1
|
Barbee S, Radecki KC, Lorenson MY, Walker AM. A cautionary tale: Alien prolactins may induce lesser, no, or opposite effects to homologous hormone! J Neuroendocrinol 2024; 36:e13225. [PMID: 36577545 DOI: 10.1111/jne.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Cost and availability have often dictated the use of heterologous/alien prolactins in experiments, particularly in vivo. The assumption has been that what is initiated in the target cell is representative of the homologous hormone since many heterologous mammalian prolactins bind to and activate rodent receptors. Here, we examined gene expression in mouse liver in response to a 7-day treatment with recombinant mouse prolactin (mRecPRL), recombinant ovine prolactin (oRecPRL) and pituitary extract ovine prolactin (oPitPRL). Having established mouse ribosomal protein S9 as the most stable reference gene in the liver in the absence and presence of prolactin treatment, we examined expression of the two most highly expressed prolactin receptors (PRLRs) and three members of the Cyp3a group of cytochrome P450 isoenzymes by qRTPCR. For short form (SF) 3 PRLR, mRecPRL doubled expression while for oRecPRL and oPitPRL expression was only 1.3-fold control. For the long form (LF) PRLR, changes were similar to those seen for SF 3 PRLR, such that the SF3:LF PRLR ratio remained the same. Expression of the Cyp3as was also dependent on the prolactin origin and, although mRecPRL always stimulated, the other PRLs caused varying results. Compared to control, Cyp3a16 was stimulated 12-fold by mRecPRL, 3-fold by oRecPRL, and 6-fold by oPitPRL. For Cyp3a41, mRecPRL was 3.7-fold control, oRecPRL was without effect, and oPitPRL was 2-fold control. Importantly, for Cyp3a44, mRecPRL stimulated 2-fold, whereas both oRecPRL and oPitPRL had an opposite, inhibitory effect, with expression at 0.5-fold control. We conclude that homologous hormone had the largest stimulatory effect on expression of all measured genes and that by contrast heterologous hormone showed reduced activity, no activity, or opposite activity, depending on the gene being analyzed. Thus, experimentation using alien heterologous PRL may lead to inaccurate conclusions.
Collapse
Affiliation(s)
- Sadie Barbee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Banks CM, Trott JF, Hovey RC. The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol 2024; 36:e13385. [PMID: 38586906 DOI: 10.1111/jne.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.
Collapse
Affiliation(s)
- Carmen M Banks
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Taghi Khani A, Kumar A, Sanchez Ortiz A, Radecki KC, Aramburo S, Lee SJ, Hu Z, Damirchi B, Lorenson MY, Wu X, Gu Z, Stohl W, Sanz I, Meffre E, Müschen M, Forman SJ, Koff JL, Walker AM, Swaminathan S. Isoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms. Commun Biol 2023; 6:295. [PMID: 36941341 PMCID: PMC10027679 DOI: 10.1038/s42003-023-04667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PRL receptor (LFPRLR) in vivo in systemic lupus erythematosus (SLE)- and B-cell lymphoma-prone mouse models, and the long plus intermediate isoforms (LF/IFPRLR) in human B-cell malignancies. To knockdown LF/IFPRLRs without suppressing expression of the counteractive short PRLR isoforms (SFPRLRs), we employ splice-modulating DNA oligomers. In SLE-prone mice, LFPRLR knockdown reduces numbers and proliferation of pathogenic B-cell subsets and lowers the risk of B-cell transformation by downregulating expression of activation-induced cytidine deaminase. LFPRLR knockdown in lymphoma-prone mice reduces B-cell numbers and their expression of BCL2 and TCL1. In overt human B-cell malignancies, LF/IFPRLR knockdown reduces B-cell viability and their MYC and BCL2 expression. Unlike normal B cells, human B-cell malignancies secrete autocrine PRL and often express no SFPRLRs. Neutralization of secreted PRL reduces the viability of B-cell malignancies. Knockdown of LF/IFPRLR reduces the growth of human B-cell malignancies in vitro and in vivo. Thus, LF/IFPRLR knockdown is a highly specific approach to block the evolution of B-cell neoplasms.
Collapse
Affiliation(s)
- Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Soraya Aramburo
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Behzad Damirchi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Eric Meffre
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, 300 George Street, 06520, New Haven, CT, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
4
|
Roach CM, Bidne KL, Romoser MR, Ross JW, Baumgard LH, Keating AF. Impact of heat stress on prolactin-mediated ovarian JAK-STAT signaling in postpubertal gilts. J Anim Sci 2022; 100:6620801. [PMID: 35772766 PMCID: PMC9246670 DOI: 10.1093/jas/skac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Heat stress (HS) compromises almost every aspect of animal agriculture including reproduction. In pigs, this infecundity is referred to as seasonal infertility (SI), a phenotype including ovarian dysfunction. In multiple species, HS-induced hyperprolactinemia has been described; hence, our study objectives were to characterize and compare HS effects on circulating prolactin (PRL) and ovarian Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling during the follicular (FOL) or luteal (LUT) phases of the estrous cycle in postpubertal gilts. Gilts were estrus synchronized using altrenogest and environmental treatments began immediately after altrenogest withdrawal. For the FOL study: postpubertal gilts were allocated to constant thermoneutral (TN; n = 6; 20 ± 1.2 °C) or cyclical HS (n = 6; 25 to 32 ± 1.2 °C) conditions for 5 d. In the LUT study: postpubertal gilts were assigned to either TN (n = 7; 20 ± 2.6 °C) or cyclical HS (n = 7; 32 to 35 ± 2.6 °C) conditions from 2 to 12 days postestrus (dpe). Blood was collected by jugular venipuncture for PRL quantification on day 5 in the FOL and on day 0 and day 12 in the LUT gilts. Ovaries and corpora lutea (CL) were obtained from euthanized FOL and LUT gilts on day 5 and day 12, respectively. Western blotting was performed to quantify prolactin receptor (PRLR) and JAK/STAT pathway protein abundance. In the FOL phase, no difference (P = 0.20) in circulating PRL between thermal groups was observed. There was no effect (P ≥ 0.34) of HS on PRLR, signal transducer and activator of transcription 3 (STAT3), signal transducer and activator of transcription 5α (STAT5α), and phosphorylated signal transducer and activator of transcription α/β tyrosine 694/699 (pSTAT5α/βTyr694/699) abundance and Janus kinase 2 (JAK2), phosphorylated janus kinase 2 tyrosine 1007/1008 (pJAK2Tyr1007/1008), STAT1, phosphorylated signal transducer and activator of transcription 1 tyrosine 701 (pSTAT1Tyr701), phosphorylated signal transducer and activator of transcription 1 serine 727 (pSTAT1Ser727), and phosphorylated signal transducer and activator of transcription 3 tyrosine 705 (pSTAT3Tyr705) were undetectable in FOL gilt ovaries. Ovarian pSTAT5α/βTyr694/699 abundance tended to moderately increase (4%; P = 0.07) in FOL gilts by HS. In the LUT phase, circulating PRL increased progressively from 2 to 12 dpe, but no thermal treatment-induced difference (P = 0.37) was noted. There was no effect (P ≥ 0.16) of HS on CL abundance of PRLR, pJAK2Tyr1007/1008, JAK2, STAT1, pSTAT1Tyr701, pSTAT1Ser727, pSTAT3Tyr705, STAT5α, or pSTAT5α/βTyr694/699. In LUT phase, CL STAT3 abundance was increased (11%; P < 0.03) by HS. There was no impact of HS (P ≥ 0.76) on levels of pJAK2Tyr1007/1008 and pSTAT5α/βTyr694/699 in LUT gilts; however, the CL pSTAT3Tyr705:STAT3 ratio tended to be decreased (P = 0.10) due to HS. These results indicate an HS-induced estrous cycle-stage-dependent effect on the ovarian JAK/STAT pathway, establishing a potential role for this signaling pathway as a potential contributor to SI.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Chen Y, Moutal A, Navratilova E, Kopruszinski C, Yue X, Ikegami M, Chow M, Kanazawa I, Bellampalli SS, Xie J, Patwardhan A, Rice K, Fields H, Akopian A, Neugebauer V, Dodick D, Khanna R, Porreca F. The prolactin receptor long isoform regulates nociceptor sensitization and opioid-induced hyperalgesia selectively in females. Sci Transl Med 2021; 12:12/529/eaay7550. [PMID: 32024801 DOI: 10.1126/scitranslmed.aay7550] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
Pain is more prevalent in women for reasons that remain unclear. We have identified a mechanism of injury-free nociceptor sensitization and opioid-induced hyperalgesia (OIH) promoted by prolactin (PRL) in females. PRL signals through mutually inhibitory long (PRLR-L) and short (PRLR-S) receptor isoforms, and PRLR-S activation induces neuronal excitability. PRL and PRLR expression were higher in females. CRISPR-mediated editing of PRLR-L promoted nociceptor sensitization and allodynia in naïve, uninjured female mice that depended on circulating PRL. Opioids, but not trauma-induced nerve injury, decreased PRLR-L promoting OIH through activation of PRLR-S in female mice. Deletion of both PRLR-L and PRLR-S (total PRLR) prevented, whereas PRLR-L overexpression rescued established OIH selectively in females. Inhibition of circulating PRL with cabergoline, a dopamine D2 agonist, up-regulated PRLR-L and prevented OIH only in females. The PRLR-L isoform therefore confers protection against PRL-promoted pain in females. Limiting PRL/PRLR-S signaling pharmacologically or with gene therapies targeting the PRLR may be effective for reducing pain in a female-selective manner.
