1
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Qin Z, Yang B, Jin X, Zhao H, Liu N. Cuproptosis in glioblastoma: unveiling a novel prognostic model and therapeutic potential. Front Oncol 2024; 14:1359778. [PMID: 38606090 PMCID: PMC11007140 DOI: 10.3389/fonc.2024.1359778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma, a notably aggressive brain tumor, is characterized by a brief survival period and resistance to conventional therapeutic approaches. With the recent identification of "Cuproptosis," a copper-dependent apoptosis mechanism, this study aimed to explore its role in glioblastoma prognosis and potential therapeutic implications. A comprehensive methodology was employed, starting with the identification and analysis of 65 cuproptosis-related genes. These genes were subjected to differential expression analyses between glioblastoma tissues and normal counterparts. A novel metric, the "CP-score," was devised to quantify the cuproptosis response in glioblastoma patients. Building on this, a prognostic model, the CP-model, was developed using Cox regression techniques, designed to operate on both bulk and single-cell data. The differential expression analysis revealed 31 genes with distinct expression patterns in glioblastoma. The CP-score was markedly elevated in glioblastoma patients, suggesting an intensified cuproptosis response. The CP-model adeptly stratified patients into distinct risk categories, unveiling intricate associations between glioblastoma prognosis, immune response pathways, and the tumor's immunological environment. Further analyses indicated that high-risk patients, as per the CP-model, exhibited heightened expression of certain immune checkpoints, suggesting potential therapeutic targets. Additionally, the model hinted at the possibility of personalized therapeutic strategies, with certain drugs showing increased efficacy in high-risk patients. The CP-model offers a promising tool for glioblastoma prognosis and therapeutic strategy development, emphasizing the potential of Cuproptosis in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Naijie Liu
- Neurosurgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Du K, Li X, Feng F. Polymer-Drug Conjugates Codeliver a Temozolomide Intermediate and Nitric Oxide for Enhanced Chemotherapy against Glioblastoma Multiforme. ACS APPLIED BIO MATERIALS 2024; 7:1810-1819. [PMID: 38403964 DOI: 10.1021/acsabm.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Polymer-drug conjugates (PDCs) provide possibilities for the development of multiresponsive drug delivery and release platforms utilized in cancer therapy. The delivery of Temozolomide (TMZ, a DNA methylation agent) by PDCs has been developed to improve TMZ stability under physiological conditions for the treatment of glioblastoma multiforme (GBM); however, with inefficient chemotherapeutic efficacy. In this work, we synthesized an amphiphilic triblock copolymer (P1-SNO) with four pendant functionalities, including (1) a TMZ intermediate (named MTIC) as a prodrug moiety, (2) a disulfide bond as a redox-responsive trigger to cage MTIC, (3) S-nitrosothiol as a light/heat-responsive donor of nitric oxide (NO), and (4) a poly(ethylene glycol) chain to enable self-assembly in aqueous media. P1-SNO was demonstrated to liberate MTIC in the presence of reduced glutathione and release gaseous NO upon exposure to light or heat. The in vitro results revealed a synergistic effect of released MTIC and NO on both TMZ-sensitive and TMZ-resistant GBM cells. The environment-responsive PDC system for codelivery of MTIC and NO is promising to overcome the efficacy issue in TMZ-based cancer therapy.
Collapse
Affiliation(s)
- Ke Du
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Li
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Im C, Ahn JH, Farag AK, Kim S, Kim JY, Lee YJ, Park JA, Kang CM. Porphyrin-Based Brain Tumor-Targeting Agents: [ 64Cu]Cu-porphyrin and [ 64Cu]Cu-TDAP. Mol Pharm 2023; 20:5856-5864. [PMID: 37851927 DOI: 10.1021/acs.molpharmaceut.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of this study is to evaluate a radioactive metal complex platform for brain tumor targeting. Herein, we introduce a new porphyrin derivative, 5,10,15,20-(tetra-N,N-dimethyl-4-aminophenyl)porphyrin (TDAP), in which four N,N-dimethyl-4-p-phenylenediamine (DMPD) moieties are conjugated to the porphyrin labeled with the radiometal 64Cu. DMPD affected the pharmacokinetics of porphyrin in terms of retention time in vivo and tumor-targeting ability relative to those of unmodified porphyrin. [64Cu]Cu-TDAP showed stronger enhancement than [64Cu]Cu-porphyrin in U87MG glioblastoma cells, especially in the cytoplasm and nucleus, indicating its tumor-targeting properties and potential use as a therapeutic agent. In the subcutaneous and orthotopic models of brain-tumor-bearing mice, [64Cu]Cu-TDAP was clearly visualized in the tumor site via positron emission tomography imaging and showed a tumor-to-brain ratio as high as 13. [64Cu]Cu-TDAP deserves attention as a new diagnostic agent that is suitable for the early diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- Changkeun Im
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| | - Jae Hun Ahn
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ahmed K Farag
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- CDN isotopes, Toronto Research Chemicals, Montreal, Quebec H9R 1H1, Canada
| | - Soyeon Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| | - Choong Mo Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| |
Collapse
|
5
|
Wang W, Mo W, Hang Z, Huang Y, Yi H, Sun Z, Lei A. Cuproptosis: Harnessing Transition Metal for Cancer Therapy. ACS NANO 2023; 17:19581-19599. [PMID: 37820312 DOI: 10.1021/acsnano.3c07775] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Transition metal elements, such as copper, play diverse and pivotal roles in oncology. They act as constituents of metalloenzymes involved in cellular metabolism, function as signaling molecules to regulate the proliferation and metastasis of tumors, and are integral components of metal-based anticancer drugs. Notably, recent research reveals that excessive copper can also modulate the occurrence of programmed cell death (PCD), known as cuprotosis, in cancer cells. This modulation occurs through the disruption of tumor cell metabolism and the induction of proteotoxic stress. This discovery uncovers a mode of interaction between transition metals and proteins, emphasizing the intricate link between copper homeostasis and tumor metabolism. Moreover, they provide innovative therapeutic strategies for the precise diagnosis and treatment of malignant tumors. At the crossroads of chemistry and oncology, we undertake a comprehensive review of copper homeostasis in tumors, elucidating the molecular mechanisms underpinning cuproptosis. Additionally, we summarize current nanotherapeutic approaches that target cuproptosis and provide an overview of the available laboratory and clinical methods for monitoring this process. In the context of emerging concepts, challenges, and opportunities, we emphasize the significant potential of nanotechnology in the advancement of this field.
