1
|
Favero G, van Noorden CJF, Rezzani R. The Buccal Fat Pad: A Unique Human Anatomical Structure and Rich and Easily Accessible Source of Mesenchymal Stem Cells for Tissue Repair. Bioengineering (Basel) 2024; 11:968. [PMID: 39451344 PMCID: PMC11505344 DOI: 10.3390/bioengineering11100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 10/26/2024] Open
Abstract
Buccal fat pads are biconvex adipose tissue bags that are uniquely found on both sides of the human face along the anterior border of the masseter muscles. Buccal fat pads are important determinants of facial appearance, facilitating gliding movements of facial masticatory and mimetic muscles. Buccal fad pad flaps are used for the repair of oral defects and as a rich and easily accessible source of mesenchymal stem cells. Here, we introduce the buccal fat pad anatomy and morphology and report its functions and applications for oral reconstructive surgery and for harvesting mesenchymal stem cells for clinical use. Future frontiers of buccal fat pad research are discussed. It is concluded that many biological and molecular aspects still need to be elucidated for the optimal application of buccal fat pad tissue in regenerative medicine.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Cornelis J. F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
2
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Surovtseva MA, Kim II, Bondarenko NA, Ostapets SV, Drovosekov MN, Kosareva OS, Poveshchenko OV. Buccal Mesenchymal Stromal Cells as a Source of Osseointegration of Titanium Implants. Bull Exp Biol Med 2024; 176:620-625. [PMID: 38733480 DOI: 10.1007/s10517-024-06080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 05/13/2024]
Abstract
We studied the interaction of human buccal mesenchymal stem cells (MSCs) and osteoblasts differentiated from them with the surface of titanium samples. MSCs were isolated by enzymatic method from buccal fat pads. The obtained cell culture was presented by MSCs, which was confirmed by flow cytometry and differentiation into adipocytes and osteoblasts. Culturing of buccal MSCs on titanium samples was accompanied by an increase in the number of cells for 15 days and the formation of a developed network of F-actin fibers in the cells. The viability of buccal MSCs decreased by 8 days, but was restored by 15 days. Culturing of osteoblasts obtained as a result of buccal MSC differentiation on the surface of titanium samples was accompanied by a decrease in their viability and proliferation. Thus, MSCs from buccal fat pads can be used to coat implants to improve osseointegration during bone reconstruction in craniofacial surgery and dentistry. To improve the integration of osteoblasts, modification of the surface of titanium samples is required.
Collapse
Affiliation(s)
- M A Surovtseva
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - I I Kim
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Bondarenko
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Ostapets
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - M N Drovosekov
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - O S Kosareva
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - O V Poveshchenko
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Tareen WAK, Saba E, Rashid U, Sarfraz A, Yousaf MS, Habib-Ur-Rehman, Rehman HF, Sandhu MA. Impact of multiple isolation procedures on the differentiation potential of adipose derived canine mesenchymal stem cells. AMERICAN JOURNAL OF STEM CELLS 2024; 13:27-36. [PMID: 38505823 PMCID: PMC10944708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE In regenerative biology, the most commonly used cells are adipose tissue-derived mesenchymal stem cells (AD-MSCs). This is due to the abundance and easy accessibility of AD-MSCs. METHODS In this study, canine AD-MSCs were harvested from different anatomical locations, i.e., subcutaneous (SC), omental (OM), and perirenal (PR). Various isolation techniques namely explants (TRT-I), collagenase-digestion (TRT-II), collagenase-digested explants (TRT-III), and trypsin-digested explants (TRT-IV) were used to segregate the MSCs to evaluate cell doubling time, viability, and adipogenic/osteogenic lineage differentiation potential. RESULTS The study showed that the SC stem cells had superior growth kinetics compared to other tissues, while the cells isolated through TRT-II performed better than the other cell isolation procedures. The metabolic status of cells isolated from dog adipose tissue indicated that all cells had adequate metabolic rates. However, SC-MSCs derived from TRT-III and TRT-IV outperformed those derived from TRT-I and TRT-II. The differentiation analysis revealed that cells differentiate into adipogenic and osteogenic lineage regardless of treatment, as demonstrated by positive oil red O (ORO) and Alizarin Red S (ALZ) stain. It is worth mentioning that cells derived from TRT-III had larger and more intracellular droplets compared to the other treatments. The TRT-I, -II, and -III showed greater osteogenic differentiation in cells isolated from PR and OM regions compared to SC-derived cells. However, the TRT-IV resulted in better osteogenic differentiation in cells from SC, followed by the OM and PR-derived cells. CONCLUSION It is concluded that all methods of MSCs isolation from adipose tissues are successful; however, the TRT-II had the highest rate of cell re-assortment from the SC, while, TRT-II and -IV are most suitable for isolating cells from PR and OM adipose tissue.
