1
|
Taibl KR, Dunlop AL, Smith MR, Walker DI, Ryan PB, Panuwet P, Corwin EJ, Kannan K, Jones DP, Marsit CJ, Tan Y, Liang D, Eick SM, Barr DB. Association of per- and polyfluoroalkyl substances with the antioxidant bilirubin across pregnancy. Free Radic Biol Med 2024; 223:184-192. [PMID: 39097204 DOI: 10.1016/j.freeradbiomed.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND In mechanistic and preliminary human studies, prenatal exposure to per- and polyfluoroalkyl substances (PFAS) is associated with oxidative stress, a potential contributor to maternal liver disease. Bilirubin is an endogenous antioxidant abundant in the liver that may serve as a physiological modulator of oxidative stress in pregnant people. Hence, our objective was to estimate the association between repeated measures of PFAS and bilirubin during pregnancy. METHODS The study population included 332 participants in the Atlanta African American Maternal-Child Cohort between 2014 and 2020. Serum samples were collected up to two times (early pregnancy: 6-18 gestational weeks; late pregnancy: 21-36 gestational weeks) for the measurement of perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and total bilirubin. We analyzed single PFAS with linear mixed effect regression and a mixture of the four PFAS with quantile g-computation. Models were repeated with a multiplicative interaction term to explore effect modification by study visit. RESULTS Overall, PFHxS was positively associated with bilirubin (β = 0.08, 95 % CI = 0.01, 0.15). We also found during late pregnancy, there was a positive association of PFHxS and the PFAS mixture with bilirubin (β = 0.12, 95 % CI = 0.02, 0.22; ψ = 0.19, 95 % CI = 0.03, 0.34, respectively). Finally, study visit modified the PFOA-bilirubin association (interaction p-value = 0.09), which was greater during early pregnancy (β = 0.08, 95 % CI = 0.01, 0.15). CONCLUSION In a prospective cohort of pregnant African Americans, an increase in PFOA, PFHxS, and the PFAS mixture was associated with an increase in bilirubin. Our results suggest that, depending on pregnancy stage, prenatal PFAS exposure disrupts the maternal liver antioxidant capacity.
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Atlanta VA Healthcare System, Decatur, GA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth J Corwin
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, State University of New York at Albany, NY, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Jones DP. Redox organization of living systems. Free Radic Biol Med 2024; 217:179-189. [PMID: 38490457 PMCID: PMC11313653 DOI: 10.1016/j.freeradbiomed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Whitehead Biomedical Research Building, 615 Michael St, RM205P, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Piorczynski TB, Calixto J, Henry HC, England K, Cowley S, Hansen JM, Hill JT, Hansen JM. Valproic Acid Causes Redox-Regulated Post-Translational Protein Modifications That Are Dependent upon P19 Cellular Differentiation States. Antioxidants (Basel) 2024; 13:560. [PMID: 38790665 PMCID: PMC11117966 DOI: 10.3390/antiox13050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Valproic acid (VPA) is a common anti-epileptic drug and known neurodevelopmental toxicant. Although the exact mechanism of VPA toxicity remains unknown, recent findings show that VPA disrupts redox signaling in undifferentiated cells but has little effect on fully differentiated neurons. Redox imbalances often alter oxidative post-translational protein modifications and could affect embryogenesis if developmentally critical proteins are targeted. We hypothesize that VPA causes redox-sensitive post-translational protein modifications that are dependent upon cellular differentiation states. Undifferentiated P19 cells and P19-derived neurons were treated with VPA alone or pretreated with D3T, an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant pathway, prior to VPA exposure. Undifferentiated cells treated with VPA alone exhibited an oxidized glutathione redox couple and increased overall protein oxidation, whereas differentiated neurons were protected from protein oxidation via increased S-glutathionylation. Pretreatment with D3T prevented the effects of VPA exposure in undifferentiated cells. Taken together, our findings support redox-sensitive post-translational protein alterations in undifferentiated cells as a mechanism of VPA-induced developmental toxicity and propose NRF2 activation as a means to preserve proper neurogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jason M. Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA; (T.B.P.); (J.C.); (H.C.H.); (K.E.); (S.C.); (J.M.H.); (J.T.H.)
| |
Collapse
|
4
|
Hamre K, Zhang W, Austgulen MH, Mykkeltvedt E, Yin P, Berntssen M, Espe M, Berndt C. Systemic and strict regulation of the glutathione redox state in mitochondria and cytosol is needed for zebrafish ontogeny. Biochim Biophys Acta Gen Subj 2024:130603. [PMID: 38521470 DOI: 10.1016/j.bbagen.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. METHODS We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. RESULTS Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well. CONCLUSIONS Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. GENERAL SIGNIFICANCE Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
Collapse
Affiliation(s)
- Kristin Hamre
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway.
| | - Wuxiao Zhang
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway; College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Maren Hoff Austgulen
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Eva Mykkeltvedt
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Peng Yin
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Marc Berntssen
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Marit Espe
- Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-Universitaet, Duesseldorf, Germany.
