1
|
Derafsh E, Ebrahimzadeh F, Kahrizi MS, Kayedi M, Shojaei N, Rahimi S, Alesaeidi S, Ghafouri K. The therapeutic effects of mesenchymal stem cell (MSCs) exosomes in covid-19 disease; Focusing on dexamethasone therapy. Pathol Res Pract 2023; 251:154815. [PMID: 37797382 DOI: 10.1016/j.prp.2023.154815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
The study of diseases, specifically their aetiologies, their step-by-step progressions (pathogenesis), and their impact on normal structure and function, is the focus of pathology, a branch of science and medicine. In therapeutic fields, it is critical to decrease significantly elevated levels of proinflammatory cytokines. The immunomodulatory drugs such as dexamethasone have been used in several of inflammatory diseases such as Covid-19. The use of dexamethasone alone or in combination with other drugs or method such as mesenchymal stem cell (MSC) is one of the most up-to-date discussions about Covid-19. In this review, we first examined the effects of dexamethasone as monotherapy on inflammatory cytokines and then examined studies that used combination therapy of dexamethasone and other drugs such as Baricitinib, Tofacitinib and tocilizumab. Also, therapeutic aspects of MSCs are examined in this review.
Collapse
Affiliation(s)
- Ehsan Derafsh
- Department of Basic Medical Science, Windsor University School of Medicine, Brighton's Estate, Cayton, Saint Kitts and Nevis
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, lran
| | | | - Mehrdad Kayedi
- Department of radiology. Shiraz university of medical sciences, Shiraz, iran
| | - Niloofar Shojaei
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Rahimi
- School of medicine,fasa university of medical sciences,Fasa, Iran
| | - Samira Alesaeidi
- Department of Internal medicine and rheumatology, ⁎Rheumatology Research Center⁎, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhang Z, Zhang X, Zheng Z, Xin J, Han S, Qi J, Zhang T, Wang Y, Zhang S. Latest advances: Improving the anti-inflammatory and immunomodulatory properties of PEEK materials. Mater Today Bio 2023; 22:100748. [PMID: 37600350 PMCID: PMC10432209 DOI: 10.1016/j.mtbio.2023.100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Excellent biocompatibility, mechanical properties, chemical stability, and elastic modulus close to bone tissue make polyetheretherketone (PEEK) a promising orthopedic implant material. However, biological inertness has hindered the clinical applications of PEEK. The immune responses and inflammatory reactions after implantation would interfere with the osteogenic process. Eventually, the proliferation of fibrous tissue and the formation of fibrous capsules would result in a loose connection between PEEK and bone, leading to implantation failure. Previous studies focused on improving the osteogenic properties and antibacterial ability of PEEK with various modification techniques. However, few studies have been conducted on the immunomodulatory capacity of PEEK. New clinical applications and advances in processing technology, research, and reports on the immunomodulatory capacity of PEEK have received increasing attention in recent years. Researchers have designed numerous modification techniques, including drug delivery systems, surface chemical modifications, and surface porous treatments, to modulate the post-implantation immune response to address the regulatory factors of the mechanism. These studies provide essential ideas and technical preconditions for the development and research of the next generation of PEEK biological implant materials. This paper summarizes the mechanism by which the immune response after PEEK implantation leads to fibrous capsule formation; it also focuses on modification techniques to improve the anti-inflammatory and immunomodulatory abilities of PEEK. We also discuss the limitations of the existing modification techniques and present the corresponding future perspectives.
Collapse
Affiliation(s)
- Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| |
Collapse
|
3
|
Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dent Mater 2023; 39:333-349. [PMID: 36894414 PMCID: PMC11034777 DOI: 10.1016/j.dental.2023.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - W Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Leticia C Capalbo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Goonoo N. Tunable Biomaterials for Myocardial Tissue Regeneration: Promising New Strategies for Advanced Biointerface Control and Improved Therapeutic Outcomes. Biomater Sci 2022; 10:1626-1646. [DOI: 10.1039/d1bm01641e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following myocardial infarction (MI) and the natural healing process, the cardiac mechanostructure changes significantly leading to reduced contractile ability and putting additional pressure on the heart muscle thereby increasing the...
Collapse
|
6
|
Liu S, Zhou X, Nie L, Wang Y, Hu Z, Okoro OV, Shavandi A, Fan L. Anisotropic PLGA microsphere/PVA hydrogel composite with aligned macroporous structures for directed cell adhesion and proliferation. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2018317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiaohu Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Youli Wang
- Rizhao Biomedicine and New Materials Research, Wuhan University of Technology, Rizhao, China
| | - Zhihai Hu
- Rizhao Biomedicine and New Materials Research, Wuhan University of Technology, Rizhao, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter Unit, Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter Unit, Brussels, Belgium
| | - Lihong Fan
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
7
|
Tipnis N, Kastellorizios M, Legassey A, Papadimitrakopoulos F, Jain F, Burgess DJ. Sterilization of Drug-Loaded Composite Coatings for Implantable Glucose Biosensors. J Diabetes Sci Technol 2021; 15:646-654. [PMID: 31786953 PMCID: PMC8120053 DOI: 10.1177/1932296819890620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND An anti-inflammatory drug-loaded composite coating (dexamethasone-loaded poly (lactic-co-glycolic acid) [PLGA] microspheres/polyvinyl alcohol [PVA] hydrogel) was previously developed to counter the foreign body reaction to a fully implantable continuous glucose monitoring biosensor. The long-term sensor functionality was ensured in the presence of the drug-loaded composite coating thus facilitating better diabetes control and management. In order to advance such a drug-device combination product toward clinical testing, addressing sterilization remains a key step due to the heterogeneity of the product components. The main objective of this research was to investigate the effect of two terminal sterilization techniques: gamma radiation and ethylene oxide (EO) on the stability of the anti-inflammatory coatings as well as retention of the glucose sensing ability of the implantable sensor. METHOD The composite coatings, their individual components, and the glucose-sensing elements of the biosensor were subjected to low-temperature gamma radiation and EO cycles. Detailed characterization was conducted on all components before and after sterilization. RESULTS Exposure to gamma radiation affected dexamethasone crystallinity and glucose response linearity of the sensing element, whereas physical aging of microspheres in composite coatings was observed poststerilization with EO. Despite these effects, dexamethasone drug release from coatings was not significantly affected by either technique. CONCLUSION The research findings indicate that both sterilization techniques are feasible for the sterilization of the dexamethasone-loaded PLGA microspheres/PVA hydrogel composite coatings, while EO was preferred for the sterilization of the glucose-sensing element of the biosensor.
