1
|
Zhou X, Wen M, Zhang J, Long K, Lu L, Jin L, Sun J, Ge L, Li X, Li M, Ma J. Unveiling the Regulatory Role of LncRNA MYU in Hypoxia-Induced Angiogenesis via the miR-23a-3p Axis in Endothelial Cells. Cells 2024; 13:1198. [PMID: 39056780 PMCID: PMC11275003 DOI: 10.3390/cells13141198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Angiogenesis is essential for various physiological and pathological processes, such as embryonic development and cancer cell proliferation, migration, and invasion. Long noncoding RNAs (lncRNAs) play pivotal roles in normal homeostasis and disease processes by regulating gene expression through various mechanisms, including competing endogenous RNAs (ceRNAs) of target microRNAs (miRNAs). The lncRNA MYU is known to promote prostate cancer proliferation via the miR-184/c-Myc regulatory axis and to be upregulated in vascular endothelial cells under hypoxic conditions, which often occurs in solid tumors. In the present study, we investigated whether MYU might affect cancer growth by regulating angiogenesis in vascular endothelial cells under hypoxia. Methods: The expression of MYU-regulated miR-23a-3p and interleukin-8 (IL-8) in HUVEC cell lines was examined using qRT-PCR. The CCK-8 assay, EdU assay, wound-healing assay, and tube-formation assay were used to assess the effects of MYU on cell proliferation, migration, and tube formation of HUVEC cells in vitro. The dual-luciferase reporter assay was performed to examine the effects of miR-23a-3p on MYU and IL-8 expression. Results: We found that the overexpression of MYU and knockdown of miR-23a-3p in human umbilical vein endothelial cells (HUVECs) under hypoxia promoted cell proliferation, migration, and tube formation. Mechanistically, MYU was shown to bind competitively to miR-23a-3p, thereby preventing miR-23a-3p binding to the 3' untranslated region of IL-8 mRNA. In turn, increased production of pro-angiogenic IL-8 promoted HUVEC proliferation, migration, and tube formation under hypoxia. Conclusion: This study identified a new role for lncRNA MYU as a ceRNA for miR-23a-3p and uncovered a novel MYU-miR-23a-3p-IL-8 regulatory axis for angiogenesis. MYU and/or miR-23a-3p may thus represent new targets for the treatment of hypoxia-related diseases by promoting angiogenesis.
Collapse
Affiliation(s)
- Xiankun Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Mingxing Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (M.W.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| |
Collapse
|
2
|
Dunn-Davies H, Dudnakova T, Nogara A, Rodor J, Thomas AC, Parish E, Gautier P, Meynert A, Ulitsky I, Madeddu P, Caporali A, Baker A, Tollervey D, Mitić T. Control of endothelial cell function and arteriogenesis by MEG3:EZH2 epigenetic regulation of integrin expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102173. [PMID: 38617973 PMCID: PMC11015509 DOI: 10.1016/j.omtn.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.
Collapse
Affiliation(s)
- Hywel Dunn-Davies
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building Max Born Crescent, King’s Buildings, Edinburgh EH9 3BF, UK
| | - Tatiana Dudnakova
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Antonella Nogara
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Anita C. Thomas
- Bristol Medical School, Translational Health Sciences, University of Bristol, Research and Teaching Floor Level 7, Queens Building, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Elisa Parish
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann-UK Building rm. 007, Weizmann Institute of Science Rehovot 76100, Israel
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Research and Teaching Floor Level 7, Queens Building, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew Baker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building Max Born Crescent, King’s Buildings, Edinburgh EH9 3BF, UK
| | - Tijana Mitić
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
3
|
Zhao D, Wu T, Tan Z, Xu J, Lu Z. Role of non-coding RNAs mediated pyroptosis on cancer therapy: a review. Expert Rev Anticancer Ther 2024; 24:239-251. [PMID: 38594965 DOI: 10.1080/14737140.2024.2341737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs), which are incapable of encoding proteins, are involved in the progression of numerous tumors by altering transcriptional and post-transcriptional processing. Recent studies have revealed prominent features of ncRNAs in pyroptosis, a type of non-apoptotic programmed cellular destruction linked to an inflammatory reaction. Drug resistance has arisen gradually as a result of anti-apoptotic proteins, therefore strategies based on pyroptotic cell death have attracted increasing attention. We have observed that ncRNAs may exert significant influence on cancer therapy, chemotherapy, radio- therapy, targeted therapy and immunotherapy, by regulating pyroptosis. AREAS COVERED Literatures were searched (December 2023) for studies on cancer therapy for ncRNAs-mediated pyroptotic cell death. EXPERT OPINION The most universal mechanical strategy for ncRNAs to regulate target genes is competitive endogenous RNAs (ceRNA). Besides, certain ncRNAs could directly interact with proteins and modulate downstream genes to induce pyroptosis, resulting in tumor growth or inhibition. In this review, we aim to display that ncRNAs, predominantly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), could function as potential biomarkers for diagnosis and prognosis and produce new insights into anti-cancer strategies modulated by pyroptosis for clinical applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Gandhi P, Wang Y, Li G, Wang S. The role of long noncoding RNAs in ocular angiogenesis and vascular oculopathy. Cell Biosci 2024; 14:39. [PMID: 38521951 PMCID: PMC10961000 DOI: 10.1186/s13578-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides in length that do not code for proteins. Initially considered a genomic mystery, an increasing number of lncRNAs have been shown to have vital roles in physiological and pathological conditions by regulating gene expression through diverse mechanisms depending on their subcellular localization. Dysregulated angiogenesis is responsible for various vascular oculopathies, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and corneal neovascularization. While anti-VEGF treatment is available, it is not curative, and long-term outcomes are suboptimal, and some patients are unresponsive. To better understand these diseases, researchers have investigated the role of lncRNAs in regulating angiogenesis and models of vascular oculopathies. This review summarizes recent research on lncRNAs in ocular angiogenesis, including the pro-angiogenic lncRNAs ANRIL, HOTAIR, HOTTIP, H19, IPW, MALAT1, MIAT, NEAT1, and TUG1, the anti-angiogenic lncRNAs MEG3 and PKNY, and the human/primate specific lncRNAs lncEGFL7OS, discussing their functions and mechanisms of action in vascular oculopathies.
Collapse
Affiliation(s)
- Pranali Gandhi
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuzhi Wang
- Louisiana State University School of Medicine, New Orleans, LA, 70112, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P.R. China.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Department of Ophthalmology, Tulane University, New Orleans, LA, 70112, USA.
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
6
|
Ateeq M, Broadwin M, Sellke FW, Abid MR. Extracellular Vesicles' Role in Angiogenesis and Altering Angiogenic Signaling. Med Sci (Basel) 2024; 12:4. [PMID: 38249080 PMCID: PMC10801520 DOI: 10.3390/medsci12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.
