1
|
Feng C, Yan Q, Li X, Zhao H, Huang H, Zhang X. Discovery of a Gut Bacterial Pathway for Ergothioneine Catabolism. J Am Chem Soc 2024. [PMID: 39700343 DOI: 10.1021/jacs.4c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Ergothioneine is a diet-derived micronutrient for humans. However, enzymes involved in the catabolism of ergothioneine in human gut bacteria have not yet been identified. Herein, we characterize a sulfidogenic pathway for gut bacterial catabolism of this micronutrient, which involves an unprecedented reductive desulfurization reaction catalyzed by members of the xanthine oxidoreductase family (XOR), a class of molybdenum-containing flavoproteins. Notably, this is the first C-S bond cleavage reaction known to be catalyzed by XORs. Evidence for operation of this pathway was gained through in vitro reconstruction using heterologously produced enzymes derived from the human gut bacterium Blautia producta ATCC 27340. This catabolic activity enables B. producta ATCC 27340 to use ergothioneine as an alternative electron acceptor source. Homologues of the pathway enzymes are shown to be present not only in human gut bacteria but also in many environmental bacteria, suggesting the wide distribution of this catabolic strategy. In relation to the sulfur-containing metabolite, this discovery provides significant insight into biogeochemical sulfur cycling in diverse anoxic habitats beyond the human gut and, moreover, the design of new approaches for controlling intestinal hydrogen sulfide (H2S) production.
Collapse
Affiliation(s)
- Chenxi Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiongxiang Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xianyi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hong Zhao
- Shenzhen Readline Biotech CO., Ltd., Wanhe Medicine Park, Nanshan, Shenzhen 518057, China
| | - Hua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xinshuai Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
2
|
Hu L, Weng J, Wang Z, Huang C, Zhang L. Effect and mechanism of Tricholoma matsutake extract combined with bakuchiol and ergothioneine on UVB-induced skin aging. J Cosmet Dermatol 2024; 23:3628-3644. [PMID: 39014903 DOI: 10.1111/jocd.16457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Aging is a physiological phenomenon in the process of life, and skin aging has a significant impact on human appearance. Therefore, the search for methods to delay skin aging is of great significance for improving the quality of human life. MATERIALS AND METHODS This study investigated the anti-photoaging effect of Tricholoma matsutake (T) extract composition combined with bakuchiol (B) and ergothioneine (E), and explored its potential mechanism through transcriptome, metabolomics, and network pharmacology. RESULTS 57 main chemical components are identified from the ethanol extract of T. matsutake (T), including D-carnitine (24.55%), α,α-trehalose (15.56%), DL malic acid (8.99%), D-(-)-quinic acid (7.46%), erucamide (7.04%) and so on. After TBE treatment, inflammation of the mice dorsal skin is significantly minimized. Hematoxylin and eosin (H&E) staining and toluidine blue staining reveal that TBE has an anti-inflammatory effect on the back skin tissue of mice. Masson staining shows that TBE has a repair effect on mice dorsal skin tissue. In addition, the inflammatory factors (IL-1β, IL-6, TNF-α) in the mice dorsal skin tissues are significantly reduced but collagen (COL-1) is significantly increased. By cellular immunofluorescence assay, TBE is shown to promote PPAR-α expression in cells. Transcriptomics, metabolomics, and network pharmacology have revealed that TBE can regulate exogenous stimuli and cancer-related signaling pathways to prevent skin aging. CONCLUSION The results suggest that TBE can be a beneficial supplement to natural anti-aging.