Collapse
Affiliation(s)
- Namita Tipnis
- Department of Pharmaceutical Sciences,
University of Connecticut, Storrs, CT, USA
| | - Michail Kastellorizios
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
- Current address: Department of
Pharmaceutical Sciences, University of North Texas Health Science Center, Fort
Worth, TX, USA
| | - Allen Legassey
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
| | - Fotios Papadimitrakopoulos
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
- Institute of Materials Science,
University of Connecticut, Storrs, CT, USA
| | - Faquir Jain
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
- Department of Electrical and Computer
Engineering, University of Connecticut, Storrs, CT, USA
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences,
University of Connecticut, Storrs, CT, USA
- Diane J. Burgess, PhD, Department of
Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd, Storrs,
CT 06269, USA.
| |
Collapse
|
8
|
Didyuk O, Econom N, Guardia A, Livingston K, Klueh U. Continuous Glucose Monitoring Devices: Past, Present, and Future Focus on the History and Evolution of Technological Innovation. J Diabetes Sci Technol 2021; 15:676-683. [PMID: 31931614 PMCID: PMC8120065 DOI: 10.1177/1932296819899394] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The concept of implantable glucose sensors has been promulgated for more than 40 years. It is now accepted that continuous glucose monitoring (CGM) increases quality of life by allowing informed diabetes management decisions as a result of more optimized glucose control. The focus of this article is to provide a brief overview of the CGM market history, emerging technologies, and the foreseeable challenges for the next CGM generations as well as proposing possible solutions in an effort to advance the next generation of implantable sensor.
Collapse
Affiliation(s)
- Olesya Didyuk
- Department of Biological Sciences, IBio
(Integrative Biosciences Center), Wayne State University, Detroit, MI, USA
| | - Nicolas Econom
- Biomedical Engineering, IBio
(Integrative Biosciences Center), Wayne State University, Detroit, MI, USA
| | - Angelica Guardia
- Biomedical Engineering, IBio
(Integrative Biosciences Center), Wayne State University, Detroit, MI, USA
| | - Kelsey Livingston
- Biomedical Engineering, IBio
(Integrative Biosciences Center), Wayne State University, Detroit, MI, USA
| | - Ulrike Klueh
- Biomedical Engineering, IBio
(Integrative Biosciences Center), Wayne State University, Detroit, MI, USA
- Ulrike Klueh, PhD, Department of Biomedical
Engineering, Wayne State University, 263 Farmington Avenue, Detroit, MI 48202,
USA.
| |
Collapse
|
9
|
Antimicrobial nanoparticle coatings for medical implants: Design challenges and prospects. Biointerphases 2020; 15:060801. [DOI: 10.1116/6.0000625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Low ZWK, Li Z, Owh C, Chee PL, Ye E, Dan K, Chan SY, Young DJ, Loh XJ. Recent innovations in artificial skin. Biomater Sci 2020; 8:776-797. [PMID: 31820749 DOI: 10.1039/c9bm01445d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The skin is a "smart", multifunctional organ that is protective, self-healing and capable of sensing and many forms of artificial skins have been developed with properties and functionalities approximating those of natural skin. Starting from specific commercial products for the treatment of burns, progress in two fields of research has since allowed these remarkable materials to be viable skin replacements for a wide range of dermatological conditions. This review maps out the development of bioengineered skin replacements and synthetic skin substitutes, including electronic skins. The specific behaviors of these skins are highlighted, and the performances of both types of artificial skins are evaluated against this. Moving beyond mere replication, highly advanced artificial skin materials are also identified as potential augmented skins that can be used as flexible electronics for health-care monitoring and other applications.
Collapse
Affiliation(s)
- Zhi Wei Kenny Low
- Institute of Materials Research and Engineering, A*STAR, 2Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang L, Luo S, Xu H, Wu X, Hao P, Zhang Y, Huang W, Zan X. Evaluation of His 6-Metal Assemblies as a Drug Delivery Vehicle in the Treatment of Anterior Segment Disease Using a Corneal Inflammation Model. ACS Biomater Sci Eng 2020; 6:4012-4023. [PMID: 33463356 DOI: 10.1021/acsbiomaterials.0c00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Keratitis is a common ophthalmological disease and also a common cause of blindness (second only to cataracts). This disease is routinely treated by topical administration of dexamethasone sodium phosphate (Dexp). However, due to the presence of anatomical and physiological barriers, frequent administration is needed, often resulting in poor patient compliance and diverse side effects. In this work, Dexp was in situ encapsulated into a His6-metal assembly (HmA) to generate Dexp@HmA, which was utilized in the ocular delivery of Dexp. The physicochemical properties of HmA and Dexp@HmA particles were characterized in detail using various techniques such as dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV-vis spectroscopy. Compared to commercial Eudragi and reported PLGA nanoparticles, HmA showed higher encapsulation efficiency (EE%) and higher loading capacity (LC wt %) of Dexp. Dexp@HmA displayed pH-dependent release; after 33 days at pH 5.8, 6.5, and 7.2, 100%, 65%, and 42% of Dexp, respectively, had been released. In addition, HmA and Dexp@HmA showed low cytotoxicity to macrophages and to all common ocular cell types tested. The effect of Dexp@HmA on corneal inflammation was evaluated using in vitro and in vivo models. Our results demonstrate that Dexp@HmA is much superior to free Dexp in both in vitro and in vivo models. These positive results suggest that HmA may represent a promising candidate nanocarrier for the treatment of various diseases of the anterior segment of the eye.