Collapse
Affiliation(s)
- Wuyin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Wentao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zishan Hang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Yueying Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Zhijun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, P. R. China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
6
|
Fiz F, Bottoni G, Ugolini M, Righi S, Cirone A, Garganese MC, Verrico A, Rossi A, Milanaccio C, Ramaglia A, Mastronuzzi A, Abate ME, Cacchione A, Gandolfo C, Colafati GS, Garrè ML, Morana G, Piccardo A. Diagnostic and Dosimetry Features of [ 64Cu]CuCl 2 in High-Grade Paediatric Infiltrative Gliomas. Mol Imaging Biol 2023; 25:391-400. [PMID: 36042116 DOI: 10.1007/s11307-022-01769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 03/12/2023]
Abstract
PURPOSE OF THE REPORT Paediatric diffuse high-grade gliomas (PDHGG) are rare central nervous system neoplasms lacking effective therapeutic options. Molecular imaging of tumour metabolism might identify novel diagnostic/therapeutic targets. In this study, we evaluated the distribution and the dosimetry aspects of [64Cu]CuCl2 in PDHGG subjects, as copper is a key element in cellular metabolism whose turnover may be increased in tumour cells. MATERIAL AND METHODS Paediatric patients with PDHGG were prospectively recruited. [64Cu]CuCl2 PET/CT was performed 1 h after tracer injection; if the scan was positive, it was repeated 24 and 72 h later. Lesion standardised uptake value (SUV) and target-to-background ratio (TBR) were calculated. Tumour and organ dosimetry were computed using the MIRD algorithm. Each patient underwent an MRI scan, including FLAIR, T2-weighted and post-contrast T1-weighted imaging. RESULTS Ten patients were enrolled (median age 9, range 6-16 years, 6 females). Diagnoses were diffuse midline gliomas (n = 8, 5 of which with H3K27 alterations) and diffuse hemispheric gliomas (n = 2). Six patients had visible tracer uptake (SUV: 1.0 ± 0.6 TBR: 5 ± 3.1). [64Cu]CuCl2 accumulation was always concordant with MRI contrast enhancement and was higher in the presence of radiological signs of necrosis. SUV and TBR progressively increased on the 24- and 72-h acquisitions (p < 0.05 and p < 0.01, respectively). The liver and the abdominal organs received the highest non-target dose. CONCLUSIONS [64Cu]CuCl2 is a well-tolerated radiotracer with reasonably favourable dosimetric properties, showing selective uptake in tumour areas with visible contrast enhancement and necrosis, thus suggesting that blood-brain barrier damage is a pre-requisite for its distribution to the intracranial structures. Moreover, tracer uptake showed an accumulating trend over time. These characteristics could deserve further analysis, to determine whether this radiopharmaceutical might have a possible therapeutic role as well.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy.
| | - Gianluca Bottoni
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Martina Ugolini
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Sergio Righi
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Alessio Cirone
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Maria Carmen Garganese
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Verrico
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Department of Paediatric Haematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | | | - Antonella Cacchione
- Neuro-Oncology Unit, Department of Paediatric Haematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carlo Gandolfo
- Imaging Department, Neuroradiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| |
Collapse
|
7
|
Gouel P, Decazes P, Vera P, Gardin I, Thureau S, Bohn P. Advances in PET and MRI imaging of tumor hypoxia. Front Med (Lausanne) 2023; 10:1055062. [PMID: 36844199 PMCID: PMC9947663 DOI: 10.3389/fmed.2023.1055062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tumor hypoxia is a complex and evolving phenomenon both in time and space. Molecular imaging allows to approach these variations, but the tracers used have their own limitations. PET imaging has the disadvantage of low resolution and must take into account molecular biodistribution, but has the advantage of high targeting accuracy. The relationship between the signal in MRI imaging and oxygen is complex but hopefully it would lead to the detection of truly oxygen-depleted tissue. Different ways of imaging hypoxia are discussed in this review, with nuclear medicine tracers such as [18F]-FMISO, [18F]-FAZA, or [64Cu]-ATSM but also with MRI techniques such as perfusion imaging, diffusion MRI or oxygen-enhanced MRI. Hypoxia is a pejorative factor regarding aggressiveness, tumor dissemination and resistance to treatments. Therefore, having accurate tools is particularly important.
Collapse
Affiliation(s)
- Pierrick Gouel
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Pierre Decazes
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Pierre Vera
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Isabelle Gardin
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Sébastien Thureau
- QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France,Département de Radiothérapie, Centre Henri Becquerel, Rouen, France
| | - Pierre Bohn
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France,*Correspondence: Pierre Bohn,
| |
Collapse
|
8
|
A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med 2022; 148:105924. [PMID: 35964468 DOI: 10.1016/j.compbiomed.2022.105924] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
Collapse
|
9
|
Sandahl TD, Gormsen LC, Kjærgaard K, Vendelbo MH, Munk DE, Munk OL, Bender D, Keiding S, Vase KH, Frisch K, Vilstrup H, Ott P. The pathophysiology of Wilson's disease visualized: A human 64 Cu PET study. Hepatology 2022; 75:1461-1470. [PMID: 34773664 PMCID: PMC9305563 DOI: 10.1002/hep.32238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.
Collapse
Affiliation(s)
| | - Lars C. Gormsen
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Ditte Emilie Munk
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Susanne Keiding
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Karina H. Vase
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kim Frisch
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Hendrik Vilstrup
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Peter Ott
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
10
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
11
|
De Nardo L, Pupillo G, Mou L, Esposito J, Rosato A, Meléndez‐Alafort L. A feasibility study of the therapeutic application of a mixture of 67/64 Cu radioisotopes produced by cyclotrons with proton irradiation. Med Phys 2022; 49:2709-2724. [PMID: 35134261 PMCID: PMC9305914 DOI: 10.1002/mp.15524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE 64 Cu and 67 Cu radioisotopes have nuclear characteristics suitable for nuclear medicine applications. The production of 64 Cu is already well established. However, the production of 67 Cu in quantities suitable to conduct clinical trials is more challenging as it leads to the coproduction of other Cu isotopes, in particular 64 Cu. The aim of this study is to investigate the possibility of using a CuCl2 solution with a mixture of 67/64 Cu radioisotopes for therapeutic purposes, providing an alternative solution for the cyclotron production problem. METHODS Copper radioisotopes activities were calculated by considering proton beam irradiation of the following targets: (i) 70 Zn in the energy range 70-45 MeV; (ii) 68 Zn in the energy range 70-35 MeV; (iii) a combination of 70 Zn (70-55 MeV) and 68 Zn (55-35 MeV). The contribution of each copper radioisotope to the human-absorbed dose was estimated with OLINDA/EXM software using the biokinetic model for CuCl2 published by ICRP 53. The total absorbed dose generated by the 67/64 CuCl2 mixture, obtained through different production routes, was calculated at different times after the end of the bombardment (EOB). A simple spherical model was used to simulate tumors of different sizes containing uniformly distributed 67/64 Cu mixture and to calculate the absorbed dose of self-irradiation. The biological damage produced by 67 Cu and 64 Cu was also evaluated through cellular dosimetry and cell surviving fraction assessment using the MIRDcell code, considering two prostate cancer cell lines with different radiosensitivity. RESULTS The absorbed dose to healthy organs and the effective dose (ED) per unit of administered activity of 67 CuCl2 are higher than those of 64 CuCl2 . Absorbed dose values per unit of administered activity of 67/64 CuCl2 mixture increase with time after the EOB because the amount of 67 Cu in the mixture increases. Survival data showed that the biological damage caused per each decay of 67 Cu is greater than that of 64 Cu, assuming that radionuclides remain accumulated in the cell cytoplasm. Sphere model calculations demonstrated that 64 Cu administered activity must be about five times higher than that of 67 Cu to obtain the same absorbed dose for tumor mass between 0.01 and 10 g and about 10 times higher for very small spheres. Consequently, the 64 CuCl2 -absorbed dose to healthy organs will reach higher values than those of 67 CuCl2 . The supplemental activity of the 67/64 CuCl2 mixture, required to get the same tumor-absorbed dose produced by 67 CuCl2 , triggers a dose increment (DI) in healthy organs. The waiting time post-EOB necessary to keep this DI below 10% (t10% ) depends on the irradiation methods employed for the production of the 67/64 CuCl2 mixture. CONCLUSIONS A mixture of cyclotron produced 67/64 Cu radioisotopes proved to be an alternative solution for the therapeutic use of CuCl2 with minimal DI to healthy organs compared with pure 67 Cu. Irradiation of a 70 Zn+68 Zn target in the 70-35 MeV proton energy range for 185 h appears to be the best option from among all the production routes investigated, as it gives the maximum amount of activity, the shortest t10% (10 h), and less than 1% of 61 Cu and 60 Cu impurities.
