1
|
Simonetti A, Saxena K, Koukopoulos AE, Janiri D, Lijffijt M, Swann AC, Kotzalidis GD, Sani G. Amygdala structure and function in paediatric bipolar disorder and high-risk youth: A systematic review of magnetic resonance imaging findings. World J Biol Psychiatry 2022; 23:103-126. [PMID: 34165050 DOI: 10.1080/15622975.2021.1935317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Converging evidence from structural and functional magnetic resonance imaging (MRI) studies points to amygdala alteration as crucial in the development of paediatric bipolar disorder (pBP). The high number of recent studies prompted us to comprehensively evaluate findings. We aimed to systematically review structural and functional MRI studies investigating the amygdala in patients with pBP and in youth at high-risk (HR) for developing pBP. METHODS We searched PubMed from any time to 25 September 2020 using: 'amygdala AND (MRI OR magnetic resonance imaging) AND bipolar AND (pediatr* OR child OR children OR childhood OR adolescent OR adolescents OR adolescence OR young OR familial OR at-risk OR sibling* OR offspring OR high risk)'. In this review, we adhered to the PRISMA statement. RESULTS Amygdala hyperactivity to emotional stimuli is the most commonly reported finding in youth with pBP and HR compared to healthy peers (HC), whereas findings from structural MRI studies are inconsistent. CONCLUSIONS Hyperactivation of the amygdala might be an endophenotype of pBP.
Collapse
Affiliation(s)
- Alessio Simonetti
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Department of Psychiatry, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.,Centro Lucio Bini, Rome, Italy
| | - Kirti Saxena
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Department of Psychiatry, Texas Children's Hospital, Houston, TX, USA
| | - Alexia E Koukopoulos
- Centro Lucio Bini, Rome, Italy.,Azienda Ospedaliera Universitaria Policlinico Umberto I, Sapienza School of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Delfina Janiri
- Centro Lucio Bini, Rome, Italy.,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marijn Lijffijt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Alan C Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Georgios D Kotzalidis
- Centro Lucio Bini, Rome, Italy.,NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Gabriele Sani
- Department of Psychiatry, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.,Institute of Psychiatry, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
2
|
Garrett AS, Chang KD, Singh MK, Armstrong CC, Walshaw PD, Miklowitz DJ. Neural changes in youth at high risk for bipolar disorder undergoing family-focused therapy or psychoeducation. Bipolar Disord 2021; 23:604-614. [PMID: 33432670 PMCID: PMC8273209 DOI: 10.1111/bdi.13045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 10/12/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Patients with mood disorders may benefit from psychosocial interventions through changes in brain networks underlying emotion processing. In this study, we used functional magnetic resonance imaging (fMRI) to investigate treatment-related changes in emotion processing networks in youth at familial high risk for bipolar disorder (BD). METHODS Youth, ages 9-17, were randomly assigned to family-focused therapy for high-risk youth (FFT-HR) or an active comparison treatment, Enhanced Care (EC). Before and after these 4-month treatments, participants underwent fMRI while viewing happy, fearful, and calm facial expressions. Twenty youth in FFT-HR and 20 in EC were included in analyses of pre- to post-treatment changes in activation across the whole brain. Significant clusters were assessed for correlation with mood symptom improvement. RESULTS In the dorsolateral prefrontal cortex (DLPFC), activation increased from pre- to post-treatment in the FFT-HR group and decreased in the EC group. Insula activation decreased in the FFT-HR group and did not change in the EC group. Across both treatments, decreasing activation in the hippocampus and amygdala was correlated with pre- to post-treatment improvement in hypomania, while increasing activation in the DLPFC was correlated with pre- to post-treatment improvement in depression. DISCUSSION Psychosocial treatment addresses abnormalities in emotion regulation networks in youth at high risk for BD. Increased prefrontal cortex activation suggests enhanced emotion regulation from pre- to post-treatment with FFT-HR. Improvements in family interactions may facilitate the development of prefrontal resources that provide protection against future mood episodes.