Collapse
Affiliation(s)
- Liwen Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Shan Luo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China.,University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325011, P. R. China
| |
Collapse
|
12
|
Shen K, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y, Lai M. The sustained release of dexamethasone from TiO 2 nanotubes reinforced by chitosan to enhance osteoblast function and anti-inflammation activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111241. [PMID: 32806259 DOI: 10.1016/j.msec.2020.111241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
Controlling macrophage response to biomaterials is critical for the reduction of inflammation after implantation. Here we designed a sustained release system from TiO2 nanotubes (TNTs) to improve osteogenesis on titanium implants with anti-inflammatory properties. TNTs (around 70 nm diameter) were first fabricated on titanium surfaces by anodization, directly filled with the anti-inflammatory drug, dexamethasone (DEX) and then covered by chitosan (CHI) multilayer films. Primary osteoblast and macrophage (RAW 264.7) cells were cultured on untreated and treated titanium surfaces in vitro. Osteoblasts grown on CHI-coated Dex-filled TNTs surfaces displayed higher alkaline phosphatase (ALP) and mineralization, which was consistent with qRT-PCR analysis of osteoblastic genes including collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and runt related transcription factor 2 (Runx2). In contrast, protein levels of nitric oxide (NO) and proinflammatory cytokines (TNF-α and IL-1β) from macrophages on Dex-filled TNTs, CHI-coated TNTs and CHI-coated Dex-filled TNTs were significantly lower, especially on CHI-coated Dex-filled TNTs surfaces compared to levels on titanium and TNTs. These results indicate that CHI-coated Dex-filled TNTs enhanced osteoblast differentiation and decreased the inflammatory response of macrophages. The approach presented here provides new insight into the modification of TNTs for the development of titanium-based implants.
Collapse
Affiliation(s)
- Ke Shen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xingtang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chunlei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhaojing Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
13
|
Kuppan P, Kelly S, Polishevska K, Hojanepesov O, Seeberger K, Korbutt GS, Pepper AR. Co-localized immune protection using dexamethasone-eluting micelles in a murine islet allograft model. Am J Transplant 2020; 20:714-725. [PMID: 31650674 DOI: 10.1111/ajt.15662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/14/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023]
Abstract
The broad application of ß cell transplantation for type 1 diabetes is hindered by the requisite of lifelong systemic immunosuppression. This study examines the utility of localized islet graft drug delivery to subvert the inflammatory and adaptive immune responses. Herein, we have developed and characterized dexamethasone (Dex) eluting Food and Drug Administration-approved micro-Poly(lactic-co-glycolic acid) micelles and examined their efficacy in a fully major histocompatibility complex-mismatch murine islet allograft model. A clinically relevant dose of 46.6 ± 2.8 μg Dex per graft was confirmed when 2 mg of micelles was implemented. Dex-micelles + CTLA-4-Ig (n = 10) resulted in prolonged allograft function with 80% of the recipients demonstrating insulin independence for 60 days posttransplant compared to 40% in empty micelles + CTLA-4-Ig recipients (n = 10, P = .06). Recipients of this combination therapy (n = 8) demonstrated superior glucose tolerance profiles, compared to empty micelles + CTLA-4-Ig recipients (n = 4, P < .05), and significantly reduced localized intragraft proinflammatory cytokine expression. Histologically, increased insulin positive and FOXP3+ T cells were observed in Dex-micelles + CTLA-4-Ig grafts compared to empty micelles + CTLA-4-Ig grafts (P < .01 and P < .05, respectively). Localized drug delivery via micelles elution has the potential to alter the inflammatory environment, enhances allograft survival, and may be an important adjuvant approach to improve clinical islet transplantation outcomes.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kateryna Polishevska
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Osmanmyrat Hojanepesov
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold strategies for modulating immune microenvironment during bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110411. [PMID: 31923946 DOI: 10.1016/j.msec.2019.110411] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Implanted bone scaffolds often fail to successfully integrate with the host tissue because they do not elicit a favorable immune reaction. Properties of bone scaffold not only provide mechanical and chemical signals to support cell adhesion, migration, proliferation and differentiation, but also play a pivotal role in determining the extent of immune response during bone regeneration. Appropriate design parameters of bone scaffold are of great significance in the process of developing a new generation of bone implants. Herein, this article addresses the recent advances in the field of bone scaffolds for immune response, particularly focusing on the physical and chemical properties of bone scaffold in manipulating the host response. Furthermore, incorporation of bioactive molecules and cells with immunoregulatory function in bone scaffolds are also presented. Finally, continuing challenges and future directions of scaffold-based strategies for modulating immune microenvironment are discussed.
Collapse
Affiliation(s)
- Jianhua He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Mengying Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Hua Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
15
|
Optimising poly(lactic-co-glycolic acid) microparticle fabrication using a Taguchi orthogonal array design-of-experiment approach. PLoS One 2019; 14:e0222858. [PMID: 31557205 PMCID: PMC6762136 DOI: 10.1371/journal.pone.0222858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to identify, understand and generate a Taguchi orthogonal array model for the formation of 10-50 μm microparticles with applications in topical/ocular controlled drug delivery. Poly(lactic-co-glycolic acid) (PLGA) microparticles were fabricated by the single emulsion oil-in-water method and the particle size was characterized using laser diffraction and scanning electronic microscopy (SEM). Sequential Taguchi L12 and L18 orthogonal array (OA) designs were employed to study the influence of ten and eight parameters, respectively, on microparticle size (response). The first optimization step using the L12 design showed that all parameters significantly influenced the particle size of the prepared PLGA microparticles with exception of the concentration of poly(vinyl alcohol) (PVA) in the hardening bath. The smallest mean particle size obtained from the L12 design was 54.39 μm. A subsequent L18 design showed that the molecular weight of PLGA does not significantly affect the particle size. An experimental run comprising of defined parameters including molecular weight of PLGA (89 kDa), concentration of PLGA (20% w/v), concentration of PVA in the emulsion (0.8% w/v), solvent type (ethyl acetate), organic/aqeuous phase ratio (1:1 v/v), vortexing speed (9), vortexing duration (60 seconds), concentration of PVA in hardening bath (0.8% w/v), stirring speed of hardening bath (1200 rpm) and solvent evaporation duration (24 hours) resulted in the lowest mean particle size of 23.51 μm which was predicted and confirmed by the L18 array. A comparable size was demonstrated during the fabrication of BSA-incorporated microparticles. Taguchi OA design proved to be a valuable tool in determining the combination of process parameters that can provide the optimal condition for microparticle formulation. Taguchi OA design can be used to correctly predict the size of microparticles fabricated by the single emulsion process and can therefore, ultimately, save time and costs during the manufacturing process of drug delivery formulations by minimising experimental runs.