Collapse
Affiliation(s)
- Laura De Nardo
- Department of Physics and AstronomyUniversity of PaduaVia Marzolo 8Padova35131Italy
- INFN‐PadovaNational Institute of Nuclear PhysicsVia Marzolo 8Padova35131Italy
| | - Gaia Pupillo
- INFN‐Legnaro National LaboratoriesNational Institute of Nuclear PhysicsViale dell'Università 2Legnaro35020Italy
| | - Liliana Mou
- INFN‐Legnaro National LaboratoriesNational Institute of Nuclear PhysicsViale dell'Università 2Legnaro35020Italy
| | - Juan Esposito
- INFN‐Legnaro National LaboratoriesNational Institute of Nuclear PhysicsViale dell'Università 2Legnaro35020Italy
| | - Antonio Rosato
- Department of SurgeryOncology and GastroenterologyUniversity of PaduaPadovaItaly
- Veneto Institute of Oncology IOV‐IRCCSVia Gattamelata 64Padova35138Italy
| | | |
Collapse
|
12
|
Recent Advances in Cancer Imaging with 64CuCl2 PET/CT. Nucl Med Mol Imaging 2022; 56:80-85. [PMID: 35464672 PMCID: PMC8976861 DOI: 10.1007/s13139-022-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
Abstract
Copper is required for cancer cell proliferation and tumor angiogenesis. Radioactive copper-64 chloride (64CuCl2) is a useful radiotracer for cancer imaging with position emission tomography (PET) based on increased cellular uptake of copper mediated by human copper transporter 1 (hCtr1) expressed on cancer cell membrane. Significant progress has been made in research of using 64CuCl2 as a radiotracer for cancer imaging with PET. Radiation dosimetry study in humans demonstrated radiation safety of 64CuCl2. Recently, 64CuCl2 was successfully used for PET imaging of prostate cancer, bladder cancer, glioblastoma multiforme (GBM), and non-small cell lung carcinoma in humans. Based on the findings from the preclinical research studies, 64CuCl2 PET/CT also holds potential for diagnostic imaging of human hepatocellular carcinoma (HCC), malignant melanoma, and detection of intracranial metastasis of copper-avid tumors based on low physiological background of radioactive copper uptake in the brain. Copper-64 radionuclide emits both β+ and β- particles, suggesting therapeutic potential of 64CuCl2 for radionuclide cancer therapy of copper-avid tumors. Recent progress in production of therapeutic copper-67 radionuclide invites clinical research in use of theranostic pair of 64CuCl2 and 67CuCl2 for cancer imaging and radionuclide therapy.
Collapse
|
13
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 617] [Impact Index Per Article: 205.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
14
|
Copper Isotopes in Theranostics. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Huang Y, Fan J, Li Y, Fu S, Chen Y, Wu J. Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Front Oncol 2021; 11:731503. [PMID: 34557414 PMCID: PMC8454408 DOI: 10.3389/fonc.2021.731503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023] Open
Abstract
The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junying Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
16
|
Colombo E, Triolo D, Bassani C, Bedogni F, Di Dario M, Dina G, Fredrickx E, Fermo I, Martinelli V, Newcombe J, Taveggia C, Quattrini A, Comi G, Farina C. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc Natl Acad Sci U S A 2021; 118:e2025804118. [PMID: 34183414 PMCID: PMC8271600 DOI: 10.1073/pnas.2025804118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Demyelination is a key pathogenic feature of multiple sclerosis (MS). Here, we evaluated the astrocyte contribution to myelin loss and focused on the neurotrophin receptor TrkB, whose up-regulation on the astrocyte finely demarcated chronic demyelinated areas in MS and was paralleled by neurotrophin loss. Mice lacking astrocyte TrkB were resistant to demyelination induced by autoimmune or toxic insults, demonstrating that TrkB signaling in astrocytes fostered oligodendrocyte damage. In vitro and ex vivo approaches highlighted that astrocyte TrkB supported scar formation and glia proliferation even in the absence of neurotrophin binding, indicating TrkB transactivation in response to inflammatory or toxic mediators. Notably, our neuropathological studies demonstrated copper dysregulation in MS and model lesions and TrkB-dependent expression of copper transporter (CTR1) on glia cells during neuroinflammation. In vitro experiments evidenced that TrkB was critical for the generation of glial intracellular calcium flux and CTR1 up-regulation induced by stimuli distinct from neurotrophins. These events led to copper uptake and release by the astrocyte, and in turn resulted in oligodendrocyte loss. Collectively, these data demonstrate a pathogenic demyelination mechanism via the astrocyte release of copper and open up the possibility of restoring copper homeostasis in the white matter as a therapeutic target in MS.