Collapse
Affiliation(s)
- Lu Hu
- SHE LOG (Guangzhou) Biotechnology Co., Ltd, Guangzhou, China
| | - Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ziqin Wang
- SHE LOG (Guangzhou) Biotechnology Co., Ltd, Guangzhou, China
| | - Chujie Huang
- SHE LOG (Guangzhou) Biotechnology Co., Ltd, Guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Sotgia S, Mangoni AA, Zoroddu S, Di Lorenzo B, Zinellu A, Carru C, McEvoy M. Higher scores of the Kessler Psychological Distress Scale (K10) are associated with lower serum ergothioneine and higher serum asymmetric dimethyl-l-arginine concentrations in a cohort of middle-aged and older adults. Clin Nutr ESPEN 2024; 64:107-113. [PMID: 39349102 DOI: 10.1016/j.clnesp.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Ergothioneine (ERT) and asymmetric dimethyl-l-arginine (ADMA) have been associated with cognitive decline and dementia in older adults, but their interplay with psychological distress remains unexplored. This study aimed to measure the serum concentrations of ERT and ADMA in a representative sample of older community-dwelling adults and to determine their association with psychological distress. METHODS Data on clinical, lifestyle, demographic characteristics, and serum concentrations of ERT and ADMA were collected from a population-based sample of older Australian adults (mean age 65.5 ± 7.5 years) from the Hunter Community Study. Psychological distress was assessed using the self-reported Kessler Psychological Distress Scale (K10). RESULTS In individuals with psychological distress, serum ERT concentrations decreased by 24 %, while ADMA concentrations increased by 6 %. In adjusted analysis, accounting for age and sex, only ERT remained independently associated with psychological distress. For each unit increase in ERT, the odds of experiencing psychological distress decreased by approximately 68 %. CONCLUSION The trend of decreasing serum ERT concentrations observed in older adults with increasing psychological distress suggests a potential link between this compound and mental health. Given the dietary origin of ERT, its integration offers therapeutic opportunities that warrant investigation in intervention studies.
Collapse
Affiliation(s)
- Salvatore Sotgia
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Stefano Zoroddu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Biagio Di Lorenzo
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Mark McEvoy
- Department of Rural Health, La Trobe Rural Health School, College of Science, Health and Engineering, La Trobe University, Bendigo, Australia
| |
Collapse
|
4
|
Moussa AY, Alanzi AR, Riaz M, Fayez S. Could Mushrooms' Secondary Metabolites Ameliorate Alzheimer Disease? A Computational Flexible Docking Investigation. J Med Food 2024; 27:775-796. [PMID: 39121021 DOI: 10.1089/jmf.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Herein, we highlight the significance of molecular modeling approaches prior to in vitro and in vivo studies; particularly, in diseases with no recognized treatments such as neurological abnormalities. Alzheimer disease is a neurodegenerative disorder that causes irreversible cognitive decline. Toxicity and ADMET studies were conducted using the Qikprop platform in Maestro software and Discovery Studio 2.0, respectively, to select the promising skeletons from more than 45 reviewed compounds isolated from mushrooms in the last decade. Using rigid and flexible molecular docking approaches such as induced fit docking (IFD) in the binding sites of β-secretase (BACE1) and acetylcholine esterase (ACHE), promising structures were screened through high precision molecular docking compared with standard drugs donepezil and (2E)-2-imino-3-methyl-5,5-diphenylimidazolidin-4-one (OKK) using Maestro and Cresset Flare platforms. Molecular interactions, binding distances, and RMSD values were measured to reveal key interactions at the binding sites of the two neurodegenerative enzymes. Analysis of IFD results revealed consistent bindings of dictyoquinazol A and gensetin I in the pocket of 4ey7 while inonophenol A, ganomycin, and fornicin fit quite well in 4dju demonstrating binding poses very close to native ligands at ACHE and BACE1. Respective key amino acid contacts manifested the least steric problems according to their Gibbs free binding energies, Glide XP scores, RMSD values, and molecular orientation respect to the key amino acids. Molecular dynamics simulations further confirmed our findings and prospected these compounds to show significant in vitro results in their future pharmacological studies.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
6
|
Sakata S, Kunimatsu R, Tanimoto K. Protective Effect of Ergothioneine against Oxidative Stress-Induced Chondrocyte Death. Antioxidants (Basel) 2024; 13:800. [PMID: 39061869 PMCID: PMC11274255 DOI: 10.3390/antiox13070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Reactive oxygen species (ROS) induce oxidative stress in cells and are associated with various diseases, including autoimmune diseases. Ergothioneine (EGT) is a natural amino acid derivative derived from the ergot fungus and has been reported to exhibit an effective antioxidant function in many models of oxidative stress-related diseases. Recently, mutations in OCTN1, a membrane transporter of EGT, have been reported to be associated with rheumatoid arthritis. Therefore, we investigated the chondrocyte-protective function of EGT using a model of oxidative stress-induced injury of chondrocytes by hydrogen peroxide (H2O2). Human chondrocytes were subjected to oxidative stress induced by H2O2 treatment, and cell viability, the activity of lactate dehydrogenase (LDH) released into the medium, dead cell ratio, intracellular ROS production, and mitochondrial morphology were assessed. EGT improved chondrocyte viability and LDH activity in the medium and strongly suppressed the dead cell ratio. EGT also exerted protective effects on intracellular ROS production and mitochondrial morphology. These results provide evidence to support the protective effects of EGT on chondrocytes induced by oxidative stress.
