1
|
Beck M, Karch C, Wiese S, Sendtner M. Motoneuron cell death and neurotrophic factors: Basic models for development of new therapeutic strategies in ALS. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/146608201300079454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
2
|
Pridgeon JW, Zhao L, Becnel JJ, Clark GG, Linthicum KJ. Developmental and environmental regulation of AaeIAP1 transcript in Aedes aegypti. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1071-1079. [PMID: 19058631 DOI: 10.1603/0022-2585(2008)45[1071:daeroa]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Apoptosis (programmed cell death) is a tightly regulated physiological process. The inhibitors of apoptosis proteins (IAPs) are key regulators for apoptosis. An inhibitor of apoptosis protein gene IAP1 was recently cloned from Aedes aegypti (L.) (AaeIAP1, GenBank accession no. DQ993355); however, it is not clear whether AaeIAP1 is developmentally and environmentally regulated. In this study, we applied quantitative polymerase chain reaction (PCR) to investigate the expression levels of the AaeIAPI transcript in different developmental stages and under different environmental conditions. Our results revealed that the expression of the AaeIAP1 transcript was detectable in all life stages ofAe. aegypti, with significantly higher levels in pupal and adult stages than in larval stages. Furthermore, when Ae. aegypti was exposed to all stressful environmental conditions (e.g., low and high temperatures, UV radiation, acetone, and permethrin insecticide treatment), the expression level of AaeIAP1 transcript was increased significantly. Our results suggest that AaeIAP1 might play an important role in both the physiological development ofAe. aegypti and stress-induced apoptosis.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | | | |
Collapse
|
3
|
Abstract
Accumulating evidence strongly suggests that apoptosis contributes to neuronal cell death in a variety of neurodegenerative contexts. Activation of the cysteine protease caspase-3 appears to be a key event in the execution of apoptosis in the central nervous system (CNS). As a result, mice null for caspase-3 display considerable neuronal expansion usually resulting in death by the second week of life. At present, 14 caspase family members have been identified and subdivided into three subgroups on the basis of preference for specific tetrapeptide motifs using a positional scanning combinatorial substrate library. Caspase-3 is a group II member (2, 3, 7) categorized by an absolute substrate requirement for aspartic acid in the P4 position of the scissile bond. The preferred cleavage motif (DExD) for group II caspases is found in many structural, metabolic and repair proteins essential for cellular homeostasis. Consistent with the proposal that apoptosis plays a central in role human neurodegenerative disease, caspase-3 activation has recently been observed in stroke, spinal cord trauma, head injury and Alzheimer's disease. Indeed, peptide-based caspase inhibitors prevent neuronal loss in animal models of head injury and stroke suggesting that these compounds may be the forerunners of non-peptide small molecules that halt apoptosis processes implicated in these neurodegenerative disorders. A clear link between an hereditary neurodegenerative disorder and failed caspase inhibition has recently been proposed for spinal muscular atrophy (SMA). In severe SMA, the neuronal specific inhibitor of apoptosis (IAP) family member known as NAIP is often dysfunctional due to missense and truncation mutations. IAPs such as NAIP potently block the enzymatic activity of group II caspases (3 and 7) suggesting that NAIP mutations may permit unopposed developmental apoptosis to occur in sensory and motor systems resulting in lethal muscular atrophy. Conversely, adenovirally-mediated overexpression of NAIP or the X-linked IAP called XIAP reduces the loss of CA1 hippocampal neurons following transient forebrain ischemia. Taken together, these findings suggest that anti-apoptotic strategies may some day have utility in the treatment of neurodegenerative disease. The present review will summarize some of the recent evidence suggesting that apoptosis inhibitors may become a practical therapeutic approach for both acute and chronic neurodegenerative conditions.
Collapse
Affiliation(s)
- G S Robertson
- Merck-Frosst Institute for Therapeutic Research, Department of Pharmacology, Kirkland, Quebec, Canada.
| | | | | | | |
Collapse
|
4
|
|
5
|
Abstract
Accumulating evidence strongly suggests that apoptosis contributes to neuronal death in a variety of neurodegenerative contexts. Activation of the cysteine protease caspase 3 appears to be a key event in the execution of apoptosis in the central nervous system. As a result, mice null for caspase 3 display considerable neuronal expansion, usually resulting in death by the second week of life. Consistent with the proposal that apoptosis plays a central role in human neurodegenerative disease, caspase-3 activation has recently been observed in stroke, spinal cord trauma, head injury and Alzheimer's disease. Indeed, peptide-based caspase inhibitors prevent neuronal loss in animal models of head injury and stroke, suggesting that these compounds may be the forerunners of non-peptide small molecules that halt the apoptotic process implicated in these neurodegenerative disorders. The present review will summarise some of the recent data suggesting that apoptosis inhibitors may become a practical therapeutic approach for both acute and chronic neurodegenerative conditions.