| |
Collapse
|
5
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Ferber SG, Weller A, Soreq H. Boltzmann's Theorem Revisited: Inaccurate Time-to-Action Clocks in Affective Disorders. Curr Neuropharmacol 2024; 22:1762-1777. [PMID: 38500272 PMCID: PMC11284727 DOI: 10.2174/1570159x22666240315100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 03/20/2024] Open
Abstract
Timely goal-oriented behavior is essential for survival and is shaped by experience. In this paper, a multileveled approach was employed, ranging from the polymorphic level through thermodynamic molecular, cellular, intracellular, extracellular, non-neuronal organelles and electrophysiological waves, attesting for signal variability. By adopting Boltzmann's theorem as a thermodynamic conceptualization of brain work, we found deviations from excitation-inhibition balance and wave decoupling, leading to wider signal variability in affective disorders compared to healthy individuals. Recent evidence shows that the overriding on-off design of clock genes paces the accuracy of the multilevel parallel sequencing clocks and that the accuracy of the time-to-action is more crucial for healthy behavioral reactions than their rapidity or delays. In affective disorders, the multilevel clocks run free and lack accuracy of responsivity to environmentally triggered time-to-action as the clock genes are not able to rescue mitochondria organelles from oxidative stress to produce environmentally-triggered energy that is required for the accurate time-to-action and maintenance of the thermodynamic equilibrium. This maintenance, in turn, is dependent on clock gene transcription of electron transporters, leading to higher signal variability and less signal accuracy in affective disorders. From a Boltzmannian thermodynamic and energy-production perspective, the option of reversibility to a healthier time-toaction, reducing entropy is implied. We employed logic gates to show deviations from healthy levelwise communication and the reversed conditions through compensations implying the role of nonneural cells and the extracellular matrix in return to excitation-inhibition balance and accuracy in the time-to-action signaling.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Aron Weller
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
García-Montero C, Fraile-Martinez O, De Leon-Oliva D, Boaru DL, Garcia-Puente LM, De León-Luis JA, Bravo C, Diaz-Pedrero R, Lopez-Gonzalez L, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exploring the Role of Mediterranean and Westernized Diets and Their Main Nutrients in the Modulation of Oxidative Stress in the Placenta: A Narrative Review. Antioxidants (Basel) 2023; 12:1918. [PMID: 38001771 PMCID: PMC10669105 DOI: 10.3390/antiox12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is a major cellular event that occurs in the placenta, fulfilling critical physiological roles in non-pathological pregnancies. However, exacerbated oxidative stress is a pivotal feature of different obstetric complications, like pre-eclampsia, fetal growth restriction, and other diseases. Compelling evidence supports the relevant role of diet during pregnancy, with pleiotropic consequences for maternal well-being. The present review aims to examine the complex background between oxidative stress and placental development and function in physiological conditions, also intending to understand the relationship between different dietary patterns and the human placenta, particularly how this could influence oxidative stress processes. The effects of Westernized diets (WDs) and high-fat diets (HFDs) rich in ultra-processed foods and different additives are compared with healthy patterns such as a Mediterranean diet (MedDiet) abundant in omega 3 polyunsaturated fatty acids, monounsaturated fatty acids, polyphenols, dietary fiber, and vitamins. Although multiple studies have focused on the role of specific nutrients, mostly in animal models and in vitro, further observational and intervention studies focusing on the placental structure and function in women with different dietary patterns should be conducted to understand the precise influence of diet on this organ.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
8
|
Zhao J, Wang W, Zhang L, Zhang J, Sturmey R, Zhang J. Dynamic metabolism during early mammalian embryogenesis. Development 2023; 150:dev202148. [PMID: 37877936 DOI: 10.1242/dev.202148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Dynamic metabolism is exhibited by early mammalian embryos to support changing cell fates during development. It is widely acknowledged that metabolic pathways not only satisfy cellular energetic demands, but also play pivotal roles in the process of cell signalling, gene regulation, cell proliferation and differentiation. Recently, various new technological advances have been made in metabolomics and computational analysis, deepening our understanding of the crucial role of dynamic metabolism during early mammalian embryogenesis. In this Review, we summarize recent studies on oocyte and embryo metabolism and its regulation, with a particular focus on its association with key developmental events such as fertilization, zygote genome activation and cell fate determination. In addition, we discuss the mechanisms of certain metabolites that, in addition to serving as energy sources, contribute to epigenetic modifications.
Collapse
Affiliation(s)
- Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wenjie Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jia Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Roger Sturmey
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Lapehn S, Colacino JA, Harris C. Spatiotemporal protein dynamics during early organogenesis in mouse conceptuses treated with valproic acid. Neurotoxicol Teratol 2023; 99:107286. [PMID: 37442398 PMCID: PMC10697214 DOI: 10.1016/j.ntt.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Valproic acid (VPA) is an anti-epileptic medication that increases the risk of neural tube defect (NTD) outcomes in infants exposed during gestation. Previous studies into VPA's mechanism of action have focused on alterations in gene expression and metabolism but have failed to consider how exposure changes the abundance of critical developmental proteins over time. This study evaluates the effects of VPA on protein abundance in the developmentally distinct tissues of the mouse visceral yolk sac (VYS) and embryo proper (EMB) using mouse whole embryo culture. Embryos were exposed to 600 μM VPA at 2 h intervals over 10 h during early organogenesis with the aim of identifying protein pathways relevant to VPA's mechanism of action in failed NTC. Protein abundance was measured through tandem mass tag (TMT) labeling followed by liquid chromatography and mass spectrometry. Overall, there were over 1500 proteins with altered abundance after VPA exposure in the EMB or VYS with 428 of these proteins showing previous gene expression associations with VPA exposure. Limited overlap of significant proteins between tissues supported the conclusion of independent roles for the VYS and EMB in response to VPA. Pathway analysis of proteins with increased or decreased abundance identified multiple pathways with mechanistic relevance to NTC and embryonic development including convergent extension, Wnt Signaling/planar cell polarity, cellular migration, cellular proliferation, cell death, and cytoskeletal organization processes as targets of VPA. Clustering of co-regulated proteins to identify shared patterns of protein abundance over time highlighted 4 h and 6/10 h as periods of divergent protein abundance between control and VPA-treated samples in the VYS and EMB, respectively. Overall, this study demonstrated that VPA temporally alters protein content in critical developmental pathways in the VYS and the EMB during early organogenesis in mice.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States.
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Zaha I, Muresan M, Tulcan C, Huniadi A, Naghi P, Sandor M, Tripon R, Gaspar C, Klaudia-Melinda M, Sachelarie L, Stefan L. The Role of Oxidative Stress in Infertility. J Pers Med 2023; 13:1264. [PMID: 37623514 PMCID: PMC10455473 DOI: 10.3390/jpm13081264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Oxidative stress markers in the follicular fluid and serum of the patient with IVF results (number of fertilized oocytes, number of embryos, cumulative pregnancy rate) are important in establishing the causes of infertility. (2) Methods: 42 patients were enrolled in the study over the duration of 24 months and were divided into two groups: the study group divided into the female etiology for infertility as a tubal factor, diminished ovarian reserve, endometriosis, and unexplained infertility, and the control group consisting of the male factor, excluding the sperm donors and with no female factor cause. On the day of ovarian puncture in IVF, follicular fluid and serum were collected from the patients. (3) Results: Malondialdehyde from the follicular fluid was higher in the control group. The total antioxidant capacity in the follicular fluid is positively correlated with the pregnancy rate. There is no statistically significant difference in the oxidative stress markers from serum in both groups. (4) Conclusions: The capacity of the follicular fluid environment to contain the reactive oxygen species (ROS) leads to a higher pregnancy rate in the control group.
Collapse
Affiliation(s)
- Ioana Zaha
- Calla—Infertility Diagnostic and Treatment Center, Constantin A. Rosetti Street, 410103 Oradea, Romania; (I.Z.); (P.N.); (L.S.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.M.); (M.S.)
| | - Camelia Tulcan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I of Romania”, 300645 Timisoara, Romania; (C.T.); (R.T.); (C.G.)
- ULST Research Institute for Biosecurity and Bioengineering, 300645 Timisoara, Romania
| | - Anca Huniadi
- Calla—Infertility Diagnostic and Treatment Center, Constantin A. Rosetti Street, 410103 Oradea, Romania; (I.Z.); (P.N.); (L.S.)
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.M.); (M.S.)