Collapse
Affiliation(s)
- Yanxia Chen
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Caroline Kopruszinski
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Xu Yue
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Megumi Ikegami
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Michele Chow
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Iori Kanazawa
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Shreya Sai Bellampalli
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Jennifer Xie
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Amol Patwardhan
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Kenner Rice
- National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Howard Fields
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Armen Akopian
- University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA. .,Mayo Clinic, Scottsdale, AZ 85752, USA
| |
Collapse
|
6
|
Lee J, Garcia V, Nambiar SM, Jiang H, Dai G. Pregnancy facilitates maternal liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G772-G780. [PMID: 32003603 PMCID: PMC7191459 DOI: 10.1152/ajpgi.00125.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver resection induces robust liver regrowth or regeneration to compensate for the lost tissue mass. In a clinical setting, pregnant women may need liver resection without terminating pregnancy in some cases. However, how pregnancy affects maternal liver regeneration remains elusive. We performed 70% partial hepatectomy (PH) in nonpregnant mice and gestation day 14 mice, and histologically and molecularly compared their liver regrowth during the next 4 days. We found that compared with the nonpregnant state, pregnancy altered the molecular programs driving hepatocyte replication, indicated by enhanced activities of epidermal growth factor receptor and STAT5A, reduced activities of cMet and p70S6K, decreased production of IL-6, TNFα, and hepatocyte growth factor, suppressed cyclin D1 expression, increased cyclin A1 expression, and early activated cyclin A2 expression. As a result, pregnancy allowed the remnant hepatocytes to enter the cell cycle at least 12 h earlier, increased hepatic fat accumulation, and enhanced hepatocyte mitosis. Consequently, pregnancy ameliorated maternal liver regeneration following PH. In addition, a report showed that maternal liver regrowth after PH is driven mainly by hepatocyte hypertrophy rather than hyperplasia during the second half of gestation in young adult mice. In contrast, we demonstrate that maternal liver relies mainly on hepatocyte hyperplasia instead of hypertrophy to restore the lost mass after PH. Overall, we demonstrate that pregnancy facilitates maternal liver regeneration likely via triggering an early onset of hepatocyte replication, accumulating excessive liver fat, and promoting hepatocyte mitosis. The results from our current studies enable us to gain more insights into how maternal liver regeneration progresses during gestation.NEW & NOTEWORTHY We demonstrate that pregnancy may generate positive effects on maternal liver regeneration following partial hepatectomy, which are manifested by early entry of the cell cycle of remnant hepatocytes, increased hepatic fat accumulation, enhanced hepatocyte mitosis, and overall accelerated liver regrowth.
Collapse
Affiliation(s)
- Joonyong Lee
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Shashank Manohar Nambiar
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana,2School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Anhui, China
| | - Guoli Dai
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
7
|
Yonezawa T, Chen KHE, Ghosh MK, Rivera L, Dill R, Ma L, Villa PA, Kawaminami M, Walker AM. Anti-metastatic outcome of isoform-specific prolactin receptor targeting in breast cancer. Cancer Lett 2015; 366:84-92. [PMID: 26095602 DOI: 10.1016/j.canlet.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Controversy exists concerning the role of the long prolactin receptor (PRLR) in the progression of breast cancer. By targeting pre-mRNA splicing, we succeeded in knocking down only the long PRLR in vivo, leaving the short forms unaffected. Using two orthotopic and highly-metastatic models of breast cancer, one of which was syngeneic (mouse 4T1) to allow assessment of tumor-immune interactions and one of which was endocrinologically humanized (human BT-474) to activate human PRLRs, we examined the effect of long PRLR knockdown on disease progression. In both models, knockdown dramatically inhibited metastatic spread to the lungs and liver and resulted in increased central death in the primary tumor. In the syngeneic model, immune infiltrates in metastatic sites were changed from innate inflammatory cells to lymphocytes, with an increase in the incidence of tumor-specific cytotoxic T cells. Long PRLR knockdown in three-dimensional culture induced apoptosis of tumor-initiating/cancer stem cells (death of 95% of cells displaying stem cell markers in 15 days). We conclude that the long PRLR plays an important role in breast cancer metastasis.
Collapse
Affiliation(s)
- Tomohiro Yonezawa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Laboratory for Veterinary Physiology, Kitasato University, Towada, Aomori, 03486-28, Japan
| | - Kuan-Hui Ethan Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Mrinal K Ghosh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Lorena Rivera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Riva Dill
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Lisa Ma
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Mitsumori Kawaminami
- Laboratory for Veterinary Physiology, Kitasato University, Towada, Aomori, 03486-28, Japan
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
8
|
Schennink A, Trott JF, Manjarin R, Lemay DG, Freking BA, Hovey RC. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression. J Mol Endocrinol 2015; 54:1-15. [PMID: 25358647 DOI: 10.1530/jme-14-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL), acting via the PRL receptor (PRLR), controls hundreds of biological processes across a range of species. Endocrine PRL elicits well-documented effects on target tissues such as the mammary glands and reproductive organs in addition to coordinating whole-body homeostasis during states such as lactation or adaptive responses to the environment. While changes in PRLR expression likely facilitates these tissue-specific responses to circulating PRL, the mechanisms regulating this regulation in non-rodent species has received limited attention. We performed a wide-scale analysis of PRLR 5' transcriptional regulation in pig tissues. Apart from the abundantly expressed and widely conserved exon 1, we identified alternative splicing of transcripts from an additional nine first exons of the porcine PRLR (pPRLR) gene. Notably, exon 1.5 transcripts were expressed most abundantly in the heart, while expression of exon 1.3-containing transcripts was greatest in the kidneys and small intestine. Expression of exon 1.3 mRNAs within the kidneys was most abundant in the renal cortex, and increased during gestation. A comparative analysis revealed a human homologue to exon 1.3, hE1N2, which was also principally transcribed in the kidneys and small intestines, and an exon hE1N3 was only expressed in the kidneys of humans. Promoter alignment revealed conserved motifs within the proximal promoter upstream of exon 1.3, including putative binding sites for hepatocyte nuclear factor-1 and Sp1. Together, these results highlight the diverse, conserved and tissue-specific regulation of PRLR expression in the targets for PRL, which may function to coordinate complex physiological states such as lactation and osmoregulation.