Collapse
Affiliation(s)
- Waleed AK Tareen
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture UniversityRawalpindi 46300, Punjab, Pakistan
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture UniversityRawalpindi 46300, Punjab, Pakistan
| | - Usman Rashid
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture UniversityRawalpindi 46300, Punjab, Pakistan
| | - Adeel Sarfraz
- Department of Anatomy and Histology, Faculty of Veterinary and Animal Sciences, The Islamia University of BahawalpurBahawalpur 63100, Punjab, Pakistan
| | - Muhammad S Yousaf
- Department of Physiology, Faculty of Biosciences, University of Veterinary and Animal SciencesLahore 5400, Punjab, Pakistan
| | - Habib-Ur-Rehman
- Department of Physiology, Faculty of Biosciences, University of Veterinary and Animal SciencesLahore 5400, Punjab, Pakistan
| | - Hafiz F Rehman
- Department of Anatomy and Histology, Faculty of Biosciences, University of Veterinary and Animal SciencesLahore 5400, Punjab, Pakistan
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture UniversityRawalpindi 46300, Punjab, Pakistan
| |
Collapse
|
5
|
Arpornmaeklong P, Boonyuen S, Apinyauppatham K, Pripatnanont P. Effects of Oral Cavity Stem Cell Sources and Serum-Free Cell Culture on Hydrogel Encapsulation of Mesenchymal Stem Cells for Bone Regeneration: An In Vitro Investigation. Bioengineering (Basel) 2024; 11:59. [PMID: 38247936 PMCID: PMC10812978 DOI: 10.3390/bioengineering11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs) from the oral cavity. METHODS The study groups were categorized according to stem cell sources into buccal fat pad adipose (hBFP-ADSCs) (Groups 1, 4, and 7), periodontal ligament (hPDLSCs) (Groups 2, 5, and 8), and dental pulp-derived stem cells (hDPSCs) (Groups 3, 6, and 9). MSCs from each source were isolated and expanded in three types of sera: fetal bovine serum (FBS) (Groups 1-3), human serum (HS) (Groups 4-6), and synthetic serum (SS) (StemPro™ MSC SFM) (Groups 7-9) for monolayer (m) and hydrogel cell encapsulation cultures (e). Following this, the morphology, expression of MSC cell surface antigens, growth, and osteogenic differentiation potential of the MSCs, and the expression of adhesion molecules were analyzed and compared. RESULTS SS decreased variations in the morphology and expression levels of cell surface antigens of MSCs from three cell sources (Groups 7m-9m). The levels of osteoblastic differentiation of the hPDLSCs and hBFP-ADSCs were increased in SS (Groups 8m and 7m) and the cell encapsulation model (Groups 1e, 4e, 7e-9e), but the promoting effects of SS were decreased in a cell encapsulation model (Groups 7e-9e). The expression levels of the alpha v beta 3 (ITG-αVβ3) and beta 1 (ITG-β1) integrins in the encapsulated cells in FBS (Group 1e) were higher than those in the SS (Group 7e). CONCLUSIONS Human PDLSCs and BFP-ADSCs were the optimum stem cell source for stem cell encapsulation by using nanohydroxyapatite-calcium carbonate microcapsule-chitosan/collagen hydrogel in serum-free conditions.
Collapse
Affiliation(s)
- Premjit Arpornmaeklong
- Faculty of Dentistry, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | - Komsan Apinyauppatham
- Faculty of Dentistry, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | | |
Collapse
|
6
|
Hernández-Alfaro F, Soriano-Martín D, Molins-Ballabriga G, Valls-Ontañón A. Buccal fat pad as a sealant in palatal mucosa tearing: technical note. Int J Oral Maxillofac Surg 2022; 51:1596-1599. [PMID: 36075836 DOI: 10.1016/j.ijom.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
For patients with a dentofacial deformity undergoing a planned segmentation of the maxilla for the management of a transverse maxillary arch discrepancy, palatal mucosa tearing may occur during sawing or palatal expansion traction, giving rise to an oronasal communication. This technical note describes the covering of a tear in the palatal mucosa using a buccal fat pad (BFP) flap, in the context of maxillary segmentation during Le Fort I osteotomy. Through the limited buccal incision used for the Le Fort I osteotomy, a small incision is made in the right periosteum posteriorly, and a supraperiosteal dissection is performed to access the BFP. After a sufficient amount of flap is made available, it is gently introduced through the osteotomy gap until it reaches the palatal mucosa defect and is then sutured. In the patient case presented, the palatal mucosa healed fully within 18 days, and the patient reported no nasal regurgitation of food, defective speech, fetid odour, bad taste, or upper respiratory tract or ear infection during the postoperative period. This technique using a BFP flap should therefore be considered in the context of unexpected tearing of the palatal mucosa in patients undergoing a segmented Le Fort I osteotomy.