Collapse
Affiliation(s)
- Amy S. Garrett
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Manpreet K. Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey C. Armstrong
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Patricia D. Walshaw
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | - David J. Miklowitz
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Mancuso L, Fornito A, Costa T, Ficco L, Liloia D, Manuello J, Duca S, Cauda F. A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders. Neuroimage 2020; 222:117220. [PMID: 32777357 DOI: 10.1016/j.neuroimage.2020.117220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have investigated grey matter (GM) volume changes in diverse patient groups. Reports of disorder-related GM reductions are common in such work, but many studies also report evidence for GM volume increases in patients. It is unclear whether these GM increases and decreases are independent or related in some way. Here, we address this question using a novel meta-analytic network mapping approach. We used a coordinate-based meta-analysis of 64 voxel-based morphometry studies of psychiatric disorders to calculate the probability of finding a GM increase or decrease in one region given an observed change in the opposite direction in another region. Estimating this co-occurrence probability for every pair of brain regions allowed us to build a network of concurrent GM changes of opposing polarity. Our analysis revealed that disorder-related GM increases and decreases are not independent; instead, a GM change in one area is often statistically related to a change of opposite polarity in other areas, highlighting distributed yet coordinated changes in GM volume as a function of brain pathology. Most regions showing GM changes linked to an opposite change in a distal area were located in salience, executive-control and default mode networks, as well as the thalamus and basal ganglia. Moreover, pairs of regions showing coupled changes of opposite polarity were more likely to belong to different canonical networks than to the same one. Our results suggest that regional GM alterations in psychiatric disorders are often accompanied by opposing changes in distal regions that belong to distinct functional networks.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University,Victoria, Australia; Monash Biomedical Imaging, Monash University,Victoria, Australia
| | - Tommaso Costa
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| | - Linda Ficco
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Li L, Ji E, Han X, Tang F, Bai Y, Peng D, Fang Y, Zhang S, Zhang Z, Yang H. Cortical thickness and subcortical volumes alterations in euthymic bipolar I patients treated with different mood stabilizers. Brain Imaging Behav 2018; 13:1255-1264. [DOI: 10.1007/s11682-018-9950-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Zalpuri I, Singh MK. Treatment of psychiatric symptoms among offspring of parents with bipolar disorder. ACTA ACUST UNITED AC 2017; 4:341-356. [PMID: 29503793 DOI: 10.1007/s40501-017-0126-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review Bipolar disorder is highly familial and has a protracted and diagnostically confusing prodrome. This review critically evaluates recently published literature relevant to the treatment of psychiatric symptoms in high-risk offspring of parents with Bipolar Disorder. Recent Findings Non-pharmacological treatment options including psychotherapy, resilience promotion through good sleep, diet, and exercise hygiene, and omega-3 fatty acid supplementation are important first line interventions for high-risk offspring. There has been some success in treating this population with open-label trials with mood stabilizers and atypical antipsychotics; however, these results have not been replicated in randomized controlled trails. Summary Despite some progress in early identification of symptoms in offspring of parents with Bipolar Disorder, there is scarce evidence supporting the treatment of these high-risk youth to prevent psychiatric symptoms from progressing to threshold bipolar or other psychiatric disorders. There is a need for prospective and randomized trials and research that identifies reliable biomarkers to individualize treatments for these youth.
Collapse
Affiliation(s)
- Isheeta Zalpuri
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
6
|
Anomalous prefrontal-limbic activation and connectivity in youth at high-risk for bipolar disorder. J Affect Disord 2017; 222:7-13. [PMID: 28667891 DOI: 10.1016/j.jad.2017.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Abnormal prefrontal-limbic brain activation in response to facial expressions has been reported in pediatric bipolar disorder (BD). However, it is less clear whether these abnormalities exist prior to onset of mania, thus representing a biomarker predicting development of BD. METHODS We examined brain activation in 50 youth at high risk for BD (HR-BD), compared with 29 age- and gender-matched healthy control (HC) subjects. HR-BD was defined as having a parent with BD, as well as current mood or attentiondeficit/ hyperactivity disorder (ADHD) symptoms, or a history of at least one depressive episode. FMRI data were collected during an implicit emotion perception task using facial expression stimuli. Activation to fearful faces versus calm faces was compared between HR-BD and HC groups, including analyses of functional connectivity, and comparison of allele subgroups of the serotonin transporter (5-HTTLPR) gene. RESULTS While viewing fearful versus calm faces, HR-BD youth had significantly greater activation than HC youth in the right amygdala, ventrolateral prefrontal cortex (VLPFC), superior frontal cortex, cerebellum, and lingual gyrus. HR-BD youth, relative to HC youth, had greater functional connectivity between the right amygdala and the VLPFC as well as visual cortical regions Within the HR-BD group, youth with the s-allele had a trend for greater activation in the right amygdala and subgenual cingulate cortex CONCLUSIONS: Similar to youth with BD, youth at high risk for BD have greater activation than healthy controls in the amygdala and ventrolateral prefrontal cortex in response to fearful faces, as well greater functional connectivity between these regions. HR-BD youth with the s-allele of the 5-HTTLPR gene may be at greatest risk for developing BD.