Collapse
Affiliation(s)
- Maryam Ateeq
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| |
Collapse
|
7
|
Ghasemian A, Omear HA, Mansoori Y, Mansouri P, Deng X, Darbeheshti F, Zarenezhad E, Kohansal M, Pezeshki B, Wang Z, Tang H. Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development. Front Genet 2023; 14:1297093. [PMID: 38094755 PMCID: PMC10716712 DOI: 10.3389/fgene.2023.1297093] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 10/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the main fatal cancers. Cell signaling such as Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling substantially influences the process of gene expression and cell growth. Long non-coding RNAs (lncRNAs) play regulatory roles in cell signaling, cell proliferation, and cancer fate. Hence, lncRNAs can be considered biomarkers in cancers. The inhibitory or activating effects of different lncRNAs on the JAK/STAT pathway regulate cancer cell proliferation or tumor suppression. Additionally, lncRNAs regulate immune responses which play a role in immunotherapy. Mechanisms of lncRNAs in CRC via JAK/STAT regulation mainly include cell proliferation, invasion, metastasis, apoptosis, adhesion, and control of inflammation. More profound findings are warranted to specifically target the lncRNAs in terms of activation or suppression in hindering CRC cell proliferation. Here, to understand the lncRNA cross-talk in CRC through the JAK/STAT signaling pathway, we collected the related in vitro and in vivo data. Future insights may pave the way for the development of novel diagnostic tools, therapeutic interventions, and personalized treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hadeel A. Omear
- College of Science, University of Tikrit University, Tikrit, Iraq
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Farzaneh Darbeheshti
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kohansal
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
8
|
Lee J, Sternberg H, Bignone PA, Murai J, Malik NN, West MD, Larocca D. Clonal and Scalable Endothelial Progenitor Cell Lines from Human Pluripotent Stem Cells. Biomedicines 2023; 11:2777. [PMID: 37893151 PMCID: PMC10604251 DOI: 10.3390/biomedicines11102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can be used as a renewable source of endothelial cells for treating cardiovascular disease and other ischemic conditions. Here, we present the derivation and characterization of a panel of distinct clonal embryonic endothelial progenitor cells (eEPCs) lines that were differentiated from human embryonic stem cells (hESCs). The hESC line, ESI-017, was first partially differentiated to produce candidate cultures from which eEPCs were cloned. Endothelial cell identity was assessed by transcriptomic analysis, cell surface marker expression, immunocytochemical marker analysis, and functional analysis of cells and exosomes using vascular network forming assays. The transcriptome of the eEPC lines was compared to various adult endothelial lines as well as various non-endothelial cells including both adult and embryonic origins. This resulted in a variety of distinct cell lines with functional properties of endothelial cells and strong transcriptomic similarity to adult endothelial primary cell lines. The eEPC lines, however, were distinguished from adult endothelium by their novel pattern of embryonic gene expression. We demonstrated eEPC line scalability of up to 80 population doublings (pd) and stable long-term expansion of over 50 pd with stable angiogenic properties at late passage. Taken together, these data support the finding that hESC-derived clonal eEPC lines are a potential source of scalable therapeutic cells and cell products for treating cardiovascular disease. These eEPC lines offer a highly promising resource for the development of further preclinical studies aimed at therapeutic interventions.
Collapse
Affiliation(s)
- Jieun Lee
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - Paola A. Bignone
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - James Murai
- Advanced Cell Technology, Alameda, CA 94502, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | | | - Dana Larocca
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| |
Collapse
|
9
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Kukreti N, Gupta S, Sulakhiya K, Singh SK, Dua K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol Res Pract 2023; 249:154773. [PMID: 37647827 DOI: 10.1016/j.prp.2023.154773] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that involves the accumulation of lipids and immune cells in the arterial wall. NF-kB signaling is a key regulator of inflammation and is known to play a critical role in atherosclerosis. Recent studies have shown that lncRNAs can regulate NF-kB and contribute to the development and progression of atherosclerosis. Preliminary findings reveal significant alterations in the expression of specific lncRNAs in atherosclerotic lesions compared to healthy arterial tissue. Experimental evidence suggests that these dysregulated lncRNAs can influence the NF-kB pathway. By unravelling the crosstalk between lncRNAs and NF-kB signaling, this review aims to enhance our understanding of the molecular mechanisms underlying atherosclerosis. Identifying novel therapeutic targets and diagnostic markers may lead to developing interventions and management strategies for this prevalent cardiovascular disease. This review summarizes the current knowledge on the role of lncRNAs in NF-kB signaling in atherosclerosis and highlights their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
10
|
Bink DI, Pauli J, Maegdefessel L, Boon RA. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis 2023; 374:99-106. [PMID: 37059656 DOI: 10.1016/j.atherosclerosis.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis and numerous other cardiovascular diseases develop in an age-dependent manner. The endothelial cells that line the vessel walls play an important role in the development of atherosclerosis. Non-coding RNA like microRNAs and long non-coding RNAs are known to play an important role in endothelial function and are implicated in the disease progression. Here, we summarize several microRNAs and long non-coding RNAs that are known to have an altered expression with endothelial aging and discuss their role in endothelial cell function and senescence. These processes contribute to aging-induced atherosclerosis development and by targeting the non-coding RNAs controlling endothelial cell function and senescence, atherosclerosis can potentially be attenuated.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reinier A Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany; German Centre for Cardiovascular Research DZHK, Partner site Frankfurt Rhein/Main, Frankfurt Am Main, Germany.
| |
Collapse
|
11
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
12
|
Gao B, Wang X, Wang M, Liu W, Li Y, Xia S, Zhang W, Feng Y. "Intercellular Mass Transport" Mimic Enables ASO Entry Completely into the Cell Nucleus for Enhanced Ischemia Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12777-12786. [PMID: 36854063 DOI: 10.1021/acsami.2c21691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, the development of a new therapeutic technology is focused on antisense oligonucleotides (ASOs), where ASOs are used to complementarily pair with DNA, messenger RNA, or long noncoding RNA (lncRNA) to regulate the cell behavior by inhibiting the target gene expression. However, the targeted regulation toward nuclear genes still faces great challenges in ASO delivery for clinical applications, i.e., two essential criteria (high nuclear entry and delivery vehicle safety/simplification) generally compromise each other and are not simultaneously satisfactory. Herein, for the first time, inspired by "intercellular-mass-transport", we report an important discovery that the cell membrane of endothelial cells (ECs) serving as the biointerface enables ASOs to rapidly and completely enter the EC nucleus. Thereby, we innovatively fabricate a nanosystem only by sequential self-assembly of natural/off-the-shelf biomaterials to well overcome the above-mentioned contradiction. The efficacy is strikingly superior to that of the previous delivery vehicles. Furthermore, our technology is applied to successfully silence lncRNA MEG3 in the EC nucleus, significantly augmenting EC morphogenesis. More importantly, this nanosystem is applicable for in vivo intramuscular injection to enhance the therapeutic outcome in a critical limb ischemia mouse model. This work brings a new hope for the technological innovation of ASO nuclear delivery and opens a new avenue to explore natural/off-the-shelf materials for cargo delivery into subcellular compartments.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Meiyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
13
|
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. BIOLOGY 2022; 12:24. [PMID: 36671717 PMCID: PMC9855655 DOI: 10.3390/biology12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Denis Efovi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
14
|
Wahba AS, Ibrahim ME, Mesbah NM, Saleh SM, Abo-Elmatty DM, Mehanna ET. Long non-coding RNA MEG3 and its genetic variant rs941576 are associated with rheumatoid arthritis pathogenesis in Egyptian patients. Arch Physiol Biochem 2022; 128:1571-1578. [PMID: 32608280 DOI: 10.1080/13813455.2020.1784951] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a joint destructive disorder. This study aimed to assess lncRNA MEG3 expression and its variant rs941576 in Egyptian patients with RA. SUBJECTS AND METHODS 100 RA patients and 100 healthy individuals were enrolled in the study. Quantitative PCR was used for expression analysis and allelic discrimination technology for genotyping. RESULTS LncRNA MEG3 was down-regulated in RA patients and negatively associated with RA clinical features and HIF-1α and VEGF serum levels. On the contrary, it was positively associated with BAX serum levels in RA patients. The major A allele of rs941576 variant was associated with RA patients (p = .0003). AA genotype showed a significant decrease in lncRNA MEG3 expression and BAX and increase in HIF-1α and VEGF. CONCLUSIONS Serum lncRNA MEG3 expression showed negative association with increased susceptibility to RA. MEG3 gene rs941576 (A/G) polymorphism was associated with increased severity of RA in the current population.