Collapse
|
16
|
Becker MW, Simonovich JA, Phelps EA. Engineered microenvironments and microdevices for modeling the pathophysiology of type 1 diabetes. Biomaterials 2019; 198:49-62. [DOI: 10.1016/j.biomaterials.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
|
17
|
Low ZWK, Li Z, Owh C, Chee PL, Ye E, Kai D, Yang DP, Loh XJ. Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805453. [PMID: 30690897 DOI: 10.1002/smll.201805453] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Artificial skin devices are able to mimic the flexibility and sensory perception abilities of the skin. They have thus garnered attention in the biomedical field as potential skin replacements. This Review delves into issues pertaining to these skin-deep devices. It first elaborates on the roles that these devices have to fulfill as skin replacements, and identify strategies that are used to achieve such functionality. Following which, a comparison is done between the current state of these skin-deep devices and that of natural skin. Finally, an outlook on artificial skin devices is presented, which discusses how complementary technologies can create skin enhancements, and what challenges face such devices.
Collapse
Affiliation(s)
- Zhi Wei Kenny Low
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, Fujian Province, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
18
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
19
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
20
|
Taylor B, Indano S, Yankannah Y, Patel P, Perez XI, Freeman J. Decellularized Cortical Bone Scaffold Promotes Organized Neovascularization In Vivo. Tissue Eng Part A 2018; 25:964-977. [PMID: 30421653 DOI: 10.1089/ten.tea.2018.0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT Bone loss and skeletal deficiencies due to musculoskeletal diseases, traumatic injury, abnormal development, and cancer are major problems worldwide, frequently requiring surgical intervention. There has been a shift in paradigm to utilize tissue engineering applications. This novel bone technology has the potential to promote bone regeneration for large bone defects without the addition of growth factors and offers a unique architecture for cell attachment, proliferation, and differentiation. This scaffold serves as a tailored therapeutic for bone injuries and defects, leading to an increased quality of life by decreasing the risk of reoccurring surgeries and complications.
Collapse
Affiliation(s)
- Brittany Taylor
- 1Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sarah Indano
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Yasonia Yankannah
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Pushpendra Patel
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Xiomara I Perez
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Freeman
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
21
|
Gu B, Papadimitrakopoulos F, Burgess DJ. PLGA microsphere/PVA hydrogel coatings suppress the foreign body reaction for 6 months. J Control Release 2018; 289:35-43. [PMID: 30261203 DOI: 10.1016/j.jconrel.2018.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 01/18/2023]
Abstract
The application of dexamethasone releasing poly (lactic-co-glycolic acid) (PLGA) microspheres embedded in a poly vinyl alcohol (PVA) hydrogel coatings have been successfully used in the suppression of the foreign body response (FBR) to implantable glucose sensors. In the current study, dexamethasone-loaded PLGA microspheres were prepared by blending two types of PLGA polymers (RG503H and DLG7E with MW of ca. 25 kDa and 113 kDa, respectively) to achieve long-term (6 months) inhibition of the FBR. The microsphere composition was optimized according to the in vitro drug release profiles. Microspheres with DLG7E/RG503H/dexamethasone = 70/13.3/16.7 wt% composition, when embedded in a PVA hydrogel, provided a continuous drug release for 6 months. By combining the aforementioned microspheres with microspheres composed solely of the DLG7E polymer within a similar PVA hydrogel realized an even longer (>7 months) in vitro drug release. A heat map was constructed to depict the daily in vitro drug released and elucidate possible lag phases that could affect the pharmacodynamic response. These drug-loaded implant coatings were investigated in vivo (rat model) and showed inhibition of the foreign body response for 6 months. These results suggest that the minimum effective daily dose to counter chronic inflammation is ca. 0.1 μg per mg of coating surrounding a 0.5 × 0.5 × 5 mm silicon implant (dummy sensor). Accordingly, these drug-eluting composite coatings can ensure long-term inflammation control for miniaturized implantable devices.
Collapse
Affiliation(s)
- Bing Gu
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | | | - Diane J Burgess
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA.
| |
Collapse
|
22
|
Ahlawat J, Henriquez G, Narayan M. Enhancing the Delivery of Chemotherapeutics: Role of Biodegradable Polymeric Nanoparticles. Molecules 2018; 23:E2157. [PMID: 30150595 PMCID: PMC6225169 DOI: 10.3390/molecules23092157] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022] Open
Abstract
While pharmaceutical drugs have revolutionized human life, there are several features that limit their full potential. This review draws attention to some of the obstacles currently facing the use of chemotherapeutic drugs including low solubility, poor bioavailability and high drug dose. Overcoming these issues will further enhance the applicability and potential of current drugs. An emerging technology that is geared towards improving overall therapeutic efficiency resides in drug delivery systems including the use of polymeric nanoparticles which have found widespread use in cancer therapeutics. These polymeric nanoparticles can provide targeted drug delivery, increase the circulation time in the body, reduce the therapeutic indices with minimal side-effects, and accumulate in cells without activating the mononuclear phagocyte system (MPS). Given the inroads made in the field of nanodelivery systems for pharmaceutical applications, it is of interest to review and emphasize the importance of Polymeric nanocarrier system for drug delivery in chemotherapy.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Gabriela Henriquez
- Environment Science & Engineering department, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Mahesh Narayan
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
23
|
Chatard C, Meiller A, Marinesco S. Microelectrode Biosensors forin vivoAnalysis of Brain Interstitial Fluid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700836] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Charles Chatard
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- Université Claude Bernard Lyon 1; Lyon France
| | - Anne Meiller
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
| | - Stéphane Marinesco
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
- Lyon Neuroscience Research Center, Team TIGER; Faculty of Medicine; 8 Avenue Rockefeller 69373 Lyon Cedex 08 France
| |
Collapse
|
24
|
Immunomodulation of Biomaterials by Controlling Macrophage Polarization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:197-206. [PMID: 30471034 DOI: 10.1007/978-981-13-0445-3_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophages are key players in innate immune responses to foreign substances. They participate in the phagocytosis of biomaterial-derived particles, angiogenesis, recruitment of fibroblasts, and formation of granulation tissues. Most macrophage functions are achieved through the release of various cytokines and chemokines; the release profile of cytokines is dependent on the phenotype of macrophages, namely proinflammatory M1 or antiinflammatory M2. M1 and M2 macrophages coexist during an inflammatory phase, and the M1/M2 ratio is considered to be an important factor for wound-healing or tissue regeneration. This ratio depends on the chemical and physical properties of biomaterials. To obtain a favorable foreign body reaction to biomaterials, the phenotypes of the macrophages can be modulated by cytokines, antibodies, small chemicals, and microRNAs. Geometrical surface fabrication of biomaterials can also be used for modulating the phenotype of macrophages.