Collapse
Affiliation(s)
- Anke Schennink
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Josephine F Trott
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Rodrigo Manjarin
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Danielle G Lemay
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Bradley A Freking
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Russell C Hovey
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| |
Collapse
|
9
|
Trott JF, Freking BA, Hovey RC. Variation in the coding and 3′ untranslated regions of the porcine prolactin receptor short form modifies protein expression and function. Anim Genet 2013; 45:74-86. [DOI: 10.1111/age.12100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Josephine F. Trott
- Department of Animal Science; University of California, Davis; One Shields Ave Davis CA 95616 USA
| | - Bradley A. Freking
- USDA, ARS; US Meat Animal Research Center; PO Box 166 Clay Center NE 68933 USA
| | - Russell C. Hovey
- Department of Animal Science; University of California, Davis; One Shields Ave Davis CA 95616 USA
| |
Collapse
|
10
|
Bachelot A, Carré N, Mialon O, Matelot M, Servel N, Monget P, Ahtiainen P, Huhtaniemi I, Binart N. The permissive role of prolactin as a regulator of luteinizing hormone action in the female mouse ovary and extragonadal tumorigenesis. Am J Physiol Endocrinol Metab 2013; 305:E845-52. [PMID: 23921141 DOI: 10.1152/ajpendo.00243.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transgenic female mice overexpressing the hCGβ subunit (hCGβ(+)) and producing elevated levels of luteinizing hormone (LH)/hCG bioactivity present as young adults with enhanced ovarian steroidogenesis, precocious puberty, and infertility. They subsequently develop pituitary prolactinomas, high circulating prolactin (PRL) levels, and marked mammary gland lobuloalveolar development followed by adenocarcinomas. None of these phenotypes appear in gonadectomized mice, indicating that the hCG-induced aberrations of ovarian function are responsible for the extragonadal phenotypes. PRL receptor-deficient (PRLR(-/-)) female mice are sterile, despite ovulating, due to a failure of embryo implantation, as a consequence of decreased ovarian LH receptor (Lhcgr) expression and inadequate corpus luteum formation and progesterone production. To study further the presumed permissive role of PRL in the maintenance of gonadal responsiveness to LH/hCG stimulation, we crossed the hCGβ(+) and PRLR(-/-) mice. The double-mutant hCGβ(+)/PRLR(-/-) females remained sterile with an ovarian phenotype similar to PRLR(-/-) mice, indicating that LH action, Lhcgr expression, and consequent luteinization are not possible without simultaneous PRL signaling. The high frequency of pituitary prolactinomas in PRLR(-/-) mice was not affected by transgenic hCGβ expression. In contrast, none of the hCGβ(+)/PRLR(-/-) females showed either mammary gland lobuloalveolar development or tumors, and the increased mammary gland Wnt-5b expression, possibly responsible for the tumorigenesis in hCGβ(+) mice, was absent in double-mutant mice. Hence, high LH/hCG stimulation is unable to compensate for missing PRL signaling in the maintenance of luteal function. PRL thus appears to be a major permissive regulator of LH action in the ovary and of its secondary extragonadal effects.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Corpus Luteum/metabolism
- Female
- Luteinizing Hormone/metabolism
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Transgenic
- Ovary/metabolism
- Progesterone/metabolism
- Prolactin/blood
- Prolactin/metabolism
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
Collapse
Affiliation(s)
- Anne Bachelot
- AP-HP, Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schennink A, Trott JF, Freking BA, Hovey RC. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor. J Mol Endocrinol 2013; 51:1-13. [PMID: 23576686 DOI: 10.1530/jme-12-0234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation. We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcription of this first exon is tissue specific, where it increases during gestation in the adrenal glands and uterus. Within the mammary glands, its transcription is induced by estrogen and PRL, while in the uterus, its expression is downregulated by progestin. The promoter region has an enhancer element located between -453 and -424 bp and a putative repressor element between -648 and -596 bp. Estrogen, acting through the estrogen receptor, activates transcription from this promoter through both E-box and transcription factor AP-2 α binding sites. These findings support the concept that the multilevel hormonal regulation of PRLR transcription contributes to the various biological functions of PRL.
Collapse
Affiliation(s)
- Anke Schennink
- Department of Animal Science, University of California Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
12
|
Stocco C. The long and short of the prolactin receptor: the corpus luteum needs them both! Biol Reprod 2011; 86:85. [PMID: 22190702 DOI: 10.1095/biolreprod.111.098293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Carlos Stocco
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Ueda EK, Huang K, Nguyen V, Ferreira M, Andre S, Walker AM. Distribution of prolactin receptors suggests an intraductal role for prolactin in the mouse and human mammary gland, a finding supported by analysis of signaling in polarized monolayer cultures. Cell Tissue Res 2011; 346:175-89. [PMID: 22081226 DOI: 10.1007/s00441-011-1253-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/15/2011] [Indexed: 02/05/2023]
Abstract
Despite the important role of prolactin (PRL) in mammary gland development and function, little is known about the distribution of the different forms of the prolactin receptor (PRLR) under various physiological circumstances. Here, the distribution of the long (LF) and the short (S3 in mouse) receptor common to both mice and rats was determined by immunofluorescence on frozen sections of virgin, pregnant and lactating mouse mammary gland. Myoepithelial cells were consistently and intensely stained for both receptors. For luminal cells at all stages (ducts and alveoli), a large proportion of PRLR staining was unexpectedly present on the apical face. In the non-lactating state, no basal staining of luminal cells was detectable. During lactation, a proportion of both receptors moved to the basolateral surface. In vitro, HC11 cells showed constitutive expression of LF but expression of S3 only upon the formation of adherent junctions. Tight junction formation was accelerated by incubation in pseudo-phosphorylated PRL, as measured by transepithelial resistance and the expression and placement of the tight junction protein, zonula occludens-1. Once an intact monolayer had formed, all LF and S3 receptors were apical (akin to the non-lactating state) and only apical application of PRL activated the Jak2-STAT5 and ERK pathways. By contrast, basolateral application of PRL resulted in a reduction in basal ERK phosphorylation, suggesting an involvement of a dual specificity protein phosphatase. Normal human breast samples also showed apical PRLRs. These results demonstrate important contextual aspects of PRL-PRLR interactions with implications for the analysis of the role of PRL in breast cancer.
Collapse
Affiliation(s)
- Eric K Ueda
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kowalewski MP, Michel E, Gram A, Boos A, Guscetti F, Hoffmann B, Aslan S, Reichler I. Luteal and placental function in the bitch: spatio-temporal changes in prolactin receptor (PRLr) expression at dioestrus, pregnancy and normal and induced parturition. Reprod Biol Endocrinol 2011; 9:109. [PMID: 21812980 PMCID: PMC3171325 DOI: 10.1186/1477-7827-9-109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endocrine mechanisms governing canine reproductive function remain still obscure. Progesterone (P4) of luteal origin is required for maintenance of pregnancy. Corpora lutea (CL) are gonadotrop-independent during the first third of dioestrus; afterwards prolactin (PRL) is the primary luteotropic factor. Interestingly, the increasing PRL levels are accompanied by decreasing P4 concentrations, thus luteal regression/luteolysis occurs in spite of an increased availability of gonadotropic support. PRL acts through its receptor (PRLr), the expression of which has not yet been thoroughly investigated at the molecular and cellular level in the dog. METHODS The expression of PRLr was assessed in CL of non-pregnant dogs during the course of dioestrus (days 5, 15, 25, 35, 45, 65 post ovulation; p.o.) as well as in CL, the utero/placental compartments (Ut/Pl) and interplacental free polar zones (interplacental sites) from pregnant dogs during the pre-implantation, post-implantation and mid-gestation period of pregnancy and during the normal and antigestagen-induced luteolysis. Expression of PRLr was tested by Real Time PCR, immunohistochemistry and in situ hybridization. RESULTS In non-pregnant CL the PRLr expression was significantly upregulated at day 15 p.o. and decreased significantly afterwards, towards the end of dioestrus. CL of pregnancy showed elevated PRLr expression until mid gestation while prepartal downregulation was observed. Interestingly, placental but not interplacental expression of PRLr was strongly time-related; a significant upregulation was observed towards mid-gestation. Within the CL PRLr was localized to the luteal cells; in the Ut/Pl it was localized to the fetal trophoblast and epithelial cells of glandular chambers. Moreover, in mid-pregnant animals treated with an antigestagen, both the luteal and placental, but not the uterine PRLr were significantly downregulated. CONCLUSIONS The data presented suggest that the luteal provision of P4 in both pregnant and non-pregnant dogs may be regulated at the PRLr level. Furthermore, a role of PRL not only in maintaining the canine CL function but also in regulating the placental function is strongly suggested. A possible functional interrelationship between luteal P4 and placental and luteal PRLr expression also with respect to the prepartal luteolysis is implied.