- Pelican Clinical Hospital, Corneliu Coposu Street 2, 410450 Oradea, Romania
| | - Petronela Naghi
- Calla—Infertility Diagnostic and Treatment Center, Constantin A. Rosetti Street, 410103 Oradea, Romania; (I.Z.); (P.N.); (L.S.)
| | - Mircea Sandor
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.M.); (M.S.)
| | - Roberta Tripon
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I of Romania”, 300645 Timisoara, Romania; (C.T.); (R.T.); (C.G.)
- ULST Research Institute for Biosecurity and Bioengineering, 300645 Timisoara, Romania
| | - Cristina Gaspar
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I of Romania”, 300645 Timisoara, Romania; (C.T.); (R.T.); (C.G.)
- ULST Research Institute for Biosecurity and Bioengineering, 300645 Timisoara, Romania
| | - Major Klaudia-Melinda
- Szabolcs-Szatmar Bereg County Hospital and University Centre, Jose Andras Hospital, 4400 Nyireghyhaza, Hungary;
| | - Liliana Sachelarie
- Department of Prelinical Discipline, Apollonia University, 700511 Iasi, Romania
| | - Liana Stefan
- Calla—Infertility Diagnostic and Treatment Center, Constantin A. Rosetti Street, 410103 Oradea, Romania; (I.Z.); (P.N.); (L.S.)
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.M.); (M.S.)
| |
Collapse
|
11
|
Davies BM, Katayama JK, Monsivais JE, Adams JR, Dilts ME, Eberting AL, Hansen JM. Real-time analysis of dynamic compartmentalized GSH redox shifts and H 2O 2 availability in undifferentiated and differentiated cells. Biochim Biophys Acta Gen Subj 2023; 1867:130321. [PMID: 36870547 DOI: 10.1016/j.bbagen.2023.130321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Glutathione (GSH) is the most abundant, small biothiol antioxidant. GSH redox state (Eh) supports developmental processes, yet with disrupted GSH Eh, poor developmental outcomes may occur. The role of subcellular, compartmentalized redox environments in the context of redox regulation of differentiation is not well understood. Here, using the P19 neurogenesis model of cellular differentiation, kinetics of subcellular H2O2 availability and GSH Eh were evaluated following oxidant exposure. METHODS Stably transfected P19 cell lines expressing H2O2 availability or GSH Eh sensors, Orp1-roGFP or Grx1-roGFP, respectively, targeted to the cytosol, mitochondria, or nucleus were used. Dynamic, compartmentalized changes in H2O2 availability and GSH Eh were measured via spectrophotometric and confocal microscopy over 120 min following treatment with H2O2 (100 μM) in both differentiated and undifferentiated cells. RESULTS Generally, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH Eh disruption than differentiated neurons. In treated undifferentiated cells, H2O2 availability was similar in all compartments. Interestingly, in treated undifferentiated cells, mitochondrial GSH Eh was most affected in both the initial oxidation and the rebound kinetics compared to other compartments. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. CONCLUSIONS Disruption of redox-sensitive developmental pathways is likely stage specific, where cells that are less differentiated and/or are actively differentiating are most affected. GENERAL SIGNIFICANCE Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected by chemicals that induce Nrf2. This may preserve developmental programs and diminish the potential for poor developmental outcomes.
Collapse
Affiliation(s)
- Brandon M Davies
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jenna K Katayama
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua E Monsivais
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - James R Adams
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Miriam E Dilts
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Arielle L Eberting
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jason M Hansen
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
12
|
Feng Z, Wang T, Sun Y, Chen S, Hao H, Du W, Zou H, Yu D, Zhu H, Pang Y. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114747. [PMID: 36907095 DOI: 10.1016/j.ecoenv.2023.114747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sulforaphane (SFN), a bioactive phytocompound extracted from cruciferous plants, has received increasing attention due to its vital cytoprotective role in eliminating oxidative free radical through activation of nuclear factor erythroid 2-related factor (Nrf2)-mediated signal transduction pathway. This study aims at a better insight into the protective benefit of SFN in attenuating paraquat (PQ)-caused impairment in bovine in vitro-matured oocytes and the possible mechanisms involved therein. Results showed that addition of 1 μM SFN during oocyte maturation obtained higher proportions of matured oocytes and in vitro-fertilized embryos. SFN application attenuated the toxicological effects of PQ on bovine oocytes, as manifested by enhanced extending capability of cumulus cell and increased extrusion proportion of first polar body. Following incubation with SFN, oocytes exposed to PQ exhibited reduced intracellular ROS and lipid accumulation levels, and elevated T-SOD and GSH contents. SFN also effectively inhibited PQ-mediated increase in BAX and CASPASE-3 protein expressions. Besides, SFN promoted the transcription of NRF2 and its downstream antioxidative-related genes GCLC, GCLM, HO-1, NQO-1, and TXN1 in a PQ-exposed environment, indicating that SFN prevents PQ-caused cytotoxicity through activation of Nrf2 signal transduction pathway. The mechanisms underlying the role of SFN against PQ-induced injury included the inhibition of TXNIP protein and restoration of the global O-GlcNAc level. Collectively, these findings provide novel evidence for the protective role of SFN in alleviating PQ-caused injury, and suggest that SFN application may be an efficacious intervention strategy against PQ cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Reproductive Medicine Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Yawen Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Siying Chen
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Wilson PW, Cho C, Allsing N, Khanum S, Bose P, Grubschmidt A, Sant KE. Tris(4-chlorophenyl)methane and tris(4-chlorophenyl)methanol disrupt pancreatic organogenesis and gene expression in zebrafish embryos. Birth Defects Res 2023; 115:458-473. [PMID: 36470842 DOI: 10.1002/bdr2.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Tris(4-chlorophenyl) methane (TCPM) and tris(4-chlorophenyl)methanol (TCPMOH) are anthropogenic environmental contaminants believed to be manufacturing byproducts of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) due to environmental co-occurrence. TCPM and TCPMOH are persistent, bioaccumulate in the environment, and are detected in human breast milk and adipose tissues. DDT exposures have been previously shown to disrupt insulin signaling and glucoregulation, increasing risk for diabetes. We have previously shown that embryonic exposures organochlorines such as polychlorinated biphenyls disrupted pancreatic development and early embryonic glucoregulatory networks. Here, we determined the impacts of the similar compounds TCPM and TCPMOH on zebrafish pancreatic growth and gene expression following developmental exposures. METHODS Zebrafish embryos were exposed to 50 nM TCPM or TCPMOH beginning at 24 hr postfertilization (hpf) and exposures were refreshed daily. At 96 hpf, pancreatic growth and islet area were directly visualized in Tg(ptf1a::GFP) and Tg(insulin::GFP) embryos, respectively, using microscopy. Gene expression was assessed at 100 hpf with RNA sequencing. RESULTS Islet and total pancreas area were reduced by 20.8% and 13% in embryos exposed to 50 nM TCPMOH compared to controls. TCPM did not induce significant morphological changes to the developing pancreas, indicating TCPMOH, but not TCPM, impairs pancreatic development despite similarity in molecular responses. Transcriptomic responses to TCPM and TCPMOH were correlated (R2 = .903), and pathway analysis found downregulation of processes including retinol metabolism, circadian rhythm, and steroid biosynthesis. CONCLUSION Overall, our data suggest that TCPM and TCPMOH may be hazardous to embryonic growth and development.