Collapse
Affiliation(s)
- Shuzo Sakata
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| |
Collapse
|
7
|
Xu R, Liu S, Li LY, Bu Y, Bai PM, Luo GC, Wang XJ. Exploring the causal association between serum metabolites and erectile dysfunction: a bidirectional Mendelian randomisation study. Int J Impot Res 2024:10.1038/s41443-024-00926-2. [PMID: 38858529 DOI: 10.1038/s41443-024-00926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Erectile dysfunction is a common sexual disorder in men. Some studies have found a strong association between some serum metabolites and erectile dysfunction. To investigate this association further, we used bidirectional Mendelian randomisation to investigate causality and possible biological mechanisms.Firstly, this study screened the statistics of genome-wide association studies of serum metabolites and erectile dysfunction to obtain instrumental variables. Inverse variance weighting was used as the primary method for causal effect analysis of instrumental variables in forward or reverse Mendelian randomisation, and the results obtained by MR-Egger regression and the weighted median method were used as references. Subsequently, the metabolites causally associated with erectile dysfunction were subjected to replication analyses and meta-analyses, and the results of the meta-analyses were analysed by pathway analyses to find influential pathways. In this process, Mendelian randomisation results need to be assessed for stability and reliability using sensitivity analysis.It was found that a total of six serum metabolites were causally associated with erectile dysfunction in a forward Mendelian randomisation study. 1,3,7-trimethyluraten (0.85 (0.73-0.99), P = 0.0368), ergothioneine (0.65 (0.45-0.94), P = 0.0226) and gamma-glutamylglutamate (0.63 (0.46-0.88), P = 0.0059) were protective against the development of erectile dysfunction, whereas 2-hydroxyhippurate (1.10 (1.02-1.19), P = 0.0152), N2,N2-dimethylguanosine (1.57 (1.02-2.40), P = 0.0395) and octanoylcarnitine (1.38 (1.06-1.82), P = 0.0183) were able to induce the development of erectile dysfunction. In addition, metabolic pathway analysis showed that 1,3,7-trimethylurate was able to influence the development of erectile dysfunction via the caffeine metabolism pathway (P = 0.0454). On the other hand, reverse Mendelian randomisation analysis showed that erectile dysfunction reduced serum homocitrulline levels (0.99 (0.97-1.00), P = 0.0360). Sensitivity analyses, including heterogeneity tests and pleiotropy tests, confirmed the reliability of the results.In conclusion, this study demonstrated a bidirectional causal relationship between serum metabolites and erectile dysfunction using bidirectional Mendelian randomisation analysis and replication meta-analysis. On this basis, this study provides a new direction of thinking and strong evidence for the therapeutic application and adjunctive diagnosis of serum metabolites in erectile dysfunction, and provides a certain reference value for subsequent related studies.