Collapse
Affiliation(s)
- Emanuela Colombo
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Daniela Triolo
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Claudia Bassani
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesco Bedogni
- San Raffaele Rett Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marco Di Dario
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgia Dina
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Evelien Fredrickx
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Isabella Fermo
- Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Vittorio Martinelli
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, WC1N 1PJ, London, UK
| | - Carla Taveggia
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giancarlo Comi
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Cinthia Farina
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy;
| |
Collapse
|
17
|
Mascia M, Villano C, De Francesco V, Schips L, Marchioni M, Cindolo L. Efficacy and Safety of the 64Cu(II)Cl2 PET/CT for Urological Malignancies: Phase IIa Clinical Study. Clin Nucl Med 2021; 46:443-448. [PMID: 33883484 DOI: 10.1097/rlu.0000000000003658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF THE REPORT The aim of this study was to evaluate safety and efficacy of copper-64(II)dichloride (64Cu(II)Cl2) as a new PET tracer for urological malignancies (UMs). METHODS Patients with UM were enrolled in a prospective study. All patients were staged with preoperative CT and 64Cu(II)Cl2 PET/CT. Patient characteristics, anatomical and functional imaging, and final histopathology were recorded. Surgical specimens for histopathological examination were collected. To determine time-activity curves for 64Cu(II)Cl2 uptake in UM and normal tissues, SUVs were calculated. The safety of 64Cu(II)Cl2 was assessed. RESULTS Twenty-three patients were included. An administered activity of 174.7 MBq (4.72 mCi) for 64Cu(II)Cl2 was equal to 9.80 mSv of the effective dose. The median SUVmax values were 5.7, 0.9, 1.8, and 9.8 for the prostate, bladder, penis, and kidney, respectively. Median SUVmax values were higher in organs with a malignancy in comparison with healthy tissue (prostate [11.5 vs 5.3, P < 0.001], bladder [6.2 vs 0.9, P = 0.007], and penis [3.9 vs 1.3, P = 0.027]), but not in the kidneys (5.0 vs 10.4, P = 0.998). The highest area under the curve (AUC) was reported for prostate cancer (AUC, 0.978), and the lowest for penile cancer (AUC, 0.775). The detection rates based on the best suggested cutoff according to the SUVmax were 85.7% (6/7) for prostate and bladder and 83.3% (5/6) for penile cancer. Neither drug-related effects nor physiologic responses occurred, nor adverse reactions. CONCLUSIONS 64Cu(II)Cl2 is an effective and well-tolerated tracer in patients with UM. Our results show higher SUVmax in cancer patients than in healthy subjects. Our findings suggest that 64Cu(II)Cl2 PET/CT is useful in patients affected by prostate, bladder, and penis cancer.
Collapse
Affiliation(s)
- Manlio Mascia
- From the Department of Nuclear Medicine and Radiometabolic Therapy, "Spirito Santo" Hospital, Pescara
| | - Carlo Villano
- From the Department of Nuclear Medicine and Radiometabolic Therapy, "Spirito Santo" Hospital, Pescara
| | - Valerio De Francesco
- From the Department of Nuclear Medicine and Radiometabolic Therapy, "Spirito Santo" Hospital, Pescara
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, Urology Unit, SS Annunziata Hospital
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, "G. d'Annunzio" University of Chieti, Chieti
| | - Luca Cindolo
- Department of Urology, Villa Stuart Private Hospital, Rome, Italy
| |
Collapse
|
18
|
Herrero Álvarez N, Bauer D, Hernández-Gil J, Lewis JS. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021; 16:2909-2941. [PMID: 33792195 DOI: 10.1002/cmdc.202100135] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Nuclear medicine is defined as the use of radionuclides for diagnostic and therapeutic applications. The imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are based on γ-emissions of specific energies. The therapeutic technologies are based on β- -particle-, α-particle-, and Auger electron emitters. In oncology, PET and SPECT are used to detect cancer lesions, to determine dosimetry, and to monitor therapy effectiveness. In contrast, radiotherapy is designed to irreparably damage tumor cells in order to eradicate or control the disease's progression. Radiometals are being explored for the development of diagnostic and therapeutic radiopharmaceuticals. Strategies that combine both modalities (diagnostic and therapeutic), referred to as theranostics, are promising candidates for clinical applications. This review provides an overview of the basic concepts behind therapeutic and diagnostic radiopharmaceuticals and their significance in contemporary oncology. Select radiometals that significantly impact current and upcoming cancer treatment strategies are grouped as clinically suitable theranostics pairs. The most important physical and chemical properties are discussed. Standard production methods and current radionuclide availability are provided to indicate whether a cost-efficient use in a clinical routine is feasible. Recent preclinical and clinical developments and outline perspectives for the radiometals are highlighted in each section.
Collapse
Affiliation(s)
- Natalia Herrero Álvarez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit, Herestraat 49, 3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill-Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
19
|
Piccardo A, Ugolini M, Righi S, Bottoni G, Cistaro A, Paparo F, Giovanella L, Evangelista L. Copper, PET/CT and prostate cancer: a systematic review of the literature. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:382-392. [PMID: 32900177 DOI: 10.23736/s1824-4785.20.03277-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Copper is an essential element that plays an important role in both cancer development and growth. Indeed, high levels of copper have been found in prostate cancer (PCa), and this finding have paved the way for the use of this element as a target for positron emission tomography (PET) imaging. Copper64 (64Cu) can be used alone, as 64CuCl2, and also as a precursor for the in-vitro radio-labelling of specific carriers for PET imaging in PCa, (e.g. associated to prostate-specific membrane antigen: PSMA). The use of 64Cu-PSMA can yield late acquisitions in which PET images are characterized by a higher target-to-background ratio. At the same time, the shorter positron range of 64Cu provides high spatial resolution, which leads to better detection of small lesions. In this context, the aim of this review was to systematically review studies evaluating the identification of PCa in humans by means of 64CuCl2 and other PET tracers radio-labelled with 64Cu.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy -
| | - Martina Ugolini
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy
| | - Sergio Righi
- Medical Physics Department, EO Ospedali Galliera, Genoa, Italy
| | - Gianluca Bottoni
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy
| | - Angelina Cistaro
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy
| | | | - Luca Giovanella
- Clinic for Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
20
|
Reactor produced [ 64Cu]CuCl 2 as a PET radiopharmaceutical for cancer imaging: from radiochemistry laboratory to nuclear medicine clinic. Ann Nucl Med 2020; 34:899-910. [PMID: 33048309 DOI: 10.1007/s12149-020-01522-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Copper-64 is a useful theranostic radioisotope that is attracting renewed interest from the nuclear medicine community in the recent times. This study aims to demonstrate the utility of research reactors to produce clinical-grade 64Cu via 63Cu(n,γ)64Cu reaction and use it in the form of [64Cu]CuCl2 as a radiopharmaceutical for PET imaging of cancer in human patients. METHODS Copper-64 was produced by irradiation of natural CuO target in a medium flux research reactor. The irradiated target was radiochemically processed and detailed quality control analyses were carried out. Sub-acute toxicity studies were carried out with different doses of Cu in Wistar rats. The biological efficacy of the radiopharmaceutical was established in preclinical setting by biodistribution studies in melanoma tumor bearing mice. After getting regulatory approvals, [64Cu]CuCl2 formulation was clinically used for PET imaging of prostate cancer and glioblastoma patients. RESULTS Large-scale (~ 30 GBq) production of 64Cu could be achieved in a typical batch and it was adequate for formulation of clinical doses for multiple patients. The radiopharmaceutical met all the purity requirements for administration in human subjects. Studies carried out in animal model showed that the toxicity due to "cold" Cu in clinical dose of [64Cu]CuCl2 for PET scans would be negligible. Clinical PET scans showed satisfactory uptake of the radiopharmaceutical in the primary cancer and its metastatic sites. CONCLUSIONS To the best of our knowledge, this is the first study on use of reactor produced [64Cu]CuCl2 for PET imaging of cancer in human patients. It is envisaged that this route of production of 64Cu would aid towards affordable availability of this radioisotope for widespread clinical use in countries with limited cyclotron facilities.