Collapse
|
7
|
Bertocci MA, Bebko G, Dwojak A, Iyengar S, Ladouceur CD, Fournier JC, Versace A, Perlman SB, Almeida JRC, Travis MJ, Gill MK, Bonar L, Schirda C, Diwadkar VA, Sunshine JL, Holland SK, Kowatch RA, Birmaher B, Axelson D, Horwitz SM, Frazier T, Arnold LE, Fristad MA, Youngstrom EA, Findling RL, Phillips ML. Longitudinal relationships among activity in attention redirection neural circuitry and symptom severity in youth. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:336-345. [PMID: 28480336 DOI: 10.1016/j.bpsc.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Changes in neural circuitry function may be associated with longitudinal changes in psychiatric symptom severity. Identification of these relationships may aid in elucidating the neural basis of psychiatric symptom evolution over time. We aimed to distinguish these relationships using data from the Longitudinal Assessment of Manic Symptoms (LAMS) cohort. METHODS Forty-one youth completed two study visits (mean=21.3 months). Elastic-net regression (Multiple response Gaussian family) identified emotional regulation neural circuitry that changed in association with changes in depression, mania, anxiety, affect lability, and positive mood and energy dysregulation, accounting for clinical and demographic variables. RESULTS Non-zero coefficients between change in the above symptom measures and change in activity over the inter-scan interval were identified in right amygdala and left ventrolateral prefrontal cortex. Differing patterns of neural activity change were associated with changes in each of the above symptoms over time. Specifically, from Scan1 to Scan2, worsening affective lability and depression severity were associated with increased right amygdala and left ventrolateral prefrontal cortical activity. Worsening anxiety and positive mood and energy dysregulation were associated with decreased right amygdala and increased left ventrolateral prefrontal cortical activity. Worsening mania was associated with increased right amygdala and decreased left ventrolateral prefrontal cortical activity. These changes in neural activity between scans accounted for 13.6% of the variance; that is 25% of the total explained variance (39.6%) in these measures. CONCLUSIONS Distinct neural mechanisms underlie changes in different mood and anxiety symptoms overtime.
Collapse
Affiliation(s)
- Michele A Bertocci
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Genna Bebko
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Amanda Dwojak
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | | | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Jay C Fournier
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Susan B Perlman
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | | | - Michael J Travis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Mary Kay Gill
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Claudiu Schirda
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University
| | - Jeffrey L Sunshine
- University Hospitals Case Medical Center/Case Western Reserve University
| | - Scott K Holland
- Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | | | - Boris Birmaher
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| | - David Axelson
- The Research Institute at Nationwide Children's Hospital
| | - Sarah M Horwitz
- Department of Child Psychiatry, New York University School of Medicine
| | | | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, Ohio State University
| | | | - Eric A Youngstrom
- Department of Psychology, University of North Carolina at Chapel Hill
| | - Robert L Findling
- University Hospitals Case Medical Center/Case Western Reserve University.,Department of Psychiatry, Johns Hopkins University
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh
| |
Collapse
|
8
|
Pediatric applications of functional magnetic resonance imaging. Pediatr Radiol 2015; 45 Suppl 3:S382-96. [PMID: 26346144 DOI: 10.1007/s00247-015-3365-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/31/2014] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions.
Collapse
|
9
|
Using neuroimaging to evaluate and guide pharmacological and psychotherapeutic treatments for mood disorders in children. CNS Spectr 2015; 20:359-68. [PMID: 25659836 DOI: 10.1017/s1092852914000819] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mood disorders are increasing in childhood, and often require multimodal and comprehensive treatment plans to address a complex array of symptoms and associated morbidities. Pharmacotherapy, in combination with psychotherapeutic interventions, is essential for treatment and stabilization. Current evidence supports the use of a number of interventions in children and adolescents diagnosed with DSM-5 mood spectrum disorders, which are associated with impairments in prefrontal-striatal-limbic networks, which are key for emotional functioning and regulation. Yet, little is known about the neurobiological effects of interventions on the developing brain. This chapter provides a synopsis of the literature demonstrating the neural effects of psychotropic medications and psychotherapy in youth with depressive or bipolar spectrum disorders. Additional longitudinal and biological studies are warranted to characterize the effects of these interventions on all phases and stages of mood illness development in children and adolescents.
