased mitochondrial network and increased mtROS, while knockdown had an opposing effect. Concomitant with the enhanced mitochondrial network, activation of the IRS1-AKT pathway and GLUT translocation stimulated by insulin were improved. On the contrary, suppression of mitochondrial network caused a reduction of the IRS1-AKT pathway and GLUT translocation stimulated by insulin. Pharmacologically inhibiting mitochondrial fission by the Drp1 inhibitor, mdivi-1, also rescued mitochondrial network, reduced mtROS, and improved insulin signaling of diabetes-susceptible cybrid cells. Conclusion Our results discovered the causal role of mtDYN proteins in regulating IR resulted from diabetes-susceptible mitochondrial haplogroup. The existence of a bidirectional interaction between mtDYN and mtROS plays an important role. Direct intervention to reverse profission in mtDYN provides a novel therapeutic strategy for IR and T2D.
Collapse
|
31
|
Impact of Obesity and Hyperglycemia on Placental Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2378189. [PMID: 30186542 PMCID: PMC6112210 DOI: 10.1155/2018/2378189] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
A lipotoxic placental environment is recognized in maternal obesity, with increased inflammation and oxidative stress. These changes might alter mitochondrial function, with excessive production of reactive oxygen species, in a vicious cycle leading to placental dysfunction and impaired pregnancy outcomes. Here, we hypothesize that maternal pregestational body mass index (BMI) and glycemic levels can alter placental mitochondria. We measured mitochondrial DNA (mtDNA, real-time PCR) and morphology (electron microscopy) in placentas of forty-seven singleton pregnancies at elective cesarean section. Thirty-seven women were normoglycemic: twenty-one normal-weight women, NW, and sixteen obese women, OB/GDM(−). Ten obese women had gestational diabetes mellitus, OB/GDM(+). OB/GDM(−) presented higher mtDNA levels versus NW, suggesting increased mitochondrial biogenesis in the normoglycemic obese group. These mitochondria showed similar morphology to NW. On the contrary, in OB/GDM(+), mtDNA was not significantly increased versus NW. Nevertheless, mitochondria showed morphological abnormalities, indicating impaired functionality. The metabolic response of the placenta to impairment in obese pregnancies can possibly vary depending on several parameters, resulting in opposite strains acting when insulin resistance of GDM occurs in the obese environment, characterized by inflammation and oxidative stress. Therefore, mitochondrial alterations represent a feature of obese pregnancies with changes in placental energetics that possibly can affect pregnancy outcomes.
Collapse
|
32
|
FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2481-2494. [DOI: 10.1016/j.bbadis.2018.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 12/22/2022]
|
33
|
Diaz-Morales N, Rovira-Llopis S, Bañuls C, Lopez-Domenech S, Escribano-Lopez I, Veses S, Jover A, Rocha M, Hernandez-Mijares A, Victor VM. Does Metformin Protect Diabetic Patients from Oxidative Stress and Leukocyte-Endothelium Interactions? Antioxid Redox Signal 2017; 27:1439-1445. [PMID: 28467723 DOI: 10.1089/ars.2017.7122] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since metformin can exert beneficial vascular effects, we aimed at studying its effect on reactive oxygen species (ROS) production, antioxidant enzyme expression, levels of adhesion molecules, and leukocyte-endothelium interactions in the leukocytes from type 2 diabetic (T2D) patients. The study was carried out in 72 T2D patients (41 of whom were treated with metformin for at least 12 months at a dose of 1700 mg per day), and in 40 sex- and age-matched control subjects. Leukocytes from T2D patients exhibited enhanced levels of mitochondrial ROS and decreased mRNA levels of glutathione peroxidase 1 (gpx1) and sirtuin 3 (sirt3) with respect to controls, whereas metformin was shown to revert these effects. No changes were observed on total ROS production and the expression levels of superoxide dismutase 1 and catalase. Furthermore, increases in leukocyte-endothelial interactions and intercellular adhesion molecule-1 and P-selectin levels were found in T2D and were also restored in metformin-treated patients. Our findings raise the question of whether metformin could modulate the appearance of atherosclerosis in T2D patients and reduce vascular events by decreasing leukocyte oxidative stress through an increase in gpx1 and sirt3 expression, and undermining adhesion molecule levels and leukocyte-endothelium interactions. Antioxid. Redox Signal. 27, 1439-1445.