Collapse
|
21
|
Pasquali M, Martini P, Shahi A, Jalilian AR, Osso JA, Boschi A. Copper-64 based radiopharmaceuticals for brain tumors and hypoxia imaging. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:371-381. [PMID: 33026209 DOI: 10.23736/s1824-4785.20.03285-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The most common and aggressive primary malignancy of the central nervous system is Glioblastoma that, as a wide range of malignant solid tumor, is characterized by extensive hypoxic regions. A great number of PET radiopharmaceuticals have been developed for the identification of hypoxia in solid tumors, among these, we find copper-based tracers. The aim of the current review paper was to provide an overview of radiocopper compounds applied for preclinical and clinical research in brain tumors and hypoxia imaging or therapy. EVIDENCE ACQUISITION Copper offers a wide variety of isotopes, useful for nuclear medicine applications, but only 64Cu and 67Cu are under the spotlight of the scientific community since being good candidates for theranostic applications. Between the two, 64Cu availability and production cost have attracted more interest of the scientific community. EVIDENCE SYNTHESIS In order to better understand the application of copper-bis thiosemicarbazones in hypoxia imaging, an overview of the role of hypoxia in cancer, existing non-imaging and imaging techniques for hypoxia identification and promising future avenues regarding hypoxia is necessary. Different proposed uptake mechanisms of [64Cu][Cu(ATSM)] inside the cell will be discussed and other 64Cu-based tracers for brain tumors described. CONCLUSIONS Among radio copper compounds [64Cu][Cu(ATSM)] is the most studied radiopharmaceutical for imaging and treatment of brain tumors. Experimental evidence suggested that [64Cu][Cu(ATSM)] could be more appropriately considered as a marker of over-reduced intracellular state rather than a pure hypoxia agent. Moreover, preliminary clinical data suggested that [64Cu]CuCl<inf>2</inf> can be a potentially useful diagnostic agent for malignancies of the central nervous system (CNS).
Collapse
Affiliation(s)
- Micol Pasquali
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy
| | - Petra Martini
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Arman Shahi
- Faculty of Science, McMaster University, Hamilton, Canada
| | - Amir R Jalilian
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Joao A Osso
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Alessandra Boschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
22
|
Bolzati C, Duatti A. The emerging value of 64Cu for molecular imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:329-337. [PMID: 33026210 DOI: 10.23736/s1824-4785.20.03292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Along with other novel metallic radionuclides, copper-64 (64Cu) is currently being investigated as an alternative option to the gallium-68 (68Ga) and lutetium-177 (177Lu) radiopharmaceuticals widely used for targeting somatostatin receptors, expressed by neuroendocrine tumors (NETs), and recently prostate specific membrane antigen (PSMA), expressed by prostate cancer cells. This interest is mostly driven by the peculiar nuclear properties of 64Cu that make it an almost ideal example of theranostic radionuclide. In fact, 64Cu emits both low-energy positrons, β- particles and a swarm of Auger electrons. This combination of different emissions may allow to collect high-resolution PET images, but also to use the same radiopharmaceutical for eliciting a therapeutic effect. Another unique behavior of 64Cu originates from the fundamental biological role played in organisms by the ionic forms of the copper element, which is naturally involved in a multitude of cellular processes including cell replication. These intrinsic biological characteristics has led to the discovery that 64Cu, under its simplest dicationic form Cu2+, is able to specifically target a variety of cancerous cells and to detect the onset of a metastatic process in its initial stage. This short review reports an outline of the status of 64Cu radiopharmaceuticals and of the most relevant results that are constantly disclosed by preclinical and investigational clinical studies.
Collapse
Affiliation(s)
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
23
|
Du K, Xia Q, Heng H, Feng F. Temozolomide-Doxorubicin Conjugate as a Double Intercalating Agent and Delivery by Apoferritin for Glioblastoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34599-34609. [PMID: 32648735 DOI: 10.1021/acsami.0c08531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We designed a conjugated compound by coupling temozolomide (TMZ) with doxorubicin (DOX) via an acylhydrazone linkage as a potential prodrug used for glioblastoma multiforme (GBM) treatment. Viscosity and spectroscopic studies revealed that the drug conjugate could act as a nonclassical double intercalating agent. Although free TMZ is an inefficient DNA binder in comparison to DOX, the TMZ moiety interacted with DNA as an induced intercalator, arising from the synergistic effect of DOX moiety that mediated conformational changes of the DNA helix. Two binding modes were proposed to interpret the double intercalating effect of the drug conjugate on intra- and inter-DNA interactions that could cause DNA cross-linking and fibril aggregates. We also developed a delivery nanoplatform with a loading efficiency of 83% using copper-bound apoferritin as a nanocarrier. In sharp contrast to the short half-life of free TMZ, the nanocomposite was stable under physiological conditions without detectable drug decomposition after a 2 week storage, and drug release was activatable in the presence of glutathione at millimolar levels. The antitumor effect of the drug conjugate and nanocomposite against GBM cells was reported to demonstrate the potential therapeutic applications of double intercalating materials.
Collapse
Affiliation(s)
- Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Heng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Preclinical PET imaging study of lung cancer with 64CuCl 2. Ann Nucl Med 2020; 34:653-662. [PMID: 32567008 DOI: 10.1007/s12149-020-01491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Human copper transporter 1 (CTR1) has been proven to be overexpressed in many types of cancer cells, and copper (II)-64 chloride (64CuCl2) has been used as an effective tracer for positron emission tomography (PET) imaging in tumor-bearing animal models. Thus, this study aimed to investigate the potential application of 64CuCl2 in PET imaging of lung cancer through targeting CTR1. METHODS The expression of CTR1 in a series of lung cancer cell lines was identified by quantitative real-time polymerase chain reaction (Q-PCR), western blot, enzyme-linked immunosorbnent assay (ELISA), and immunofluorescent staining. Then in vitro cell uptake assay of 64CuCl2 was investigated in human lung cancer cell lines with different levels of CTR1 expression. Small animal PET imaging and quantitative analysis were performed in human lung cancer tumor-bearing mice after intravenous injection of 64CuCl2, respectively. RESULTS The CTR1 expression in multiple human lung cancer cells was identified and confirmed, and H1299 cell lines with high CTR1 expression, H460 with moderate CTR1, and H1703 with low CTR1 were selected for further experiments. In vitro cellular uptake assay displayed that the 64CuCl2 uptake by these three kinds of cells was positively correlated with their CTR1 expressed levels. The blocking experiments testified the specificity of 64CuCl2 to target CTR1. Moreover, small animal PET imaging and quantitative results showed that 64CuCl2 accumulation in H1299, H460, and H1703 tumor-bearing mice were consistent with CTR1 levels and cell uptake experiments. CONCLUSIONS The expression of CTR1 in human lung cancer xenograft model could be successfully visualized by 64CuCl2 PET examination. With the expected growth of PET/CT examination to be an essential strategy in clinical lung cancer management, 64CuCl2 has the potential to be a promising PET imaging agent of lung cancer.