Collapse
|
10
|
Garrett AS, Miklowitz DJ, Howe ME, Singh MK, Acquaye TK, Hawkey CG, Glover GH, Reiss AL, Chang KD. Changes in brain activation following psychotherapy for youth with mood dysregulation at familial risk for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:215-20. [PMID: 25283342 PMCID: PMC4258439 DOI: 10.1016/j.pnpbp.2014.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/28/2014] [Accepted: 09/23/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Psychotherapy for youth with mood dysregulation can help stabilize mood and improve functioning, but the neural mechanisms of this improvement are not known. In this study we investigated the changes in brain activation underlying improvement in mood symptoms. METHODS Twenty-four subjects (ages 13-17) participated: 12 patients with clinically significant symptoms of depression and/or mania, and 12 healthy comparison subjects (HC) matched for age and sex. All subjects completed functional magnetic resonance imaging while viewing facial expressions. The patients then received up to 4 months of psychotherapy and were rescanned at end of treatment. Whole brain differences between patient and control groups were assessed with a voxel-wise analysis. Changes in activation from pre- to post-treatment within the patient group were tested for correlation with changes in mood symptoms. RESULTS At baseline the patient group had hypoactivation in the dorsolateral prefrontal cortex (DLPFC) and hyperactivation in the posterior cingulate cortex compared to the HC group. Between pre- and post-treatment activation increased in the DLPFC and decreased in the amygdala. Increases in DLPFC activation were significantly correlated with improvement in mania symptoms. DISCUSSION Enhancement of frontal executive control brain regions may underlie improvement in mood dysregulation in pediatric patients at familial risk for bipolar disorder.
Collapse
Affiliation(s)
- Amy S. Garrett
- Stanford University School of Medicine, Department of Psychiatry,Center for Interdisciplinary Brain Sciences Research,Pediatric Bipolar Disorders Program
| | | | - Meghan E. Howe
- Stanford University School of Medicine, Department of Psychiatry,Pediatric Bipolar Disorders Program
| | - Manpreet K. Singh
- Stanford University School of Medicine, Department of Psychiatry,Pediatric Bipolar Disorders Program
| | - Tenah K. Acquaye
- Stanford University School of Medicine, Department of Psychiatry,Pediatric Bipolar Disorders Program
| | | | | | - Allan L. Reiss
- Stanford University School of Medicine, Department of Psychiatry,Center for Interdisciplinary Brain Sciences Research
| | - Kiki D. Chang
- Stanford University School of Medicine, Department of Psychiatry,Pediatric Bipolar Disorders Program
| |
Collapse
|
11
|
|
12
|
Kesler SR, Watson C, Koovakkattu D, Lee C, O'Hara R, Mahaffey ML, Wefel JS. Elevated prefrontal myo-inositol and choline following breast cancer chemotherapy. Brain Imaging Behav 2014; 7:501-10. [PMID: 23536015 DOI: 10.1007/s11682-013-9228-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer survivors are at increased risk for cognitive dysfunction, which reduces quality of life. Neuroimaging studies provide critical insights regarding the mechanisms underlying these cognitive deficits as well as potential biologic targets for interventions. We measured several metabolite concentrations using (1)H magnetic resonance spectroscopy as well as cognitive performance in 19 female breast cancer survivors and 17 age-matched female controls. Women with breast cancer were all treated with chemotherapy. Results indicated significantly increased choline (Cho) and myo-inositol (mI) with correspondingly decreased N-acetylaspartate (NAA)/Cho and NAA/mI ratios in the breast cancer group compared to controls. The breast cancer group reported reduced executive function and memory, and subjective memory ability was correlated with mI and Cho levels in both groups. These findings provide preliminary evidence of an altered metabolic profile that increases our understanding of neurobiologic status post-breast cancer and chemotherapy.