Collapse
Affiliation(s)
- Alaa S Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Maha E Ibrahim
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samy M Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
16
|
LncRNA Meg3 promotes oxygen and glucose deprivation injury by decreasing angiogenesis in hBMECs by targeting the miR‑122‑5p/NDRG3 axis. Exp Ther Med 2022; 24:622. [PMID: 36160904 PMCID: PMC9468836 DOI: 10.3892/etm.2022.11559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Oxygen-glucose deprivation (OGD) is widely used as an in vitro model for stroke. The present study aimed to explore the mechanisms of action of long non-coding RNA (lncRNA) maternally expressed gene 3 (Meg3) in angiogenesis following OGD. The human brain microvascular endothelial cell line, hCMEC/D3, was used to establish the OGD model. lncRNA Meg3 was highly expressed in hCMEC/D3 cells subjected to OGD. Furthermore, it was found that the overexpression of lncRNA Meg3 decreased the proliferation, migration and angiogenesis of hCMEC/D3 cells subjected to OGD, and increased cell apoptosis. Meg3 silencing exerted the opposite effects. Subsequently, lncRNA Meg3 increased the expression of NDRG family member 3 (NDRG3) by directly binding to miR-122-5p. The overexpression of miR-122-5p and the knockdown of NDRG3 reversed the inhibitory effects of Meg3 overexpression on the proliferation, migration and angiogenesis of hCMEC/D3 cells subjected to OGD, as well as the promoting effects of Meg3 overexpression on cell apoptosis. The present study demonstrated that lncRNA Meg3 functions as a competing endogenous RNA by targeting the miR-122-5p/NDRG3 axis in regulating OGD injury.
Collapse
|
17
|
Shen T, Wu Y, Cai W, Jin H, Yu D, Yang Q, Zhu W, Yu J. LncRNA Meg3 knockdown reduces corneal neovascularization and VEGF-induced vascular endothelial angiogenesis via SDF-1/CXCR4 and Smad2/3 pathway. Exp Eye Res 2022; 222:109166. [PMID: 35820465 DOI: 10.1016/j.exer.2022.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
The crucial effect of vascular endothelial growth factor (VEGF)-induced vascular angiogenesis has been well known in corneal neovascularization (CNV). This research aimed to determine the underlying value and mechanism of Meg3 on CNV in vivo and in vitro. In an alkali-burned mouse model, length and area of new vessels were increased along with thinning of corneal epithelium, accompanied by the overexpression of Meg3. Notably, subconjunctival injection of shMeg3 suppressed the degree of injury in cornea, causing expression of the angiogenesis markers--VEGF-A and CD31 decreased. In VEGF-induced human umbilical vein endothelial cells (HUVECs), knockdown of Meg3 antagonized the enhancement of viability, proliferation, wound healing ability and angiogenesis by VEGF. The proteins expression of VEGF-A, CD31, SDF-1/CXCR4 as well as phosphoraylation-Smad2/3 pathways, which were related to angiogenesis, were reduced with Meg3 deficiency. Overall, knockdown of Meg3 alleviated formation of neovascularization in alkali-burned corneas and reduced VEGF-induced angiogenesis by inhibiting SDF-1/CXCR4 and Smad2/3 signaling in vitro.
Collapse
Affiliation(s)
- Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Qian Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China; Anhui Medical University, Hefei, China
| | - Wei Zhu
- Department of Ophthalmology, Changshu NO. 2 People's Hospital, Changshu, China.
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China; Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| |
Collapse
|
18
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Rosano S, Parab S, Noghero A, Corà D, Bussolino F. Long Non-Coding RNA LINC02802 Regulates In Vitro Sprouting Angiogenesis by Sponging microRNA-486-5p. Int J Mol Sci 2022; 23:ijms23031653. [PMID: 35163581 PMCID: PMC8836176 DOI: 10.3390/ijms23031653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
In the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has not been described so far. Here, by exploiting the transcriptomic profile of VEGF-A-activated endothelial cells in a consolidate three-dimensional culture system, we identified a list of lncRNAs whose expression was modified during the sprouting process. By crossing the lncRNAs with a higher expression level and the highest fold change value between unstimulated and VEGF-A-stimulated endothelial cells, we identified the unknown LINC02802 as the best candidate to take part in sprouting regulation. LINC02802 was upregulated after VEGF-A stimulation and its knockdown resulted in a significant reduction in sprouting activity. Mechanistically, we demonstrated that LINC02802 acts as a ceRNA in the post-transcriptional regulation of Mastermind-like-3 (MAML3) gene expression through a competitive binding with miR-486-5p. Taken together, these results suggest that LINC02802 plays a critical role in preventing the miR-486-5p anti-angiogenic effect and that this inhibitory effect results from the reduction in MAML3 expression.