Collapse
|
6
|
Wiese S, Beck M, Karch C, Sendtner M. Signalling mechanisms for survival of lesioned motoneurons. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 89:21-35. [PMID: 15335098 DOI: 10.1007/978-3-7091-0603-7_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mechanisms controlling neuronal survival play an important role both during development and after birth, in particular when the nervous system is lesioned. Isolated embryonic motoneurons and other types of primary neurons have been a useful tool for studying basic mechanisms underlying neuronal cell death during development and under pathophysiological conditions after neurotrauma. These studies have led to the identification of neurotrophic factors which under physiological conditions regulate survival and functional properties, and after neurotrauma promote regeneration and plasticity. Functional analysis of these molecules, in particular by generation of gene knockout mice, has led to a more detailed understanding of complex requirements of individual types of neurons for their survival and also paved the way for a better understanding of the signalling pathways in lesioned neurons which decide on cell death or survival after axotomy and other pathophysiological conditions. These findings could ultimately lead to a rational basis for therapeutic approaches aiming at improving neuronal survival and regeneration after neurotrauma.
Collapse
Affiliation(s)
- S Wiese
- Institute for Clinical Neurobiology, Würzburg, Germany
| | | | | | | |
Collapse
|
7
|
Lareef MH, Tahin Q, Song J, Russo IH, Mihaila D, Slater CM, Balsara B, Testa JR, Broccoli D, Grobelny JV, Mor G, Cuthbert A, Russo J. Chromosome 17p13.2 transfer reverts transformation phenotypes and fas-mediated apoptosis in breast epithelial cells. Mol Carcinog 2004; 39:234-46. [PMID: 15057875 DOI: 10.1002/mc.20014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transformation of the human breast epithelial cells (HBEC) MCF-10F with the carcinogen benz(a)pyrene (BP) into BP1-E cells resulted in the loss of the chromosome 17 p13.2 locus (D17S796 marker) and formation of colonies in agar-methocel (colony efficiency (CE)), loss of ductulogenic capacity in collagen matrix, and resistance to anti-Fas monoclonal antibody (Mab)-induced apoptosis. For testing the role of that specific region of chromosome 17 in the expression of transformation phenotypes, we transferred chromosome 17 from mouse fibroblast donors to BP1-E cells. Chromosome 11 was used as negative control. After G418 selection, nine clones each were randomly selected from BP1-E-11neo and BP1-E-17neo hybrids, respectively, and tested for the presence of the donor chromosomes by fluorescent in situ hybridization and polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analyses. Sensitivity to Fas Mab-induced apoptosis and evaluation of transformation phenotype expression were tested in MCF-10F, BP1-E, and nine BP1-E-11neo and BP1-E-17neo clones each. Six BP1-E-17neo clones exhibited a reversion of transformation phenotypes and a dose dependent sensitivity to Fas Mab-induced apoptosis, behaving similarly to MCF-10F cells. All BP1-E-11neo, and three BP1-E-17neo cell clones, like BP1-E cells, retained a high CE, loss of ductulogenic capacity, and were resistant to all Fas Mab doses tested. Genomic analysis revealed that those six BP1-E-17neo clones that were Fas-sensitive and reverted their transformed phenotypes had retained the 17p13.2 (D17S796 marker) region, whereas it was absent in all resistant clones, indicating that the expression of transformation phenotypes and the sensitivity of the cells to Fas-mediated apoptosis were under the control of genes located in this region.
Collapse
Affiliation(s)
- Mohamed H Lareef
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Four mitochondrial proteins have been identified that immunoprecipitate with the mammalian inhibitor of apoptosis (IAP) protein XIAP. Each of them interacts via a processed amino terminus that resembles those of the insect pro-apoptotic IAP binding proteins Grim, HID, Reaper, and Sickle. Two, Diablo/Smac and HrtA2/Omi, have been extensively characterized. Both Diablo and HtrA2 can bind to IAPs and promote apoptosis when over-expressed in transfected cells, but unlike the insect IAP antagonists, to date there is scant evidence that they are important regulators of apoptosis in more physiological circumstances.