Collapse
Affiliation(s)
- F Hernández-Alfaro
- Institute of Maxillofacial Surgery, Teknon Medical Center, Barcelona, Spain; Department of Oral and Maxillofacial Surgery, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona, Spain
| | - D Soriano-Martín
- Institute of Maxillofacial Surgery, Teknon Medical Center, Barcelona, Spain
| | | | - A Valls-Ontañón
- Institute of Maxillofacial Surgery, Teknon Medical Center, Barcelona, Spain; Department of Oral and Maxillofacial Surgery, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
Camacho-Alonso F, Tudela-Mulero MR, Navarro JA, Buendía AJ, Mercado-Díaz AM. Use of buccal fat pad-derived stem cells cultured on bioceramics for repair of critical-sized mandibular defects in healthy and osteoporotic rats. Clin Oral Investig 2022; 26:5389-5408. [PMID: 35524820 PMCID: PMC9381637 DOI: 10.1007/s00784-022-04506-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare new bone formation in mandibular symphysis critical-sized bone defects (CSBDs) in healthy and osteoporotic rats filled with bioceramics (BCs) with or without buccal fat pad mesenchymal stem cells (BFPSCs). MATERIALS AND METHODS Thirty-two adult female Sprague-Dawley rats were randomized to two groups (n = 16 per group): group 1 healthy and group 2 osteoporotic (with bilateral ovariectomy). The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxyapatite 60% and β-tricalcium phosphate 40%) alone and eight with BFPSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In both groups, CSBDs filled with BC + BFPSCs showed greater radiological bone union, BMD and histological bone union, and more VEGF and BMP-2 positivity, compared with CSBDs treated with BC alone at 4 and 8 weeks. CONCLUSIONS The application of BFPSCs cultured on BCs improves bone regeneration in CSBDs compared with BCs alone in healthy and osteoporotic rats. CLINICAL RELEVANCE Our results may aid bone regeneration of maxillofacial CSBDs of both healthy and osteoporotic patients, but further studies are necessary.
Collapse
Affiliation(s)
- Fabio Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
- Oral Surgery Teaching Unit, University Dental Clinic, Morales Meseguer Hospital (2Nd Floor), Marqués de los Vélez s/n, 30008, Murcia, Spain.
| | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | | |
Collapse
|
8
|
Shekatkar MR, Kheur SM, Kharat AH, Deshpande SS, Sanap AP, Kheur MG, Bhonde RR. Assessment of angiogenic potential of mesenchymal stem cells derived conditioned medium from various oral sources. J Clin Transl Res 2022; 8:323-338. [PMID: 36090765 PMCID: PMC9450500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Abnormal angiogenesis hamper blood vessel proliferation implicated in various biological processes. The current method available to clinically treat patients to enhance angiogenesis is administering the angiogenic growth factors. However, due to a lack of spatiotemporal control over the substantial release of these factors, numerous drawbacks are faced such as leaky vasculature. Hence, stem-cell-based therapeutic applications are running their race to evolve as potential targets for deranged angiogenesis. In clinical dentistry, adequate tissue vascularization is essential for successful endodontic therapies such as apexogenesis and apexification. Furthermore, wound healing of the extraction socket and tissue regeneration post-surgical phase of treatment including implant placement require angiogenesis as a foundation for the ultimate success of treatment. Mesenchymal stem cells (MSCs) secrete certain growth factors and cytokines in the culture medium during the proliferation. These factors and cytokines are responsible for various biological activities inside human body. Oral cavity-derived stem cells can secrete growth factors that enhance angiogenesis. Aim The aim of the study was to investigate the angiogenic potential of conditioned medium (CM) of MSCs derived from different oral sources. Methods Oral tissues such as dental pulp of adult and deciduous teeth, gingiva, and buccal fat were used to isolate dental pulp MSCs (DPSCs), exfoliated deciduous teeth, gingival MSCs, and buccal fat derived MSCs. MSCs conditioned medium (CM) from passage four cells from all the sources were obtained at 48 h interval and growth factor analysis was performed using flow cytometry. To assess the functionality of the CM, Chick Yolk Sac Membrane (YSM) assay was performed. Results CM obtained from DPSCs showed higher levels of vascular endothelial growth factor, fibroblast growth factor, and hepatocyte growth factor as evidenced by flow cytometry. Furthermore, DPSC-CM exhibited significantly higher pro-angiogenic potential when assessed in in-ovo YSM assay. Conclusion DPSCs so far seems to be the best source as compare to the rest of oral sources in promoting angiogenesis. A novel source of CM derived from buccal fat stem cells was used to assess angiogenic potential. Thus, the present study shows that CM derived from oral cavity-derived-MSCs has a dynamic and influential role in angiogenesis. Relevance for Patients CM derived from various oral sources of MSCs could be used along with existing therapies in medical practice where patients have compromised blood supply like in diabetes and in patients with debilitating disorders. In clinical dentistry, adequate tissue vascularization is essential for successful wound healing, grafting procedures, and endodontic therapies. DPSCs-CM shows better angiogenic potential in comparison with other oral sources of MSCs-CM. Our findings could be a turning point in the management of all surgical and regenerative procedures requiring increased angiogenesis.