Collapse
Affiliation(s)
- Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erika Michel
- Section of Small Animal Reproduction, Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynecology and Andrology of Large- and Small Animals, Justus-Liebig University, Giessen, Germany
| | - Selim Aslan
- Clinic for Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Ankara, Ankara, Turkey
| | - Iris Reichler
- Section of Small Animal Reproduction, Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Bigsby RM, Caperell-Grant A. The role for estrogen receptor-alpha and prolactin receptor in sex-dependent DEN-induced liver tumorigenesis. Carcinogenesis 2011; 32:1162-6. [PMID: 21606321 DOI: 10.1093/carcin/bgr094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice treated neonatally with diethylnitrosamine (DEN) develop liver tumors in a male-dominant manner, reflecting the male bias in human hepatocellular carcinoma. Evidence suggests that estrogen, androgen, prolactin (PRL) and growth hormone (GH) modify liver tumorigenesis. We determined the roles of estrogen receptor-α (ERα) and prolactin receptor (PRLR) using receptor null mice, ERαKO (C57Bl/6J) and PRLR-KO (129Ola-X-C57BL/6), in the neonatal-DEN model of liver tumorigenesis. In both mouse strains, females had reduced tumorigenesis compared with males (P < 0.01), regardless of ERα or PRLR status. Tumorigenesis was not affected by ovariectomy in C57Bl/6J mice but it was increased by ovariectomy in the mixed strain, 129Ola-X-C57BL/6, regardless of PRLR status. ERαKO males had 47% fewer tumors than ERα wild-type males (P < 0.01). On the other hand, estradiol treatment protected against tumorigenesis in males only in the presence of ERα. As evidenced by liver gene expression, lack of ERα did not alter the pattern of GH secretion in males but resulted in the male GH pattern in females. These observations indicate that ERα is not required for lower tumorigenesis in females, but it is required for the protective effects of exogenously delivered estradiol. Unexpectedly, the results indicate that ERα plays a role in promotion of liver tumors in males. In addition, it can be concluded that sex differences in liver tumorigenesis cannot be explained by the sexually dimorphic pattern of GH secretion. The results also rule out PRL as the mediator of the protective effect of the ovaries.
Collapse
Affiliation(s)
- Robert M Bigsby
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202-5121, USA.
| | | |
Collapse
|
16
|
Polymorphism of PRLR and LHβ genes by SSCP marker and their association with litter size in Boer goats. Livest Sci 2011. [DOI: 10.1016/j.livsci.2010.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Goldhar AS, Duan R, Ginsburg E, Vonderhaar BK. Progesterone induces expression of the prolactin receptor gene through cooperative action of Sp1 and C/EBP. Mol Cell Endocrinol 2011; 335:148-57. [PMID: 21238538 PMCID: PMC3045478 DOI: 10.1016/j.mce.2011.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 01/01/2023]
Abstract
Prolactin (Prl) and progesterone (P) cooperate synergistically during mammary gland development and tumorigenesis. We hypothesized that one mechanism for these effects may be through mutual induction of receptors (R). EpH4 mouse mammary epithelial cells stably transfected with PR-A express elevated levels of PrlR mRNA and protein compared to control EpH4 cells that lack the PR. Likewise, T47D human breast cancer cells treated with P overexpress the PrlR and activate PrlR promoter III. PrlR promoter III does not contain a classical P response element but contains several binding sites for transcription proteins, including C/EBP, Sp1 and AP1, which may also interact with the PR. Using promoter deletion and site directed mutagenesis analyses as well as gel shift assays, cooperative activation of the C/EBP and adjacent Sp1A, but not the Sp1B or AP1, sites by P is shown to confer P responsiveness leading to increased PrlR transcription.
Collapse
Affiliation(s)
- Anita S Goldhar
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, NCI, Bethesda, MD 20892-4254, USA
| | | | | | | |
Collapse
|
18
|
Prolactin and the Skin: A Dermatological Perspective on an Ancient Pleiotropic Peptide Hormone. J Invest Dermatol 2009; 129:1071-87. [DOI: 10.1038/jid.2008.348] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Wang J, Hou S, Huang W, Yang X, Zhu X, Liu X. Molecular cloning of prolactin receptor of the Peking duck. Poult Sci 2009; 88:1016-22. [DOI: 10.3382/ps.2008-00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Abstract
Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.
Collapse
Affiliation(s)
- Nira Ben-Jonathan
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45255, USA.
| | | | | |
Collapse
|
21
|
Foitzik K, Krause K, Conrad F, Nakamura M, Funk W, Paus R. Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:748-56. [PMID: 16507890 PMCID: PMC1606541 DOI: 10.2353/ajpath.2006.050468] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The prototypic pituitary hormone prolactin (PRL) exerts a wide variety of bioregulatory effects in mammals and is also found in extrapituitary sites, including murine skin. Here, we show by reverse transcriptase-polymerase chain reaction and immunohistology that, contrary to a previous report, human skin and normal human scalp hair follicles (HFs), in particular, express both PRL and PRL receptors (PRL-R) at the mRNA and protein level. PRL and PRL-R immunoreactivity can be detected in the epithelium of human anagen VI HFs, while the HF mesenchyme is negative. During the HF transformation from growth (anagen) to apoptosis-driven regression (catagen), PRL and PRL-R immunoreactivity appear up-regulated. Treatment of organ-cultured human scalp HFs with high-dose PRL (400 ng/ml) results in a significant inhibition of hair shaft elongation and premature catagen development, along with reduced proliferation and increased apoptosis of hair bulb keratinocytes (Ki-67/terminal dUTP nick-end labeling immunohistomorphometry). This shows that PRL receptors, expressed in HFs, are functional and that human skin and human scalp HFs are both direct targets and sources of PRL. Our data suggest that PRL acts as an autocrine hair growth modulator with catagen-promoting functions and that the hair growth-inhibitory effects of PRL demonstrated here may underlie the as yet ill-understood hair loss in patients with hyper-prolactinemia.
Collapse
Affiliation(s)
- Kerstin Foitzik
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Kedzia C, Lacroix L, Ameur N, Ragot T, Kelly PA, Caillou B, Binart N. Medullary thyroid carcinoma arises in the absence of prolactin signaling. Cancer Res 2005; 65:8497-503. [PMID: 16166330 DOI: 10.1158/0008-5472.can-04-3937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prolactin, a pituitary hormone, exerts pleiotropic effects in various cells. These effects are mediated by a membrane receptor highly expressed in many tissues. To analyze prolactin effects on the thyroid gland, we first identified prolactin receptor (PRLR) mRNAs by in situ hybridization. To further evaluate the physiologic relevance of PRLR actions in the thyroid in vivo, we used PRLR knockout mice. Whereas the histologic structure of thyroid of PRLR-null mice was not disturbed, we show that T4 levels are lower in null animals (13.63 +/- 2.98 versus 10.78 +/- 2.25 pmol/L in null mice), confirming that prolactin participates in the control of thyroid metabolism. To further investigate thyroid effects in mice, we measured body temperature and thyroid-stimulating hormone in young and adult male and/or female PRLR-null mice and their normal siblings. Surprisingly, in null animals, we saw medullary thyroid carcinoma (MTC) arising from parafollicular C cells producing calcitonin. The incidence of these carcinomas attained 41% in PRLR-null mice, whereas this malignant tumor occurs sporadically or as a component of the familial cancer syndrome in humans. This finding suggests that PRLR-null mice could represent a valuable animal model for MTC, which could be compared with existing MTC models. These observations suggest a possible link between the appearance of this carcinoma and the absence of prolactin signaling.