Collapse
Affiliation(s)
- David L Vaux
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
9
|
Voss KA, Howard PC, Riley RT, Sharma RP, Bucci TJ, Lorentzen RJ. Carcinogenicity and mechanism of action of fumonisin B1: a mycotoxin produced by Fusarium moniliforme (= F. verticillioides). CANCER DETECTION AND PREVENTION 2003; 26:1-9. [PMID: 12088196 DOI: 10.1016/s0361-090x(02)00011-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fumonisins are fungal metabolites and suspected human carcinogens. They inhibit ceramide synthase in vitro, enhance tumor necrosis factor alpha (TNFalpha) production, and cause apoptosis. Fumonisin B1 (FB1) was fed to rats and mice for 2 years or, in separate studies, given to rats or mice for up to 4 weeks. Kidney tubule adenomas and carcinomas were found in male rats fed > or = 50 ppm, whereas liver adenomas and carcinomas were found in female mice fed > or = 50 ppm for 2 years. In the short-term studies, increases in tissue concentration of the ceramide synthase substrate sphinganine (Sa) and the Sa to sphingosine (So) ratio were correlated with apoptosis. Further, hepatotoxicity was ameliorated in mice lacking either the TNFR1 or the TNFR2 TNFalpha receptors. Thus, FB1 was carcinogenic to rodents and thefindings support the hypothesis that disrupted sphingolipid metabolism and TNFalpha play important roles in its mode of action.
Collapse
Affiliation(s)
- Kenneth A Voss
- Toxicology and Mycotoxin Research Unit, Richard B. Russell Agricultural Research Center, US Department of Agriculture, Athens, GA 30604-5677, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Sauerwald TM, Betenbaugh MJ, Oyler GA. Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol Bioeng 2002; 77:704-16. [PMID: 11807766 DOI: 10.1002/bit.10154] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death may occur from necrosis but is more commonly associated with apoptosis. During the process of programmed cell death or apoptosis, caspases become activated and cause a cascade of events that eventually destroy the cell. XIAP is the most potent caspase inhibitor encoded in the mammalian genome. The effectiveness of XIAP and its deletion mutants was examined in two cell lines commonly utilized in commercial bioreactors: Chinese hamster ovary (CHO) and 293 human embryonic kidney (293 HEK) cells. CHO cells undergo apoptosis as a result of various insults, including Sindbis virus infection and serum deprivation. In this study, we demonstrate that 293 HEK cells undergo apoptosis during Sindbis virus infection and exposure to the toxins, etoposide and cisplatin. Two deletion mutants of XIAP were created; one containing three tandem baculovirus iap repeat (BIR) domains and the other containing only the C-terminal RING domain, lacking the BIRs. Viability studies were performed for cells expressing each mutant and the wild-type protein on transiently transfected cells, as stable pools, or as stable clonal cell populations after induction of apoptosis by serum deprivation, Sindbis virus infection, etoposide, and cisplatin treatment. Expression of the wild-type XIAP inhibited apoptosis significantly; however, the XIAP mutant containing the three BIRs provided equivalent or improved levels of apoptosis inhibition in all cases. Expression of the RING domain offered no protection and was pro-apoptotic in transient expression experiments. With the aid of an N-terminal YFP fusion to each protein, distribution within the cell was visualized, and the wild-type and mutants showed differing intracellular accumulation patterns. While the wild-type XIAP protein accumulated primarily in aggregates in the cytosol, the RING mutant was enriched in the nucleus. In contrast, the deletion mutant containing the three BIRs was distributed evenly throughout the cytosol. Thus, protein engineering of the XIAP protein can be used to alter the intracellular distribution pattern and improve the ability of this caspase inhibitor to protect against apoptosis for two mammalian cell lines.