Collapse
Affiliation(s)
- Ran Xu
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuo Liu
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lu-Yi Li
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Bu
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Pei-Ming Bai
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guang-Cheng Luo
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Urology, Zhongshan Hospital Xiamen University, The School of Clinical Medicine, Fujian Medical University, Xiamen, China
| | - Xin-Jun Wang
- Department of Urology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Department of Urology, Zhongshan Hospital Xiamen University, The School of Clinical Medicine, Fujian Medical University, Xiamen, China.
| |
Collapse
|
8
|
Nalivaiko EY, Seebeck FP. A Rhodanese-Like Enzyme that Catalyzes Desulfination of Ergothioneine Sulfinic Acid. Chembiochem 2024; 25:e202400131. [PMID: 38597743 DOI: 10.1002/cbic.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Many actinobacterial species contain structural genes for iron-dependent enzymes that consume ergothioneine by way of O2-dependent dioxygenation. The resulting product ergothioneine sulfinic acid is stable under physiological conditions unless cleavage to sulfur dioxide and trimethyl histidine is catalyzed by a dedicated desulfinase. This report documents that two types of ergothioneine sulfinic desulfinases have evolved by convergent evolution. One type is related to metal-dependent decarboxylases while the other belongs to the superfamily of rhodanese-like enzymes. Pairs of ergothioneine dioxygenases (ETDO) and ergothioneine sulfinic acid desulfinase (ETSD) occur in thousands of sequenced actinobacteria, suggesting that oxidative ergothioneine degradation is a common activity in this phylum.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| |
Collapse
|
9
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
10
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Holt RR, Munafo JP, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A Nutrient-Dense Food To Help Address World Hunger, Promote Health, and Support a Regenerative Food System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2697-2707. [PMID: 38054424 PMCID: PMC10853969 DOI: 10.1021/acs.jafc.3c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
There is a need for transformational innovation within the existing food system to achieve United Nations Sustainable Development Goal 2 of ending hunger within a sustainable agricultural system by 2030. Mycelium, the vegetative growth form of filamentous fungi, may represent a convergence of several features crucial for the development of food products that are nutritious, desirable, scalable, affordable, and environmentally sustainable. Mycelium has gained interest as technology advances demonstrate its ability to provide scalable biomass for food production delivering good flavor and quality protein, fiber, and essential micronutrients urgently needed to improve public health. We review the potential of mycelium as an environmentally sustainable food to address malnutrition and undernutrition, driven by food insecurity and caloric dense diets with less than optimal macro- and micronutrient density.
Collapse
Affiliation(s)
- Roberta R. Holt
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - John P. Munafo
- Department
of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Julie Salmen
- Nutritious
Ideas, LLC, Saint John, Indiana 46373, United States
| | - Carl L. Keen
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - Behroze S. Mistry
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Justin M. Whiteley
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Harold H. Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate
School of Management, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Apparoo Y, Wei Phan C, Rani Kuppusamy U, Chan EWC. Potential role of ergothioneine rich mushroom as anti-aging candidate through elimination of neuronal senescent cells. Brain Res 2024; 1824:148693. [PMID: 38036238 DOI: 10.1016/j.brainres.2023.148693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through β-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Bartosz G, Pieńkowska N, Sadowska-Bartosz I. Effect of Selected Antioxidants on the In Vitro Aging of Human Fibroblasts. Int J Mol Sci 2024; 25:1529. [PMID: 38338809 PMCID: PMC10855218 DOI: 10.3390/ijms25031529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The modification of the replicative lifespan (RLS) of fibroblasts is of interest both from a knowledge point of view and for the attenuation of skin aging. The effect of six antioxidants at a concentration of 1 μM on the replicative lifespan of human dermal fibroblasts was studied. The nitroxide 4-hydroxy-TEMPO (TEMPOL), ergothioneine, and Trolox extended the replicative lifespan (RLS) (40 ± 1 population doublings (PD)) by 7 ± 2, 4 ± 1, and 3 ± 1 PD and lowered the expression of p21 at late passages. Coumaric acid, curcumin and resveratrol did not affect the RLS . The level of reactive oxygen species (ROS) was decreased or not affected by the antioxidants although TEMPOL and coumaric acid decreased the level of glutathione. Only ergothioneine and resveratrol decreased the level of protein carbonylation. The antioxidants that could prolong the RLS elevated the mitochondrial membrane potential. Protecting the activity of mitochondria seems to be important for maintaining the replicative capacity of fibroblasts.