Collapse
|
25
|
Afsharzadeh M, Hashemi M, Mokhtarzadeh A, Abnous K, Ramezani M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1095-1110. [PMID: 28954547 DOI: 10.1080/21691401.2017.1376675] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is a broad term for a class of prevalent diseases as one in three people develop cancer during their lifetime. Although, there are few success stories of cancer therapy, most of the existing medications do not lead to complete recovery. Because of the complexity of cancer, usually a single therapeutic approach is insufficient for the suppression of cancer growth and metastasis. Simultaneous loading and co-delivery of different agents with different physiochemical characteristics to the same tumors have been suggested for minimizing the dose of anticancer drugs and achieving the synergistic therapeutic impacts in cancers treatment. Intense work to develop nanotechnology-based systems as a suitable option for cancer treatment is currently underway. The purpose of this review is to provide an overview of the co-delivery systems based on polymeric nanoparticles including polymeric micelles, dendrimers, poly-d,l-lactide-co-glycolide, polyethylenimine, poly(l-lysine) and chitosan for efficacious cancer therapy.
Collapse
Affiliation(s)
- Maryam Afsharzadeh
- a Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Hashemi
- b Nanotechnology Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Ahad Mokhtarzadeh
- c Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Biotechnology , Higher Education Institute of Rab-Rashid , Tabriz , Iran
| | - Khalil Abnous
- e Department of Pharmaceutical Biotechnology, Pharmaceutical Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- e Department of Pharmaceutical Biotechnology, Pharmaceutical Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
26
|
Pentecost AE, Witherel CE, Gogotsi Y, Spiller KL. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater Sci 2017; 5:2131-2143. [PMID: 28875995 PMCID: PMC5719499 DOI: 10.1039/c7bm00294g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or "M1" activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone - Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND's rich surface chemistry, which contributes to ND's high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.
Collapse
Affiliation(s)
- A E Pentecost
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
27
|
Chen E, Chu S, Gov L, Kim Y, Lodoen M, Tenner A, Liu W. CD200 modulates macrophage cytokine secretion and phagocytosis in response to poly(lactic co-glycolic acid) microparticles and films. J Mater Chem B 2017; 5:1574-1584. [PMID: 28736613 PMCID: PMC5515357 DOI: 10.1039/c6tb02269c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biocompatibility is a major concern for developing biomaterials used in medical devices, tissue engineering and drug delivery. Poly(lactic-co-glycolic acid) (PLGA) is one of the most widely used biodegradable materials, yet still triggers a significant foreign body response that impairs healing. Immune cells including macrophages respond to the implanted biomaterial and mediate the host response, which can eventually lead to device failure. Previously in our laboratory, we found that CD200, an immunomodulatory protein, suppressed macrophage inflammatory activation in vitro and reduced local immune cell infiltration around a biomaterial implant. While in our initial study we used polystyrene as a model material, here we investigate the effect of CD200 on PLGA, a commonly used biomaterial with many potential clinical applications. We fabricated PLGA with varied geometries, modified their surfaces with CD200, and examined macrophage cytokine secretion and phagocytosis. We found that CD200 suppressed secretion of the pro-inflammatory cytokine TNF-α and enhanced secretion of the anti-inflammatory cytokine IL-10, suggesting a role for CD200 in promoting wound healing and tissue remodeling. In addition, we found that CD200 increased phagocytosis in both murine macrophages and human monocytes. Together, these data suggest that modification with CD200 leads to a response that simultaneously prevents inflammation and enhances phagocytosis. This immunomodulatory feature may be used as a strategy to mitigate inflammation or deliver drugs or anti-inflammatory agents targeting macrophages.
Collapse
Affiliation(s)
- E.Y. Chen
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
| | - S. Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - L. Gov
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - Y.K. Kim
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
- Department of Biomedical Engineering, University of California, Irvine
| | - M.B. Lodoen
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - A.J. Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - W.F. Liu
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
- Department of Biomedical Engineering, University of California, Irvine
| |
Collapse
|
28
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
29
|
Kim S, Jang Y, Jang LK, Sunwoo SH, Kim TI, Cho SW, Lee JY. Electrochemical deposition of dopamine–hyaluronic acid conjugates for anti-biofouling bioelectrodes. J Mater Chem B 2017; 5:4507-4513. [DOI: 10.1039/c7tb00028f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrochemical deposition of dopamine-hyaluronic acid conjugates onto electrode surfaces can lead to preserved electrochemical activities and anti-biofouling properties of the electrodes.
Collapse
Affiliation(s)
- Semin Kim
- School of Materials Science and Engineering
- Gwangju Institute of Science and Engineering (GIST)
- Gwangju 500-712
- Republic of Korea
| | - Yohan Jang
- School of Materials Science and Engineering
- Gwangju Institute of Science and Engineering (GIST)
- Gwangju 500-712
- Republic of Korea
| | - Lindy K. Jang
- School of Materials Science and Engineering
- Gwangju Institute of Science and Engineering (GIST)
- Gwangju 500-712
- Republic of Korea
| | - Sung Hyuk Sunwoo
- School of Chemical Engineering
- Sungkyunkwan University (SKKU)
- Suwon 440-746
- Republic of Korea
| | - Tae-il Kim
- School of Chemical Engineering
- Sungkyunkwan University (SKKU)
- Suwon 440-746
- Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering
- Gwangju Institute of Science and Engineering (GIST)
- Gwangju 500-712
- Republic of Korea
- Gwangju Institute of Science and Technology
| |
Collapse
|
30
|
Orel L, Riabov S, Kobrina L, Goncharenko L. Natural polymers as a nanomatrices for the transport of drugs. Polym J 2016. [DOI: 10.15407/polymerj.38.03.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Lu H, Song L, Lin Y. Diagnosis and rehabilitation of deep wound infection and internal fixation rejection in elbow: A case report. Medicine (Baltimore) 2016; 95:e3777. [PMID: 27281079 PMCID: PMC4907657 DOI: 10.1097/md.0000000000003777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
This study aims at diagnosis and rehabilitation of a rare case of deep wound infection and internal fixation rejection in elbow. The patient sustained a distal fracture in the humerus 1 year ago, which was internal fixed. The wound always effused and the elbow had pain and swelling; joint motion was limited. Blood sedimentation rate and C reactive protein level increased, bacterial culture suggested deep wound infection, and ultrasound indicated inflammation. The main diagnoses were deep wound infection and internal fixation rejection. Therapeutics interventions were antibiotic agents, physical therapy, operative debridement, incision, drainage, and exercise and physical therapy. One year later, the internal fixation was taken out. His elbow was fully mobilized and the fracture healed. He got back to his former job. When encountered deep wound infection again and again after internal fixation, rejection should be considered. Except for anti-infection treatment, rehabilitation cannot be neglected, or the healing process may be delayed.