Collapse
Affiliation(s)
- Tina M Sauerwald
- Department of Chemical Engineering, The Johns Hopkins University, 3400 North Charles St., Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
11
|
Belluardo N, Korhonen L, Mudo G, Lindholm D. Neuronal expression and regulation of rat inhibitor of apoptosis protein-2 by kainic acid in the rat brain. Eur J Neurosci 2002; 15:87-100. [PMID: 11860509 DOI: 10.1046/j.0953-816x.2001.01847.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibitors of apoptosis proteins (IAPs) define a protein family with the ability to counteract cell death by the inhibition of different caspases activated during apoptosis. These proteins are present in different cells, however, the function and roles of IAPs in brain tissue are not fully understood. We report here that RIAP-2, the rat homologue of human cIAP-1/HIAP-2, is expressed in different areas of rat brain as shown by in situ hybridization and immunohistochemistry. Brain regions with relatively high expression of RIAP-2 mRNA included cortex, cerebellum and different subregions of rat hippocampus. Double labelling using a specific anti-RIAP antibody and markers for neurons and glial cells, showed that RIAP-2 is predominantly expressed by nerve cells. Kainic acid treatment, which induces seizures, transiently up-regulated RIAP-2 mRNA levels in cerebral cortex, in the CA1 and dentate gyrus regions of hippocampus, which returned to normal levels at 24 h. However in the CA3 region, RIAP-2 mRNA was decreased at 6 h following an early up-regulation. This region contains neurons particularly vulnerable to kainic acid induced cell degeneration. The decrease in RIAP-2 following kainic acid was also observed using immunohistochemistry. RIAP-2 protein did not colocalize with TUNEL labelling present in cells undergoing cell death. The results show that in the adult rat brain RIAP-2 is expressed mainly by neurons, and that the levels are regulated by kainic acid, which activates glutamate receptors. The decrease in RIAP-2 in specific neuronal populations may contribute to cell degeneration in vulnerable brain regions observed after kainic acid treatment.
Collapse
Affiliation(s)
- Natale Belluardo
- Department of Neuroscience, Neurobiology, Uppsala University, BMC, Box 587, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
12
|
|
13
|
Jordan BW, Dinev D, LeMellay V, Troppmair J, Gotz R, Wixler L, Sendtner M, Ludwig S, Rapp UR. Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death. J Biol Chem 2001; 276:39985-9. [PMID: 11546791 DOI: 10.1074/jbc.c100171200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitor of apoptosis proteins (IAPs) have been shown to interact with a growing number of intracellular proteins and pathways to fulfil their anti-apoptotic role. In the search for novel IAP-interacting proteins we identified the neurotrophin receptor-interacting MAGE homologue (NRAGE) as being able to bind to the avian IAP homologue ITA. This interaction requires the RING domain of ITA. NRAGE additionally coimmunoprecipitates with XIAP. When overexpressed in 32D cells NRAGE augments interleukin-3 withdrawal induced apoptosis, possibly through binding endogenous XIAP. Moreover, NRAGE is able to overcome the anti-apoptotic effect of Bcl-2.
Collapse
Affiliation(s)
- B W Jordan
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Silke J, Vaux DL. Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. J Cell Sci 2001; 114:1821-7. [PMID: 11329368 DOI: 10.1242/jcs.114.10.1821] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The baculoviral IAP repeat (BIR) is a zinc-binding fold. Some BIR-containing proteins (BIRCs), including several from insect viruses, insects and vertebrates, are inhibitors of cell death and act by binding to active caspases. Their ability to do so can be antagonized by pro-apoptotic insect proteins such as Grim, HID and Reaper, or the mammalian protein Diablo/Smac. Members of one structurally distinct subgroup of BIR-containing proteins, which are present in yeasts and Caenorhabditis elegans as well as insects and vertebrates, do not act as caspase inhibitors; instead, they are required for chromosome segregation and cytokinesis, and act in concert with inner centromere protein (INCENP) homologues and aurora kinase homologues.
Collapse
Affiliation(s)
- J Silke
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Australia
| | | |
Collapse
|
15
|
Gerhardt E, Kügler S, Leist M, Beier C, Berliocchi L, Volbracht C, Weller M, Bähr M, Nicotera P, Schulz JB. Cascade of caspase activation in potassium-deprived cerebellar granule neurons: targets for treatment with peptide and protein inhibitors of apoptosis. Mol Cell Neurosci 2001; 17:717-31. [PMID: 11312607 DOI: 10.1006/mcne.2001.0962] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cerebellar granule neurons (CGN) cultured in the presence of serum and depolarizing potassium concentrations undergo apoptosis when switched to serum-free medium containing physiological potassium concentrations. Here we show that processing of the key protease, caspase-3, depends on the activation of caspase-9, but not of caspase-8. Selective peptide inhibitors of caspase-9 block processing of caspase-3 and caspase-8 and inhibit apoptosis, whereas a selective inhibitor of caspase-8 blocks neither processing of caspase-3 nor cell death. The data obtained with peptide inhibitors were confirmed by adenovirally mediated ectopic expression of the cytokine response modifier A (crmA), the baculovirus protein p35, and the X chromosome-linked inhibitor of apoptosis (XIAP). Further, caspase-8-activating death receptors do not mediate apoptosis in CGN and potassium withdrawal-induced apoptosis evolves unaltered in gld or lpr mice, which harbor mutations in the CD95/CD95 ligand system. Thus, neuronal apoptosis triggered by potassium deprivation is death receptor-independent but involves the mitochondrial pathway of caspase activation.