Collapse
|
25
|
Kjærgaard K, Sandahl TD, Frisch K, Vase KH, Keiding S, Vilstrup H, Ott P, Gormsen LC, Munk OL. Intravenous and oral copper kinetics, biodistribution and dosimetry in healthy humans studied by [ 64Cu]copper PET/CT. EJNMMI Radiopharm Chem 2020; 5:15. [PMID: 32556736 PMCID: PMC7303253 DOI: 10.1186/s41181-020-00100-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Copper is essential for enzymatic processes throughout the body. [64Cu]copper (64Cu) positron emission tomography (PET) has been investigated as a diagnostic tool for certain malignancies, but has not yet been used to study copper homeostasis in humans. In this study, we determined the hepatic removal kinetics, biodistribution and radiation dosimetry of 64Cu in healthy humans by both intravenous and oral administration. Methods Six healthy participants underwent PET/CT studies with intravenous or oral administration of 64Cu. A 90 min dynamic PET/CT scan of the liver was followed by three whole-body PET/CT scans at 1.5, 6, and 20 h after tracer administration. PET data were used for estimation of hepatic kinetics, biodistribution, effective doses, and absorbed doses for critical organs. Results After intravenous administration, 64Cu uptake was highest in the liver, intestinal walls and pancreas; the gender-averaged effective dose was 62 ± 5 μSv/MBq (mean ± SD). After oral administration, 64Cu was almost exclusively taken up by the liver while leaving a significant amount of radiotracer in the gastrointestinal lumen, resulting in an effective dose of 113 ± 1 μSv/MBq. Excretion of 64Cu in urine and faeces after intravenous administration was negligible. Hepatic removal kinetics showed that the clearance of 64Cu from blood was 0.10 ± 0.02 mL blood/min/mL liver tissue, and the rate constant for excretion into bile or blood was 0.003 ± 0.002 min− 1. Conclusion 64Cu biodistribution and radiation dosimetry are influenced by the manner of tracer administration with high uptake by the liver, intestinal walls, and pancreas after intravenous administration, while after oral administration, 64Cu is rapidly absorbed from the gastrointestinal tract and deposited primarily in the liver. Administration of 50 MBq 64Cu yielded images of high quality for both administration forms with radiation doses of approximately 3.1 and 5.7 mSv, respectively, allowing for sequential studies in humans. Trial registration number EudraCT no. 2016–001975-59. Registration date: 19/09/2016.
Collapse
Affiliation(s)
- Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark. .,Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Kim Frisch
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karina Højrup Vase
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Susanne Keiding
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.,Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Liu T, Karlsen M, Karlberg AM, Redalen KR. Hypoxia imaging and theranostic potential of [ 64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res 2020; 10:33. [PMID: 32274601 PMCID: PMC7145880 DOI: 10.1186/s13550-020-00621-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tumor hypoxia (low tissue oxygenation) is an adverse condition of the solid tumor environment, associated with malignant progression, radiotherapy resistance, and poor prognosis. One method to detect tumor hypoxia is by positron emission tomography (PET) with the tracer [64Cu][Cu-diacetyl-bis(N(4)-methylthiosemicarbazone)] ([64Cu][Cu(ATSM)]), as demonstrated in both preclinical and clinical studies. In addition, emerging studies suggest using [64Cu][Cu(ATSM)] for molecular radiotherapy, mainly due to the release of therapeutic Auger electrons from copper-64, making [64Cu][Cu(ATSM)] a “theranostic” agent. However, the radiocopper retention based on a metal-ligand dissociation mechanism under hypoxia has long been controversial. Recent studies using ionic Cu(II) salts as tracers have raised further questions on the original mechanism and proposed a potential role of copper itself in the tracer uptake. We have reviewed the evidence of using the copper radiopharmaceuticals [60/61/62/64Cu][Cu(ATSM)]/ionic copper salts for PET imaging of tumor hypoxia, their possible therapeutic applications, issues related to the metal-ligand dissociation mechanism, and possible explanations of copper trapping based on studies of the copper metabolism under hypoxia. Results We found that hypoxia selectivity of [64Cu][Cu(ATSM)] has been clearly demonstrated in both preclinical and clinical studies. Preclinical therapeutic studies in mice have also demonstrated promising results, recently reporting significant tumor volume reductions and improved survival in a dose-dependent manner. Cu(II)-[Cu(ATSM)] appears to be accumulated in regions with substantially higher CD133+ expression, a marker for cancer stem cells. This, combined with the reported requirement of copper for activation of the hypoxia inducible factor 1 (HIF-1), provides a possible explanation for the therapeutic effects of [64Cu][Cu(ATSM)]. Comparisons between [64Cu][Cu(ATSM)] and ionic Cu(II) salts have showed similar results in both imaging and therapeutic studies, supporting the argument for the central role of copper itself in the retention mechanism. Conclusions We found promising evidence of using copper-64 radiopharmaceuticals for both PET imaging and treatment of hypoxic tumors. The Cu(II)-[Cu(ATSM)] retention mechanism remains controversial and future mechanistic studies should be focused on understanding the role of copper itself in the hypoxic tumor metabolism.
Collapse
Affiliation(s)
- Tengzhi Liu
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Morten Karlsen
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.
| |
Collapse
|
27
|
Pruis IJ, van Dongen GAMS, Veldhuijzen van Zanten SEM. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors. Int J Mol Sci 2020; 21:E1029. [PMID: 32033160 PMCID: PMC7037158 DOI: 10.3390/ijms21031029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
This review highlights the added value of PET imaging in Central Nervous System (CNS) tumors, which is a tool that has rapidly evolved from a merely diagnostic setting to multimodal molecular diagnostics and the guidance of targeted therapy. PET is the method of choice for studying target expression and target binding behind the assumedly intact blood-brain barrier. Today, a variety of diagnostic PET tracers can be used for the primary staging of CNS tumors and to determine the effect of therapy. Additionally, theranostic PET tracers are increasingly used in the context of pharmaceutical and radiopharmaceutical drug development and application. In this approach, a single targeted drug is used for PET diagnosis, upon the coupling of a PET radionuclide, as well as for targeted (nuclide) therapy. Theranostic PET tracers have the potential to serve as a non-invasive whole body navigator in the selection of the most effective drug candidates and their most optimal dose and administration route, together with the potential to serve as a predictive biomarker in the selection of patients who are most likely to benefit from treatment. PET imaging supports the transition from trial and error medicine to predictive, preventive, and personalized medicine, hopefully leading to improved quality of life for patients and more cost-effective care.