Collapse
Affiliation(s)
- Peyton W Wilson
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Christine Cho
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Nicholas Allsing
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Saleha Khanum
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Pria Bose
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Ava Grubschmidt
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, California, USA
| |
Collapse
|
14
|
When to Transfer Embryos if There Is Only 1 or 2? Life (Basel) 2023; 13:life13020417. [PMID: 36836773 PMCID: PMC9964900 DOI: 10.3390/life13020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The latest reports suggest that it is better to transfer embryos to the uterus on day five of preimplantation development compared to other days of development, but it is not clear if this stands when there are only one-two embryos obtained in the cycle. Therefore, to address this issue, we performed a retrospective study of such cycles. Our study included all of the stimulated IVF/ICSI cycles performed at our institution in the period between 1 January 2004 and 31 December 2018 in which one-two embryos were obtained in the IVF/ICSI cycle and met our inclusion criteria, and we compared the data between day three and day five embryo transfer (ET). The analysis revealed that the day three ET group of patients was significantly older (p < 0.001), were administered a significantly higher dose of gonadotrophins (p = 0.015), and retrieved a lower mean number of aspirated oocytes per cycle (p < 0.001) and lower mean number of embryos (p < 0.001). The birth rate per ET was significantly higher in the day five ET group (p = 0.045) and further analysis indicated that this could be due the trend observed in a group of patients under 36 years old, while in older patients there was no such difference. To conclude, our retrospective study indicates that it might be better to perform ET on day five instead of day three when there are only one-two embryos obtained in the cycle, but probably only when patients are under 36 years old.
Collapse
|
15
|
Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid Redox Signal 2022; 37:887-912. [PMID: 35102747 DOI: 10.1089/ars.2021.0280] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Oxygen is indispensable for aerobic life, but its utilization exposes cells and tissues to oxidative stress; thus, tight regulation of cellular, tissue, and systemic oxygen concentrations is crucial. Here, we review the current understanding of how the human organism (mal-)adapts to low (hypoxia) and high (hyperoxia) oxygen levels and how these adaptations may be harnessed as therapeutic or performance enhancing strategies at the systemic level. Recent Advances: Hyperbaric oxygen therapy is already a cornerstone of modern medicine, and the application of mild hypoxia, that is, hypoxia conditioning (HC), to strengthen the resilience of organs or the whole body to severe hypoxic insults is an important preparation for high-altitude sojourns or to protect the cardiovascular system from hypoxic/ischemic damage. Many other applications of adaptations to hypo- and/or hyperoxia are only just emerging. HC-sometimes in combination with hyperoxic interventions-is gaining traction for the treatment of chronic diseases, including numerous neurological disorders, and for performance enhancement. Critical Issues: The dose- and intensity-dependent effects of varying oxygen concentrations render hypoxia- and/or hyperoxia-based interventions potentially highly beneficial, yet hazardous, although the risks versus benefits are as yet ill-defined. Future Directions: The field of low and high oxygen conditioning is expanding rapidly, and novel applications are increasingly recognized, for example, the modulation of aging processes, mood disorders, or metabolic diseases. To advance hypoxia/hyperoxia conditioning to clinical applications, more research on the effects of the intensity, duration, and frequency of altered oxygen concentrations, as well as on individual vulnerabilities to such interventions, is paramount. Antioxid. Redox Signal. 37, 887-912.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Grégoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Parenti M, Schmidt RJ, Ozonoff S, Shin HM, Tancredi DJ, Krakowiak P, Hertz-Picciotto I, Walker CK, Slupsky CM. Maternal Serum and Placental Metabolomes in Association with Prenatal Phthalate Exposure and Neurodevelopmental Outcomes in the MARBLES Cohort. Metabolites 2022; 12:829. [PMID: 36144233 PMCID: PMC9500898 DOI: 10.3390/metabo12090829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/16/2023] Open
Abstract
Prenatal exposure to phthalates, a family of endocrine-disrupting plasticizers, is associated with disruption of maternal metabolism and impaired neurodevelopment. We investigated associations between prenatal phthalate exposure and alterations of both the maternal third trimester serum metabolome and the placental metabolome at birth, and associations of these with child neurodevelopmental outcomes using data and samples from the Markers of Autism Risk in Babies Learning Early Signs (MARBLES) cohort. The third trimester serum (n = 106) and placental (n = 132) metabolomes were investigated using 1H nuclear magnetic resonance spectroscopy. Children were assessed clinically for autism spectrum disorder (ASD) and cognitive development. Although none of the urinary phthalate metabolite concentrations were associated with maternal serum metabolites after adjustment for covariates, mixture analysis using quantile g-computation revealed alterations in placental metabolites with increasing concentrations of phthalate metabolites that included reduced concentrations of 2-hydoxybutyrate, carnitine, O-acetylcarnitine, glucitol, and N-acetylneuraminate. Child neurodevelopmental outcome was not associated with the third trimester serum metabolome, but it was correlated with the placental metabolome in male children only. Maternal phthalate exposure during pregnancy is associated with differences in the placental metabolome at delivery, and the placental metabolome is associated with neurodevelopmental outcomes in males in a cohort with high familial ASD risk.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Sally Ozonoff
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Daniel J. Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95616, USA
| | - Paula Krakowiak
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Cheryl K. Walker
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Obstetrics & Gynecology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Zhang Y, Qiao X, Liu L, Han W, Liu Q, Wang Y, Xie T, Tang Y, Wang T, Meng J, Ye A, He S, Chen R, Chen C. Long noncoding RNA MAGI2-AS3 regulates the H2O2 level and cell senescence via HSPA8. Redox Biol 2022; 54:102383. [PMID: 35797800 PMCID: PMC9287730 DOI: 10.1016/j.redox.2022.102383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihui Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wensheng Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiheng Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiepeng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunmin He
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Solmonson A, Faubert B, Gu W, Rao A, Cowdin MA, Menendez-Montes I, Kelekar S, Rogers TJ, Pan C, Guevara G, Tarangelo A, Zacharias LG, Martin-Sandoval MS, Do D, Pachnis P, Dumesnil D, Mathews TP, Tasdogan A, Pham A, Cai L, Zhao Z, Ni M, Cleaver O, Sadek HA, Morrison SJ, DeBerardinis RJ. Compartmentalized metabolism supports midgestation mammalian development. Nature 2022; 604:349-353. [PMID: 35388219 PMCID: PMC9007737 DOI: 10.1038/s41586-022-04557-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.