Collapse
Affiliation(s)
- E Gerhardt
- Laboratory of Neurodegeneration, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wiese S, Digby MR, Gunnersen JM, Götz R, Pei G, Holtmann B, Lowenthal J, Sendtner M. The anti-apoptotic protein ITA is essential for NGF-mediated survival of embryonic chick neurons. Nat Neurosci 1999; 2:978-83. [PMID: 10526336 DOI: 10.1038/14777] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The avian ITA is homologous to the baculoviral and mammalian inhibitor of apoptosis (IAP) proteins, which can prevent apoptosis by inhibition of specific caspases. We investigated the role of ITA in embryonic chick sympathetic and dorsal root ganglionic neurons, which depend on nerve growth factor (NGF) for their survival. Within 6 hours, NGF upregulated ITA protein production more than 25-fold in sensory and sympathetic neurons. Overexpression of ITA in primary neurons supported survival of these cells in the absence of NGF, and ita antisense constructs inhibited NGF-mediated survival. Thus the induction of ITA expression seems to be an essential signaling event for survival of sympathetic and dorsal root ganglionic sensory neurons in response to NGF.
Collapse
Affiliation(s)
- S Wiese
- Klinische Forschergruppe Neuroregeneration, Department of Neurology, University of Wuerzburg, Josef-Schneider-Str.11, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L. Mature T lymphocyte apoptosis--immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999; 17:221-53. [PMID: 10358758 DOI: 10.1146/annurev.immunol.17.1.221] [Citation(s) in RCA: 755] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apoptosis of mature T lymphocytes preserves peripheral homeostasis and tolerance by countering the profound changes in the number and types of T cells stimulated by diverse antigens. T cell apoptosis occurs in at least two major forms: antigen-driven and lymphokine withdrawal. These forms of death are controlled in response to local levels of IL-2 and antigen in a feedback mechanism termed propriocidal regulation. Active antigen-driven death is mediated by the expression of death cytokines such as FasL and TNF. These death cytokines engage specific receptors that assemble caspase-activating protein complexes. These signaling complexes tightly regulate cell death but are vulnerable to inherited defects. Passive lymphokine withdrawal death may result from the cytoplasmic activation of caspases that is regulated by mitochondria and the Bcl-2 protein. The human disease, Autoimmune Lymphoproliferative Syndrome (ALPS) is due to dominant-interfering mutations in the Fas/APO-1/CD95 receptor and other components of the death pathway. The study of ALPS patients reveals the necessity of apoptosis for preventing autoimmunity and allows the genetic investigation of apoptosis in humans. Immunological, cellular, and molecular evidence indicates that throughout the life of a T cell, apoptosis may be evoked in excessive, harmful, or useless clonotypes to preserve a healthy and balanced immune system.