Collapse
Affiliation(s)
| | | | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, Zelwerowicza Street 4, 35-601 Rzeszow, Poland; (G.B.); (N.P.)
| |
Collapse
|
15
|
Wang S, Xiao F, Yuan Y, Li J, Liang X, Fan X, Zhang M, Yan T, Yang M, He Z, Yang D. Transcriptomic and metabolomic analyses reveal that lemon extract prolongs Drosophila lifespan by affecting metabolism. Genomics 2024; 116:110751. [PMID: 38052259 DOI: 10.1016/j.ygeno.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Ya Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
16
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
17
|
Kenny L, Brown L, Ortea P, Tuytten R, Kell D. Relationship between the concentration of ergothioneine in plasma and the likelihood of developing pre-eclampsia. Biosci Rep 2023; 43:BSR20230160. [PMID: 37278746 PMCID: PMC10326187 DOI: 10.1042/bsr20230160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023] Open
Abstract
Ergothioneine, an antioxidant nutraceutical mainly at present derived from the dietary intake of mushrooms, has been suggested as a preventive for pre-eclampsia (PE). We analysed early pregnancy samples from a cohort of 432 first time mothers as part of the Screening for Endpoints in Pregnancy (SCOPE, European branch) project to determine the concentration of ergothioneine in their plasma. There was a weak association between the ergothioneine levels and maternal age but none for BMI. Of these 432 women, 97 went on to develop pre-term (23) or term (74) PE. If a threshold was set at the 90th percentile of the reference range in the control population (≥462 ng/ml), only one of these 97 women (1%) developed PE, versus 96/397 (24.2%) whose ergothioneine level was below this threshold. One possible interpretation of these findings, consistent with previous experiments in a reduced uterine perfusion model in rats, is that ergothioneine may indeed prove protective against PE in humans. An intervention study of some kind now seems warranted.
Collapse
Affiliation(s)
- Louise C. Kenny
- Department of Women’s and Children’s Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| | | | | | | | | | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7BX, U.K
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
18
|
Alhalwani AY, Davey RL, Repine JE, Huffman JA. L-ergothioneine reduces nitration of lactoferrin and loss of antibacterial activity associated with nitrosative stress. Biochem Biophys Rep 2023; 34:101447. [PMID: 36942322 PMCID: PMC10023959 DOI: 10.1016/j.bbrep.2023.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional antimicrobial, anti-inflammatory, and antioxidant protein that occurs naturally in mammals, most notably in exocrine gland tissues and fluids, such as in the eye. Nitrosative stress can promote changes to tyrosine and other amino acid residues of the protein, which also reduces the activity of LF. l-ergothioneine (ET) is a potent anti-inflammatory antioxidant present in the eye and other tissues through nutrition or supplementation and that may play a role in the prevention or treatment of a variety of diseases. Here we investigated the ability of ET to reduce 3-nitrotyrosine (NTyr) formation using two separate substrates, with the goal of determining whether ET can protect the antibacterial function of LF and other proteins when exposed separately to peroxynitrite and tetranitromethane as nitrating reagents. Native human LF was used as a simple protein substrate, and lamb corneal lysate was chosen as one example of mammalian tissue with a more complex mixture of proteins and other biomolecules. Nitration was monitored by absorbance and fluorescence spectroscopy as well as sandwich (nitrated LF) and direct NTyr (corneal lysate) enzyme-linked immunosorbent assays (ELISAs). We found that pretreatment with ET reduced chemical modification of both native LF and corneal lysate samples and loss of antibacterial LF function due to exposure to the nitrating reagents. These initial results suggest that ET, raised to sufficiently elevated levels, could be tailored as a therapeutic agent to reduce effects of nitrosative stress on LF and in turn sustain the protein activity.