Collapse
Affiliation(s)
- Cécile Kedzia
- Institut National de la Sante et de la Recherche Médicale U584, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Wu W, Ginsburg E, Vonderhaar BK, Walker AM. S179D prolactin increases vitamin D receptor and p21 through up-regulation of short 1b prolactin receptor in human prostate cancer cells. Cancer Res 2005; 65:7509-15. [PMID: 16103106 DOI: 10.1158/0008-5472.can-04-3350] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we further investigated the mechanisms by which pseudophosphorylated prolactin (S179D PRL) inhibits the growth of human prostate cancer cells. When treated with S179D PRL for 3 days, LnCAP cells responded by increasing expression of the vitamin D receptor (VDR) and the cell cycle regulatory molecule, p21, whereas PC3 and DU145 cells did not. After 5 days of treatment, both PC3 and DU145 cells responded. Untreated LnCAP cells express the short 1b form (SF1b) of the human prolactin receptor, but DU145 and PC3 cells express only low amounts of this receptor until elevated by treatment with S179D PRL. DU145 and PC3 cells become sensitive to the negative effects of S179D PRL on cell number after induction of the SF1b. Transfection of either SF1b or SF1a into PC3 or DU145 cells made them sensitive to S179D PRL in the 3-day time frame, a finding that was not duplicated by transfection with the long form of the receptor. Treatment of LnCAP cells with S179D PRL increased long-term activation of extracellular signal-regulated kinase 1/2 (ERK1/2). This did not occur in PC3 and DU145 cells until transfection with SF1a/SF1b. Blockade of ERK signaling eliminated S179D PRL-stimulated expression of the VDR and p21 in LnCAP cells and transfected PC3 and DU145 cells. We conclude that initiation of alternative splicing to produce SF1b, and subsequent altered signaling, contribute to the growth inhibitory mechanisms of S179D PRL. This is the first indication of a role for short prolactin receptors in the regulation of cell proliferation.
Collapse
Affiliation(s)
- Wei Wu
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
24
|
Soboleva TK, Vetharaniam I, Nixon AJ, Montenegro R, Pearson AJ, Sneyd J. Mathematical modelling of prolactin-receptor interaction and the corollary for prolactin receptor gene expression in skin. J Theor Biol 2005; 234:289-98. [PMID: 15757685 DOI: 10.1016/j.jtbi.2004.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 11/03/2004] [Accepted: 11/17/2004] [Indexed: 11/25/2022]
Abstract
A mathematical model of prolactin regulating its own receptors was developed, and compared with experimental data on a qualitative level. The model incorporates the kinetics of prolactin-receptor interactions and subsequent signalling by prolactin-receptor dimers to regulate the production of receptor mRNA and hence the receptor population. The model relates changes in plasma prolactin concentration to prolactin receptor (PRLR) gene expression, and can be used for predictive purposes. The cell signalling that leads to the activation of target genes, and the mechanisms for regulation of transcription, were treated empirically in the model. The model's parameters were adjusted so that model simulations agreed with experimentally observed responses to administration of prolactin in sheep. In particular, the model correctly predicts insensitivity of receptor mRNA regulation to a series of subcutaneous injections of prolactin, versus sensitivity to prolonged infusion of prolactin. In the latter case, response was an acute down-regulation followed by a prolonged up-regulation of mRNA, with the magnitude of the up-regulation increasing with the duration of infusion period. The model demonstrates the feasibility of predicting the in vivo response of prolactin target genes to external manipulation of plasma prolactin, and could provide a useful tool for identifying optimal prolactin treatments for desirable outcomes.
Collapse
Affiliation(s)
- T K Soboleva
- AgResearch Ltd., Ruakura Research Centre, Private Bag 3123, Hamilton 2020, New Zealand.
| | | | | | | | | | | |
Collapse
|
25
|
Kiapekou E, Loutradis D, Patsoula E, Koussidis GA, Minas V, Bletsa R, Antsaklis A, Michalas S, Makrigiannakis A. Prolactin receptor mRNA expression in oocytes and preimplantation mouse embryos. Reprod Biomed Online 2005; 10:339-46. [PMID: 15820039 DOI: 10.1016/s1472-6483(10)61793-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prolactin was first identified as an anterior pituitary lobe hormone, responsible for the regulation of mammary gland growth and development. Prolactin receptors have been localized in a number of peripheral tissues, including tissues involved in reproduction. Studies with knockout animals have shown that prolactin receptor deficient mice present reproductive defects, whereas prolactin promotes the developmental potential of preimplantation mouse and rat embryos in vitro. To better understand the role of prolactin in the process of reproduction and early embryo development in mice, the expression of the four transcript variants of prolactin receptor was examined in the first stages of mouse embryo development. Prolactin long receptor mRNA was expressed in all stages examined, that is in cumulus cells, oocytes, zygotes, 2-cell embryos, 4-cell embryos, morulae and blastocysts. Prolactin receptor type S1 mRNA was observed only in cumulus cells, while S2 mRNA was present in cumulus cells, oocytes, zygotes and 2-cell embryos. S3 mRNA was expressed only in cumulus cells and oocytes. These results indicate that different isoforms of prolactin receptors may be present in the various stages of mouse preimplantation embryo and may play an important role in the control of its growth and development.
Collapse
Affiliation(s)
- Erasmia Kiapekou
- 1st Department of Obstetrics and Gynaecology, Alexandra Maternity Hospital, University of Athens, 11528, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Corbacho AM, Valacchi G, Kubala L, Olano-Martín E, Schock BC, Kenny TP, Cross CE. Tissue-specific gene expression of prolactin receptor in the acute-phase response induced by lipopolysaccharides. Am J Physiol Endocrinol Metab 2004; 287:E750-7. [PMID: 15186999 DOI: 10.1152/ajpendo.00522.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acute inflammation can elicit a defense reaction known as the acute-phase response (APR) that is crucial for reestablishing homeostasis in the host. The role for prolactin (PRL) as an immunomodulatory factor maintaining homeostasis under conditions of stress has been proposed; however, its function during the APR remains unclear. Previously, it was shown that proinflammatory cytokines characteristic of the APR (TNF-alpha, IL-1beta, and IFNgamma) induced the expression of the PRL receptor (PRLR) by pulmonary fibroblasts in vitro. Here, we investigated the in vivo expression of PRLR during lipopolysaccharide (LPS)-induced APR in various tissues of the mouse. We show that PRLR mRNA and protein levels were downregulated in hepatic tissues after intraperitoneal LPS injection. Downregulation of PRLR in the liver was confirmed by immunohistochemistry. A suppressive effect on mRNA expression was also observed in prostate, seminal vesicle, kidney, heart, and lung tissues. However, PRLR mRNA levels were increased in the thymus, and no changes were observed in the spleen. The proportion of transcripts for the different receptor isoforms (long, S1, S2, and S3) in liver and thymus was not altered by LPS injection. These findings suggest a complex tissue-specific regulation of PRLR expression in the context of the APR.
Collapse
Affiliation(s)
- Ana M Corbacho
- Division of Pulmonary and Critical Care Medicine, University of California, Davis 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Canbay E, Degerli N, Gulluoglu BM, Kaya H, Sen M, Bardakci F. Could prolactin receptor gene polymorphism play a role in pathogenesis of breast carcinoma? Curr Med Res Opin 2004; 20:533-40. [PMID: 15119991 DOI: 10.1185/030079904125003232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Constitutive activation of various hormone and growth factor receptors is newly recognised as a common cause of tumour development. This study investigated the presence of any mutation or polymorphism of prolactin receptor (PRLR) in 38 patients with breast cancer. RESEARCH METHODS Genomic DNA was extracted and PCR amplification was carried out for exon 1-10 of PRLR from tumoral and adjacent non-cancerous breast tissue of tumour specimens from 38 breast cancer patients. PCR products were analysed by SSCP and automatic sequencing for mutations. RESULTS For the first time, A150C (Leu-->Ile) transversion at exon 6 of PRLR in tumour tissues, in adjacent non-cancerous breast tissues, and in blood samples of two (5.3%) out of 38 patients with breast cancer were detected. In contrast to this finding, no polymorphism of PRLR in blood samples of 100 normal individuals were found. CONCLUSION Polymorphism of prolactin receptors might play a role in mammary carcinogenesis as a consequence of intracellular changes of PRLR signalling.