Collapse
Affiliation(s)
- Madhura Rajendra Shekatkar
- 1Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Supriya Mohit Kheur
- 1Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India,Corresponding author: Dr. Supriya Mohit Kheur, Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India. E-mail:
| | - Avinash Haribhau Kharat
- 2Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shantanu Sanjeev Deshpande
- 3Department of Pediatric and Preventive Dentistry, Terna Dental College and Hospital, Navi Mumbai, Maharashtra, India
| | - Avinash Purushottam Sanap
- 2Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Mohit Gurunath Kheur
- 4Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Ramesh Ramchandra Bhonde
- 2Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
9
|
Supphaprasitt W, Charoenmuang L, Thuaksuban N, Sangsuwan P, Leepong N, Supakanjanakanti D, Vongvatcharanon S, Suwanrat T, Srimanok W. A Three-Dimensional Printed Polycaprolactone–Biphasic-Calcium-Phosphate Scaffold Combined with Adipose-Derived Stem Cells Cultured in Xenogeneic Serum-Free Media for the Treatment of Bone Defects. J Funct Biomater 2022; 13:jfb13030093. [PMID: 35893462 PMCID: PMC9326540 DOI: 10.3390/jfb13030093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy of a three-dimensional printed polycaprolactone–biphasic-calcium-phosphate scaffold (PCL–BCP TDP scaffold) seeded with adipose-derived stem cells (ADSCs), which were cultured in xenogeneic serum-free media (XSFM) to enhance bone formation, was assessed in vitro and in animal models. The ADSCs were isolated from the buccal fat tissue of six patients using enzymatic digestion and the plastic adherence method. The proliferation and osteogenic differentiation of the cells cultured in XSFM when seeded on the scaffolds were assessed and compared with those of cells cultured in a medium containing fetal bovine serum (FBS). The cell–scaffold constructs were cultured in XSFM and were implanted into calvarial defects in thirty-six Wistar rats to assess new bone regeneration. The proliferation and osteogenic differentiation of the cells in the XSFM medium were notably better than that of the cells in the FBS medium. However, the efficacy of the constructs in enhancing new bone formation in the calvarial defects of rats was not statistically different to that achieved using the scaffolds alone. In conclusion, the PCL–BCP TDP scaffolds were biocompatible and suitable for use as an osteoconductive framework. The XSFM medium could support the proliferation and differentiation of ADSCs in vitro. However, the cell–scaffold constructs had no benefit in the enhancement of new bone formation in animal models.
Collapse
Affiliation(s)
- Woraporn Supphaprasitt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Lalita Charoenmuang
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
- Correspondence: ; Tel.: +66-954592492
| | - Prawichaya Sangsuwan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai 90110, Thailand;
| | - Narit Leepong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Danaiya Supakanjanakanti
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Surapong Vongvatcharanon
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Trin Suwanrat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Woraluk Srimanok
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| |
Collapse
|
10
|
Gaur S, Agnihotri R. Application of Adipose Tissue Stem Cells in Regenerative Dentistry: A Systematic Review. J Int Soc Prev Community Dent 2021; 11:266-271. [PMID: 34268188 PMCID: PMC8257006 DOI: 10.4103/jispcd.jispcd_43_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
AIM The aim of this study was to systematically review the applications of adipose tissue stem cells (ADSCs) in regenerative dentistry. MATERIALS AND METHODS An electronic search was conducted in Medline (PubMed) and Scopus databases. The original research associated with the role of ADSCs in regeneration of alveolar bone, periodontal ligament (PDL), cementum as well as the dental pulp was evaluated. Among the included studies, three animal studies and one human study had low risk of bias. RESULTS A total of 33 relevant studies were included in the review. The animal models, in vivo human, and in vitro studies revealed that ADSCs had a significant osteogenic differentiation potential. Besides, they had potential to differentiate into PDL, cementum, and dental pulp tissue. CONCLUSION The ADSCs may be specifically applied for bone tissue engineering in the management of alveolar bone defects, specifically in dental implants and periodontal disease. However, their role in regeneration of PDL, cementum, and dental pulp requires further investigations. Overall, their applications in regenerative dentistry needs further verification through human clinical trials.
Collapse
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
11
|
Genova T, Cavagnetto D, Tasinato F, Petrillo S, Ruffinatti FA, Mela L, Carossa M, Munaron L, Roato I, Mussano F. Isolation and Characterization of Buccal Fat Pad and Dental Pulp MSCs from the Same Donor. Biomedicines 2021; 9:biomedicines9030265. [PMID: 33800030 PMCID: PMC7999167 DOI: 10.3390/biomedicines9030265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be harvested from different sites in the oral cavity, representing a reservoir of cells useful for regenerative purposes. As direct comparisons between at least two types of MSCs deriving from the same patient are surprisingly rare in scientific literature, we isolated and investigated the osteoinductive potential of dental pulp stem cells (DPSCs) and buccal fat pad stem cells (BFPSCs). MSCs were isolated from the third molar dental pulp and buccal fat pads of 12 patients. The number of viable cells was quantified through manual count. Proliferation and osteodifferentiation assays, flow cytometry analysis of cell phenotypes, and osteocalcin release in vitro were performed. The isolation of BFPSCs and DPSCs was successful in 7 out of 12 (58%) and 3 out of 12 (25%) of retrieved samples, respectively. The yield of cells expressing typical stem cell markers and the level of proliferation were higher in BFPSCs than in DPSCs. Both BFP-SCs and DPSCs differentiated into osteoblast-like cells and were able to release a mineralized matrix. The release of osteocalcin, albeit greater for BFPSCs, did not show any significant difference between BFPSCs and DPSCs. The yield of MSCs depends on their site of origin as well as on the protocol adopted for their isolation. Our data show that BFP is a valuable source for the derivation of MSCs that can be used for regenerative treatments.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (L.M.)
