1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
2
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Ammirata G, Arigoni M, Licastro D, Caviglia GP, Disabato M, Zubair G, Bezzio C, Saibeni S, De Nicolò A, Cusato J, Palermiti A, Manca A, Tolosano E, Cozzini S, Mancini M, Altruda F, D’Avolio A, Ribaldone DG, Ala U, Fagoonee S. Extracellular Vesicle-Enclosed Oxidative Stress- and Inflammation-Related microRNAs as Potential Biomarkers of Vitamin D Responsivity: A Pilot Study on Inflammatory Bowel Disease Patients with or without COVID-19. Antioxidants (Basel) 2024; 13:1047. [PMID: 39334706 PMCID: PMC11429492 DOI: 10.3390/antiox13091047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The relationship between serum 25-hydroxyvitamin D (25(OH)D) levels, genomic response to vitamin D (Vit.D), and positivity to SARS-CoV-2 remains understudied. In this pilot study, during the follow-up of patients with Inflammatory Bowel Disease (IBD) and COVID-19, we investigated this issue by analyzing the molecular contents of serum extracellular vesicles (EVs) from six groups of IBD patients (n = 32), classified according to anti-SARS-CoV-2 status, 25(OH)D level, and Vit.D supplementation, by small RNA-seq. This analysis revealed differentially expressed miRNAs, PIWI-RNA, transfer RNA, small nucleolar RNAs, and protein-coding RNAs in the EVs obtained from these cohorts of IBD patients. Experimental validation evidenced a statistically significant increase in miR30d-5p, miR150-5p, Let-7f-5p, and Let-7a-5p in the anti-SARS-CoV-2-positive and low 25(OH)D and Vit.D supplemented groups with respect to the non-Vit.D supplemented group, indicating their responsiveness to Vit.D treatment. Bioinformatics analysis highlighted the regulation of these validated miRNAs by oxidative stress and inflammation, hallmarks of IBD and COVID-19. Our study reports an unprecedented panel of circulating EV-enclosed inflammation- and oxidative stress-related miRNAs, the potentiality of which, as biomarkers for Vit.D responsivity in IBD patients, needs to be explored in future studies on larger cohorts in order to allow clinicians to optimize current treatment strategies upon viral infection.
Collapse
Affiliation(s)
- Giorgia Ammirata
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Danilo Licastro
- AREA Science Park, Padriciano, 34149 Trieste, Italy; (D.L.); (S.C.)
| | - Gian Paolo Caviglia
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Michela Disabato
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Ghania Zubair
- Department of Mathematics “Giuseppe Peano”, University of Turin, 10126 Turin, Italy;
| | - Cristina Bezzio
- IBD Centre, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Simone Saibeni
- Gastroenterology Unit, Rho Hospital, ASST Rhodense, 20017 Milan, Italy;
| | - Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Stefano Cozzini
- AREA Science Park, Padriciano, 34149 Trieste, Italy; (D.L.); (S.C.)