Collapse
Affiliation(s)
- Emel Canbay
- Department of General Surgery, Cumhuriyet University Hospital, Sivas, Turkey.
| | | | | | | | | | | |
Collapse
|
28
|
Trott JF, Hovey RC, Koduri S, Vonderhaar BK. Multiple New Isoforms of the Human Prolactin Receptor Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 554:495-9. [PMID: 15384631 DOI: 10.1007/978-1-4757-4242-8_71] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Josephine F Trott
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT 05405-1710, USA.
| | | | | | | |
Collapse
|
29
|
Zirlinger M, Anderson D. Molecular dissection of the amygdala and its relevance to autism. GENES BRAIN AND BEHAVIOR 2003; 2:282-94. [PMID: 14606693 DOI: 10.1034/j.1601-183x.2003.00039.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The limbic system, and in particular the amygdala, have been implicated in autism. The amygdala is a complex structure that in rodents consists of at least 12 different nuclei or subnuclei. A comparative analysis of amygdala neuroanatomy in normal vs. autistic brains would be aided by the availability of molecular markers to unambiguously recognize these different amygdala substructures. Here we report on the development of methods to identify genes enriched in the central, lateral and medial nuclei of the rodent amygdala. Our results suggest that laser-capture microdissection of specific amygdala subnuclei, when combined with linear amplification of cRNA probes for oligonucleotide microarray hybridization, can efficiently identify genes whose expression is confined to these substructures. Importantly, many of these genes were missed in previous gene expression-profiling experiments using whole amygdala tissue. The isolation of human orthologs of these subnucleus-specific genes, and/or the application of these methods directly to human tissue, may provide useful markers for characterizing neuropathological correlates of autism, as well as for identifying molecular differences between normal and autistic brains.
Collapse
Affiliation(s)
- M Zirlinger
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
30
|
Bernichtein S, Kayser C, Dillner K, Moulin S, Kopchick JJ, Martial JA, Norstedt G, Isaksson O, Kelly PA, Goffin V. Development of pure prolactin receptor antagonists. J Biol Chem 2003; 278:35988-99. [PMID: 12824168 DOI: 10.1074/jbc.m305687200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prolactin (PRL) promotes tumor growth in various experimental models and leads to prostate hyperplasia and mammary neoplasia in PRL transgenic mice. Increasing experimental evidence argues for the involvement of autocrine PRL in this process. PRL receptor antagonists have been developed to counteract these undesired proliferative actions of PRL. However, all forms of PRL receptor antagonists obtained to date exhibit partial agonism, preventing their therapeutic use as full antagonists. In the present study, we describe the development of new human PRL antagonists devoid of agonistic properties and therefore able to act as pure antagonists. This was demonstrated using several in vitro bioassays, including highly sensitive assays able to detect extremely low levels of receptor activation. These new compounds also act as pure antagonists in vivo, as assessed by analyzing their ability to competitively inhibit PRL-triggered signaling cascades in various target tissues (liver, mammary gland, and prostate). Finally, by using transgenic mice expressing PRL specifically in the prostate, which exhibit constitutively activated signaling cascades paralleling hyperplasia, we show that these new PRL analogs are able to completely revert PRL-activated events. These second generation human PRL antagonists are good candidates to be used as inhibitors of growth-promoting actions of PRL.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Binding, Competitive
- Biological Assay
- Cell Division
- Cell Line
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/metabolism
- Hormones/metabolism
- Humans
- Inhibitory Concentration 50
- Liver/enzymology
- MAP Kinase Signaling System
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Milk Proteins
- Mutagenesis, Site-Directed
- Plasmids
- Precipitin Tests
- Prolactin/chemistry
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Prostate/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Radioimmunoassay
- Rats
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/chemistry
- Recombinant Proteins/metabolism
- STAT5 Transcription Factor
- Signal Transduction
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Sophie Bernichtein
- INSERM Unit 584, Hormone Targets, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Foitzik K, Krause K, Nixon AJ, Ford CA, Ohnemus U, Pearson AJ, Paus R. Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce catagen. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1611-21. [PMID: 12707045 PMCID: PMC1851183 DOI: 10.1016/s0002-9440(10)64295-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2003] [Indexed: 11/16/2022]
Abstract
Here, we provide the first study of prolactin (PRL) and prolactin receptor (PRLR) expression during the nonseasonal murine hair cycle, which is, in contrast to sheep, comparable with the human scalp and report that both PRL and PRLR are stringently restricted to the hair follicle epithelium and are strongly hair cycle-dependent. In addition we show that PRL exerts functional effects on anagen hair follicles in murine skin organ culture by down-regulation of proliferation in follicular keratinocytes. In telogen follicles, PRL-like immunoreactivity was detected in outer root sheath (ORS) keratinocytes. During early anagen (III to IV), the developing inner root sheath (IRS) and the surrounding ORS were positive for PRL. In later anagen stages, PRL could be detected in the proximal IRS and the inner layer of the ORS. The regressing (catagen) follicle showed a strong expression of PRL in the proximal ORS. In early anagen, PRLR immunoreactivity occurred in the distal part of the ORS around the developing IRS, and subsequently to a restricted area of the more distal ORS during later anagen stages and during early catagen. The dermal papilla (DP) stayed negative for both PRL and PRLR throughout the cycle. Telogen follicles showed only a very weak PRLR staining of ORS keratinocytes. The long-form PRLR transcript was shown by real-time polymerase chain reaction to be transiently down-regulated during early anagen, whereas PRL transcripts were up-regulated during mid anagen. Addition of PRL (400 ng/ml) to anagen hair follicles in murine skin organ culture for 72 hours induced premature catagen development in vitro along with a decline in the number of proliferating hair bulb keratinocytes. These data support the intriguing concept that PRL is generated locally in the hair follicle epithelium and acts directly in an autocrine or paracrine manner to modulate the hair cycle.
Collapse
Affiliation(s)
- Kerstin Foitzik
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
van Rens BTTM, Evans GJ, van der Lende T. Components of litter size in gilts with different prolactin receptor genotypes. Theriogenology 2003; 59:915-26. [PMID: 12517393 DOI: 10.1016/s0093-691x(02)01155-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral estrus and components of litter size at Day 35/36 of pregnancy were studied in gilts with prolactin receptor (PRLR) genotype AA (n=9), AB (n=25), and BB (n=22). This PRLR polymorphism (two alleles, A and B) has been associated with litter size, although it is not known whether the polymorphism itself causes differences in litter size or whether it is a marker for a closely linked causative gene. Estrus length in three successive estrous cycles was not affected by genotype, but estrous cycle length tended (P<0.1) to be longer for AA gilts compared to AB and BB gilts. AA gilts had a significantly (P<0.05) higher ovulation rate (21.5+/-0.9) than BB gilts (18.7+/-0.6), resulting in a numerically higher number of embryos at Day 35/36 (17.0+/-1.3, 15.6+/-0.8, and 13.7+/-0.9 for AA, AB, and BB gilts, respectively) which may lead to a subsequent difference in litter size. Ovulation rate of AB gilts (20.0+/-0.5) was intermediate. Genotype affected the total weight of the ovaries (P<0.05). Even after subtraction of the total weight of corpora lutea, ovarian weight in AA gilts was highest (16.6+/-1.0 g), in BB lowest (13.4+/-0.6g), and in AB gilts intermediate (15.0+/-0.6g; P<0.05). Unlike AB gilts, in AA and BB gilts uterine length was adapted to litter size, which led to longer (P<0.05) uteri for AA gilts (669+/-28 cm) compared to BB gilts (566+/-18 cm). Furthermore, embryos of AA gilts had heavier placentae (52.5+/-3.4 g) and larger implantation surface areas (309+/-19 cm(2)) than embryos of BB (42.0+/-2.3g, P<0.05; 256+/-12 cm(2), P<0.1) or AB (43.2+/-2.0 g, P<0.1; 257+/-11 cm(2), P<0.05) gilts. Results of this experiment show that the PRLR gene or a very closely linked gene affects porcine ovaries, uterus, and placenta in a way that might lead to differences in litter size. Since other genes and also environmental factors, however, might change the effect within the 112 days to parturition, it is preferable to state that the PRLR gene is a candidate gene for ovulation rate rather than for litter size.