Collapse
Affiliation(s)
- Shelli R Kesler
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Rd., Stanford, CA, 94305-5795, USA,
| | | | | | | | | | | | | |
Collapse
|
13
|
Kondo DG, Hellem TL, Shi XF, Sung YH, Prescot AP, Kim TS, Huber RS, Forrest LN, Renshaw PF. A review of MR spectroscopy studies of pediatric bipolar disorder. AJNR Am J Neuroradiol 2014; 35:S64-80. [PMID: 24557702 DOI: 10.3174/ajnr.a3844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pediatric bipolar disorder is a severe mental illness whose pathophysiology is poorly understood and for which there is an urgent need for improved diagnosis and treatment. MR spectroscopy is a neuroimaging method capable of in vivo measurement of neurochemicals relevant to bipolar disorder neurobiology. MR spectroscopy studies of adult bipolar disorder provide consistent evidence for alterations in the glutamate system and mitochondrial function. In bipolar disorder, these 2 phenomena may be linked because 85% of glucose in the brain is consumed by glutamatergic neurotransmission and the conversion of glutamate to glutamine. The purpose of this article is to review the MR spectroscopic imaging literature in pediatric bipolar disorder, at-risk samples, and severe mood dysregulation, with a focus on the published findings that are relevant to glutamatergic and mitochondrial functioning. Potential directions for future MR spectroscopy studies of the glutamate system and mitochondrial dysfunction in pediatric bipolar disorder are discussed.
Collapse
Affiliation(s)
- D G Kondo
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - T L Hellem
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - X-F Shi
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - Y H Sung
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - A P Prescot
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahRadiology (A.P.P.), University of Utah School of Medicine, Salt Lake City, Utah
| | - T S Kim
- and Department of Psychiatry (T.S.K.), Catholic University of Korea Graduate School of Medicine, Seoul, Republic of Korea
| | - R S Huber
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - L N Forrest
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - P F Renshaw
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)Veterans Integrated Service Network 19 Mental Illness Research (P.F.R.), Education and Clinical Center, VA Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
14
|
Lee MS, Anumagalla P, Talluri P, Pavuluri MN. Meta-analyses of developing brain function in high-risk and emerged bipolar disorder. Front Psychiatry 2014; 5:141. [PMID: 25404919 PMCID: PMC4217331 DOI: 10.3389/fpsyt.2014.00141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Identifying early markers of brain function among those at high risk (HR) for pediatric bipolar disorder (PBD) could serve as a screening measure when children and adolescents present with subsyndromal clinical symptoms prior to the conversion to bipolar disorder. Studies on the offspring of patients with bipolar disorder who are genetically at HR have each been limited in establishing a biomarker, while an analytic review in summarizing the findings offers an improvised opportunity toward that goal. METHODS An activation likelihood estimation (ALE) meta-analysis of mixed cognitive and emotional activities using the GingerALE software from the BrainMap Project was completed. The meta-analysis of all fMRI studies contained a total of 29 reports and included PBD, HR, and typically developing (TD) groups. RESULTS The HR group showed significantly greater activation relative to the TD group in the right DLPFC-insular-parietal-cerebellar regions. Similarly, the HR group exhibited greater activity in the right DLPFC and insula as well as the left cerebellum compared to patients with PBD. Patients with PBD, relative to TD, showed greater activation in regions of the right amygdala, parahippocampal gyrus, medial PFC, left ventral striatum, and cerebellum and lower activation in the right VLPFC and the DLPFC. CONCLUSION The HR population showed increased activity, presumably indicating greater compensatory deployment, in relation to both the TD and the PBD, in the key cognition and emotion-processing regions, such as the DLPFC, insula, and parietal cortex. In contrast, patients with PBD, relative to HR and TD, showed decreased activity, which could indicate a decreased effort in multiple PFC regions in addition to widespread subcortical abnormalities, which are suggestive of a more entrenched disease process.
Collapse
Affiliation(s)
- Moon-Soo Lee
- Pediatric Brain Research and Intervention Center, University of Illinois at Chicago , Chicago, IL , USA ; College of Medicine, Korea University , Seoul , South Korea
| | - Purnima Anumagalla
- Pediatric Brain Research and Intervention Center, University of Illinois at Chicago , Chicago, IL , USA
| | - Prasanth Talluri
- Pediatric Brain Research and Intervention Center, University of Illinois at Chicago , Chicago, IL , USA
| | - Mani N Pavuluri
- Pediatric Brain Research and Intervention Center, University of Illinois at Chicago , Chicago, IL , USA
| |
Collapse
|
15
|
Outhred T, Kemp AH, Malhi GS. Physiological Correlates of Bipolar Spectrum Disorders and their Treatment. Curr Top Behav Neurosci 2014; 21:47-102. [PMID: 24844679 DOI: 10.1007/7854_2014_297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bipolar spectrum disorders (BSDs) are associated with great personal and socioeconomic burden, with patients often facing a delay in detection, misdiagnosis when detected, and a trial-and-error approach to finding the most appropriate treatment. Therefore, improvement in the assessment and management of patients with BSDs is critical. Should valid physiological measures for BSDs be identified and implemented, significant clinical improvements are likely to be realized. This chapter reviews the physiological correlates of BSDs and treatment, and in doing so, examines the neuroimaging, electroencephalogram, and event-related potential, and peripheral physiological correlates that both characterize and differentiate BSDs and their response to treatment. Key correlates of BSDs involve underlying disturbances in prefrontal and limbic network neural activity, early neural processing, and within the autonomic nervous system. These changes appear to be mood-related and can be normalized with treatment. We adopt an "embodied" perspective and propose a novel, working framework that takes into account embodied psychophysiological mechanisms in which the physiological correlates of BSD are integrated. This approach may in time provide the objective physiological measures needed to improve assessment and decision making when treating patients with BSDs. Future research with integrative, multimodal measures is likely to yield potential applications for physiological measures of BSD that correlate closely with diagnosis and treatment.