Collapse
Affiliation(s)
- Stefania Rosano
- Department of Oncology, University of Torino, 10124 Orbassano, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
- Correspondence:
| | - Sushant Parab
- Department of Oncology, University of Torino, 10124 Orbassano, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA;
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, 28100 Novara, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10124 Orbassano, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| |
Collapse
|
20
|
Jiang Y, Zhu H, Chen H, Yu YC, Xu YT, Liu F, He SN, Sagnelli M, Zhu YM, Luo Q. Elevated Expression of lncRNA MEG3 Induces Endothelial Dysfunction on HUVECs of IVF Born Offspring via Epigenetic Regulation. Front Cardiovasc Med 2022; 8:717729. [PMID: 35047570 PMCID: PMC8761900 DOI: 10.3389/fcvm.2021.717729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, the potential molecular mechanisms for such long-term outcomes are still unknown. Here, we found that systolic blood pressure was a little higher in IVF born offspring at 2 years old compared to those born after being naturally conceived. Besides, the expression level of maternally expressed gene 3 (MEG3) was higher in human umbilical vein endothelial cells (HUVECs) from IVF offspring than that in spontaneously born offspring. Pearson correlation test showed that MEG3 relative expression is significantly related to the children's blood pressure (Coefficient = 0.429, P = 0.0262). Furthermore, we found decreased expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) along with elevated expression of endothelial-1(ET1) in HUVECs from IVF offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. Correlation analysis showed MEG3 expression highly correlated with ET1 and Nitrate concentration. With pyrosequencing technology, we found that elevated expression of MEG3 was the result of hypomethylation of the MEG3 promoter. Therefore, our results provide a potential mechanism addressing the high-risk of hypertension in IVF offspring via MEG3 epigenetic regulation.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Obstetrics, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Ji Ai Genetics and IVF Institute, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hong Chen
- Regional Community Health Service Center of Minzhi Sub-district, Shenzhen, China
| | - Yi-Chen Yu
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ye-Tao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Liu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Sai-Nan He
- Department of Obstetrics, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Matthew Sagnelli
- University of Connecticut School of Medicine, Farmington, CT, United States
| | - Yi-Min Zhu
- Department of Obstetrics, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Qiong Luo
- Department of Obstetrics, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Kremer V, Bink DI, Stanicek L, van Ingen E, Gimbel T, Hilderink S, Günther S, Nossent AY, Boon RA. MEG8 regulates Tissue Factor Pathway Inhibitor 2 (TFPI2) expression in the endothelium. Sci Rep 2022; 12:843. [PMID: 35039572 PMCID: PMC8763909 DOI: 10.1038/s41598-022-04812-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
A large portion of the genome is transcribed into non-coding RNA, which does not encode protein. Many long non-coding RNAs (lncRNAs) have been shown to be involved in important regulatory processes such as genomic imprinting and chromatin modification. The 14q32 locus contains many non-coding RNAs such as Maternally Expressed Gene 8 (MEG8). We observed an induction of this gene in ischemic heart disease. We investigated the role of MEG8 specifically in endothelial function as well as the underlying mechanism. We hypothesized that MEG8 plays an important role in cardiovascular disease via epigenetic regulation of gene expression. Experiments were performed in human umbilical vein endothelial cells (HUVECs). In vitro silencing of MEG8 resulted in impaired angiogenic sprouting. More specifically, total sprout length was reduced as was proliferation, while migration was unaffected. We performed RNA sequencing to assess changes in gene expression after loss of MEG8. The most profoundly regulated gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), was fivefold increased following MEG8 silencing. TFPI2 has previously been described as an inhibitor of angiogenesis. Mechanistically, MEG8 silencing resulted in a reduction of the inhibitory histone modification H3K27me3 at the TFPI2 promoter. Interestingly, additional silencing of TFPI2 partially restored angiogenic sprouting capacity but did not affect proliferation of MEG8 silenced cells. In conclusion, silencing of MEG8 impairs endothelial function, suggesting a potential beneficial role in maintaining cell viability. Our study highlights the MEG8/TFPI2 axis as potential therapeutic approach to improve angiogenesis following ischemia.
Collapse
Affiliation(s)
- Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.,Department of Medical Biochemistry, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Diewertje I Bink
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Laura Stanicek
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Eva van Ingen
- Department of Surgery, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Theresa Gimbel
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Sarah Hilderink
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan Günther
- German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany.,Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Anne Yaël Nossent
- Department of Surgery, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Departments of Laboratory Medicine and Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany. .,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Naz F, Tariq I, Ali S, Somaida A, Preis E, Bakowsky U. The Role of Long Non-Coding RNAs (lncRNAs) in Female Oriented Cancers. Cancers (Basel) 2021; 13:6102. [PMID: 34885213 PMCID: PMC8656502 DOI: 10.3390/cancers13236102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in molecular biology have discovered the mysterious role of long non-coding RNAs (lncRNAs) as potential biomarkers for cancer diagnosis and targets for advanced cancer therapy. Studies have shown that lncRNAs take part in the incidence and development of cancers in humans. However, previously they were considered as mere RNA noise or transcription byproducts lacking any biological function. In this article, we present a summary of the progress on ascertaining the biological functions of five lncRNAs (HOTAIR, NEAT1, H19, MALAT1, and MEG3) in female-oriented cancers, including breast and gynecological cancers, with the perspective of carcinogenesis, cancer proliferation, and metastasis. We provide the current state of knowledge from the past five years of the literature to discuss the clinical importance of such lncRNAs as therapeutic targets or early diagnostic biomarkers. We reviewed the consequences, either oncogenic or tumor-suppressing features, of their aberrant expression in female-oriented cancers. We tried to explain the established mechanism by which they regulate cancer proliferation and metastasis by competing with miRNAs and other mechanisms involved via regulating genes and signaling pathways. In addition, we revealed the association between stated lncRNAs and chemo-resistance or radio-resistance and their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Imran Tariq
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
- Angström Laboratory, Department of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Ahmed Somaida
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| |
Collapse
|
24
|
Di Y, Wang Y, Wang YX, Wang X, Ma Y, Nie QZ. Maternally expressed gene 3 regulates retinal neovascularization in retinopathy of prematurity. Neural Regen Res 2021; 17:1364-1368. [PMID: 34782583 PMCID: PMC8643049 DOI: 10.4103/1673-5374.327358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases, including retinopathy of prematurity. The maternally expressed gene 3 (MEG3) has been demonstrated to have an inhibitory effect on diabetic retinopathy. In this study, we investigated the role of MEG3 overexpression in oxygen-induced retinopathy in mice. The results showed that MEG3 overexpression effectively inhibited the production of retinal neovascularization in oxygen-induced retinopathy mice. It acts by down-regulating the expression of phosphoinositide 3-kinase, serine/threonine kinase, and vascular endothelial growth factor and pro-inflammatory factors. MEG3 overexpression lentivirus has a future as a new method for the clinical treatment of retinopathy of prematurity. The animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue-Xia Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuan Ma
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing-Zhu Nie
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
25
|
Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021; 145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are the novel class of transcripts involved in transcriptional, post-transcriptional, translational, and post-translational regulation of physiology and the pathology of diseases. Studies have evidenced that the impairment of endothelium is a critical event in the pathogenesis of atherosclerosis and its complications. Endothelial dysfunction is characterized by an imbalance in vasodilation and vasoconstriction, oxidative stress, proinflammatory factors, and nitric oxide bioavailability. Disruption of the endothelial barrier permeability, the first step in developing atherosclerotic lesions is a consequence of endothelial dysfunction. Though several factors interfere with the normal functioning of the endothelium, intrinsic epigenetic mechanisms governing endothelial function are regulated by lncRNAs and perturbations contribute to the pathogenesis of the disease. This review comprehensively addresses the biogenesis of lncRNA and molecular mechanisms underlying and regulation in endothelial function. An insight correlating lncRNAs and endothelial dysfunction-associated diseases can positively impact the development of novel biomarkers and therapeutic targets in endothelial dysfunction-associated diseases and treatment strategies.
Collapse
|
26
|
Xia F, Xu Y, Zhang X, Lyu J, Zhao P. Competing endogenous RNA network associated with oxygen-induced retinopathy: Expression of the network and identification of the MALAT1/miR-124-3p/EGR1 regulatory axis. Exp Cell Res 2021; 408:112783. [PMID: 34469714 DOI: 10.1016/j.yexcr.2021.112783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Retinopathy of prematurity (ROP) is a severe retinal dysfunction in prematurely born babies. The relationship between non-coding RNAs and retinopathy of prematurity (ROP) remain unclear. Microarray analysis of lncRNAs, miRNAs, and mRNAs was conducted in a mouse model of ROP. A competing endogenous RNA (ceRNA) network was constructed. The relationship among MALAT1, miR-124-3p, and Early growth response protein 1 (EGR1) was assessed in hypoxia-induced primary human umbilical vein endothelial cells (HUVECs) and ROP mouse model. In the study, we found 2252 lncRNAs, 1239 mRNAs, and 36 miRNAs were differentially regulated. ceRNA network consisting of 21 lncRNAs, 10 miRNAs, and 19 mRNAs was established. Of the most down-regulated miRNAs, miR-124-3p was selected for additional study. miR-124-3p ceased the migration and proliferation of primary HUVECs in hypoxic conditions, and directly suppressed EGR1. Additionally, MALAT1 directly sponged miR-124-3p. Knockdown of MALAT1 decreased EGR1 expression and inhibited the migration and proliferation of primary HUVECs in hypoxia. Furthermore, these changes were rescued by depletion of miR-124-3p. In vivo, intravitreal injection of miR-124-3p, shMALAT1 decreased EGR1 expression and markedly suppressed retinal neovascularization in OIR models. Intravitreal injection of shMALAT1 and miR-124-3p antagomir at the same time can promote retinal neovascularization, which reversed the suppression of retinal neovascularization functioned by shMALAT1. In conclusion, the expression profiles of lncRNAs and miRNAs and the ceRNA network in a mouse model of ROP may be indicative of the underlying mechanisms of retinal angiogenesis and neural activity. The MALAT1/miR-124-3p/EGR1 regulatory axis is partly responsible for retinal neovascularization, which may provide a novel theoretical basis for the pathogenesis of ROP.