| | - Marcello Mancini
- Institute for Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Davide Giuseppe Ribaldone
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, CNR, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
4
|
Ala U, Fagoonee S. RNA-binding protein transcripts as potential biomarkers for detecting Primary Sclerosing Cholangitis and for predicting its progression to Cholangiocarcinoma. Front Mol Biosci 2024; 11:1388294. [PMID: 38903178 PMCID: PMC11187294 DOI: 10.3389/fmolb.2024.1388294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Primary Sclerosing Cholangitis (PSC) is a persistent inflammatory liver condition that affects the bile ducts and is commonly diagnosed in young individuals. Despite efforts to incorporate various clinical, biochemical and molecular parameters for diagnosing PSC, it remains challenging, and no biomarkers characteristic of the disease have been identified hitherto. PSC is linked with an uncertain prognosis, and there is a pressing need to explore multiomics databases to establish a new biomarker panel for the early detection of PSC's gradual progression into Cholangiocarcinoma (CCA) and for the development of effective therapeutic interventions. Apart from non-coding RNAs, other components of the Ribonucleoprotein (RNP) complex, such as RNA-Binding Proteins (RBPs), also hold great promise as biomarkers due to their versatile expression in pathological conditions. In the present review, an update on the RBP transcripts that show dysregulated expression in PSC and CCA is provided. Moreover, by utilizing a bioinformatic data mining approach, we give insight into those RBP transcripts that also exhibit differential expression in liver and gall bladder, as well as in body fluids, and are promising as biomarkers for diagnosing and predicting the prognosis of PSC. Expression data were bioinformatically extracted from public repositories usingTCGA Bile Duct Cancer dataset for CCA and specific NCBI GEO datasets for both PSC and CCA; more specifically, RBPs annotations were obtained from RBP World database. Interestingly, our comprehensive analysis shows an elevated expression of the non-canonical RBPs, FANCD2, as well as the microtubule dynamics regulator, ASPM, transcripts in the body fluids of patients with PSC and CCA compared with their respective controls, with the same trend in expression being observed in gall bladder and liver cancer tissues. Consequently, the manipulation of tissue expression of RBP transcripts might be considered as a strategy to mitigate the onset of CCA in PSC patients, and warrants further experimental investigation. The analysis performed herein may be helpful in the identification of non-invasive biomarkers for the early detection of PSC and for predicting its progression into CCA. In conclusion, future clinical research should investigate in more depth the full potential of RBP transcripts as biomarkers for human pathologies.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center “Guido Tarone”, Turin, Italy
| |
Collapse
|
5
|
Zhang Y, Liu Y, Huo W, He L, Li B, Wang H, Meng F, Duan C, Zhou B, Wu J, Chen R, Xing J, Wan Y. The Role of miRNA and Long Noncoding RNA in Cholestatic Liver Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:879-893. [PMID: 38417698 DOI: 10.1016/j.ajpath.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.
Collapse
Affiliation(s)
- Yudian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wen Huo
- Functional Experiment Center, College of Basic and Legal Medicine, North Sichuan Medical College, Nanchong, China
| | - Longfei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bowen Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hui Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Chenggang Duan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bingru Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinbo Wu
- Department of Otolaryngology-Head and Neck Surgery, Luzhou Maternal and Child Health Hospital (Luzhou Second People's Hospital), Luzhou, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Xing
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Ferro A, Saccu G, Mattivi S, Gaido A, Herrera Sanchez MB, Haque S, Silengo L, Altruda F, Durazzo M, Fagoonee S. Extracellular Vesicles as Delivery Vehicles for Non-Coding RNAs: Potential Biomarkers for Chronic Liver Diseases. Biomolecules 2024; 14:277. [PMID: 38540698 PMCID: PMC10967855 DOI: 10.3390/biom14030277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, EVs have emerged as promising vehicles for coding and non-coding RNAs (ncRNAs), which have demonstrated remarkable potential as biomarkers for various diseases, including chronic liver diseases (CLDs). EVs are small, membrane-bound particles released by cells, carrying an arsenal of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and other ncRNA species, such as piRNAs, circRNAs, and tsRNAs. These ncRNAs act as key regulators of gene expression, splicing, and translation, providing a comprehensive molecular snapshot of the cells of origin. The non-invasive nature of EV sampling, typically via blood or serum collection, makes them highly attractive candidates for clinical biomarker applications. Moreover, EV-encapsulated ncRNAs offer unique advantages over traditional cell-free ncRNAs due to their enhanced stability within the EVs, hence allowing for their detection in circulation for extended periods and enabling more sensitive and reliable biomarker measurements. Numerous studies have investigated the potential of EV-enclosed ncRNAs as biomarkers for CLD. MiRNAs, in particular, have gained significant attention due to their ability to rapidly respond to changes in cellular stress and inflammation, hallmarks of CLD pathogenesis. Elevated levels of specific miRNAs have been consistently associated with various CLD subtypes, including metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and chronic hepatitis B and C. LncRNAs have also emerged as promising biomarkers for CLD. These transcripts are involved in a wide range of cellular processes, including liver regeneration, fibrosis, and cancer progression. Studies have shown that lncRNA expression profiles can distinguish between different CLD subtypes, providing valuable insights into disease progression and therapeutic response. Promising EV-enclosed ncRNA biomarkers for CLD included miR-122 (elevated levels of miR-122 are associated with MASLD progression and liver fibrosis), miR-21 (increased expression of miR-21 is linked to liver inflammation and fibrosis in CLD patients), miR-192 (elevated levels of miR-192 are associated with more advanced stages of CLD, including cirrhosis and HCC), LncRNA HOTAIR (increased HOTAIR expression is associated with MASLD progression and MASH development), and LncRNA H19 (dysregulation of H19 expression is linked to liver fibrosis and HCC progression). In the present review, we focus on the EV-enclosed ncRNAs as promising tools for the diagnosis and monitoring of CLD of various etiologies.