Collapse
Affiliation(s)
- Tim Outhred
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | | | | |
Collapse
|
16
|
Prospective neurochemical characterization of child offspring of parents with bipolar disorder. Psychiatry Res 2013; 214:153-60. [PMID: 24028795 PMCID: PMC3796054 DOI: 10.1016/j.pscychresns.2013.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 01/04/2023]
Abstract
We wished to determine whether decreases in N-acetyl aspartate (NAA) and increases in myoinositol (mI) concentrations as a ratio of creatine (Cr) occurred in the dorsolateral prefrontal cortex (DLPFC) of pediatric offspring of parents with bipolar disorder (BD) and a healthy comparison group (HC) over a 5-year period using proton magnetic resonance spectroscopy ((1)H-MRS). Paticipants comprised 64 offspring (9-18 years old) of parents with BD (36 with established BD, and 28 offspring with symptoms subsyndromal to mania) and 28 HCs, who were examined for group differences in NAA/Cr and mI/Cr in the DLPFC at baseline and follow-up at either 8, 10, 12, 52, 104, 156, 208, or 260 weeks. No significant group differences were found in metabolite concentrations at baseline or over time. At baseline, BD offspring had trends for higher mI/Cr concentrations in the right DLPFC than the HC group. mI/Cr concentrations increased with age, but no statistically significant group differences were found between groups on follow-up. It may be the case that with intervention youth at risk for BD are normalizing otherwise potentially aberrant neurochemical trajectories in the DLPFC. A longer period of follow-up may be required before observing any group differences.
Collapse
|
17
|
Singh MK, Chang KD. The Neural Effects of Psychotropic Medications in Children and Adolescents. Child Adolesc Psychiatr Clin N Am 2012; 21:753-71. [PMID: 23040900 PMCID: PMC3590023 DOI: 10.1016/j.chc.2012.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Little is known about the neurobiological effects of psychotropic medications used in the treatment of children and adolescents diagnosed with a psychiatric disorder. This review provides a synopsis of the literature demonstrating the neural effects associated with exposure to psychotropic medication in youth using multimodal neuroimaging. The article concludes by illustrating how, taken together, these studies suggest that pharmacological interventions during childhood do indeed affect brain structure and function in a detectable manner, and the effects appear to be ameliorative.
Collapse
|
18
|
Dickstein DP, Reidy BL, Pescosolido MF, Galvan T, Kim KL. Translational neuroscience in pediatric bipolar disorder. Expert Rev Neurother 2012; 11:1699-701. [PMID: 22091595 DOI: 10.1586/ern.11.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While controversial and often confounded with other forms of psychopathology, recent studies have shown that bipolar disorder (BD) is on the rise in children and adolescents. Research has made important strides in advancing our understanding of the phenomenology, neural underpinnings and treatment outcomes for BD youths. However, there is an increasing need to unite these domains to identify potential neural effects and predictors of treatment outcome. Pavuluri et al. have conducted such a study, evaluating the neural effects of divalproex or risperidone for pediatric BD. The future is likely to bring more of such studies, potentially resulting in a biomarker augmented approach to the diagnosis and treatment of pediatric BD.