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Davide Cavagnetto
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
- Correspondence: (D.C.); (F.M.)
| | - Fabio Tasinato
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Turin, Italy;
| | - Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (L.M.)
| | - Luca Mela
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Massimo Carossa
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (L.M.)
| | - Ilaria Roato
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
| | - Federico Mussano
- Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (F.T.); (L.M.); (M.C.); (I.R.)
- Correspondence: (D.C.); (F.M.)
| |
Collapse
|
12
|
Abstract
This article presents an overview of the history of the buccal fat pad flap, its relevant anatomy, and its indications and contraindications. The surgical technique for its harvest is described, as are the postoperative care and possible complications.
Collapse
Affiliation(s)
- Fairouz Chouikh
- Clinique de Chirurgie Maxillo-faciale du Grand Montréal, 1055 Beaver Hall, Suite 301, Montréal, Québec H2Z 1S5, Canada
| | - Eric J Dierks
- Head and Neck Surgical Associates, 1849 Northwest Kearney Street, #300, Portland, OR 97209, USA.
| |
Collapse
|
13
|
Roychoudhury A, Acharya S, Bhutia O, Seith Bhalla A, Manchanda S, Pandey RM. Is There a Difference in Volumetric Change and Effectiveness Comparing Pedicled Buccal Fat Pad and Abdominal Fat When Used as Interpositional Arthroplasty in the Treatment of Temporomandibular Joint Ankylosis? J Oral Maxillofac Surg 2020; 78:1100-1110. [DOI: 10.1016/j.joms.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
|
14
|
D'Esposito V, Lecce M, Marenzi G, Cabaro S, Ambrosio MR, Sammartino G, Misso S, Migliaccio T, Liguoro P, Oriente F, Fortunato L, Beguinot F, Sammartino JC, Formisano P, Gasparro R. Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad. J Tissue Eng Regen Med 2020; 14:701-713. [PMID: 32174023 DOI: 10.1002/term.3032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP-MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP-MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP-MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Manuela Lecce
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gaetano Marenzi
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Serena Cabaro
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gilberto Sammartino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, ASL-CE, Caserta, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Leonzio Fortunato
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Pietro Formisano
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roberta Gasparro
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
15
|
Khojasteh A, Hosseinpour S, Rezai Rad M, Alikhasi M, Zadeh HH. Buccal fat pad-derived stem cells with anorganic bovine bone mineral scaffold for augmentation of atrophic posterior mandible: An exploratory prospective clinical study. Clin Implant Dent Relat Res 2019; 21:292-300. [PMID: 30821120 DOI: 10.1111/cid.12729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Application of adipose-derived stem cells originated from buccal fat pad (BFP) can simplify surgical procedures and diminish clinical risks compared to large autograft harvesting. PURPOSE This study sought to evaluate and compare the efficacy of buccal fat pad-derived stem cells (BFPSCs) in combination with anorganic bovine bone mineral (ABBM) for vertical and horizontal augmentation of atrophic posterior mandibles. MATERIALS AND METHODS Fourteen patients with atrophic posterior mandible were elected for this prospective exploratory study. BFP (3-5 mL) was harvested and BFPSCs were isolated and combined with ABBM at 50% ratio. The vertical and horizontal alveolar deficiencies were augmented by 50% mixture of ABBM with either BFPSCs (group 1) or particulated autologous bone (group 2). Titanium mesh was contoured to the desired 3D shape of the alveolar ridge and fixated to the host sites over the graft material of the two groups. At first, the amount of new bone areas was calculated by quantitative analysis of cone beam computed tomography (CBCT) images that were taken 6 months postoperatively according to regenerative techniques (group 1 vs group 2 without considering the type of bone defects). Second, these amounts were calculated in each group based on the type of defects. RESULTS Quantitative analysis of CBCT images revealed the areas of new bone formation were 169.5 ± 5.90 mm2 and 166.75 ± 10.05 mm2 in groups 1 and 2, respectively. The area of new bone formation for vertical defects were 164.91 ± 3.74 mm2 and 169.36 ± 12.09 mm2 in groups 1 and 2, respectively. The area of new bone formation for horizontal deficiencies were 170.51 ± 4.54 mm2 and 166.98 ± 9.36 mm2 in groups 1 and 2, respectively. There were no statistically significant differences between the two groups in any of the pair-wise comparisons (P > 0.05). CONCLUSIONS The findings of the present study demonstrated lack of difference in bone volume formation between BFPSCs and autologous particulate bone in combination with ABBM. If confirmed by future large-scale clinical trial, BFPSCs may provide an alternative to autogenous bone for reconstruction of alveolar ridge defects.