Collapse
Affiliation(s)
- Birgitte T T M van Rens
- Animal Breeding and Genetics Group, WIAS, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | | |
Collapse
|
33
|
Abstract
Prolactin (PRL) is a paradoxical hormone. Historically known as the pituitary hormone of lactation, it has had attributed to it more than 300 separate actions, which can be correlated to the quasi-ubiquitous distribution of its receptor. Meanwhile, PRL-related knockout models have mainly highlighted its irreplaceable role in functions of lactation and reproduction, which suggests that most of its other reported target tissues are presumably modulated by, rather than strictly dependent on, PRL. The multiplicity of PRL actions in animals is in direct opposition to the paucity of arguments that suggest its involvement in human pathophysiology other than effects on reproduction. Although many experimental data argue for a role of PRL in the progression of some tumors, such as breast and prostate cancers, drugs lowering circulating PRL levels are ineffective. This observation opens new avenues for research into the understanding of whether local production of PRL is involved in tumor growth and, if so, how extrapituitary PRL synthesis is regulated. Finally, the physiological relevance of PRL variants, such as the antiangiogenic 16K-like PRL fragments, needs to be elucidated. This review is aimed at critically discussing how these recent findings have renewed the manner in which PRL should be considered as a multifunctional hormone.
Collapse
Affiliation(s)
- Vincent Goffin
- INSERM Unit 344, Faculty of Medicine Necker, Paris Cedex 15, 75730, France.
| | | | | | | |
Collapse
|
34
|
Hu ZZ, Meng J, Dufau ML. Isolation and characterization of two novel forms of the human prolactin receptor generated by alternative splicing of a newly identified exon 11. J Biol Chem 2001; 276:41086-94. [PMID: 11518703 DOI: 10.1074/jbc.m102109200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel exon 11 of the human prolactin receptor (hPRLR) gene that is distinct from its rodent counterparts and have demonstrated the presence of two novel short forms of the hPRLR (S1(a) and S1(b)), which are derived from alternative splicing of exons 10 and 11. S1(a) encodes 376 amino acids (aa) that contain partial exon 10 and a unique 39-aa C-terminal region encoded by exon 11. S1(b) encodes 288 aa that lack the entire exon 10 and contains 3 amino acids at the C terminus derived from exon 11 using a shifted reading frame. These short forms, which were found in several normal tissues and in breast cancer cell lines, were expressed as cell surface receptors and possessed binding affinities comparable with the long form. Unlike the long form, neither short form was able to mediate the activation of the beta-casein gene promoter induced by prolactin. Instead they acted as dominant negative forms when co-expressed with the long form in transfected cells. Due to a marked difference in the cellular levels between the two short forms in transfected cells, S1(b) was more effective in inhibiting the prolactin-induced activation of the beta-casein gene promoter mediated by the long form of the receptor. The low cellular level of S1(a) was due to its more rapid turnover than the S1(b) protein. This is attributable to specific residues within the C-terminal unique 39 amino acids of the S1(a) form and may represent a new mechanism by which the hPRLR is modulated at the post-translational level. Since both short forms contain abbreviated cytoplasmic domains with unique C termini, they may also exhibit distinct signaling pathways in addition to modulating the signaling from the long form of the receptor. These receptors may therefore play important roles in the diversified actions of prolactin in human tissues.
Collapse
Affiliation(s)
- Z Z Hu
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
35
|
Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, Sundararajan K, Vonderhaar BK. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn 2001; 222:192-205. [PMID: 11668597 DOI: 10.1002/dvdy.1179] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ductal branching within the mammary gland is stimulated by prolactin (PRL) and progesterone (P) acting through their receptors (PRLR and PR). Analysis of mammary gland PRLR expression revealed increasing expression of the long form (L-PRLR) and two of the three short forms (S1- and S3-PRLR) during puberty that became maximal late in pubescence and early gestation, then declined during gestation. By contrast, S2-PRLR mRNA levels remained constant. Examination of stromal PRLR revealed the consistent expression of L-PRLR mRNA. By contrast, S1-PRLR was present only in the mammary fat pad of neonates, whereas high neonatal expression of S2-PRLR became undetectable during puberty. Stromal expression of S3-PRLR decreased to low levels during puberty and was undetectable during lactation and involution. Exogenous PRL stimulated DNA synthesis in both epithelial and adjacent stromal cells in vivo. Distribution of PRLR mRNA in mammary epithelium was homogeneous before puberty and heterogeneous during puberty, gestation, and early lactation. A mutual role for PRLR and PR was suggested wherein PR mRNA increased beyond 6 weeks to maximal levels during puberty and gestation then became undetectable during lactation. In situ hybridization revealed that PR mRNA distribution is homogeneous in the ductal epithelium before 6 weeks and heterogenous during puberty and gestation and that PRLR and PR are similarly distributed in the ductal epithelium. Neither hormone stimulated DNA synthesis in mammary glands of ovariectomized females while their effects interacted markedly. These results demonstrate differential PRLR transcription by epithelial and stromal cells and a similar distribution of PRLR and PR that may facilitate the interaction between P and PRL during ductal branching in the mammary gland.
Collapse
MESH Headings
- Adipose Tissue/physiology
- Animals
- Cell Division/drug effects
- Cell Division/physiology
- Drug Synergism
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Estrogens/pharmacology
- Female
- Gene Expression Regulation, Developmental
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/physiology
- Mice
- Mice, Inbred BALB C
- Ovariectomy
- Progesterone/pharmacology
- Prolactin/pharmacology
- RNA, Messenger/analysis
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Stromal Cells/cytology
- Stromal Cells/metabolism
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- R C Hovey
- Molecular and Cellular Endocrinology Section, Center for Cancer Research, NCI, NIH, 10 Center Drive, Bethesda, MD 20892-1402, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Craven AJ, Ormandy CJ, Robertson FG, Wilkins RJ, Kelly PA, Nixon AJ, Pearson AJ. Prolactin signaling influences the timing mechanism of the hair follicle: analysis of hair growth cycles in prolactin receptor knockout mice. Endocrinology 2001; 142:2533-9. [PMID: 11356702 DOI: 10.1210/endo.142.6.8179] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary PRL regulates seasonal hair follicle growth cycles in many mammals. Here we present the first evidence implicating PRL in the nonseasonal, wave-like pelage replacement of laboratory mice. In this study we show that messenger RNA transcripts encoding the one long and two short forms of PRL receptor are present in the skin of adult and neonate mice. The receptor protein was immunolocalized to the hair follicle as well as the epidermis and sebaceous glands. Furthermore, PRL messenger RNA was detected within skin extracts, suggesting a possible autocrine/paracrine role. Analysis of the hair growth phenotype of PRL gene-disrupted mice (PRLR(-/-)) revealed a change in the timing of hair cycling events. Although no hair follicle development differences were noted in PRLR(-/-) neonates, observations of the second generation of hair growth revealed PRLR(-/-) mice molted earlier than wild types (PRLR(+/+)). The advance was greater in females (29 days) than in males (4 days), resulting in the elimination of the sexual dimorphism associated with murine hair replacement. Heterozygotes were intermediate between PRLR(-/-) and PRLR(+/+) mice in molt onset. Once initiated, the pattern and progression of the molt across the body were similar in all genotypes. Although all fiber types were present and appeared structurally normal, PRLR(-/-) mice had slightly longer and coarser hair than wild types. These findings demonstrate that PRL has an inhibitory effect on murine hair cycle events. The pituitary PRL regulation of hair follicle cycles observed in seasonally responsive mammals may be a result of pituitary PRL interacting with a local regulatory mechanism.