Collapse
Affiliation(s)
- Ilanah J. Pruis
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
| | - Guus A. M. S. van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Sophie E. M. Veldhuijzen van Zanten
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
28
|
Li X, Shao F, Sun J, Du K, Sun Y, Feng F. Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41935-41945. [PMID: 31644262 DOI: 10.1021/acsami.9b14849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current treatment of recurrent glioblastoma multiforme (GBM) demands dose-intense temozolomide (TMZ), a prodrug of 5-(3-methyltriazen-1-yl) imidazole-4-carboxamide (MTIC), based on the spontaneous hydrolysis of TMZ at basic pH. However, how to control the activity of MTIC remains unknown, which poses a particular challenge to search a reliable MTIC receptor. We reported that copper, for the first time, is found to recognize and bind MTIC in the process of TMZ degradation, which means copper can play an important role in enhancing the bioavailability of MTIC derived from TMZ. Using apoferritin as a model copper-bound protein, we studied the copper-TMZ interaction in protein and observed efficient MTIC immobilization with high binding efficiency (up to 92.9% based on original TMZ) and capacity (up to 185 MTIC moieties per protein). The system was stable against both alkaline and acidic pH and could be activated by glutathione to liberate MTIC, which paves a way to deliver a DNA-alkylating agent for both TMZ-sensitive and TMZ-resistant GBM chemotherapy. Our study provides a new insight for understanding the potential relationship between the special GBM microenvironment (specific copper accumulation) and the therapeutic effect of TMZ.
Collapse
|
29
|
Zhang H, Xie F, Cheng M, Peng F. Novel Meta-iodobenzylguanidine-Based Copper Thiosemicarbazide-1-guanidinomethylbenzyl Anticancer Compounds Targeting Norepinephrine Transporter in Neuroblastoma. J Med Chem 2019; 62:6985-6991. [DOI: 10.1021/acs.jmedchem.9b00386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiyuan Zhang
- Carman & Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
| | - Fang Xie
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 735390, United States
| | - Muhua Cheng
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P. R. China
| | - Fangyu Peng
- Carman & Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 735390, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
30
|
Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, Wu Y. 64Cu-based Radiopharmaceuticals in Molecular Imaging. Technol Cancer Res Treat 2019; 18:1533033819830758. [PMID: 30764737 PMCID: PMC6378420 DOI: 10.1177/1533033819830758] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper-64 (T1/2 = 12.7 hours; β+: 19%, β-: 38%) has a unique decay profile and can be used for positron emission tomography imaging and radionuclide therapy. The well-established coordination chemistry of copper allows for its reaction with different types of chelator systems. It can be linked to antibodies, proteins, peptides, and other biologically relevant small molecules. Two potential ways to produce copper-64 radioisotopes concern the use of the cyclotron or the reactor. This review summarized several commonly used biomarkers of copper-64 radionuclide.
Collapse
Affiliation(s)
- Yeye Zhou
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jihui Li
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Xu
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Man Zhao
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengming Deng
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiwei Wu
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3235-3245. [PMID: 30323557 PMCID: PMC6173185 DOI: 10.2147/dddt.s170879] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ongoing studies of physiological and pathological processes have led to a corresponding need for new radiopharmaceuticals, especially when studies are limited by the absence of a particular radiolabeled target. Thus, the development of new radioactive tracers is highly relevant and can represent a significant contribution to efforts to elucidate important phenomena in biology. Currently, theranostics represents a new frontier in the fields of medicine and nuclear medicine, with the same compound being used for both diagnosis and treatment. In the human body, copper (Cu) is the third most abundant metal and it plays a crucial role in many biological functions. Correspondingly, in various acquired and inherited pathological conditions, such as cancer and Alzheimer’s disease, alterations in Cu levels have been found. Moreover, a wide spectrum of neurodegenerative disorders are associated with higher or lower levels of Cu, as well as inappropriately bound or distributed levels of Cu in the brain. In human cells, the membrane protein, hCtr1, binds Cu in its Cu(I) oxidation state in an energy-dependent manner. Copper-64 (64Cu) is a cyclotron-produced radionuclide that has exhibited physical properties that are complementary for diagnosis and/or therapeutic purposes. To date, very few reports have described the clinical development of 64Cu as a radiotracer for cancer imaging. In this review, we highlight recent insights in our understanding and use of 64CuCl2 as a theranostic agent for various types of tumors. To the best of our knowledge, no adverse effects or clinically observable pharmacological effects have been described for 64CuCl2 in the literature. Thus, 64Cu represents a revolutionary radiopharmaceutical for positron emission tomography imaging and opens a new era in the theranostic field.
Collapse
Affiliation(s)
- Bianca Gutfilen
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | - Sergio Al Souza
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | | |
Collapse
|
32
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
33
|
Bartnicka JJ, Blower PJ. Insights into Trace Metal Metabolism in Health and Disease from PET: "PET Metallomics". J Nucl Med 2018; 59:1355-1359. [PMID: 29976696 PMCID: PMC6126445 DOI: 10.2967/jnumed.118.212803] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
Essential trace metals such as copper, zinc, iron, and manganese perform critical functions in cellular and physiologic processes including catalytic, regulatory, and signaling roles. Disturbed metal homeostasis is associated with the pathogenesis of diseases such as dementia, cancer, and inherited metabolic abnormalities. Intracellular pathways involving essential metals have been extensively studied but whole-body fluxes and transport between different compartments remain poorly understood. The growing availability of PET scanners and positron-emitting isotopes of key essential metals, particularly 64Cu, 63Zn, and 52Mn, provide new tools with which to study these processes in vivo. This review highlights opportunities that now present themselves, exemplified by studies of copper metabolism that are in the vanguard of a new research front in molecular imaging: "PET metallomics."
