1
|
Han X, Li Y, Luo M, Zhen H, Frei S, Lu T. Biosurfactant-mediated transport of tetracycline antibiotics in saturated porous media: Combined effects of the chemical properties of contaminants and solution chemistry conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176681. [PMID: 39366576 DOI: 10.1016/j.scitotenv.2024.176681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The mobility of tetracycline antibiotics (TCs) in saturated aquifers is possibly affected by the presence of biosurfactants, which are widespread in the aquatic/soil environments. This study investigated the mobility characteristics of various tetracyclines-specifically tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC)-within quartz sand columns in the presence of rhamnolipid, a common biosurfactant. Exogenous rhamnolipid significantly inhibited the transport of the three TCs over the pH range of 5.0-9.0 (e.g., the mass of retained TC, OTC, and CTC increased from 32.6 %, 26.9 %, and 39.2 % (in the absence rhamnolipid) to 39.4 %, 38.9 %, and 51.7 % (in the presence of rhamnolipid), respectively). This observation could be attributed to the bridging effects of this biosurfactant. Specifically, the hydrophilic head of rhamnolipid molecules is likely associated with the surfaces of sand grains through surface complexation and/or hydrogen bonding interactions. Accordingly, the hydrophobic moieties of the deposited rhamnolipid molecules (i.e., the aliphatic chains) interact with the hydrophobic groups of TCs molecules via hydrophobic interactions. Interestingly, the extent of the inhibitory effect on CTC mobility was greater than that on OTC and TC, which was related to the different hydrophobic characteristics of the three antibiotics. Furthermore, the inhibitory effect of rhamnolipid on the transport of TCs diminished as the pH of the background solution increased. This observation was attributed to the weakened bridging effects, resulting from the reduced deposition of the biosurfactant on the sand surfaces. Additionally, the cation-bridging mechanism involved in the retention of TCs in the addition of rhamnolipid when the background electrolyte was Ca2+ (i.e., Ca2+ ions served as bridging agents between the deposited rhamnolipid molecules and TCs). The insightful findings enhance our understanding of the critical roles of biosurfactants in influencing the environmental dynamics and ultimate fate of conventional antibiotic pollutants within groundwater systems.
Collapse
Affiliation(s)
- Xingyong Han
- Yunnan Geological Engineering Survey and Design Research Institute Limited Company, Kunming 650041, China; College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingzong Li
- Yunnan Geological Engineering Survey and Design Research Institute Limited Company, Kunming 650041, China
| | - Mingwei Luo
- Natural Resources Bureau of Qiaojia County, Zhaotong 654600, China
| | - Hanwen Zhen
- Yunnan Geological Engineering Survey and Design Research Institute Limited Company, Kunming 650041, China
| | - Sven Frei
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Science, Wageningen University Research Centre, Wageningen 6700AA, the Netherlands; Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth 95440, Germany
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth 95440, Germany.
| |
Collapse
|
2
|
Wang F, Shang J, Zhang Q, Lu T, Li Y, Wang X, Farooq U, Qi Z. Influence of surfactant molecular features on tetracycline transport in saturated porous media of varied surface heterogeneities. WATER RESEARCH 2024; 255:121501. [PMID: 38552491 DOI: 10.1016/j.watres.2024.121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/24/2024]
Abstract
This study aims to understand how surfactants affect the mobility of tetracycline (TC), an antibiotic, through different aquifer media. Two anionic and cationic surfactants, sodium dodecylbenzene sulfonate (SDBS) and cetyltrimethyl ammonium bromide (CTAB), were used to study their influence on TC mobility through clean sand and humic acid (HA)-coated sand. HA coating inhibits TC mobility due to its strong interaction with TC. Both surfactants promoted TC mobility at pH 7.0 due to competitive deposition, steric effect, and increased hydrophilicity of TC. CTAB had a more substantial effect than SDBS, related to the surfactants' molecular properties. Each surfactant's promotion effects were greater in HA-coated sand than in quartz sand due to differences in surfactant retention. CTAB inhibited TC transport at pH 9.0 due to its significant hydrophobicity effect. Furthermore, in the presence of Ca2+, SDBS enhanced TC transport by forming deposited SDBS-Ca2+-TC complexes. On the other hand, CTAB increased TC mobility due to its inhibition of cation bridging between TC and porous media. The findings highlight surfactants' crucial role in influencing the environmental behaviors of tetracycline antibiotics in varied aquifers.