Collapse
Affiliation(s)
- Amani Y. Alhalwani
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Rachel L. Davey
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - John E. Repine
- Webb-Waring Center, University of Colorado Denver, Aurora, CO, 80045, USA
| | - J. Alex Huffman
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
- Corresponding author.
| |
Collapse
|
19
|
Barker S, Paul BD, Pieper AA. Increased Risk of Aging-Related Neurodegenerative Disease after Traumatic Brain Injury. Biomedicines 2023; 11:1154. [PMID: 37189772 PMCID: PMC10135798 DOI: 10.3390/biomedicines11041154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) survivors frequently suffer from chronically progressive complications, including significantly increased risk of developing aging-related neurodegenerative disease. As advances in neurocritical care increase the number of TBI survivors, the impact and awareness of this problem are growing. The mechanisms by which TBI increases the risk of developing aging-related neurodegenerative disease, however, are not completely understood. As a result, there are no protective treatments for patients. Here, we review the current literature surrounding the epidemiology and potential mechanistic relationships between brain injury and aging-related neurodegenerative disease. In addition to increasing the risk for developing all forms of dementia, the most prominent aging-related neurodegenerative conditions that are accelerated by TBI are amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson's disease (PD), and Alzheimer's disease (AD), with ALS and FTD being the least well-established. Mechanistic links between TBI and all forms of dementia that are reviewed include oxidative stress, dysregulated proteostasis, and neuroinflammation. Disease-specific mechanistic links with TBI that are reviewed include TAR DNA binding protein 43 and motor cortex lesions in ALS and FTD; alpha-synuclein, dopaminergic cell death, and synergistic toxin exposure in PD; and brain insulin resistance, amyloid beta pathology, and tau pathology in AD. While compelling mechanistic links have been identified, significantly expanded investigation in the field is needed to develop therapies to protect TBI survivors from the increased risk of aging-related neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah Barker
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Beliaeva M, Seebeck FP. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. JACS AU 2022; 2:2098-2107. [PMID: 36186560 PMCID: PMC9516567 DOI: 10.1021/jacsau.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 05/29/2023]
Abstract
Ergothioneine is a histidine derivative with a 2-mercaptoimidazole side chain and a trimethylated α-amino group. Although the physiological function of this natural product is not yet understood, the facts that many bacteria, some archaea, and most fungi produce ergothioneine and that plants and animals have specific mechanisms to absorb and distribute ergothioneine in specific tissues suggest a fundamental role in cellular life. The observation that ergothioneine biosynthesis has emerged multiple times in molecular evolution points to the same conclusion. Aerobic bacteria and fungi attach sulfur to the imidazole ring of trimethylhistidine via an O2-dependent reaction that is catalyzed by a mononuclear non-heme iron enzyme. Green sulfur bacteria and archaea use a rhodanese-like sulfur transferase to attach sulfur via oxidative polar substitution. In this report, we describe a third unrelated class of enzymes that catalyze sulfur transfer in ergothioneine production. The metallopterin-dependent ergothioneine synthase from Caldithrix abyssi contains an N-terminal module that is related to the tungsten-dependent acetylene hydratase and a C-terminal domain that is a functional cysteine desulfurase. The two modules cooperate to transfer sulfur from cysteine onto trimethylhistidine. Inactivation of the C-terminal desulfurase blocks ergothioneine production but maintains the ability of the metallopterin to exchange sulfur between ergothioneine and trimethylhistidine. Homologous bifunctional enzymes are encoded exclusively in anaerobic bacterial and archaeal species.
Collapse
Affiliation(s)
- Mariia
A. Beliaeva
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Florian P. Seebeck
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| |
Collapse
|
21
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
22
|
Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics. Antioxidants (Basel) 2022; 11:antiox11091717. [PMID: 36139790 PMCID: PMC9495818 DOI: 10.3390/antiox11091717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/20/2022] Open
Abstract
Low blood concentrations of the diet-derived compound ergothioneine (ET) have been associated with cognitive impairment and cerebrovascular disease (CeVD) in cross-sectional studies, but it is unclear whether ET levels can predict subsequent cognitive and functional decline. Here, we examined the temporal relationships between plasma ET status and cognition in a cohort of 470 elderly subjects attending memory clinics in Singapore. All participants underwent baseline plasma ET measurements as well as neuroimaging for CeVD and brain atrophy. Neuropsychological tests of cognition and function were assessed at baseline and follow-up visits for up to five years. Lower plasma ET levels were associated with poorer baseline cognitive performance and faster rates of decline in function as well as in multiple cognitive domains including memory, executive function, attention, visuomotor speed, and language. In subgroup analyses, the longitudinal associations were found only in non-demented individuals. Mediation analyses showed that the effects of ET on cognition seemed to be largely explainable by severity of concomitant CeVD, specifically white matter hyperintensities, and brain atrophy. Our findings support further assessment of plasma ET as a prognostic biomarker for accelerated cognitive and functional decline in pre-dementia and suggest possible therapeutic and preventative measures.