Collapse
Affiliation(s)
- Fengjie Xia
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
27
|
Chen C, Huang Y, Xia P, Zhang F, Li L, Wang E, Guo Q, Ye Z. Long noncoding RNA Meg3 mediates ferroptosis induced by oxygen and glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial cells, through modulating the p53/GPX4 axis. Eur J Histochem 2021; 65:3224. [PMID: 34587716 PMCID: PMC8490947 DOI: 10.4081/ejh.2021.3224] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes are exposed to a higher risk of perioperative stroke than non-diabetics mainly due to persistent hyperglycemia. LncRNA Meg3 has been considered as an important mediator in regulating ischemic stroke. However, the functional and regulatory roles of Meg3 in diabetic brain ischemic injury remain unclear. In this study, rat brain microvascular endothelial cells (RBMVECs) were exposed to 6 h of oxygen and glucose deprivation (OGD), and subsequent reperfusion via incubating cells with glucose of various high concentrations for 24 h to imitate in vitro diabetic brain ischemic injury. It was shown that the marker events of ferroptosis and increased Meg3 expression occurred after the injury induced by OGD combined with hyperglycemia. However, all ferroptotic events were reversed with the treatment of Meg3-siRNA. Moreover, in this in vitro model, p53 was also characterized as a downstream target of Meg3. Furthermore, p53 knockdown protected RBMVECs against OGD + hyperglycemic reperfusion-induced ferroptosis, while the overexpression of p53 exerted opposite effects, implying that p53 served as a positive regulator of ferroptosis. Additionally, the overexpression or knockdown of p53 significantly modulated GPX4 expression in RBMVECs exposed to the injury induced by OGD combined with hyperglycemic treatment. Furthermore, GPX4 expression was suppressed again after the reintroduction of p53 into cells silenced by Meg3. Finally, chromatin immunoprecipitation assay uncovered that p53 was bound to GPX4 promoter. Altogether, these data revealed that, by modulating GPX4 transcription and expression, the Meg3-p53 signaling pathway mediated the ferroptosis of RBMVECs upon injury induced by OGD combined with hyperglycemic reperfusion.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan Province.
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan Province.
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| |
Collapse
|
28
|
Long Non-Coding RNA Regulation of Epigenetics in Vascular Cells. Noncoding RNA 2021; 7:ncrna7040062. [PMID: 34698214 PMCID: PMC8544676 DOI: 10.3390/ncrna7040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
The vascular endothelium comprises the interface between the circulation and the vessel wall and, as such, is under the dynamic regulation of vascular signalling, nutrients, and hypoxia. Understanding the molecular drivers behind endothelial cell (EC) and vascular smooth muscle cell (VSMC) function and dysfunction remains a pivotal task for further clinical progress in tackling vascular disease. A newly emerging era in vascular biology with landmark deep sequencing approaches has provided us with the means to profile diverse layers of transcriptional regulation at a single cell, chromatin, and epigenetic level. This review describes the roles of major vascular long non-coding RNA (lncRNAs) in the epigenetic regulation of EC and VSMC function and discusses the recent progress in their discovery, detection, and functional characterisation. We summarise new findings regarding lncRNA-mediated epigenetic mechanisms—often regulated by hypoxia—within the vascular endothelium and smooth muscle to control vascular homeostasis in health and disease. Furthermore, we outline novel molecular techniques being used in the field to delineate the lncRNA subcellular localisation and interaction with proteins to unravel their biological roles in the epigenetic regulation of vascular genes.
Collapse
|
29
|
Subramaniam N, Nair R, Marsden PA. Epigenetic Regulation of the Vascular Endothelium by Angiogenic LncRNAs. Front Genet 2021; 12:668313. [PMID: 34512715 PMCID: PMC8427604 DOI: 10.3389/fgene.2021.668313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The functional properties of the vascular endothelium are diverse and heterogeneous between vascular beds. This is especially evident when new blood vessels develop from a pre-existing closed cardiovascular system, a process termed angiogenesis. Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse therapeutics target proteins involved in coordinating angiogenesis with varying degrees of efficacy. It is of great interest that recent work on non-coding RNAs, especially long non-coding RNAs (lncRNAs), indicates that they are also important regulators of the gene expression paradigms that underpin this cellular cascade. The protean effects of lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs enriched in the nucleus can act as epigenetic modifiers of gene expression in the vascular endothelium. Of great interest to genetic disease, they are undergoing rapid evolution and show extensive inter- and intra-species heterogeneity. In this review, we describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Ranju Nair
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Philip A. Marsden
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Arcucci V, Stacker SA, Achen MG. Control of Gene Expression by Exosome-Derived Non-Coding RNAs in Cancer Angiogenesis and Lymphangiogenesis. Biomolecules 2021; 11:249. [PMID: 33572413 PMCID: PMC7916238 DOI: 10.3390/biom11020249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract: Tumour angiogenesis and lymphangiogenesis are hallmarks of cancer and have been associated with tumour progression, tumour metastasis and poor patient prognosis. Many factors regulate angiogenesis and lymphangiogenesis in cancer including non-coding RNAs which are a category of RNAs that do not encode proteins and have important regulatory functions at transcriptional and post-transcriptional levels. Non-coding RNAs can be encapsulated in extracellular vesicles called exosomes which are secreted by tumour cells or other cells in the tumour microenvironment and can then be taken up by the endothelial cells of blood vessels and lymphatic vessels. The "delivery" of these non-coding RNAs to endothelial cells in tumours can facilitate tumour angiogenesis and lymphangiogenesis. Here we review recent findings about exosomal non-coding RNAs, specifically microRNAs and long non-coding RNAs, which regulate tumour angiogenesis and lymphangiogenesis in cancer. We then focus on the potential use of these molecules as cancer biomarkers and opportunities for exploiting ncRNAs for the treatment of cancer.