Collapse
Affiliation(s)
- A J Craven
- New Zealand Pastoral Agriculture Research Institute, Hamilton 2020, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
37
|
Santos CR, Ingleton PM, Cavaco JE, Kelly PA, Edery M, Power DM. Cloning, characterization, and tissue distribution of prolactin receptor in the sea bream (Sparus aurata). Gen Comp Endocrinol 2001; 121:32-47. [PMID: 11161768 DOI: 10.1006/gcen.2000.7553] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prolactin receptor (PRLR) was cloned and its tissue distribution characterized in adults of the protandrous hermaphrodite marine teleost, the sea bream (Sparus aurata). An homologous cDNA probe for sea bream PRLR (sbPRLR) was obtained by RT-PCR using gill mRNA. This probe was used to screen intestine and kidney cDNA libraries from which two overlapping clones (1100 and 2425 bp, respectively) were obtained. These clones had 100% sequence identity in the overlapping region (893 bp) and were used to deduce the complete amino acid sequence of sbPRLR. The receptor spans 2640 bp and encodes a protein of 537 amino acids. Features characteristic of PRLR, two pairs of cysteines, WS box, hydrophobic transmembrane domain, box 1, and box 2, were identified and showed a high degree of sequence identity to PRLRs from other vertebrate species. SbPRLR is 29 and 32% identical to tilapia (Oreochromis niloticus) and goldfish (Carassius auratus) PRLRs, respectively. In the sea bream two PRLR transcripts of 2.8 and 3.2 kb were detected in the intestine, kidney, and gills and a single transcript of 2.8 kb was detected in skin and pituitary by Northern blot. Spermiating gonads (more than 95% male tissue; gonado-somatic index of 0.6) contained, in addition to the 2.8-kb transcript, three more transcripts of 1.9, 1.3, and 1.1 kb. RT-PCR, which is a far more sensitive method than Northern blot, detected PRLR mRNA in gills, intestine, brain, pituitary, kidney, liver, gonads, spleen, head-kidney, heart, muscle, and bone. Immunohistochemistry using specific polyclonal antibodies raised against an oligopeptide from the extracellular domain of sbPRLR detected PRLR in several epithelial tissues of juvenile sea bream, including the anterior gut, renal tubule, choroid membrane of the third ventricle, saccus vasculosus, branchial chloride cells, and branchial cartilage.
Collapse
Affiliation(s)
- C R Santos
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, 8000-810, Portugal
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Goffin V, Binart N, Clément-Lacroix P, Bouchard B, Bole-Feysot C, Edery M, Lucas BK, Touraine P, Pezet A, Maaskant R, Pichard C, Helloco C, Baran N, Favre H, Bernichtein S, Allamando A, Ormandy C, Kelly PA. From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:189-201. [PMID: 10596761 DOI: 10.1016/s1050-3862(99)00025-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prolactin (PRL), a polypeptide hormone secreted mainly by the pituitary and, to a lesser extent, by peripheral tissues, affects more physiological processes than all other pituitary hormones combined since it is involved in > 300 separate functions in vertebrates. Its main actions are related to lactation and reproduction. The initial step of PRL action is the binding to a specific membrane receptor, the PRLR, which belongs to the class 1 cytokine receptor superfamily. PRL-binding sites have been identified in a number of tissues and cell types in adult animals. Signal transduction by this receptor is mediated, at least in part, by two families of signaling molecules: Janus tyrosine kinases and signal transducers and activators of transcription (STATs). Disruption of the PRLR gene has provided a new mouse model with which to identify actions directly associated with PRL or any other PRLR ligands, such as placental lactogens. To date, several different phenotypes have been analyzed and are briefly described in this review. Coupled with the SAGE technique, this PRLR knockout model is being used to qualitatively and quantitatively evaluate the expression pattern of hepatic genes in two physiological situations: transcriptomes corresponding to livers from both wild type and PRLR KO mice are being compared, and following statistical analyses, candidate genes presenting a differential profile will be further characterized. Such a new approach will undoubtedly open future avenues of research for PRL targets. To date, no pathology linked to any mutation in the genes encoding PRL or its receptor have been identified. The development of genetic models provides new opportunities to understand how PRL can participate to the development of pathologies throughout life, as for example the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- V Goffin
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Galsgaard ED, Nielsen JH, Møldrup A. Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a and STAT5b. J Biol Chem 1999; 274:18686-92. [PMID: 10373481 DOI: 10.1074/jbc.274.26.18686] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the prolactin receptor (PRLR) gene is increased in pancreatic islets during pregnancy and in vitro in insulin-producing cells by growth hormone (GH) and prolactin (PRL). The 5'-region of the rat PRLR gene contains at least three alternative first exons that are expressed tissue-specifically because of differential promoter usage. We show by reverse transcription-polymerase chain reaction analysis that both exon 1A- and exon 1C-containing PRLR transcripts are expressed in rat islets and that human (h)GH, ovine (o)PRL, and bovine (b)GH increase exon 1A expression 6.5 +/- 0. 8-fold, 6.8 +/- 0.7-fold, and 3.9 +/- 0.7-fold and exon 1C expression 4.8 +/- 0.4-fold, 4.4 +/- 0.6-fold, and 2.5 +/- 0.7-fold, respectively. Expression of exon 1B was not detectable. The transcriptional activities of reporter constructs containing the 1A, 1B, or 1C promoter were found to be 22.8-fold, 2.7-fold, and 8. 0-fold, respectively, above that of a promoterless reporter construct when transfected into the insulin-producing INS-1 cells. The transcriptional activity of the 1A promoter construct was increased 8.9 +/- 1.9-fold by 0.5 microgram/ml hGH. Responsiveness to hGH of the 1A promoter was localized to the region from -225 to +81 with respect to the transcription start site. This region contains the sequence TTCTAGGAA that by gel retardation experiments was shown to bind the transcription factors STAT5a and STAT5b in response to stimulation by hGH, oPRL, or bGH. Mutation of this gamma-activated sequence-like element completely abolished transcriptional induction of the 1A promoter by hGH. Our results suggest that GH and PRL increase the levels of exon 1A- and 1C-containing PRLR mRNA species and furthermore that the transcriptional activity of the 1A promoter is increased via activation of STAT5a and STAT5b.
Collapse
Affiliation(s)
- E D Galsgaard
- Department of Cell Biology, Hagedorn Research Institute, Niels Steensensvej 6, DK-2820 Gentofte, Denmark.
| | | | | |
Collapse
|
41
|
Clément-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, Bouchard B, Amling M, Gaillard-Kelly M, Binart N, Baron R, Kelly PA. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 1999; 140:96-105. [PMID: 9886812 DOI: 10.1210/endo.140.1.6436] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone development is a multistep process that includes patterning of skeletal elements, commitment of hematopoietic and/or mesenchymental cells to chondrogenic and osteogenic lineages, and further differentiation into three specialized cell types: chondrocytes in cartilage and osteoblasts and osteoclasts in bone. Although PRL has a multitude of biological actions in addition to its role in the mammary gland, very little is known about its effect on bone. Mice carrying a germline null mutation for the PRL receptor gene have been produced in our laboratory and used to study the role of PRL in bone formation. In -/- embryos, we observed an alteration in bone development of calvaria. In adults, histomorphometric analysis showed that the absence of PRL receptors leads to a decrease in bone formation rate using double calcein labeling and a reduction of bone mineral density, measured by dual energy x-ray absorptiometry. In addition, serum estradiol, progesterone, testosterone, and PTH levels were analyzed. We also established that osteoblasts, but not osteoclasts, express PRL receptors. This suggests that an effect of PRL on osteoblasts could be required for normal bone formation and maintenance of bone mass. Thus, the PRL receptor knockout mouse model provides a new tool to investigate the involvement of PRL in bone metabolism.
Collapse
Affiliation(s)
- P Clément-Lacroix
- INSERM U-344, Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|