Collapse
Affiliation(s)
- Noelia Diaz-Morales
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Sandra Lopez-Domenech
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Irene Escribano-Lopez
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Silvia Veses
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ana Jover
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 2 CIBERehd-Department of Pharmacology, University of Valencia , Valencia, Spain
| | - Antonio Hernandez-Mijares
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 3 Department of Medicine, University of Valencia , Valencia, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 2 CIBERehd-Department of Pharmacology, University of Valencia , Valencia, Spain
- 4 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
34
|
Rovira-Llopis S, Bañuls C, de Marañon AM, Diaz-Morales N, Jover A, Garzon S, Rocha M, Victor VM, Hernandez-Mijares A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic Biol Med 2017; 108:155-162. [PMID: 28359952 DOI: 10.1016/j.freeradbiomed.2017.03.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/11/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Low testosterone levels in men are associated with type 2 diabetes and cardiovascular risk. However, the role of testosterone in mitochondrial function and leukocyte-endothelium interactions is unknown. Our aim was to evaluate the relationship between testosterone levels, metabolic parameters, oxidative stress, mitochondrial function, inflammation and leukocyte-endothelium interactions in type 2 diabetic patients. MATERIALS AND METHODS The study was performed in 280 male type 2 diabetic patients and 50 control subjects. Anthropometric and metabolic parameters, testosterone levels, reactive oxygen species (ROS) production, mitochondrial membrane potential, TNFα, adhesion molecules and leukocyte-endothelium cell interactions were evaluated. RESULTS Testosterone levels were lower in diabetic patients. Total and mitochondrial ROS were increased and mitochondrial membrane potential, SOD and GSR expression levels were reduced in diabetic patients. TNFα, ICAM-1 and VCAM-1 levels, leukocyte rolling flux and adhesion were all enhanced in diabetic patients, while rolling velocity was reduced. Testosterone levels correlated negatively with glucose, HOMA-IR, HbA1c, triglycerides, nonHDL-c, ApoB, hs-CRP and AIP, and positively with HDL-c and ApoA1. The multivariable regression model showed that HDL-c, HOMA-IR and age were independently associated with testosterone. Furthermore, testosterone levels correlated positively with membrane potential and rolling velocity and negatively with ROS production, VCAM-1, rolling flux and adhesion. CONCLUSIONS Our data highlight that low testosterone levels in diabetic men are related to impaired metabolic profile and mitochondrial function and enhanced inflammation and leukocyte-endothelium cell interaction, which leaves said patients at risk of cardiovascular events.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Aranzazu M de Marañon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Ana Jover
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Sandra Garzon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Victor M Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, Department of Pharmacology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| | - Antonio Hernandez-Mijares
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
35
|
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol 2017; 11:637-645. [PMID: 28131082 PMCID: PMC5284490 DOI: 10.1016/j.redox.2017.01.013] [Citation(s) in RCA: 445] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS) and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1), mitofusin-2 (MFN2) and optic atrophy (OPA-1), while fission is controlled by mitochondrial fission 1 (FIS1), dynamin-related protein 1 (DRP1) and mitochondrial fission factor (MFF). PARKIN and (PTEN)-induced putative kinase 1 (PINK1) participate in the process of mitophagy, for which mitochondrial fission is necessary. In this review, we discuss the molecular pathways of mitochondrial dynamics, their impairment under type 2 diabetes, and pharmaceutical approaches for targeting mitochondrial dynamics, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110 and 15-oxospiramilactone. Furthermore, we discuss the pathophysiological implications of impaired mitochondrial dynamics, especially in type 2 diabetes.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Antonio Hernandez-Mijares
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Victor M Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|