Collapse
Affiliation(s)
- Huiping Lu
- Department of Rehabilitation, Fuzhou 2nd Hospital,Xiamen University
- Medical Technology and Engineering Institution of Fujian Medical University
- Department of Ultrasound, Fuzhou 2nd Hospital, Xiamen University, Fuzhou, China
- ∗Correspondence: Huiping Lu, Department of Rehabilitation ,Fuzhou 2nd hospital, Xiamen University; Medical Technology and Engineering Institution of Fujian Medical University, China (e-mail: )
| | - Lin Song
- Department of Rehabilitation, Fuzhou 2nd Hospital,Xiamen University
- Medical Technology and Engineering Institution of Fujian Medical University
- Department of Ultrasound, Fuzhou 2nd Hospital, Xiamen University, Fuzhou, China
| | - Ying Lin
- Department of Rehabilitation, Fuzhou 2nd Hospital,Xiamen University
- Medical Technology and Engineering Institution of Fujian Medical University
- Department of Ultrasound, Fuzhou 2nd Hospital, Xiamen University, Fuzhou, China
| |
Collapse
|
32
|
Le Saux G, Plawinski L, Nlate S, Ripoche J, Buffeteau T, Durrieu MC. Beneficial Effect of Covalently Grafted α-MSH on Endothelial Release of Inflammatory Mediators for Applications in Implantable Devices. PLoS One 2016; 11:e0150706. [PMID: 26939131 PMCID: PMC4777356 DOI: 10.1371/journal.pone.0150706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
Intravascular devices for continuous glucose monitoring are promising tools for the follow up and treatment of diabetic patients. Limiting the inflammatory response to the implanted devices in order to achieve better biocompatibility is a critical challenge. Herein we report on the production and the characterization of gold surfaces covalently derivatized with the peptide α-alpha-melanocyte stimulating hormone (α-MSH), with a quantifiable surface density. In vitro study demonstrated that the tethered α-MSH is able to decrease the expression of an inflammatory cytokine produced by endothelial cells.
Collapse
Affiliation(s)
| | | | - Sylvain Nlate
- Univ. Bordeaux, CBMN, UMR 5248, F-33600, Pessac, France
| | - Jean Ripoche
- Univ. Bordeaux, BIOTIS, INSERM U1026, F-33076, Bordeaux, France
| | | | | |
Collapse
|
33
|
Gu B, Wang Y, Burgess DJ. In vitro and in vivo performance of dexamethasone loaded PLGA microspheres prepared using polymer blends. Int J Pharm 2015; 496:534-40. [PMID: 26520407 DOI: 10.1016/j.ijpharm.2015.10.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022]
Abstract
The foreign body reaction is the major cause of the dysfunction and relatively short lifetime associated with implanted glucose biosensors. An effective strategy to maintain sensor functionality is to apply biocompatible coatings that elute drug to counter the negative tissue reactions. This has been achieved using dexamethasone releasing poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a polyvinyl alcohol (PVA) hydrogel coating. Accordingly, the biosensor lifetime relies on the duration and dose of drug release from the coating. To achieve long-term drug release mixed populations of microspheres have been used. In the current study, microspheres were prepared by blending low (25KDa) and high (113KDa) molecular weight PLGA at different mass ratios to overcome problems associated with mixing multiple populations of microspheres. "Real-time" in vitro studies demonstrated dexamethasone release for approximately 5 months. An accelerated method with discriminatory ability was developed to shorten drug release to less than 2 weeks. An in vivo pharmacodynamics study demonstrated efficacy against the foreign body reaction for 4.5 months. Such composite coatings composed of PLGA microspheres prepared using polymer blends could potentially be used to ensure long-term performance of glucose sensors.
Collapse
Affiliation(s)
- Bing Gu
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | - Yan Wang
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | - Diane J Burgess
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA.
| |
Collapse
|
34
|
Kim YK, Chen EY, Liu WF. Biomolecular strategies to modulate the macrophage response to implanted materials. J Mater Chem B 2015; 4:1600-1609. [PMID: 32263014 DOI: 10.1039/c5tb01605c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The material-induced foreign body response is a major challenge for implanted medical devices. This review highlights recent developments in biomimetic approaches to create biomaterials that mitigate the host response to biomaterials. Specifically, we will describe strategies in which biomaterials are decorated with endogenously expressed biomolecules that naturally modulate the function of immune cells. These include molecules that directly bind to and interact with immune cells, as well as molecules that control complement activation or thrombosis and indirectly modulate immune cell function. We provide perspective on how these approaches may impact the design of materials for medical devices and tissue engineering.
Collapse
Affiliation(s)
- Yoon Kyung Kim
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
35
|
Gu B, Burgess DJ. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach. Int J Pharm 2015; 495:393-403. [PMID: 26325309 DOI: 10.1016/j.ijpharm.2015.08.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022]
Abstract
Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration.