Collapse
Affiliation(s)
- Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aparna Rao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mitzy A Cowdin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas J Rogers
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gerardo Guevara
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amy Tarangelo
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Panayotis Pachnis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dennis Dumesnil
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alpaslan Tasdogan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - An Pham
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A Sadek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean J Morrison
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Agarwal A, Maldonado Rosas I, Anagnostopoulou C, Cannarella R, Boitrelle F, Munoz LV, Finelli R, Durairajanayagam D, Henkel R, Saleh R. Oxidative Stress and Assisted Reproduction: A Comprehensive Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment. Antioxidants (Basel) 2022; 11:antiox11030477. [PMID: 35326126 PMCID: PMC8944628 DOI: 10.3390/antiox11030477] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) due to an imbalance between reactive oxygen species (ROS) and antioxidants has been established as an important factor that can negatively affect the outcomes of assisted reproductive techniques (ARTs). Excess ROS exert their pathological effects through damage to cellular lipids, organelles, and DNA, alteration of enzymatic function, and apoptosis. ROS can be produced intracellularly, from immature sperm, oocytes, and embryos. Additionally, several external factors may induce high ROS production in the ART setup, including atmospheric oxygen, CO2 incubators, consumables, visible light, temperature, humidity, volatile organic compounds, and culture media additives. Pathological amounts of ROS can also be generated during the cryopreservation-thawing process of gametes or embryos. Generally, these factors can act at any stage during ART, from gamete preparation to embryo development, till the blastocyst stage. In this review, we discuss the in vitro conditions and environmental factors responsible for the induction of OS in an ART setting. In addition, we describe the effects of OS on gametes and embryos. Furthermore, we highlight strategies to ameliorate the impact of OS during the whole human embryo culture period, from gametes to blastocyst stage.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
- Correspondence:
| | | | | | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, 78300 Poissy, France;
- Department BREED, UVSQ, INRAE, Paris Saclay University, 78350 Jouy-en-Josas, France
| | - Lina Villar Munoz
- Citmer Reproductive Medicine, IVF LAB, Mexico City 11520, Mexico; (I.M.R.); (L.V.M.)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
| | - Damayanthi Durairajanayagam
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia;
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (R.F.); (R.H.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa
- LogixX Pharma, Theale RG7 4AB, UK
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt;
- Ajyal IVF Center, Ajyal Hospital, Sohag 82524, Egypt
| |
Collapse
|
20
|
Chen PH, Tjong WY, Yang HC, Liu HY, Stern A, Chiu DTY. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis. Int J Mol Sci 2022; 23:ijms23042017. [PMID: 35216131 PMCID: PMC8878822 DOI: 10.3390/ijms23042017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Normal embryogenesis requires complex regulation and precision, which depends on multiple mechanistic details. Defective embryogenesis can occur by various mechanisms. Maintaining redox homeostasis is of importance during embryogenesis. NADPH, as produced from the action of glucose-6-phosphate dehydrogenase (G6PD), has an important role in redox homeostasis, serving as a cofactor for glutathione reductase in the recycling of glutathione from oxidized glutathione and for NADPH oxidases and nitric oxide synthases in the generation of reactive oxygen (ROS) and nitrogen species (RNS). Oxidative stress differentially influences cell fate and embryogenesis. While low levels of stress (eustress) by ROS and RNS promote cell growth and differentiation, supra-physiological concentrations of ROS and RNS can lead to cell demise and embryonic lethality. G6PD-deficient cells and organisms have been used as models in embryogenesis for determining the role of redox signaling in regulating cell proliferation, differentiation and migration. Embryogenesis is also modulated by anti-oxidant enzymes, transcription factors, microRNAs, growth factors and signaling pathways, which are dependent on redox regulation. Crosstalk among transcription factors, microRNAs and redox signaling is essential for embryogenesis.
Collapse
Affiliation(s)
- Po-Hsiang Chen
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Wen-Ye Tjong
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
- Correspondence: ; Tel.: +886-3-6108175; Fax: +886-3-6102327
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Daniel Tsun-Yee Chiu
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
| |
Collapse
|
21
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Henkel R. Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility Volume II - Conclusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:333-340. [PMID: 36472831 DOI: 10.1007/978-3-031-12966-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a globally under-recognized public health problem significantly impacting individual health and socioeconomics affecting millions of couples. The reasons for infertility are manifold and not only include many couples decision to postpone having children but also diseases (e.g., diabetes, infections, or varicocele), lifestyle (e.g., obesity), and environmental factors (e.g., bisphenol A, DTT or dioxin). In the pathology of many causes of infertility, oxidative stress plays a significant role as reactive oxygen species (ROS) exert significant detrimental effects. On the other hand, a small amount of ROS is essential to trigger physiological events such as capacitation. Therefore, a fine balance between oxidation and reduction has to be maintained. Apart from treating the underlying disease or correcting the cause of the infertility, oxidative stress can be treated by antioxidant supplementation. Since plants and their extracts contain numerous phytochemicals which exhibit antioxidant activity, many people tend to use herbal products. Alternatively, isolated antioxidants such as vitamin C or E are also used. However, when using purified antioxidants, it is essential that the redox balance is maintained to avoid a "reductive stress" situation, which is as harmful as oxidative stress.
Collapse
Affiliation(s)
- Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK. .,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa. .,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA. .,LogixX Pharma, Theale, Reading, UK.
| |
Collapse
|
23
|
Impact of Oxidative Stress on Embryogenesis and Fetal Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:221-241. [PMID: 36472825 DOI: 10.1007/978-3-031-12966-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple cellular processes are regulated by oxygen radicals or reactive oxygen species (ROS) where they play crucial roles as primary or secondary messengers, particularly during cell proliferation, differentiation, and apoptosis. Embryogenesis and organogenesis encompass all these processes; therefore, their role during these crucial life events cannot be ignored, more so when there is an imbalance in redox homeostasis. Perturbed redox homeostasis is responsible for damaging the biomolecules such as lipids, proteins, and nucleic acids resulting in leaky membrane, altered protein, enzyme function, and DNA damage which have adverse impact on the embryo and fetal development. In this article, we attempt to summarize the available data in literature for an in-depth understanding of redox regulation during development that may help in optimizing the pregnancy outcome both under natural and assisted conditions.