Collapse
Affiliation(s)
- Daniel P Dickstein
- PediMIND Program, EP Bradley Hospital and Alpert Medical School of Brown University, 1011 Veterans Memorial Parkway, East Providence, RI 02915, USA.
| | | | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE Recent theories regarding the neuropathology of bipolar disorder suggest that both neurodevelopmental and neurodegenerative processes may play a role. While magnetic resonance imaging has provided significant insight into the structural, functional, and connectivity abnormalities associated with bipolar disorder, research assessing longitudinal changes has been more limited. However, such research is essential to elucidate the pathophysiology of the disorder. The aim of our review is to examine the extant literature for developmental and progressive structural and functional changes in individuals with and at risk for bipolar disorder. METHODS We conducted a literature review using MEDLINE and the following search terms: bipolar disorder, risk, child, adolescent, bipolar offspring, MRI, fMRI, DTI, PET, SPECT, cross-sectional, longitudinal, progressive, and developmental. Further relevant articles were identified by cross-referencing with identified manuscripts. CONCLUSIONS There is some evidence for developmental and progressive neurophysiological alterations in bipolar disorder, but the interpretation of correlations between neuroimaging findings and measures of illness exposure or age in cross-sectional studies must be performed with care. Prospective longitudinal studies placed in the context of normative developmental and atrophic changes in neural structures and pathways thought to be involved in bipolar disorder are needed to improve our understanding of the neurodevelopmental underpinnings and progressive changes associated with bipolar disorder.
Collapse
Affiliation(s)
- Marguerite Reid Schneider
- Physician Scientist Training Program, Neuroscience Graduate Program Department, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0516, USA
| | | | | | | | | |
Collapse
|
20
|
Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML. Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord 2012; 14:375-410. [PMID: 22631621 DOI: 10.1111/j.1399-5618.2012.01023.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Neuroimaging is an important tool for better understanding the neurobiological underpinnings of bipolar disorder (BD). However, potential study participants are often receiving psychotropic medications which can possibly confound imaging data. To better interpret the results of neuroimaging studies in BD, it is important to understand the impact of medications on structural magnetic resonance imaging (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI). METHODS To better understand the impact of medications on imaging data, we conducted a literature review and searched MEDLINE for papers that included the key words bipolar disorder and fMRI, sMRI, or DTI. The search was limited to papers that assessed medication effects and had not been included in a previous review by Phillips et al. (Medication effects in neuroimaging studies of bipolar disorder. Am J Psychiatry 2008; 165: 313-320). This search yielded 74 sMRI studies, 46 fMRI studies, and 15 DTI studies. RESULTS Medication appeared to influence many sMRI studies, but had limited impact on fMRI and DTI findings. From the structural studies, the most robust finding (20/45 studies) was that lithium was associated with increased volumes in areas important for mood regulation, while antipsychotic agents and anticonvulsants were generally not. Regarding secondary analysis of the medication effects of fMRI and DTI studies, few showed significant effects of medication, although rigorous analyses were typically not possible when the majority of subjects were medicated. Medication effects were more frequently observed in longitudinal studies designed to assess the impact of particular medications on the blood oxygen level-dependent (BOLD) signal. With a few exceptions, the observed effects were normalizing, meaning that the medicated individuals with BD were more similar than their unmedicated counterparts to healthy subjects. CONCLUSIONS The effects of psychotropic medications, when present, are predominantly normalizing and thus do not seem to provide an alternative explanation for differences in volume, white matter tracts, or BOLD signal between BD participants and healthy subjects. However, the normalizing effects of medication could obfuscate differences between BD and healthy subjects, and thus might lead to type II errors.