Collapse
Affiliation(s)
- M Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- L J Eiben
- Metabolism Branch, National Institutes of Health, Bethesda, Maryland 20892-1578, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- M E Peter
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Kaiser WJ, Vucic D, Miller LK. The Drosophila inhibitor of apoptosis D-IAP1 suppresses cell death induced by the caspase drICE. FEBS Lett 1998; 440:243-8. [PMID: 9862464 DOI: 10.1016/s0014-5793(98)01465-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many members of the Inhibitor of Apoptosis (IAP) family inhibit cell death and existing data suggest at least two mechanisms of action. Drosophila IAPs (D-IAP1 and D-IAP2) and a baculovirus-derived IAP, Op-IAP, physically interact with and inhibit the anti-apoptotic activity of Reaper, HID, and Grim, three genetically defined inducers of apoptosis in Drosophila, while human IAPs, c-IAP1, c-IAP2, and X-IAP interact with a number of different proteins including specific members of the caspase family of cysteine proteases which are crucial in the execution of cell death. We have examined whether insect-active IAPs can inhibit apoptosis induced by selected caspases, Drosophila drICE, Sf-caspase-1, and mammalian caspase-3, in insect SF-21 cells. D-IAP1 inhibited apoptosis induced by the active forms of all three caspases tested and physically interacted with the active, but not the proform of drICE. MIHA, the mouse homolog of X-IAP and an effective inhibitor of caspase-3, also interacted with and blocked apoptosis induced by active drICE but was relatively ineffective in blocking Sf-caspase-1. Op-IAP and D-IAP2 were unable to inhibit effectively any of the active caspases tested and failed to interact with drICE. The Drosophila IAPs and Op-IAP, but not MIHA, blocked HID-initiated activation of pro-drICE. We conclude that D-IAP1 is capable of inhibiting the activation of drICE as well as inhibiting apoptosis induced by the active form of drICE. In contrast, D-IAP2 and Op-IAP are more limited in their inhibitory targets and may be limited to inhibiting the activation of caspases.
Collapse
Affiliation(s)
- W J Kaiser
- Department of Entomology, The University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
21
|
|
22
|
Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB, Armstrong RC. Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol Cell Biol 1998; 18:608-15. [PMID: 9418907 PMCID: PMC121528 DOI: 10.1128/mcb.18.1.608] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gene encoding human IAP-like protein (hILP) is one of several mammalian genes with sequence homology to the baculovirus inhibitor-of-apoptosis protein (iap) genes. Here we show that hILP can block apoptosis induced by a variety of extracellular stimuli, including UV light, chemotoxic drugs, and activation of the tumor necrosis factor and Fas receptors. hILP also protected against cell death induced by members of the caspase family, cysteine proteases which are thought to be the principal effectors of apoptosis. hILP and Bcl-xL were compared for their ability to affect several steps in the apoptotic pathway. Redistribution of cytochrome c from mitochondria, an early event in apoptosis, was not blocked by overexpression of hILP but was inhibited by Bcl-xL. In contrast, hILP, but not Bcl-xL, inhibited apoptosis induced by microinjection of cytochrome c. These data suggest that while Bcl-xL may control mitochondrial integrity, hILP can function downstream of mitochondrial events to inhibit apoptosis.
Collapse
Affiliation(s)
- C S Duckett
- Howard Hughes Medical Institute, and Department of Medicine, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
23
|
You M, Ku PT, Hrdlicková R, Bose HR. ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol Cell Biol 1997; 17:7328-41. [PMID: 9372964 PMCID: PMC232589 DOI: 10.1128/mcb.17.12.7328] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oncoprotein v-Rel, a member of the Rel/NF-kappaB family of transcription factors, induces neoplasias and inhibits apoptosis. To identify differentially regulated cellular genes and to evaluate their relevance to transformation and apoptosis in v-Rel-transformed cells, mRNA differential display has been used. One of the recovered cDNAs corresponds to a gene that was highly expressed in v-Rel-transformed fibroblasts. Analysis of the isolated full-length cDNA of a chicken inhibitor-of-apoptosis protein (ch-IAP1) revealed that it encodes a 68-kDa protein that is highly homologous to members of the IAP family, such as human c-LAP1. Like other IAPs, ch-IAP1 contains the N-terminal baculovirus IAP repeats and C-terminal RING finger motifs. Northern blot analysis identified a 3.3-kb ch-IAP1 transcript expressed at relatively high levels in the spleen, thymus, bursa, intestine, and lungs. Expression of v-Rel in fibroblasts, a B-cell line, and spleen cells up-regulated the expression of ch-IAP1. In contrast, ch-IAP1 expression levels were low in chicken cell lines transformed by several other unrelated tumor viruses. ch-IAP1 was expressed predominantly in the cytoplasm of the v-Rel-transformed cells. ch-IAP1 suppressed mammalian cell apoptosis induced by the overexpression of the interleukin-1-converting enzyme. Expression of exogenous ch-IAP1 in temperature-sensitive v-Rel transformed spleen cells inhibited apoptosis of these cells at the nonpermissive temperature. Collectively, these results suggest that ch-IAP1 is induced during the v-Rel-mediated transformation process and functions as a suppressor of apoptosis in v-Rel-transformed cells.
Collapse
Affiliation(s)
- M You
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712-1095, USA
| | | | | | | |
Collapse
|