Collapse
|
24
|
Hansen JM, Lucas SM, Ramos CD, Green EJ, Nuttall DJ, Clark DS, Marchant ED, Hancock CR, Piorczynski TB. Valproic acid promotes SOD2 acetylation: A potential mechanism of valproic acid-induced oxidative stress in developing systems. Free Radic Res 2021; 55:1130-1144. [PMID: 34895005 DOI: 10.1080/10715762.2021.2017913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Valproic acid (VPA) is an antiepileptic, bipolar and migraine medication, which is associated with embryonic dysmorphology, more specifically neural tube defects (NTDs), if taken while pregnant. One mechanism by which VPA may cause NTDs is through oxidative stress that cause disruption of cell signaling. However, mechanisms of VPA-induced oxidative stress are not fully understood. Since VPA is a deacetylase inhibitor, we propose that VPA promotes mitochondrial superoxide dismutase-2 (SOD2) acetylation, decreasing SOD2 activity and increasing oxidant levels. Using the pluripotent embryonal carcinoma cell line, P19, VPA effects were evaluated in undifferentiated and neurodifferentiated cells. VPA treatments increased oxidant levels, oxidized the glutathione (GSH)/glutathione disulfide (GSSG) redox couple, and decreased total SOD and SOD2 activity in undifferentiated P19 cells but not in differentiated P19 cells. VPA caused a specific increase in mitochondrial oxidants in undifferentiated P19 cells, VPA did not alter respirometry measurements. Immunoblot analyses demonstrated that VPA increased acetylation of SOD2 at lysine68 (AcK68 SOD2) in undifferentiated P19 cells but not in differentiated P19 cells. Pretreatments with the Nrf2 inducer, dithiol-3-thione (D3T), in undifferentiated P19 cells prevented increased oxidant levels, GSH/GSSG redox oxidation and restored total SOD and SOD2 activity, correlating with a decrease in AcK68 SOD2 levels. In embryos, VPA decreased total SOD and SOD2 activity and increased levels of AcK68 SOD2, and D3T pretreatments prevented VPA effects, increasing total SOD and SOD2 activity and lowering levels of AcK68 SOD2. These data demonstrate a potential, contributing oxidizing mechanism by which VPA incites teratogenesis in developing systems. Moreover, these data also suggest that Nrf2 interventions may serve as a means to protect developmental signaling and inhibit VPA-induced malformations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erik D Marchant
- Department of Nutrition, Dietetics and Food Science, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| | - Chad R Hancock
- Department of Nutrition, Dietetics and Food Science, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| | | |
Collapse
|
25
|
NRF2 activation protects against valproic acid-induced disruption of neurogenesis in P19 cells. Differentiation 2021; 123:18-29. [PMID: 34902770 DOI: 10.1016/j.diff.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a commonly prescribed antiepileptic drug that causes fetal valproate syndrome (FVS) in developing embryos exposed to it. Symptoms of FVS include neural tube defects (NTDs), musculoskeletal abnormalities, and neurodevelopmental difficulties. One proposed mechanism of VPA-induced developmental toxicity is via oxidative stress, defined as the disruption of redox-sensitive cell signaling. We propose that redox imbalances caused by VPA exposure result in improper cellular differentiation that may contribute to FVS. In undifferentiated P19 mouse embryonal carcinoma cells treated with VPA, glutathione disulfide (GSSG) concentrations were higher and the glutathione (GSH)/GSSG redox potential (Eh) was more oxidizing compared to vehicle-treated control cells, both of which are indications of potential intracellular oxidative stress. Interestingly, VPA had no effect on GSH or GSSG levels in differentiated P19 neurons. Undifferentiated cells pretreated with 3H-1,2-dithiole-3-thione (D3T), an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant response that combats cellular redox disruption, were protected from VPA-induced alterations to the GSH/GSSG system. To assess differential periods of susceptibility, P19 cells were exposed to VPA at various time points during their neuronal differentiation. Cells exposed to VPA early in the differentiation process did not undergo normal neurogenesis as measured by POU domain, class 5, transcription factor 1 (OCT4) and tubulin beta-3 chain (βIII-tubulin), markers of cell stemness and neuronal differentiation, respectively. Neurogenesis was improved with D3T pretreatments prior to VPA exposure. Furthermore, differentiating P19 cells treated with VPA exhibited increased protein oxidation that was diminished with D3T pretreatment. These findings demonstrate that VPA inhibits neurogenesis and propose NRF2-mediated redox homeostasis as a means to promote normal neuronal differentiation, thereby potentially decreasing the prevalence of FVS outcomes.
Collapse
|
26
|
Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2021; 195:114-134. [PMID: 34890732 DOI: 10.1016/j.biochi.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/31/2022]
Abstract
The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.
Collapse
|
27
|
Noble A, Guille M, Cobley JN. ALISA: A microplate assay to measure protein thiol redox state. Free Radic Biol Med 2021; 174:272-280. [PMID: 34418513 DOI: 10.1016/j.freeradbiomed.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Measuring protein thiol redox state is central to understanding redox signalling in health and disease. The lack of a microplate assay to measure target specific protein thiol redox state rate-limits progress on accessibility grounds: redox proteomics is inaccessible to most. Developing a microplate assay is important for accelerating discovery by widening access to protein thiol redox biology. Beyond accessibility, enabling high throughput time- and cost-efficient microplate analysis is important. To meet the pressing need for a microplate assay to measure protein thiol redox state, we present the Antibody-Linked Oxi-State Assay (ALISA). ALISA uses a covalently bound capture antibody to bind a thiol-reactive fluorescent conjugated maleimide (F-MAL) decorated target. The capture antibody-target complex is labelled with an amine-reactive fluorescent N-hydroxysuccinimide ester (F-NHS) to report total protein. The covalent bonds that immobilise the capture antibody to the epoxy group functionalised microplate enable one to selectively elute the target. Target specific redox state is ratiometrically calculated as: F-MAL (i.e., reversible thiol oxidation)/F-NHS (i.e., total protein). After validating the assay principle (i.e., increased target specific reversible thiol oxidation increases the ratio), we used ALISA to determine whether fertilisation-a fundamental biological process-changes Akt, a serine/threonine protein kinase, specific reversible thiol oxidation. Fertilisation significantly decreases Akt specific reversible thiol oxidation in Xenopus laevis 2-cell zygotes compared to unfertilised eggs. ALISA is an accessible microplate assay to advance knowledge of protein thiol redox biology in health and disease.