Collapse
Affiliation(s)
- Arianna Ferro
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Gabriele Saccu
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Simone Mattivi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Maria Beatriz Herrera Sanchez
- 2i3T, Società per la Gestione Dell’incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Turin, Italy;
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Lorenzo Silengo
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Fiorella Altruda
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
7
|
Manco M, Ammirata G, Petrillo S, De Giorgio F, Fontana S, Riganti C, Provero P, Fagoonee S, Altruda F, Tolosano E. FLVCR1a Controls Cellular Cholesterol Levels through the Regulation of Heme Biosynthesis and Tricarboxylic Acid Cycle Flux in Endothelial Cells. Biomolecules 2024; 14:149. [PMID: 38397386 PMCID: PMC10887198 DOI: 10.3390/biom14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Feline leukemia virus C receptor 1a (FLVCR1a), initially identified as a retroviral receptor and localized on the plasma membrane, has emerged as a crucial regulator of heme homeostasis. Functioning as a positive regulator of δ-aminolevulinic acid synthase 1 (ALAS1), the rate-limiting enzyme in the heme biosynthetic pathway, FLVCR1a influences TCA cycle cataplerosis, thus impacting TCA flux and interconnected metabolic pathways. This study reveals an unexplored link between FLVCR1a, heme synthesis, and cholesterol production in endothelial cells. Using cellular models with manipulated FLVCR1a expression and inducible endothelial-specific Flvcr1a-null mice, we demonstrate that FLVCR1a-mediated control of heme synthesis regulates citrate availability for cholesterol synthesis, thereby influencing cellular cholesterol levels. Moreover, alterations in FLVCR1a expression affect membrane cholesterol content and fluidity, supporting a role for FLVCR1a in the intricate regulation of processes crucial for vascular development and endothelial function. Our results underscore FLVCR1a as a positive regulator of heme synthesis, emphasizing its integration with metabolic pathways involved in cellular energy metabolism. Furthermore, this study suggests that the dysregulation of heme metabolism may have implications for modulating lipid metabolism. We discuss these findings in the context of FLVCR1a's potential heme-independent function as a choline importer, introducing additional complexity to the interplay between heme and lipid metabolism.