Collapse
|
23
|
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, Centre for Life Sciences, National University of Singapore, Singapore
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, Centre for Life Sciences, National University of Singapore, Singapore
| |
Collapse
|
24
|
D'Onofrio N, Martino E, Balestrieri A, Mele L, Cautela D, Castaldo D, Balestrieri ML. Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett 2022; 596:1313-1329. [PMID: 35122251 DOI: 10.1002/1873-3468.14310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Ergothioneine (Egt) is a dietary amino acid which acts as an antioxidant to protect against aging-related diseases. We investigated the anticancer properties of Egt in colorectal cancer cells (CRC). Egt treatment exerted cytotoxicity in a dose-dependent manner, induced reactive oxygen species accumulation, loss of mitochondrial membrane potential, and upregulation of the histone deacetylase SIRT3. Immunoblotting analysis indicated that the cell death occurred via necroptosis through activation of the RIP1/RIP3/MLKL pathway. An immunoprecipitation assay unveiled that the interaction between the terminal effector in necroptotic signaling MLKL and SIRT3 increased during the Egt treatment. SIRT3 gene silencing blocked the upregulation of MLKL and abolished the ability of Egt to induce necroptosis. The SIRT3-MLKL interaction may mediate the necroptotic effects of Egt in CRC, suggesting the potential of this dietary amino-thione in the prevention of CRC.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Anna Balestrieri
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA) - Azienda Speciale CCIAA di Reggio Calabria, Reggio Calabria, Italy
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA) - Azienda Speciale CCIAA di Reggio Calabria, Reggio Calabria, Italy.,Ministero dello Sviluppo Economico (MiSE), Rome, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
25
|
Amelio GS, Provitera L, Raffaeli G, Tripodi M, Amodeo I, Gulden S, Cortesi V, Manzoni F, Cervellini G, Tomaselli A, Pravatà V, Garrido F, Villamor E, Mosca F, Cavallaro G. Endothelial dysfunction in preterm infants: The hidden legacy of uteroplacental pathologies. Front Pediatr 2022; 10:1041919. [PMID: 36405831 PMCID: PMC9671930 DOI: 10.3389/fped.2022.1041919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Millions of infants are born prematurely every year worldwide. Prematurity, particularly at lower gestational ages, is associated with high mortality and morbidity and is a significant global health burden. Pregnancy complications and preterm birth syndrome strongly impact neonatal clinical phenotypes and outcomes. The vascular endothelium is a pivotal regulator of fetal growth and development. In recent years, the key role of uteroplacental pathologies impairing endothelial homeostasis is emerging. Conditions leading to very and extremely preterm birth can be classified into two main pathophysiological patterns or endotypes: infection/inflammation and dysfunctional placentation. The first is frequently related to chorioamnionitis, whereas the second is commonly associated with hypertensive disorders of pregnancy and fetal growth restriction. The nature, timing, and extent of prenatal noxa may alter fetal and neonatal endothelial phenotype and functions. Changes in the luminal surface, oxidative stress, growth factors imbalance, and dysregulation of permeability and vascular tone are the leading causes of endothelial dysfunction in preterm infants. However, the available evidence regarding endothelial physiology and damage is limited in neonates compared to adults. Herein, we discuss the current knowledge on endothelial dysfunction in the infectious/inflammatory and dysfunctional placentation endotypes of prematurity, summarizing their molecular features, available biomarkers, and clinical impact. Furthermore, knowledge gaps, shadows, and future research perspectives are highlighted.
Collapse
Affiliation(s)
- Giacomo Simeone Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Pravatà
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felipe Garrido
- Department of Pediatrics, Clínica Universidad de Navarra, Madrid, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), University of Maastricht, Maastricht, Netherlands
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|