Collapse
Affiliation(s)
- Anna Noble
- European Xenopus Resource Centre, Portsmouth University, Portsmouth, PO1 2DY, UK
| | - Matthew Guille
- European Xenopus Resource Centre, Portsmouth University, Portsmouth, PO1 2DY, UK
| | | |
Collapse
|
28
|
Kim E, Zhao Z, Rzasa JR, Glassman M, Bentley WE, Chen S, Kelly DL, Payne GF. Association of acute psychosocial stress with oxidative stress: Evidence from serum analysis. Redox Biol 2021; 47:102138. [PMID: 34555595 PMCID: PMC8458980 DOI: 10.1016/j.redox.2021.102138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Growing evidence implicates an association between psychosocial stress and oxidative stress (OxSt) although there are not yet reliable biomarkers to study this association. We used a Trier Social Stress Test (TSST) and compared the response of a healthy control group (HC; N=10) against the response of a schizophrenia group (SCZ; N=10) that is expected to have higher levels of OxSt. Because our previous study showed inconsistent changes in conventional molecular markers for stress responses in the neuroendocrine and immune systems, we analyzed the same serum samples using a separate reducing capacity assay that provides a more global measurement of OxSt. This assay uses the moderately strong oxidizing agent iridium (Ir) to probe a sample's reducing capacity. Specifically, we characterized OxSt by this Ir-reducing capacity assay (Ir-RCA) using two measurement modalities (optical and electrochemical) and we tuned this assay by imposing an input voltage sequence that generates multiple output metrics for data-driven analysis. We defined five OxSt metrics (one optical and four electrochemical metrics) and showed: (i) internal consistency among each metric in the measurements of all 40 samples (baseline and post TSST for N=20); (ii) all five metrics were consistent with expectations of higher levels of OxSt for the SCZ group (three individual metrics showed statistically significant differences); and (iii) all five metrics showed higher levels of OxSt Post-TSST (one metric showed statistically significant difference). Using multivariant analysis, we showed that combinations of OxSt metrics could discern statistically significant increases in OxSt for both the SCZ and HC groups 90 min after the imposed acute psychosocial stress. Ir-reducing capacity assay (Ir-RCA) provides a robust global measure of oxidative stress in serum. The multiple oxidative stress (OxSt) output metrics of this Ir-RCA are useful for data-driven analysis. The combination of OxSt metrics can discern significant increases in OxStwithin 90 mins of an imposed psychosocial stress.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Zhiling Zhao
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - John Robertson Rzasa
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Matthew Glassman
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
29
|
Thompson B, Chen Y, Davidson EA, Garcia-Milian R, Golla JP, Apostolopoulos N, Orlicky DJ, Schey K, Thompson DC, Vasiliou V. Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. Ocul Surf 2021; 22:190-203. [PMID: 34425299 DOI: 10.1016/j.jtos.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to elucidate the role and molecular consequences of impaired glutathione (GSH) biosynthesis on eye development. METHODS GSH biosynthesis was impaired in surface ectoderm-derived ocular tissues by crossing Gclcf/f mice with hemizygous Le-Cre transgenic mice to produce Gclcf/f/Le-CreTg/- (KO) mice. Control mice included Gclcf/fand Gclcwt/wt/Le-CreTg/- mice (CRE). Eyes from all mice (at various stages of eye development) were subjected to histological, immunohistochemical, Western blot, RT-qPCR, RNA-seq, and subsequent Gene Ontology, Ingenuity Pathway Analysis and TRANSFAC analyses. PAX6 transactivation activity was studied using a luciferase reporter assay in HEK293T cells depleted of GSH using buthionine sulfoximine (BSO). RESULTS Deletion of Gclc diminished GSH levels, increased reactive oxygen species (ROS), and caused an overt microphthalmia phenotype characterized by malformation of the cornea, iris, lens, and retina that is distinct from and much more profound than the one observed in CRE mice. In addition, only the lenses of KO mice displayed reduced crystallin (α, β), PITX3 and Foxe3 expression. RNA-seq analyses at postnatal day 1 revealed 1552 differentially expressed genes (DEGs) in the lenses of KO mice relative to those from Gclcf/f mice, with Crystallin and lens fiber cell identity genes being downregulated while lens epithelial cell identity and immune response genes were upregulated. Bioinformatic analysis of the DEGs implicated PAX6 as a key upstream regulator. PAX6 transactivation activity was impaired in BSO-treated HEK293T cells. CONCLUSIONS These data suggest that impaired ocular GSH biosynthesis may disrupt eye development and PAX6 function.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - Kevin Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
30
|
Motabar D, Li J, Payne GF, Bentley WE. Mediated electrochemistry for redox-based biological targeting: entangling sensing and actuation for maximizing information transfer. Curr Opin Biotechnol 2021; 71:137-144. [PMID: 34364305 DOI: 10.1016/j.copbio.2021.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Biology and electronics are both expert at receiving, analyzing, and responding to information, yet they use entirely different information processing paradigms. Biology processes information using networks that are intrinsically molecular while electronics process information through circuits that control the flow of electrons. There is great interest in coupling the molecular logic of biology with the electronic logic of technology, and we suggest that redox (reduction-oxidation) is a uniquely suited modality for interfacing biology with electronics. Specifically, redox is a native biological modality and is accessible to electronics through electrodes. We summarize recent advances in mediated electrochemistry to direct information transfer into biological systems intentionally altering function, exposing it for more advanced interpretation, which can dramatically expand the biotechnological toolbox.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742 United States
| | - Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742 United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742 United States.
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742 United States.