Collapse
Affiliation(s)
- Marta Manco
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Ammirata
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Sara Petrillo
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Francesco De Giorgio
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simona Fontana
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Paolo Provero
- Department of Neurosciences “Rita Levi Montalcini”, University of Torino, Corso Massimo D’Azeglio 52, 10126 Torino, Italy;
- Center for Omics Sciences, Ospedale San Raffaele IRCCS, Via Olgettina 60, 20132 Milan, Italy
| | - Sharmila Fagoonee
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center “Guido Tarone”, 10126 Torino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
8
|
Lucchetti D, Colella F, Artemi G, Haque S, Sgambato A, Pellicano R, Fagoonee S. Smart nano-sized extracellular vesicles for cancer therapy: Potential theranostic applications in gastrointestinal tumors. Crit Rev Oncol Hematol 2023; 191:104121. [PMID: 37690633 DOI: 10.1016/j.critrevonc.2023.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/27/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular vesicles (EVs) have gained tremendous interest in the search for next-generation therapeutics for the treatment of a range of pathologies, including cancer, especially due to their small size, biomolecular cargo, ability to mediate intercellular communication, high physicochemical stability, low immunogenicity and biocompatibility. The theranostic potential of EVs have been enhanced by adopting several strategies such as genetic or metabolic engineering, parental cell modification or direct functionalization to incorporate therapeutic compounds into these nanoplatforms. The smart nano-sized EVs indeed offer huge opportunities in the field of cancer, and current research is set at overcoming the existing pitfalls. Smart EVs are already being applied in the clinics despite the challenges faced. We provide, herein, an update on the technologies employed for EV functionalization in order to achieve optimal tumor cell targeting and EV tracking in vivo with bio-imaging modalities, as well as the preclinical and clinical studies making use of these modified EVs, in the context of gastrointestinal tumors.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Colella
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Giulia Artemi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Alessandro Sgambato
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Rinaldo Pellicano
- Gastroenterology Unit, Città della salute e della Scienza Hospital, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| |
Collapse
|
9
|
Autoimmune Hepatitis and Fibrosis. J Clin Med 2023; 12:jcm12051979. [PMID: 36902767 PMCID: PMC10004701 DOI: 10.3390/jcm12051979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-inflammatory disease of the liver, generally considered a rare condition. The clinical manifestation is extremely varied and can range from paucisymptomatic forms to severe hepatitis. Chronic liver damage causes activation of hepatic and inflammatory cells leading to inflammation and oxidative stress through the production of mediators. This results in increased collagen production and extracellular matrix deposition leading to fibrosis and even cirrhosis. The gold standard for the diagnosis of fibrosis is liver biopsy; however, there are serum biomarkers, scoring systems, and radiological methods useful for diagnosis and staging. The goal of AIH treatment is to suppress fibrotic and inflammatory activities in the liver to prevent disease progression and achieve complete remission. Therapy involves the use of classic steroidal anti-inflammatory drugs and immunosuppressants, but in recent years scientific research has focused on several new alternative drugs for AIH that will be discussed in the review.
Collapse
|
10
|
Rosso C, Demelas C, Agostini G, Abate ML, Vernero M, Caviglia GP, D’Amato D, Armandi A, Tapparo M, Guariglia M, Troshina G, Massano A, Olivero A, Nicolosi A, Zannetti A, Pellicano R, Ciancio A, Saracco GM, Ribaldone DG, Bugianesi E, Fagoonee S. Expression of SARS-Cov-2 Entry Factors in Patients with Chronic Hepatitis. Viruses 2022; 14:2397. [PMID: 36366497 PMCID: PMC9699546 DOI: 10.3390/v14112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
Chronic hepatitis (CH) of dysmetabolic or viral etiology has been associated with poor prognosis in patients who experienced the severe acute respiratory coronavirus virus-2 (SARS-Cov-2) infection. We aimed to explore the impact of SARS-Cov-2 infection on disease severity in a group of patients with CH. Forty-two patients with CH of different etiology were enrolled (median age, 56 years; male gender, 59%). ACE2 and TMPRSS2 were measured in plasma samples of all patients by ELISA and in the liver tissue of a subgroup of 15 patients by Western blot. Overall, 13 patients (31%) experienced SARS-Cov-2 infection: 2/15 (15%) had CHB, 5/12 (39%) had CHC, and 6/15 (46%) had non-alcoholic fatty liver disease (NAFLD). Compared to viral CH patients, NAFLD subjects showed higher circulating ACE2 levels (p = 0.0019). Similarly, hepatic expression of ACE2 was higher in subjects who underwent SARS-Cov-2 infection compared to the counterpart, (3.24 ± 1.49 vs. 1.49 ± 1.32, p = 0.032). Conversely, hepatic TMPRSS2 was significantly lower in patients who experienced symptomatic COVID-19 disease compared to asymptomatic patients (p = 0.0038). Further studies are necessary to understand the impact of COVID-19 in patients with pre-existing liver diseases.