Collapse
Affiliation(s)
- Danella M Hafeman
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
21
|
Dickstein DP. This is your brain. This is your brain on treatment. Any questions? J Am Acad Child Adolesc Psychiatry 2012; 51:134-5. [PMID: 22265359 DOI: 10.1016/j.jaac.2011.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
|
22
|
Pavuluri MN, Passarotti AM, Fitzgerald JM, Wegbreit E, Sweeney JA. Risperidone and divalproex differentially engage the fronto-striato-temporal circuitry in pediatric mania: a pharmacological functional magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 2012; 51:157-170.e5. [PMID: 22265362 PMCID: PMC3357915 DOI: 10.1016/j.jaac.2011.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 10/11/2011] [Accepted: 10/28/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The current study examined the impact of risperidone and divalproex on affective and working memory circuitry in patients with pediatric bipolar disorder (PBD). METHOD This was a six-week, double-blind, randomized trial of risperidone plus placebo versus divalproex plus placebo for patients with mania (n = 21; 13.6 ± 2.5 years of age). Functional magnetic resonance imaging (fMRI) outcomes were measured using a block design, affective, N-back task with angry, happy, and neutral face stimuli at baseline and at 6-week follow-up. Matched healthy controls (HC; n = 15, 14.5 ± 2.8 years) were also scanned twice. RESULTS In post hoc analyses on the significant interaction in a 3×2×2 analysis of variance (ANOVA) that included patient groups and HC, the risperidone group showed greater activation after treatment in response to the angry face condition in the left subgenual anterior cingulate cortex (ACC) and striatum relative to the divalproex group. The divalproex group showed greater activation relative to the risperidone group in the left inferior frontal gyrus and right middle temporal gyrus. Over the treatment course, the risperidone group showed greater change in activation in the left ventral striatum than the divalproex group, and the divalproex group showed greater activation change in left inferior frontal gyrus and right middle temporal gyrus than the risperidone group. Furthermore, each patient group showed increased activation relative to HC in fronto-striato-temporal regions over time. The happy face condition was potentially less emotionally challenging in this study and did not elicit notable findings. CONCLUSIONS When patients performed a working memory task under emotional duress inherent in the paradigm, divalproex enhanced activation in a fronto-temporal circuit whereas risperidone increased activation in the dopamine (D₂) receptor-rich ventral striatum. Clinical trial registration information-Risperidone and Divalproex Sodium With MRI Assessment in Pediatric Bipolar; http://www.clinicaltrials.gov; NCT00176202.
Collapse
Affiliation(s)
- Mani N Pavuluri
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research, Colbeth Clinic, University of Illinois at Chicago, IL 60608, USA.
| | | | | | | | | |
Collapse
|
23
|
Caetano SC, Olvera RL, Hatch JP, Sanches M, Chen HH, Nicoletti M, Stanley JA, Fonseca M, Hunter K, Lafer B, Pliszka SR, Soares JC. Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a ¹H magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry 2011; 50:85-94. [PMID: 21156273 DOI: 10.1016/j.jaac.2010.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The few studies applying single-voxel ¹H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low N-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol / phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study was to evaluate NAA, glycerophosphocholine plus phosphocholine (GPC+PC) and PCr+Cr in various frontal cortical areas in children and adolescents with BD. We hypothesized that NAA levels within the prefrontal cortex are lower in BD patients than in healthy controls, indicating neurodevelopmental alterations in the former. METHOD We studied 43 pediatric patients with DSM-IV BD (19 female, mean age 13.2 ± 2.9 years) and 38 healthy controls (19 female, mean age 13.9 ± 2.7 years). We conducted multivoxel in vivo ¹H spectroscopy measurements at 1.5 Tesla using a long echo time of 272 ms to obtain bilateral metabolite levels from the medial prefrontal cortex (MPFC), DLPFC (white and gray matter), cingulate (anterior and posterior), and occipital lobes. We used the nonparametric Mann-Whitney U test to compare neurochemical levels between groups. RESULTS In pediatric BD patients, NAA and GPC+PC levels in the bilateral MPFC, and PCr+Cr levels in the left MPFC were lower than those seen in the controls. In the left DLPFC white matter, levels of NAA and PCr+Cr were also lower in BD patients than in controls. CONCLUSIONS Lower NAA and PCr+Cr levels in the PFC of children and adolescents with BD may be indicative of abnormal dendritic arborization and neuropil, suggesting neurodevelopmental abnormalities.
Collapse
|
24
|
Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, DelMastro KK, Shi X, Renshaw PF. Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. DEPRESSION RESEARCH AND TREATMENT 2010; 2011:650450. [PMID: 21197097 PMCID: PMC3003951 DOI: 10.1155/2011/650450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS) to the study of Major Depressive Disorder (MDD) in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.
Collapse
Affiliation(s)
- Douglas G. Kondo
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Tracy L. Hellem
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Young-Hoon Sung
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Namkug Kim
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Kristen K. DelMastro
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Xianfeng Shi
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Perry F. Renshaw
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| |
Collapse
|
25
|
Abstract
We report a case of a 63-year-old man who experienced his first manic episode, and then, one year later, experienced a second episode which was associated with a significant loss of brain parenchyma. Two computed tomography (CT) brain scans were performed at each manic episode to observe brain structure. Significant loss of brain parenchyma was shown using CT scans. A Mini-mental State Examination (MMSE) score of 29 was observed after the first manic episode and a score of 23 was obtained after the second manic episode. This case report supports the idea that an increased risk of developing dementia exists in patients with major affective disorders.
Collapse
|