Collapse
Affiliation(s)
- Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepanta Hosseinpour
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Alikhasi
- Dental Research Center, Dentistry Research Institute, Department of Prosthodontics, School of dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Homayoun H Zadeh
- Laboratory for Immunoregulation and Tissue Engineering (LITE), Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
Dziedzic DSM, Mogharbel BF, Ferreira PE, Irioda AC, de Carvalho KAT. Transplantation of Adipose-derived Cells for Periodontal Regeneration: A Systematic Review. Curr Stem Cell Res Ther 2019; 14:504-518. [PMID: 30394216 DOI: 10.2174/1574888x13666181105144430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords "ADIPOSE", "CELLS", and "PERIODONTAL", with the Boolean operator "AND". A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
- Dentistry Faculty, Universidade Positivo, Curitiba, Brazil
| | - Bassam Felipe Mogharbel
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Priscila Elias Ferreira
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | | |
Collapse
|
17
|
Ghaderi H, Razmkhah M, Kiany F, Chenari N, Haghshenas MR, Ghaderi A. Comparison of Osteogenic and Chondrogenic Differentiation Ability of Buccal Fat Pad Derived Mesenchymal Stem Cells and Gingival Derived Cells. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2018; 19:124-131. [PMID: 29854886 PMCID: PMC5960732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
STATEMENT OF THE PROBLEM One major goal of tissue engineering and regenerative medicine is to find an appropriate source of mesenchymal stem cells (MSCs) with higher differentiation ability. PURPOSE In this experimental study, the osteogenic and chondrogenic differentiation ability of buccal fat pad derived MSCs (BFP-MSCs) with gingival derived cells (GDCs) were compared. MATERIALS AND METHOD BFP-MSCs and GDCs were cultured enzymatically and expanded. The expanded cells were analyzed for membrane-associated markers, using flow cytometry. Then the ability of these cells to differentiate into osteocyte and chondrocyte was assessed morphologically and by mRNA expression of collagen I (COLL), BGLA and bone morphogenetic protein 2 (BMP2) using qRT-PCR. RESULTS Flow cytometry analysis showed that both BFP-MSCs and GDCs expressed the characteristic stem cell markers such as CD73, CD44, and CD90, whereas they did not express hematopoietic markers. Mineralized calcium deposition was observed apparently in BFP-MSCs cultured in osteogenic medium but GDCs showed fewer mineralized nodules. The mRNA expression levels of BGLA and BMP2 showed 7×105 and 733-fold more mRNA expression in BFP-MSCs treated with differentiation media compared to the control group. In chondrogenic differentiation, BFP-MSCs transformed from a spindle to a cuboidal shape while GDCs showed only a slight transformation. In addition, mRNA expression of COLL showed 282-fold higher expression in BFP-MSCs in comparison to the control group. Such significant difference in mRNA expression of BGLA, BMP2, and COLL was not observed in GDCs compared to their corresponding controls. CONCLUSION Based on the present results, BFP yields a greater proportion of stem cells compared to gingiva. Therefore, this tissue can be introduced as an easily available source for the treatment of periodontal defects and other maxillofacial injuries.
Collapse
Affiliation(s)
| | - Mahboobeh Razmkhah
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farin Kiany
- Oral and Dental, Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Institute for Cancer Research, Dept. of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Kishimoto N, Honda Y, Momota Y, Tran SD. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 24:1161-1167. [PMID: 29356251 DOI: 10.1111/odi.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.
Collapse
Affiliation(s)
- N Kishimoto
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Y Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | - Y Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Rezai Rad M, Bohloli M, Akhavan Rahnama M, Anbarlou A, Nazeman P, Khojasteh A. Impact of Tissue Harvesting Sites on the Cellular Behaviors of Adipose-Derived Stem Cells: Implication for Bone Tissue Engineering. Stem Cells Int 2017; 2017:2156478. [PMID: 29387089 PMCID: PMC5745705 DOI: 10.1155/2017/2156478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/30/2017] [Accepted: 11/08/2017] [Indexed: 01/22/2023] Open
Abstract
The advantages of adipose-derived stem cells (AdSCs) over bone marrow stem cells (BMSCs), such as being available as a medical waste and less discomfort during harvest, have made them a good alternative instead of BMSCs in tissue engineering. AdSCs from buccal fat pad (BFP), as an easily harvestable and accessible source, have gained interest to be used for bone regeneration in the maxillofacial region. Due to scarcity of data regarding comparative analysis of isolated AdSCs from different parts of the body, we aimed to quantitatively compare the proliferation and osteogenic capabilities of AdSCs from different harvesting sites. In this study, AdSCs were isolated from BFP (BFPdSCs), abdomen (abdomen-derived mesenchymal stem cells (AbdSCs)), and hip (hip-derived mesenchymal stem cells (HdSCs)) from one individual and were compared for surface marker expression, morphology, growth rate, and osteogenic differentiation capability. Among them, BFPdSCs demonstrated the highest proliferation rate with the shortest doubling time and also expressed vascular endothelial markers including CD34 and CD146. Moreover, the expression of osteogenic markers were significantly higher in BFPdSCs. The results of this study suggested that BFPdSCs as an encouraging source of mesenchymal stem cells are to be used for bone tissue engineering.