Collapse
Affiliation(s)
- Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Cristina Demelas
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Greta Agostini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Maria Lorena Abate
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Marta Vernero
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | | | - Daphne D’Amato
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Marta Guariglia
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Giulia Troshina
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Alessandro Massano
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Antonella Olivero
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | - Aurora Nicolosi
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | | | - Rinaldo Pellicano
- Gastroenterology Unit, Città della salute e della Scienza Hospital, 10121 Turin, Italy
| | - Alessia Ciancio
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy
| | | | | | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Centre, 10126 Turin, Italy
| |
Collapse
|
11
|
James K, Bryl-Gorecka P, Olde B, Gidlof O, Torngren K, Erlinge D. Increased expression of miR-224-5p in circulating extracellular vesicles of patients with reduced coronary flow reserve. BMC Cardiovasc Disord 2022; 22:321. [PMID: 35850658 PMCID: PMC9290204 DOI: 10.1186/s12872-022-02756-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Endothelial and microvascular dysfunction are pivotal causes of major adverse cardiac events predicted by coronary flow reserve (CFR). Extracellular Vesicles (EVs) have been studied extensively in the pathophysiology of coronary artery disease. However, little is known on the impact of the non-coding RNA content of EVs with respect to CFR. Methods We carried out a study among 120 patients divided by high-CFR and low-CFR to profile the miRNA content of circulating EVs. Results A multiplex array profiling on circulating EVs revealed mir-224-5p (p-value ≤ 0.000001) as the most differentially expressed miRNA in the Low-CFR group and showed a significantly independent relationship to CFR. Literature survey indicated the origin of the miR from liver cells and not of platelet, leukocyte, smooth muscle or endothelial (EC) origin. A q-PCR panel of the conventional cell type-EVs along with hepatic EVs showed that EVs from liver cells showed higher expression of the miR-224-5p. FACS analysis demonstrated the presence of liver-specific (ASGPR-1+/CD14−) EVs in the plasma of our cohort with the presence of Vanin-1 required to enter the EC barrier. Hepatic EVs with and without the miR-224-5p were introduced to ECs in-vitro, but with no difference in effect on ICAM-1 or eNOS expression. However, hepatic EVs elevated endothelial ICAM-1 levels per se independent of the miR-224-5p. Conclusion This indicated a role of hepatic EVs identified by the miR-224-5p in endothelial dysfunction in patients with Low CFR. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02756-w.
Collapse
Affiliation(s)
- Kreema James
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden.
| | - Paulina Bryl-Gorecka
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Björn Olde
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Olof Gidlof
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Kristina Torngren
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| |
Collapse
|
12
|
Electrical Impedance-Based Characterization of Hepatic Tissue with Early-Stage Fibrosis. BIOSENSORS 2022; 12:bios12020116. [PMID: 35200376 PMCID: PMC8869865 DOI: 10.3390/bios12020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
Abstract
Liver fibrosis is a key pathological precondition for hepatocellular carcinoma in which the severity is confidently correlated with liver cancer. Liver fibrosis, characterized by gradual cell loss and excessive extracellular matrix deposition, can be reverted if detected at the early stage. The gold standard for staging and diagnosis of liver fibrosis is undoubtedly biopsy. However, this technique needs careful sample preparation and expert analysis. In the present work, an ex vivo, minimally destructive, label-free characterization of liver biopsies is presented. Through a custom-made experimental setup, liver biopsies of bile-duct-ligated and sham-operated mice were measured at 8, 15, and 21 days after the procedure. Changes in impedance were observed with the progression of fibrosis, and through data fitting, tissue biopsies were approximated to an equivalent RC circuit model. The model was validated by means of 3D hepatic cell culture measurement, in which the capacitive part of impedance was proportionally associated with cell number and the resistive one was proportionally associated with the extracellular matrix. While the sham-operated samples presented a decrease in resistance with time, the bile-duct-ligated ones exhibited an increase in this parameter with the evolution of fibrosis. Moreover, since the largest difference in resistance between healthy and fibrotic tissue, of around 2 kΩ, was found at 8 days, this method presents great potential for the study of fibrotic tissue at early stages. Our data point out the great potential of exploiting the proposed needle setup in clinical applications.
Collapse
|