| |
Collapse
|
31
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
32
|
Lapehn S, Piorczynski TB, Hansen JM, Harris C. Spatiotemporal evaluation of the mouse embryonic redox environment and histiotrophic nutrition following treatment with valproic acid and 1,2-dithiole-3-thione during early organogenesis. Reprod Toxicol 2021; 101:81-92. [PMID: 33713778 PMCID: PMC8110175 DOI: 10.1016/j.reprotox.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
Redox regulation during metazoan development ensures that coordinated metabolic reprogramming and developmental signaling are orchestrated with high fidelity in the hypoxic embryonic environment. Valproic acid (VPA), an anti-seizure medication, is known to increase markers of oxidation and also increase the risk of neural tube defects (NTDs) when taken during pregnancy. It is unknown, however, whether oxidation plays a direct role in failed neural tube closure (NTC). Spatial and temporal fluctuations in total glutathione (GSH) and total cysteine (Cys) redox steady states were seen during a 24 h period of CD-1 mouse organogenesis in untreated conceptuses and following exposure to VPA and the Nrf2 antioxidant pathway inducer, 1,2-dithiole-3-thione (D3T). Glutathione, glutathione disulfide (GSSG), and Cys, cystine (CySS) concentrations, measured in conceptal tissues (embryo/visceral yolk sac) and fluids (yolk sac fluid/amniotic fluid) showed that VPA did not cause extensive and prolonged oxidation during the period of NTC, but instead produced transient periods of oxidation, as assessed by GSH:GSSG redox potentials, which revealed oxidation in all four conceptal compartments at 4, 10, and 14 h, corresponding to the period of heartbeat activation and NTC. Other changes were tissue and time specific. VPA treatment also reduced total FITC-Ab clearance from the medium over 3 h, indicating potential disruption of nutritive amino acid supply. Overall, these results indicated that VPA's ability to affect cellular redox status may be limited to tissue-specific windows of sensitivity during the period of NTC. The safety evaluation of drugs used during pregnancy should consider time and tissue specific redox factors.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
33
|
He Y, Lu X, Chen T, Yang Y, Zheng J, Chen C, Zhang Y, Lei W. Resveratrol protects against myocardial ischemic injury via the inhibition of NF‑κB‑dependent inflammation and the enhancement of antioxidant defenses. Int J Mol Med 2021; 47:29. [PMID: 33537801 PMCID: PMC7895514 DOI: 10.3892/ijmm.2021.4862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Resveratrol (RES) is a natural phenol which possesses multiple pharmacological actions. The present study aimed to determine whether RES protects against myocardial ischemic injury in association with the inhibition of NF‑κB‑dependent inflammation and the enhancement of antioxidant defenses in mice following acute myocardial infarction (AMI). Male C57/BL mice were randomly assigned to 3 groups as follows: The sham‑operated (sham) group, AMI + vehicle group and AMI + RES group. Rat H9C2 cells were also used to examine the effects of RES on hypoxia‑induced oxidative injury in vitro. Redox homeostasis in the mouse myocardium and rat H9C2 cells was determined post‑treatment. The mRNA and protein levels of phosphorylated (p‑)IκB kinase (p‑IKK), p‑nuclear factor (NF)‑κB p65, interleukin (IL)‑1β, IL‑6, nerve growth factor (NGF) and insulin‑like growth factor‑1 (IGF‑1) were measured by RT‑qPCR and western blot analysis. It was found that RES slightly protected the myocardium against ischemic injury in mice, while it prevented the hypoxia‑induced apoptosis of H9C2 cells. RES decreased the production of reactive oxygen species (ROS) and enhanced the activities of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GPx). RES also downregulated the protein and/or mRNA levels of p‑IKK, p‑NF‑κB p65, IL‑1β, IL‑6, NGF and IGF‑1 at 7 and 28 days after infarction. On the whole, these data indicate that RES protects the myocardium against ischemic injury in association with the inhibition of oxidative stress and inflammatory responses. Thus, RES has the potential to be used as an adjunctive therapeutic drug for heart diseases.
Collapse
Affiliation(s)
- Yuan He
- Laboratory of Cardiovascular Diseases
| | | | | | - Yu Yang
- Gerontology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Yuanqi Zhang
- Department of Vascular, Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Laboratory of Cardiovascular Diseases
- Cardiovascular Medicine Center
| |
Collapse
|
34
|
Long Non-Coding RNA and mRNA Profiling in Early-Stage Bovine Embryos Treated with Glutathione. Antioxidants (Basel) 2020; 9:antiox9050402. [PMID: 32397280 PMCID: PMC7278749 DOI: 10.3390/antiox9050402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/13/2023] Open
Abstract
We measured differential expression profiles of genes and long non-coding RNA (lncRNA) using RNA sequencing in bovine embryos with or without glutathione (GSH) treatment. Bovine embryos fertilized in vitro were treated with GSH to blastocyst. Embryos at the 8-16-cell and morula stages were collected, with embryos without GSH treatment as the control. RNA was isolated, amplified, and sequenced. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) were identified and bioinformatic analyses carried out. Transcript levels were confirmed using quantitative RT-PCR. A total of 4100 DEGs were identified, of which 3952 were in GSH-treated morulae and 884 in untreated morulae. More gene ontology (GO) terms were associated with GSH treatment than with control conditions. KEGG analysis showed that glutathione metabolism, citrate cycle, and metabolic pathways involving glycine, serine, and threonine were observed only in GSH-treated embryos. Among 4273 DElncRNAs identified, 59 were potentially important in GSH-treated embryo development, including 14 involved in glutathione metabolism. The 59 DElncRNAs co-expressed with protein-coding mRNAs involved similar GO terms and pathways as the DEGs. This appears to be the first comprehensive profiling of DEGs and DElncRNAs in bovine embryos fertilized in vitro with or without GSH, and the first systematic screen of potential lncRNAs in bovine embryos.
Collapse
|
35
|
Cobley JN, Husi H. Immunological Techniques to Assess Protein Thiol Redox State: Opportunities, Challenges and Solutions. Antioxidants (Basel) 2020; 9:E315. [PMID: 32326525 PMCID: PMC7222201 DOI: 10.3390/antiox9040315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
To understand oxidative stress, antioxidant defense, and redox signaling in health and disease it is essential to assess protein thiol redox state. Protein thiol redox state is seldom assessed immunologically because of the inability to distinguish reduced and reversibly oxidized thiols by Western blotting. An underappreciated opportunity exists to use Click PEGylation to realize the transformative power of simple, time and cost-efficient immunological techniques. Click PEGylation harnesses selective, bio-orthogonal Click chemistry to separate reduced and reversibly oxidized thiols by selectively ligating a low molecular weight polyethylene glycol moiety to the redox state of interest. The resultant ability to disambiguate reduced and reversibly oxidized species by Western blotting enables Click PEGylation to assess protein thiol redox state. In the present review, to enable investigators to effectively harness immunological techniques to assess protein thiol redox state we critique the chemistry, promise and challenges of Click PEGylation.
Collapse
Affiliation(s)
- James Nathan Cobley
- Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK;
| | | |
Collapse
|
36
|
Jones DP, Cohn BA. A vision for exposome epidemiology: The pregnancy exposome in relation to breast cancer in the Child Health and Development Studies. Reprod Toxicol 2020; 92:4-10. [PMID: 32197999 PMCID: PMC7306421 DOI: 10.1016/j.reprotox.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Etiology of complex diseases, such as breast cancer, involves multiple genetic, behavioral and environmental factors. Gene sequencing enabled detection of genetic risks with relatively small effect size, and high-resolution metabolomics (HRM) to provide omics level data for exposures is poised to do the same for environmental epidemiology. Coupling HRM to the Child Health and Development Studies (CHDS) cohort combines two unique resources to create a prototype for exposome epidemiology, in which omics scale measures of exposure are used for study of distribution and determinants of health and disease. Using this approach, exposures and biologic responses during pregnancy have been linked to breast cancer in the CHDS. With improved chemical coverage and extension to larger populations and other disease processes, development of exposome epidemiology portends discovery of new disease-associated environment factors with small effect size as well as new capabilities to disentangle these from behavioral and other risk factors.
Collapse
Affiliation(s)
- Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| |
Collapse
|