Collapse
Affiliation(s)
- Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahbobeh Bohloli
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Akhavan Rahnama
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Applied Cell Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Anbarlou
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pantea Nazeman
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Lateral Ramus Cortical Bone Plate in Alveolar Cleft Osteoplasty with Concomitant Use of Buccal Fat Pad Derived Cells and Autogenous Bone: Phase I Clinical Trial. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6560234. [PMID: 29379800 PMCID: PMC5742895 DOI: 10.1155/2017/6560234] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/12/2017] [Indexed: 12/29/2022]
Abstract
Tissue regeneration has become a promising treatment for craniomaxillofacial bone defects such as alveolar clefts. This study sought to assess the efficacy of lateral ramus cortical plate with buccal fat pad derived mesenchymal stem cells (BFSCs) in treatment of human alveolar cleft defects. Ten patients with unilateral anterior maxillary cleft met the inclusion criteria and were assigned to three treatment groups. First group was treated with anterior iliac crest (AIC) bone and a collagen membrane (AIC group), the second group was treated with lateral ramus cortical bone plate (LRCP) with BFSCs mounted on a natural bovine bone mineral (LRCP+BFSC), and the third group was treated with AIC bone, BFSCs cultured on natural bovine bone mineral, and a collagen membrane (AIC+BFSC). The amount of regenerated bone was measured using cone beam computed tomography 6 months postoperatively. AIC group showed the least amount of new bone formation (70 ± 10.40%). LRCP+BFSC group demonstrated defect closure and higher amounts of new bone formation (75 ± 3.5%) but less than AIC+BFSC (82.5 ± 6.45%), suggesting that use of BFSCs within LRCP cage and AIC may enhance bone regeneration in alveolar cleft bone defects; however, the differences were not statistically significant. This clinical trial was registered at clinicaltrial.gov with NCT02859025 identifier.
Collapse
|
21
|
Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review. Stem Cells Int 2017; 2017:8354640. [PMID: 28757880 PMCID: PMC5516750 DOI: 10.1155/2017/8354640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissues hold great promise in bone tissue engineering since they are available in large quantities as a waste material. The buccal fat pad (BFP) is a specialized adipose tissue that is easy to harvest and contains a rich blood supply, and its harvesting causes low complications for patients. This review focuses on the characteristics and osteogenic capability of stem cells derived from BFP as a valuable cell source for bone tissue engineering. An electronic search was performed on all in vitro and in vivo studies that used stem cells from BFP for the purpose of bone tissue engineering from 2010 until 2016. This review was organized according to the PRISMA statement. Adipose-derived stem cells derived from BFP (BFPSCs) were compared with adipose tissues from other parts of the body (AdSCs). Moreover, the osteogenic capability of dedifferentiated fat cells (DFAT) derived from BFP (BFP-DFAT) has been reported in comparison with BFPSCs. BFP is an easily accessible source of stem cells that can be obtained via the oral cavity without injury to the external body surface. Comparing BFPSCs with AdSCs indicated similar cell yield, morphology, and multilineage differentiation. However, BFPSCs proliferate faster and are more prone to producing colonies than AdSCs.
Collapse
|
22
|
Takahashi H, Ishikawa H, Tanaka A. Regenerative medicine for Parkinson's disease using differentiated nerve cells derived from human buccal fat pad stem cells. Hum Cell 2017; 30:60-71. [PMID: 28210976 DOI: 10.1007/s13577-017-0160-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to evaluate the utility of human adipose stem cells derived from the buccal fat pad (hBFP-ASCs) for nerve regeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive death of dopaminergic neurons. PD is a candidate disease for cell replacement therapy because it has no fundamental therapeutic methods. We examined the properties of neural-related cells induced from hBFP-ASCs as a cell source for PD treatment. hBFP-ASCs were cultured in neurogenic differentiation medium for about 2 weeks. After the morphology of hBFP-ASCs changed to neural-like cells, the medium was replaced with neural maintenance medium. Cells differentiated from hBFP-ASCs showed neuron-like structures and expressed neuron markers (β3-tubulin, neurofilament 200, and microtubule-associated protein 2), an astrocyte marker (glial fibrillary acidic protein), or dopaminergic neuron-related marker (tyrosine hydroxylase). Induced neural cells were transplanted into a 6-hydroxydopamine (6-OHDA)-lesioned rat hemi-parkinsonian model. At 4 weeks after transplantation, 6-OHDA-lesioned rats were subjected to apomorphine-induced rotation analysis. The transplanted cells survived in the brain of rats as dopaminergic neural cells. No tumor formation was found after cell transplantation. We demonstrated differentiation of hBFP-ASCs into neural cells, and that transplantation of these neural cells improved the symptoms of model rats. Our results suggest that neurons differentiated from hBFP-ASCs would be applicable to cell replacement therapy of PD.