Collapse
Affiliation(s)
- Valeria Arcucci
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne VIC 3000, Australia; (V.A.); (S.A.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3010, Australia
| | - Steven A. Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne VIC 3000, Australia; (V.A.); (S.A.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville VIC 3050, Australia
| | - Marc G. Achen
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy VIC 3065, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy VIC 3065, Australia
| |
Collapse
|
31
|
Gan L, Liao S, Xing Y, Deng S. The Regulatory Functions of lncRNAs on Angiogenesis Following Ischemic Stroke. Front Mol Neurosci 2021; 13:613976. [PMID: 33613191 PMCID: PMC7890233 DOI: 10.3389/fnmol.2020.613976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. It is a multi-factorial disease involving multiple factors, and gene dysregulation is considered as the major molecular mechanisms underlying disease progression. Angiogenesis can promote collateral circulation, which helps the restoration of blood supply in the ischemic area and reduces ischemic necrosis following ischemic injury. Aberrant expression of long non-coding RNAs (lncRNAs) in ischemic stroke is associated with various biological functions of endothelial cells and serves essential roles on the angiogenesis of ischemic stroke. The key roles of lncRNAs on angiogenesis suggest their potential as novel therapeutic targets for future diagnosis and treatment. This review elucidates the detailed regulatory functions of lncRNAs on angiogenesis following ischemic stroke through numerous mechanisms, such as interaction with target microRNAs, downstream signaling pathways and target molecules.
Collapse
Affiliation(s)
- Li Gan
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xing
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shixiong Deng
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Wang S, Zheng B, Zhao H, Li Y, Zhang X, Wen J. Downregulation of lncRNA MIR181A2HG by high glucose impairs vascular endothelial cell proliferation and migration through the dysregulation of the miRNAs/AKT2 axis. Int J Mol Med 2021; 47:35. [PMID: 33537821 PMCID: PMC7891834 DOI: 10.3892/ijmm.2021.4868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 01/06/2023] Open
Abstract
Endothelial dysfunction and diabetic vascular disease induced by chronic hyperglycemia involve complex interactions among high glucose, long non-coding RNAs (lncRNAs), microRNAs (miRNAs or miRs) and the Ser/Thr kinase AKT. However, the molecular mechanisms under-lying the regulatory crosstalk between these have not yet been completely elucidated. Thus, the present study aimed to explore the molecular mechanisms whereby high glucose (HG)-induced lncRNA MIR181A2HG modulates human umbilical vein endothelial cell (HUVEC) proliferation and migration by regulating AKT2 expression. The persistent exposure of HUVECs to HG resulted in MIR181A2HG down-regulation and thus reduced its ability to sponge miR-6832-5p, miR-6842-5p and miR-8056, subsequently leading to an increase in miR-6832-5p, miR-6842-5p and miR-8056 levels. Mechanistically, miR-6832-5p, miR-6842-5p and miR-8056 were found to target the 3′UTR of AKT2 mRNA in HUVECs, and the increase in their levels led to a decreased expression of AKT2. Thus, this also led to the suppression of HUVEC proliferation and migration, and the formation of capillary-like structures. Moreover, the suppression of HUVEC proliferation and migration induced by MIR181A2HG downregulation was accompanied by changes in glucose metabolism. On the whole, the present study demonstrates that the downregulation of lncRNA MIR181A2HG by HG impairs HUVEC proliferation and migration by dysregulating the miRNA/AKT2 axis. The MIR181A2HG/miRNA/AKT2 regulatory axis may thus be a potential therapeutic target for HG-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yongjun Li
- Department of Clinical Laboratorial Examination, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. Chin
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jinkun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
33
|
Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:diagnostics11010145. [PMID: 33478141 PMCID: PMC7835902 DOI: 10.3390/diagnostics11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has opened a new paradigm to use ncRNAs as biomarkers to detect disease progression. Long non-coding RNAs (lncRNA) have garnered the most attention due to their specific cell-origin and their existence in biological fluids. Type 2 diabetes patients will develop cardiovascular disease (CVD) complications, and CVD remains the top risk factor for mortality. Understanding the lncRNA roles in T2D and CVD conditions will allow the future use of lncRNAs to detect CVD complications before the symptoms appear. This review aimed to discuss the roles of lncRNAs in T2D and CVD conditions and their diagnostic potential as molecular biomarkers for CVD complications in T2D.
Collapse
|
34
|
Ono K, Horie T, Baba O, Kimura M, Tsuji S, Rodriguez RR, Miyagawa S, Kimura T. Functional non-coding RNAs in vascular diseases. FEBS J 2020; 288:6315-6330. [PMID: 33340430 PMCID: PMC9292203 DOI: 10.1111/febs.15678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Recently, advances in genomic technology such as RNA sequencing and genome‐wide profiling have enabled the identification of considerable numbers of non‐coding RNAs (ncRNAs). MicroRNAs have been studied for decades, leading to the identification of those with disease‐causing and/or protective effects in vascular disease. Although other ncRNAs such as long ncRNAs have not been fully described yet, recent studies have indicated their important functions in the development of vascular diseases. Here, we summarize the current understanding of the mechanisms and functions of ncRNAs, focusing on microRNAs, circular RNAs and long ncRNAs in vascular diseases.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | - Sawa Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
35
|
LncRNA MEG3 control Mycobacterium Tuberculosis infection via controlled MiR-145-5p expression and modulation of macrophages proliferation. Microb Pathog 2020; 149:104550. [DOI: 10.1016/j.micpath.2020.104550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
|
36
|
Sun JG, Li XB, Yin RH, Li XF. lncRNA VIM‑AS1 promotes cell proliferation, metastasis and epithelial‑mesenchymal transition by activating the Wnt/β‑catenin pathway in gastric cancer. Mol Med Rep 2020; 22:4567-4578. [PMID: 33173977 PMCID: PMC7646824 DOI: 10.3892/mmr.2020.11577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to explore the biological functions and molecular mechanisms of the long non-coding RNA VIM antisense RNA 1 (VIM-AS1) in gastric cancer (GC). The expression of VIM-AS1 was analyzed in tissues from patients with GC and GC cell lines by reverse transcription-quantitative (RT-q)PCR. The relationship between VIM-AS1 expression and overall survival time of patients with GC was also assessed. To determine the biological functions of VIM-AS1, Cell Counting Kit-8 assay, colony formation assay, flow cytometry, wound healing assay and Transwell assay were employed. The targeting relationship among VIM-AS1, microRNA (miR)-8052 and frizzled 1 (FZD1) was verified by the dual luciferase reporter gene assay. The underlying molecular mechanism of VIM-AS1 on GC was determined by RT-qPCR and western blotting. In addition, tumor formation was detected in nude mice. The results of the present study demonstrated that VIM-AS1 was highly expressed in GC tissues and cells. In addition, VIM-AS1 expression was demonstrated to be closely related to the prognosis of patients with GC. Notably, silencing VIM-AS1 inhibited the proliferation, migration and invasion, and enhanced apoptosis of AGS and HGC-27 cells. Silencing VIM-AS1 significantly increased the protein expression levels of cleaved caspase-3, Bax and E-cadherin, but decreased the protein expression levels of Bcl-2, N-cadherin, vimentin, matrix metalloproteinase (MMP)-2, MMP-9, β-catenin, cyclin D1, C-myc and FZD1. Additionally, silencing VIM-AS1 inhibited tumor growth in nude mice. Cumulatively, the present study demonstrated that VIM-AS1 may promote cell proliferation, migration, invasion and epithelial-mesenchymal transition by regulating FDZ1 and activating the Wnt/β-catenin pathway in GC.