Collapse
Affiliation(s)
- Bing Gu
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, United States
| | - Diane J Burgess
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, United States.
| |
Collapse
|
36
|
Kastellorizios M, Tipnis N, Papadimitrakopoulos F, Burgess DJ. Drug Distribution in Microspheres Enhances Their Anti-Inflammatory Properties in the Gottingen Minipig. Mol Pharm 2015; 12:3332-8. [PMID: 26237140 DOI: 10.1021/acs.molpharmaceut.5b00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The foreign body reaction (FBR), one of the body's defense mechanisms against foreign materials, results in loss of implant biocompatibility. A popular strategy to prevent FBR is the constant release of dexamethasone in the tissue surrounding the implant. However, FBR prevention has not been sufficiently studied in large animal models, which offer a better representation of the human subcutaneous tissue physiology. Accordingly, a long-term strategy to prevent FBR to subcutaneous implants in a large animal model is necessary to translate the existing research for clinical applications. Here, a poly(lactic-co-glycolic) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composite coating for one-month prevention of FBR in Gottingen minipigs was developed. A modified PLGA microsphere formulation process is presented, that utilizes coprecipitation of dexamethasone and PLGA. Traditional methods result in heterogeneous distribution of large drug crystals in the microsphere matrix, which in turn results in low drug loading since the drug crystal size is close to that of the microspheres. The modified microsphere preparation method showed homogeneous distribution of dexamethasone, which in turn gave rise to increased drug loading, low burst release, and minimal lag phase. Elimination of the lag phase was dictated from previous work that compared FBR between rats and minipigs. The ability of the coatings to improve implant biocompatibility was successfully tested in vivo via histological examination of explanted tissue from the area surrounding the implants. The biocompatible coatings presented here are suitable for miniaturized implantable devices, such as biosensors, that require constant communication with the local microenvironment.
Collapse
Affiliation(s)
- Michail Kastellorizios
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Namita Tipnis
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Fotios Papadimitrakopoulos
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Diane J Burgess
- Department of Pharmaceutical Sciences and ‡Department of Chemistry and Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
37
|
Chen X, Wu G, Feng Z, Dong Y, Zhou W, Li B, Bai S, Zhao Y. Advanced biomaterials and their potential applications in the treatment of periodontal disease. Crit Rev Biotechnol 2015; 36:760-75. [PMID: 26004052 DOI: 10.3109/07388551.2015.1035693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Periodontal disease is considered as a widespread infectious disease and the most common cause of tooth loss in adults. Attempts for developing periodontal disease treatment strategies, including drug delivery and regeneration approaches, provide a useful experimental model for the evaluation of future periodontal therapies. Recently, emerging advanced biomaterials including hydrogels, films, micro/nanofibers and particles, hold great potential to be utilized as cell/drug carriers for local drug delivery and biomimetic scaffolds for future regeneration therapies. In this review, first, we describe the pathogenesis of periodontal disease, including plaque formation, immune response and inflammatory reactions caused by bacteria. Second, periodontal therapy and an overview of current biomaterials in periodontal regenerative medicine have been discussed. Third, the roles of state-of-the-art biomaterials, including hydrogels, films, micro/nanofibers and micro/nanoparticles, developed for periodontal disease treatment and periodontal tissue regeneration, and their fabrication methods, have been presented. Finally, biological properties, including biocompatibility, biodegradability and immunogenicity of the biomaterials, together with their current applications strategies are given. Conclusive remarks and future perspectives for such advanced biomaterials are discussed.
Collapse
Affiliation(s)
- Xi Chen
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Guofeng Wu
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Zhihong Feng
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Yan Dong
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Wei Zhou
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Bei Li
- b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and.,c State Key Laboratory of Military Stomatology, Center for Tissue Engineering , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China
| | - Shizhu Bai
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Yimin Zhao
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| |
Collapse
|
38
|
Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. J Colloid Interface Sci 2015; 445:31-39. [DOI: 10.1016/j.jcis.2014.12.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
|
39
|
Li J, Chu MK, Gordijo CR, Abbasi AZ, Chen K, Adissu HA, Löhn M, Giacca A, Plettenburg O, Wu XY. Microfabricated microporous membranes reduce the host immune response and prolong the functional lifetime of a closed-loop insulin delivery implant in a type 1 diabetic rat model. Biomaterials 2015; 47:51-61. [DOI: 10.1016/j.biomaterials.2015.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
|
40
|
Kastellorizios M, Papadimitrakopoulos F, Burgess DJ. Prevention of foreign body reaction in a pre-clinical large animal model. J Control Release 2015; 202:101-7. [DOI: 10.1016/j.jconrel.2015.01.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|
41
|
Kastellorizios M, Tipnis N, Burgess DJ. Foreign Body Reaction to Subcutaneous Implants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:93-108. [DOI: 10.1007/978-3-319-18603-0_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Kwee BJ, Mooney DJ. Manipulating the intersection of angiogenesis and inflammation. Ann Biomed Eng 2014; 43:628-40. [PMID: 25316589 DOI: 10.1007/s10439-014-1145-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/27/2014] [Indexed: 12/18/2022]
Abstract
There exists a critical need to develop strategies that promote blood vessel formation (neovascularization) in virtually all tissue engineering and regenerative medicine efforts. While research typically focuses on understanding and exploiting the role of angiogenic factors and vascular cells on new blood vessel formation, the activity of the immune system is being increasingly recognized to impact vascular formation and adaptation. This review will provide both an overview of the intersection of angiogenesis and the immune system, and how biomaterials may be designed to promote favorable interactions between these two systems to promote effective vascularization.
Collapse
Affiliation(s)
- Brian J Kwee
- School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 319, Cambridge, MA, 02138, USA
| | | |
Collapse
|
43
|
Microdialysis sampling techniques applied to studies of the foreign body reaction. Eur J Pharm Sci 2013; 57:74-86. [PMID: 24269987 DOI: 10.1016/j.ejps.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
Implanted materials including drug delivery devices and chemical sensors undergo what is termed the foreign body reaction (FBR). Depending on the device and its intended application, the FBR can have differing consequences. An extensive scientific research effort has been devoted to elucidating the cellular and molecular mechanisms that drive the FBR. Important, yet relatively unexplored, research includes the localized tissue biochemistry and the chemical signaling events that occur throughout the FBR. This review provides an overview of the mechanisms of the FBR, describes how the FBR affects different implanted devices, and illustrates the role that microdialysis sampling can play in further elucidating the chemical communication processes that drive FBR outcomes.