Collapse
Affiliation(s)
- Haruka Takahashi
- Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Course of Clinical Science, Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
23
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Tamura Y, Tonogi M, Isokawa K, Shimizu N, Honda M. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential. Tissue Eng Part C Methods 2016; 22:250-9. [DOI: 10.1089/ten.tec.2015.0420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Niina Tsurumachi
- Nihon University Graduate School of Dentistry, Chiyoda-ku, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Tamura
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Morio Tonogi
- Department of Oral Surgery, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
24
|
Does Freeze-Thawing Influence the Effects of Platelet Concentrates? An In Vitro Study on Human Adipose-Derived Stem Cells. J Craniofac Surg 2016; 27:398-404. [PMID: 26872279 DOI: 10.1097/scs.0000000000002428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) have been proposed as a possible therapy for tissue regeneration in aesthetic, plastic, and reconstructive surgery. Today, platelet concentrates are used in a wide range of disciplines, but their storage has become a controversial aspect. The purpose of this in vitro study was to evaluate the effect of plasma rich in growth factors (PRGF), after a freeze-thawing cycle, on the proliferation and biological activity of progenitor cells involved in soft tissue healing. Different formulations of activated PRGF were added to hASCs cultured in serum-free medium. Cell proliferation was assessed by MTT test and cell count up to 7 and 12-day incubation. Osteo-differentiation ability of hASCs was also tested after 7 and 14-day incubation by alkaline phosphatase assay. The effects of 4 PRGF preparations (fresh/frozen and with/without platelets) were compared with corresponding formulations of plasma poor in growth factors and with standard medium. hASCs cultured in the presence of platelet concentrates increased proliferation rate with respect to cells grown in standard medium without significant differences among all the tested plasma formulations on cell viability up to 12 days of culture. PRGF activity is preserved after cryopreservation and platelet-rich preparations promoted osteo-differentiation of hASCs at day 7. In conclusion, PRGF supports the proliferation and the differentiation of progenitor cells in vitro also when applied after cryopreservation. Platelet concentrates, either alone or in combination with mesenchymal stem cells, might be a valuable tool in the field of tissue regeneration.
Collapse
|
25
|
Khojasteh A, Sadeghi N. Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: a preliminary human study. Int J Oral Maxillofac Surg 2016; 45:864-71. [PMID: 26846793 DOI: 10.1016/j.ijom.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/19/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Stem cell therapy for the treatment of bone defects is an alternative or adjunct to autologous bone grafting. This study assessed the efficacy of buccal fat pad-derived stem cells (BFPSCs) with iliac bone block grafting for the treatment of extensive human alveolar ridge defects. Eight patients with extensive jaw atrophy were selected for this study. The jaws were reconstructed with non-vascularized anterior iliac crest bone blocks. Gaps between the blocks were filled with freeze-dried bone granules and covered with a collagen membrane. In the test group (n=4), these granules were seeded with BFPSCs. Cone beam computed tomography scans were used to assess the amount of new bone formed at six sites in each patient. Trephine biopsies of 2-mm were also taken from the graft site during implant placement for histomorphometric analysis. The mean bone width change at the graft site was greater in the test group than in the control group (3.94±1.62mm vs. 3.01±0.89mm). New bone formation was 65.32% in the test group versus 49.21% in the control group. The application of BFPSCs in conjunction with iliac bone block grafts may increase the amount of new bone formation and decrease secondary bone resorption in extensively atrophic jaws.
Collapse
Affiliation(s)
- A Khojasteh
- Dental Research Centre, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, University of Antwerp, Antwerp, Belgium.
| | - N Sadeghi
- Dental Research Centre, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Shah FS, Li J, Dietrich M, Wu X, Hausmann MG, LeBlanc KA, Wade JW, Gimble JM. Comparison of Stromal/Stem Cells Isolated from Human Omental and Subcutaneous Adipose Depots: Differentiation and Immunophenotypic Characterization. Cells Tissues Organs 2015; 200:204-11. [PMID: 26089088 DOI: 10.1159/000430088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 11/19/2022] Open
Abstract
The emerging field of regenerative medicine has identified adipose tissue as an abundant source of stromal/stem cells for tissue engineering applications. Therefore, we have compared the differentiation and immunophenotypic features of adipose-derived stromal/stem cells (ASC) isolated from either omental or subcutaneous adipose depots. Human tissue samples were obtained from bariatric and plastic surgical practices at a university-affiliated teaching hospital and a private practice, respectively, with informed patient consent. Primary cultures of human ASC were isolated from adipose specimens within 24 h of surgery and culture expanded in vitro. The passaged ASC were induced to undergo adipogenic or osteogenic differentiation as assessed by histochemical methods or evaluated for surface antigen expression profiles by flow cytometry. ASC yields per unit weight of tissue were comparable between omental and subcutaneous depots. At passage 0, the immunophenotype of omental and subcutaneous ASC were not significantly different with the exception of CD105 and endoglin, a component of the transforming growth factor β receptor. The adipogenic differentiation of omental ASC was less robust than that of subcutaneous ASC based on in vitro histochemical and PCR assays. Although the yield and immunophenotype of ASC from omental adipose depots resembled that of subcutaneous ASC, omental ASC displayed significantly reduced adipogenic differentiation capacity following chemical induction. Further studies are necessary to evaluate and optimize the differentiation function of omental ASC in vitro and in vivo. Pending such analyses, omental ASC should not be used interchangeably with subcutaneous ASC for regenerative medical applications.
Collapse
|
27
|
Niada S, Ferreira LM, Arrigoni E, Addis A, Campagnol M, Broccaioli E, Brini AT. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res Ther 2014; 4:148. [PMID: 24330736 PMCID: PMC4054958 DOI: 10.1186/scrt359] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/13/2023] Open
Abstract
Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Methods ASCs were isolated from interscapular subcutaneous adipose tissue (ScI) and buccal fat pads of six swine. Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their growth in the presence of autologous and heterologous serum were also assessed. Results Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both ScI- and BFP-pASCs showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli. Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum. Conclusions Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be applied in preclinical studies of periodontal and bone-defect regeneration.
Collapse
|
28
|
|
29
|
|