Collapse
Affiliation(s)
- Jin-Gui Sun
- Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Xiao-Bo Li
- Department of Gastroenterology, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Rui-Hong Yin
- Department of Gastroenterology, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Xiao-Feng Li
- Yulin Cancer Diagnosis and Treatment Center, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
37
|
Chatterjee S, Bhattcharjee D, Misra S, Saha A, Bhattacharyya NP, Ghosh A. Increase in MEG3, MALAT1, NEAT1 significantly predicts the clinical parameters in patients with rheumatoid arthritis. Per Med 2020; 17:445-457. [PMID: 33026292 DOI: 10.2217/pme-2020-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aim: This study investigated deregulation of lncRNAs MEG3, MALAT1, NEAT1 and their associations with clinical parameters in rheumatoid arthritis (RA). Materials & methods: LncRNAs MALAT1, MEG3, NEAT1 were quantified from peripheral blood mono-nuclear cells (PBMCs) and plasma of 82 RA patients with 15 matched controls and from knee fluid of 24 RA patients with ten osteoarthritis controls. Multivariate analyses were performed among lncRNAs and clinical parameters of RA. Results: MALAT1, MEG3, NEAT1 were increased in PBMCs, plasma, synovial fluid (p < 0.05) of RA patients. Significant correlations were observed for MEG3 with TJC (r = 0.29), NEAT1 with TJC (r = 0.49), swollen joint count (r = 0.20), DAS28-CRP (r = 0.29). Multivariate analysis revealed that 48.5% of TJC and 31.5% of swollen joint count could be predicted by lncRNAs. Conclusion: The findings suggested that the lncRNAs might be explored as probable markers in monitoring disease activity.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Clinical Immunology & Rheumatology, Institute of Postgraduate Medical Education & Research, Kolkata, West Bengal
| | - Dipanjan Bhattcharjee
- Department of Clinical Immunology & Rheumatology, Institute of Postgraduate Medical Education & Research, Kolkata, West Bengal
| | - Sanchaita Misra
- Department of Clinical Immunology & Rheumatology, Institute of Postgraduate Medical Education & Research, Kolkata, West Bengal
| | - Ayindrila Saha
- Department of Clinical Immunology & Rheumatology, Institute of Postgraduate Medical Education & Research, Kolkata, West Bengal
| | - Nitai Pada Bhattacharyya
- (Retired professor) Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal
| | - Alakendu Ghosh
- Department of Clinical Immunology & Rheumatology, Institute of Postgraduate Medical Education & Research, Kolkata, West Bengal
| |
Collapse
|
38
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
40
|
Schacker M, Cheng YH, Eckersley-Maslin M, Snaith RM, Colledge WH. Hypermethylation and reduced expression of Gtl2, Rian and Mirg at the Dlk1-Dio3 imprinted locus as a marker for poor developmental potential of mouse embryonic stem cells. Stem Cell Res 2020; 48:101931. [PMID: 32822966 PMCID: PMC7567021 DOI: 10.1016/j.scr.2020.101931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Reduced expression of Gtl2, Rian and Mirg in ES cells compromised survival of chimaeric fetuses. Reduced expression of Gtl2, Rian and Mirg was associated with hypermethylation. Compromised ES cells can be identified and eliminated from experiments to reduce animal use.
Mouse embryonic stem cells (ESCs) have played a crucial role in biomedical research where they can be used to elucidate gene function through the generation of genetically modified mice. A critical requirement for the success of this technology is the ability of ESCs to contribute to viable chimaeras with germ-line transmission of the genetically modified allele. We have identified several ESC clones that cause embryonic death of chimaeras at mid to late gestation stages. These clones had a normal karyotype, were pathogen free and their in vitro differentiation potential was not compromised. Chimaeric embryos developed normally up to E13.5 but showed a significant decrease in embryo survival by E17.5 with frequent haemorrhaging. We investigated the relationship between the ESCs transcriptional and epigenomic state and their ability to contribute to viable chimaeras. RNA sequencing identified four genes (Gtl2, Rian, Mirg and Rtl1as) located in the Dlk1-Dio3 imprinted locus that were expressed at lower levels in the compromised ESC clones and this was confirmed by qRT-PCR. Bisulphite sequencing analysis showed significant hypermethylation at the Dlk1-Dio3 imprinted locus with no consistent differences in methylation patterns at other imprinted loci. Treatment of the compromised ESCs with 5-azacytidine reactivated stable expression of Gtl2 and rescued the lethal phenotype but only gave low level chimaeras.
Collapse
Affiliation(s)
- Maria Schacker
- Reproductive Physiology Group, Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Yi-Han Cheng
- Medimmune, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| | | | | | - William Henry Colledge
- Reproductive Physiology Group, Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
41
|
Sun H, Peng G, Wu H, Liu M, Mao G, Ning X, Yang H, Deng J. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 2020; 13:15-21. [PMID: 32494359 PMCID: PMC7257936 DOI: 10.3892/br.2020.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Osteogenic differentiation originating from mesenchymal stem cells (MSCs) requires tight co-ordination of transcriptional factors, signaling pathways and biomechanical cues. Dysregulation of such reciprocal networks may influence the proliferation and apoptosis of MSCs and osteoblasts, thereby impairing bone metabolism and homeostasis. An increasing number of studies have shown that long non-coding (lnc)RNAs are involved in osteogenic differentiation and thus serve an important role in the initiation, development, and progression of bone diseases such as tumors, osteoarthritis and osteoporosis. It has been reported that the lncRNA, maternally expressed gene 3 (MEG3), regulates osteogenic differentiation of multiple MSCs and also acts as a critical mediator in the development of bone formation and associated diseases. In the present review, the proposed mechanisms underlying the roles of MEG3 in osteogenic differentiation and its potential effects on bone diseases are discussed. These discussions may help elucidate the roles of MEG3 in osteogenic differentiation and highlight potential biomarkers and therapeutic targets for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guoxuan Peng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hongbin Wu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guping Mao
- Department of Joint Surgery, Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin Deng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
42
|
Abstract
The advent of deep sequencing technologies led to the identification of a considerable amount of noncoding RNA transcripts, which are increasingly recognized for their functions in controlling cardiovascular diseases. MicroRNAs have already been studied for a decade, leading to the identification of several vasculoprotective and detrimental species, which might be considered for therapeutic targeting. Other noncoding RNAs such as circular RNAs, YRNAs, or long noncoding RNAs are currently gaining increasing attention, and first studies provide insights into their functions as mediators or antagonists of vascular diseases in vivo. The present review article will provide an overview of the different types of noncoding RNAs controlling the vasculature and focus on the developing field of long noncoding RNAs.
Collapse
Affiliation(s)
- Nicolas Jaé
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany.,Cardiopulmonary Institute (S.D.), Goethe University Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK) and Cardiopulmonary Institute (CPI), Partner Site Rhine-Main, Frankfurt (S.D.)
| |
Collapse
|
43
|
Jin KT, Yao JY, Fang XL, Di H, Ma YY. Roles of lncRNAs in cancer: Focusing on angiogenesis. Life Sci 2020; 252:117647. [PMID: 32275935 DOI: 10.1016/j.lfs.2020.117647] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
Approximately 98% of the human genome consists of non-coding sequences that are classified into two classes by size: small non-coding RNAs (≤200 nucleotides) and long non-coding RNAs (≥200 nucleotides). Long non-coding RNAs (lncRNAs) are involved in various cellular events and act as guides, signals, decoys, and dynamic scaffolds. Due to their oncogenic and tumor suppressive roles, lncRNAs are important in cancer development and growth. LncRNAs play their roles by modulating cancer hallmarks, including DNA damage, metastasis, immune escape, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis. Angiogenesis is vital for solid tumors which guarantees their growth beyond 2 mm3. Tumor angiogenesis is a complex process and is regulated through interaction between pro-angiogenic and anti-angiogenic factors within the tumor microenvironment. There are accumulating evidence that different lncRNAs regulate tumor angiogenesis. In this paper, we described the functions and mechanisms of lncRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, Zhejiang Province, PR China
| | - Jia-Yu Yao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Xing-Liang Fang
- Acupuncture and Tuina Clinic, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Hua Di
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing 312000, Zhejiang Province, PR China.