Collapse
|
44
|
Lin P, Lin CW, Mansour R, Gu F. Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosens Bioelectron 2013; 47:451-60. [DOI: 10.1016/j.bios.2013.01.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/30/2012] [Accepted: 01/25/2013] [Indexed: 12/28/2022]
|
45
|
Croce RA, Vaddiraju S, Kondo J, Wang Y, Zuo L, Zhu K, Islam SK, Burgess DJ, Papadimitrakopoulos F, Jain FC. A miniaturized transcutaneous system for continuous glucose monitoring. Biomed Microdevices 2013; 15:151-60. [PMID: 22992979 DOI: 10.1007/s10544-012-9708-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Implantable sensors for continuous glucose monitoring hold great potential for optimal diabetes management. This is often undermined by a variety of issues associated with: (1) negative tissue response; (2) poor sensor performance; and (3) lack of device miniaturization needed to reduce implantation trauma. Herein, we report our initial results towards constructing an implantable device that simultaneously address all three aforementioned issues. In terms of device miniaturization, a highly miniaturized CMOS (complementary metal-oxide-semiconductor) potentiostat and signal processing unit was employed (with a combined area of 0.665 mm(2)). The signal processing unit converts the current generated by a transcutaneous, Clark-type amperometric sensor to output frequency in a linear fashion. The Clark-type amperometric sensor employs stratification of five functional layers to attain a well-balanced mass transfer which in turn yields a linear sensor response from 0 to 25 mM of glucose concentration, well beyond the physiologically observed (2 to 22 mM) range. In addition, it is coated with a thick polyvinyl alcohol (PVA) hydrogel with embedded poly(lactic-co-glycolic acid) (PLGA) microspheres intended to provide continuous, localized delivery of dexamethasone to suppress inflammation and fibrosis. In vivo evaluation in rat model has shown that the transcutaneous sensor system reproducibly tracks repeated glycemic events. Clarke's error grid analysis on the as-obtained glycemic data has indicated that all of the measured glucose readings fell in the desired Zones A & B and none fell in the erroneous Zones C, D and E. Such reproducible operation of the transcutaneous sensor system, together with low power (140 μW) consumption and capability for current-to-frequency conversion renders this a versatile platform for continuous glucose monitoring and other biomedical sensing devices.
Collapse
Affiliation(s)
- Robert A Croce
- Electrical & Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tlucek PS, Folk JC, Sobol WM, Mahajan VB. Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy. Clin Ophthalmol 2013; 7:1093-8. [PMID: 23785231 PMCID: PMC3682853 DOI: 10.2147/opth.s43939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective To review fibrosis of fluocinolone acetonide (FA) implants in subjects with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV). Methods A retrospective case series was assembled from ADNIV patients in which there was fibrotic encapsulation of a fluocinolone acetonide implant. CAPN5 genotypes and surgical repair techniques were reviewed. Results Two eyes of two ADNIV patients developed a fibrotic capsule over the fluocinolone acetonide implant. Both patients had Stage IV disease. Patient A had a c.731T > C mutation in the CAPN5 gene and patient B had a c.728G > T mutation. The fibrotic membrane was surgically excised and the implant function was restored. Conclusion The exuberant fibrotic response in later stages of ADNIV may be resistant to local immunosuppression with steroids. Surgical excision of fibrotic membranes over FA implants can reestablish local steroid delivery in cases of severe proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Paul S Tlucek
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
47
|
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2013; 40:363-408. [PMID: 23339648 DOI: 10.1615/critrevbiomedeng.v40.i5.10] [Citation(s) in RCA: 1350] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.
Collapse
Affiliation(s)
- Ami R Amini
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
48
|
Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH. Biocompatible materials for continuous glucose monitoring devices. Chem Rev 2013; 113:2528-49. [PMID: 23387395 PMCID: PMC3624030 DOI: 10.1021/cr300387j] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Scott P. Nichols
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ahyeon Koh
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wesley L. Storm
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
49
|
Wang Y, Papadimitrakopoulos F, Burgess DJ. Polymeric "smart" coatings to prevent foreign body response to implantable biosensors. J Control Release 2013; 169:341-7. [PMID: 23298616 DOI: 10.1016/j.jconrel.2012.12.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/09/2012] [Accepted: 12/25/2012] [Indexed: 11/28/2022]
Abstract
Application of implantable glucose biosensors for "real-time" monitoring is reliant on controlling the negative tissue reaction at the sensor tissue interphase. A novel polymer coating consisting of poly(lactic-co-glycolic) acid (PLGA) microsphere dispersed in poly(vinyl alcohol) (PVA) hydrogels was evaluated in combination with dummy sensors as a "smart" drug eluting biocompatible coating for implantable biosensors to prevent the foreign body response, and thus enhance sensor performance in vivo. The polymeric microspheres slowly release tissue-modifying drugs at the implantation sites to control the inflammation and fibrous encapsulation, while the hydrogel allows rapid analyte diffusion to the sensing elements. Dummy sensors with identical dimensions to that of the functional glucose sensors (0.5×0.5×5mm) were coated with the PLGA/PVA composites using a mold fabrication process. Both normal and diabetic rats were used in the current study to investigate the effect of the diabetic state on tissue sensor interactions. It was evident that the PLGA/PVA hydrogel composite was able to form a uniform coating around the dummy sensor and stayed intact throughout the course of the study (one month). Tissue samples containing dummy sensors that were coated with dexamethasone free composites exhibited acute and chronic inflammation as well as fibrous encapsulation in both normal and diabetic rats. However, the diabetic rats exhibited decreased intensity and delayed onset of the foreign body response following implantation of drug free dummy sensors in comparison to those of normal rats. On the other hand, tissues containing dummy sensors that were coated with dexamethasone containing composites remained normal (i.e. similar to untreated tissues), with no inflammatory reaction or fibrous encapsulation occurring over the one-month period in both the normal and diabetic rats. The feasibility of utilizing PLGA microsphere/PVA hydrogel composites as coatings for implantable biosensors was demonstrated. This polymeric composite is an innovative approach to control the foreign body reaction at the tissue-device interface to prolong biosensor lifetime.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd U3092, Storrs, CT 06269, United States.
| | | | | |
Collapse
|
50
|
Li D, Guo G, Fan R, Liang J, Deng X, Luo F, Qian Z. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study. Int J Pharm 2013. [DOI: 10.1016/j.ijpharm.2012.11.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|