Collapse
Affiliation(s)
- Joanna J Bartnicka
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, London, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
34
|
The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 2018; 23:1489-1501. [DOI: 10.1016/j.drudis.2018.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
|
35
|
Xie F, Peng F. Radiopharmaceuticals for Assessment of Altered Metabolism and Biometal Fluxes in Brain Aging and Alzheimer's Disease with Positron Emission Tomography. J Alzheimers Dis 2018; 59:527-536. [PMID: 28671127 DOI: 10.3233/jad-170280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Fang Xie
- Department of Radiology, and Advanced ImagingResearch Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fangyu Peng
- Department of Radiology, and Advanced ImagingResearch Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Righi S, Ugolini M, Bottoni G, Puntoni M, Iacozzi M, Paparo F, Cabria M, Ceriani L, Gambaro M, Giovanella L, Piccardo A. Biokinetic and dosimetric aspects of 64CuCl 2 in human prostate cancer: possible theranostic implications. EJNMMI Res 2018; 8:18. [PMID: 29492782 PMCID: PMC5833894 DOI: 10.1186/s13550-018-0373-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/20/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aim of the present study is to evaluate the kinetics and dosimetry of 64CuCl2 in human prostate cancer (PCa) lesions. We prospectively evaluated 50 PCa patients with biochemical relapse after surgery or external beam radiation therapy. All patients underwent 64CuCl2-PET/CT to detect PCa recurrence/metastases. Volumes of interest were manually drawn for each 64CuCl2 avid PCa lesion with a diameter > 1 cm on mpMRI in each patient. Time-activity curves for all lesions were obtained. The effective and biological half-life and the standard uptake values (SUVs) were calculated. Tumour/background ratio (TBR) curves as a function of time were considered. Finally, the absorbed dose per lesion was estimated. RESULTS The mean effective half-life of 64CuCl2 calculated in the lymph nodes (10.2 ± 1.7 h) was significantly higher than in local relapses (8.8 ± 1.1 h) and similar to that seen in bone metastases (9.0 ± 0.4 h). The mean 64CuCl2 SUVmax calculated 1 h after tracer injection was significantly higher in the lymph nodes (6.8 ± 4.3) and bone metastases (6.8 ± 2.9) than in local relapses (4.7 ± 2.4). TBR mean curve of 64CuCl2 revealed that the calculated TBRmax value was 5.0, 7.0, and 6.2 in local relapse and lymph node and bone metastases, respectively, and it was achieved about 1 h after 64CuCl2 injection. The mean absorbed dose of the PCa lesions per administrated activity was 6.00E-2 ± 4.74E-2mGy/MBq. Indeed, for an administered activity of 3.7 GBq, the mean dose absorbed by the lesion would be 0.22 Gy. CONCLUSIONS Dosimetry showed that the dose absorbed by PCa recurrences/metastases per administrated activity was low. The dosimetric study performed does not take into account the possible therapeutic effect of the Auger electrons. Clinical trials are needed to evaluate 64Cu internalization in the cell nucleus that seems related to the therapeutic effectiveness reported in preclinical studies.
Collapse
Affiliation(s)
- Sergio Righi
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Martina Ugolini
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Gianluca Bottoni
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Matteo Puntoni
- Clinical Trial Unit, Office of the Scientific Director, Galliera Hospital, Genoa, Italy
| | - Massimiliano Iacozzi
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | | | - Manlio Cabria
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Luca Ceriani
- Department of Nuclear Medicine, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Monica Gambaro
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Luca Giovanella
- Department of Nuclear Medicine, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy.
| |
Collapse
|
37
|
Zhou Y, Huang F, Yang Y, Wang P, Zhang Z, Tang Y, Shen Y, Wang K. Paraptosis-Inducing Nanomedicine Overcomes Cancer Drug Resistance for a Potent Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702446. [PMID: 29350484 DOI: 10.1002/smll.201702446] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Most chemotherapeutic drugs and their nanomedicine formulations exert anticancer activity by inducing cancer cell apoptosis. However, cancer cells inherently have and acquire many antiapoptosis mechanisms, causing cancer drug resistance and poor prognoses in patients. Herein, a potent paraptosis-inducing nanomedicine is reported that causes quick nonapoptotic death of cancer cells, overcoming apoptosis-based resistance and effectively inhibiting drug-resistant tumor growth. The nanomedicine is composed of micelles made from an amphiphilic 8-hydroxyquinoline (HQ)-conjugate block copolymer with polyethylene glycol. Cu2+ can catalyze the hydrolysis of the HQ conjugation linker and liberate HQ, and these molecules can form the complex Cu(HQ)2 , a strong proteasome inhibitor effective at inducing cell paraptosis. In vivo, the Cu2+ -responsive HQ-releasing micelles respond to elevated tumor Cu2+ levels or externally administered Cu2+ and effectively inhibit the growth of human breast adenocarcinoma doxorubicin-resistant (MCF-7/ADR) tumors. Compared with other nanomedicines that overcome drug resistance via delivering several agents or even siRNA, this paraptosis-inducing nanomedicine provides a simple but potent approach to overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Yongcun Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Research Center for Clinical Pharmacology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Feiteng Huang
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Pingli Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yining Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kai Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
38
|
Piccardo A, Paparo F, Puntoni M, Righi S, Bottoni G, Bacigalupo L, Zanardi S, DeCensi A, Ferrarazzo G, Gambaro M, Ruggieri FG, Campodonico F, Tomasello L, Timossi L, Sola S, Lopci E, Cabria M. 64CuCl2 PET/CT in Prostate Cancer Relapse. J Nucl Med 2017; 59:444-451. [DOI: 10.2967/jnumed.117.195628] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 01/19/2023] Open
|
39
|
Frindel M, Le Saëc P, Beyler M, Navarro AS, Saï-Maurel C, Alliot C, Chérel M, Gestin JF, Faivre-Chauvet A, Tripier R. Cyclam te1pa for64Cu PET imaging. Bioconjugation to antibody, radiolabeling and preclinical application in xenografted colorectal cancer. RSC Adv 2017. [DOI: 10.1039/c6ra26003a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
te1pa conjugated to an F6 antibody was confirmed to be an interesting alternative to dota for64Cuin vivoPET imaging.
Collapse
Affiliation(s)
- Mathieu Frindel
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS
- UFR Sciences et Techniques
- 29238 Brest
- France
| | - Patricia Le Saëc
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- 44007 NANTES Cedex
- France
| | - Maryline Beyler
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS
- UFR Sciences et Techniques
- 29238 Brest
- France
| | - Anne-Sophie Navarro
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- 44007 NANTES Cedex
- France
| | - Catherine Saï-Maurel
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- 44007 NANTES Cedex
- France
| | | | - Michel Chérel
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- 44007 NANTES Cedex
- France
- Institut de Cancérologie de l'Ouest
| | - Jean-François Gestin
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- 44007 NANTES Cedex
- France
| | - Alain Faivre-Chauvet
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- 44007 NANTES Cedex
- France
| | - Raphaël Tripier
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS
- UFR Sciences et Techniques
- 29238 Brest
- France
| |
Collapse
|
40
|
Chakravarty R, Chakraborty S, Dash A. 64Cu2+ Ions as PET Probe: An Emerging Paradigm in Molecular Imaging of Cancer. Mol Pharm 2016; 13:3601-3612. [DOI: 10.1021/acs.molpharmaceut.6b00582] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|