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
44
|
Involvement of lncRNAs and Macrophages: Potential Regulatory Link to Angiogenesis. J Immunol Res 2020; 2020:1704631. [PMID: 32190702 PMCID: PMC7066414 DOI: 10.1155/2020/1704631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are involved in angiogenesis, an essential process for organ growth and tissue repair, and could contribute to the pathogenesis of angiogenesis-related diseases such as malignant tumors and diabetic retinopathy. Recently, long noncoding RNAs (lncRNAs) have been proved to be important in cell differentiation, organismal development, and various diseases of pathological angiogenesis. Moreover, it has been indicated that numerous lncRNAs exhibit different functions in macrophage infiltration and polarization and regulate the secretion of inflammatory cytokines released by macrophages. Therefore, the focus of macrophage-related lncRNAs could be considered to be a potential method in therapeutic targeting angiogenesis-related diseases. This review mainly summarizes the roles played by lncRNAs which associated with macrophages in angiogenesis. The possible mechanisms of the regulatory link between lncRNAs and macrophages in various angiogenesis-related diseases were also discussed.
Collapse
|
45
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
46
|
Xu D, Liu T, He L, Han D, Ma Y, Du J. LncRNA MEG3 inhibits HMEC-1 cells growth, migration and tube formation via sponging miR-147. Biol Chem 2020; 401:601-615. [PMID: 31863691 DOI: 10.1515/hsz-2019-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been identified as a regulatory molecule in angiogenesis. The goal of this study was to illustrate how MEG3 affects the angiogenesis of vascular endothelial cells. Expression of MEG3, miR-147 and intracellular cell adhesion molecule-1 (ICAM-1) in human microvascular endothelial cell line (HMEC-1) was altered by transfection, then cell viability, apoptosis, migration, tube formation, as well as the correlation among MEG3, miR-147 and ICAM-1 were explored. MEG3 was down-regulated during tube formation of HMEC-1 cells. MEG3 expression suppressed cells viability, migration and tube formation, while it induced apoptosis. MEG3 could bind with miR-147 and repress miR-147 expression. MiR-147 induced ICAM-1 expression, and contained ICAM-1 target sequences. The anti-atherogenic actions of MEG3 were inhibited by miR-147, and the anti-atherogenic actions of miR-147 suppression were also inhibited when ICAM-1 was overexpressed. Further, ICAM-1 overexpression showed activated roles in Wnt/β-catenin and Jak/Stat signaling pathways. In low-density lipoprotein receptor (Ldlr)−/− mice, MEG3 overexpression reduced CD68+, CD3+ and ICAM-1 areas in lesions and increased collagen content. MEG3 inhibited HMEC-1 cell growth, migration and tube formation. The anti-atherogenic actions of MEG3 might be mediated via sponging miR-147, and thereby repressing the expression of ICAM-1.
Collapse
Affiliation(s)
- Dejun Xu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Tianji Liu
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Liu He
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Dongmei Han
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Ying Ma
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Jianshi Du
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| |
Collapse
|
47
|
|
48
|
Sweta S, Dudnakova T, Sudheer S, Baker AH, Bhushan R. Importance of Long Non-coding RNAs in the Development and Disease of Skeletal Muscle and Cardiovascular Lineages. Front Cell Dev Biol 2019; 7:228. [PMID: 31681761 PMCID: PMC6813187 DOI: 10.3389/fcell.2019.00228] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
The early mammalian embryo is characterized by the presence of three germ layers-the outer ectoderm, middle mesoderm and inner endoderm. The mesoderm is organized into paraxial, intermediate and lateral plate mesoderm. The musculature, vasculature and heart of the adult body are the major derivatives of mesoderm. Tracing back the developmental process to generate these specialized tissues has sparked much interest in the field of regenerative medicine focusing on generating specialized tissues to treat patients with degenerative diseases. Several Long Non-Coding RNAs (lncRNAs) have been identified as regulators of development, proliferation and differentiation of various tissues of mesodermal origin. A better understanding of lncRNAs that can regulate the development of these tissues will open potential avenues for their therapeutic utility and enhance our knowledge about disease progression and development. In this review, we aim to summarize the functions and mechanisms of lncRNAs regulating the early mesoderm differentiation, development and homeostasis of skeletal muscle and cardiovascular system with an emphasis on their therapeutic potential.
Collapse
Affiliation(s)
- Sweta Sweta
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Tatiana Dudnakova
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Smita Sudheer
- Department of Genomic Science, Central University of Kerala, Kasaragod, India
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Raghu Bhushan
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
49
|
Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I, Baker AH. Endothelial function and dysfunction in the cardiovascular system: the long non-coding road. Cardiovasc Res 2019; 115:1692-1704. [PMID: 31214683 PMCID: PMC6755355 DOI: 10.1093/cvr/cvz154] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Present throughout the vasculature, endothelial cells (ECs) are essential for blood vessel function and play a central role in the pathogenesis of diverse cardiovascular diseases. Understanding the intricate molecular determinants governing endothelial function and dysfunction is essential to develop novel clinical breakthroughs and improve knowledge. An increasing body of evidence demonstrates that long non-coding RNAs (lncRNAs) are active regulators of the endothelial transcriptome and function, providing emerging insights into core questions surrounding EC contributions to pathology, and perhaps the emergence of novel therapeutic opportunities. In this review, we discuss this class of non-coding transcripts and their role in endothelial biology during cardiovascular development, homeostasis, and disease, highlighting challenges during discovery and characterization and how these have been overcome to date. We further discuss the translational therapeutic implications and the challenges within the field, highlighting lncRNA that support endothelial phenotypes prevalent in cardiovascular disease.
Collapse
Affiliation(s)
- João P Monteiro
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Julie Rodor
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Axelle Caudrillier
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
50
|
Islam R, Lai C. A Brief Overview of lncRNAs in Endothelial Dysfunction-Associated Diseases: From Discovery to Characterization. EPIGENOMES 2019; 3:epigenomes3030020. [PMID: 34968230 PMCID: PMC8594677 DOI: 10.3390/epigenomes3030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of regulatory RNA molecules and they are involved in many biological processes and disease developments. Several unique features of lncRNAs have been identified, such as tissue-and/or cell-specific expression pattern, which suggest that they could be potential candidates for therapeutic and diagnostic applications. More recently, the scope of lncRNA studies has been extended to endothelial biology research. Many of lncRNAs were found to be critically involved in the regulation of endothelial function and its associated disease progression. An improved understanding of endothelial biology can thus facilitate the discovery of novel biomarkers and therapeutic targets for endothelial dysfunction-associated diseases, such as abnormal angiogenesis, hypertension, diabetes, and atherosclerosis. Nevertheless, the underlying mechanism of lncRNA remains undefined in previous published studies. Therefore, in this review, we aimed to discuss the current methodologies for discovering and investigating the functions of lncRNAs and, in particular, to address the functions of selected lncRNAs in endothelial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Rashidul Islam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Christopher Lai
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
- Correspondence: ; Tel.: +65-6592-1045
| |
Collapse
|