Collapse
Affiliation(s)
- Fei Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jingyi Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Ecology institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan 250014, China
| | - Xinhai Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Yu J, Li W, Zhang D, Huang T, Tang H. Aggregation of graphene oxide upon the stripping of oxidized debris: An experimental and molecular dynamics simulation study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123884. [PMID: 38548155 DOI: 10.1016/j.envpol.2024.123884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
The most recent structural study of graphene oxide (GO) indicates that the oxidized debris (ODs) adhered to as-prepared GO will strip in certain aquatic settings. The impact of ODs stripping on the characteristics of GO has been widely reported, but its effects on GO aggregation have received less attention. Here, the influence of OD stripping on the GO aggregation property was identified, and the aggregation of as-prepared GO and GO upon OD stripping was compared. Upon ODs stripping, the pKa values of GO shifted from 3.91, 6.25, and 9.84 to 4.54, 6.65, and 10.21, respectively. Further analysis indicated the removal of ODs reduced the net negative charge and improved the hydrophobicity of GO, hence promoting the aggregation of GO. The acceleration of GO-Ca2+-OD aggregate formation was facilitated by the collective effects of ODs stripping, functional group deprotonation, double layer compression, OD bridging, and charge neutralization. The metal ions and stripped ODs attach to GO edges and link GO, which perform like bridges and contribute to further aggregation. In general, the existence of ODs adds complexity to the constructions and characteristics of GO, and it is important to take this into account while evaluating the aggregation characteristic of GO-based materials.
Collapse
Affiliation(s)
- Jiahai Yu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenli Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huan Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
4
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
5
|
Yang Q, Lu T, Zhang Q, Farooq U, Wang B, Qi Z, Miao R. Transport of sulfanilamide in saturated porous media under different solution chemistry conditions: role of physicochemical characteristics of soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11622-11632. [PMID: 38221561 DOI: 10.1007/s11356-024-31966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Identification of the transport of sulfonamide antibiotics in soils facilitates a better understanding of the environmental fate and behaviors of these ubiquitous contaminants. In this study, the mobility properties of sulfanilamide (SNM, a typical sulfonamide antibiotic) through saturated soils with different physicochemical characteristics were investigated. The results showed that the physicochemical characteristics controlled SNM mobility. Generally, the mobility of SNM was positively correlated with CEC values and soil organic matter content, which was mainly related to the interactions between the organic matter in soils and SNM molecules via π-π stacking, H-bonding, ligand exchange, and hydrophobic interaction. Furthermore, higher clay mineral content and lower sand content were beneficial for restraining SNM transport in the soils. Unlike Na+, Cu2+ ions could act as bridging agents between the soil grains and SNM molecules, contributing to the relatively weak transport of SNM. Furthermore, the trend of SNM mobility in different soil columns was unaffected by solution pH (5.0-9.0). Meanwhile, for a given soil, the SNM mobility was promoted as the solution pH values increased, which was caused by the enhanced electrostatic repulsion between SNM- species and soil particles as well as the declined hydrophobic interaction between SNM and soil organic matter. The obtained results provide helpful information for the contribution of soil physicochemical characteristics to the transport behaviors of sulfonamide antibiotics in soil-water systems.
Collapse
Affiliation(s)
- Qingxin Yang
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Zhang
- Ecology institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Renhui Miao
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Thomas R, Ghosh D, Pulimi M, Nirmala J, Anand S, Rai PK, Mukherjee A. Investigating the transport and colloidal behavior of Fe 3O 4 nanoparticles in aqueous and porous media under varying solution chemistry parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118693-118705. [PMID: 37917261 DOI: 10.1007/s11356-023-30628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (Fe3O4 NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect Fe3O4 NP transportation and behavior in soil and water systems to determine their possible environmental fate. In this work, experiments were conducted in aqueous and porous media using an environmentally relevant range of pH (5, 7, 9), ionic strength (IS) (10, 50, 100 mM), and humic acid (HA) (0.1, 1, 10 mg L-1) concentrations. Fe3O4 NPs exhibited severe colloidal instability at pH 7 (⁓ = pHPZC) and showed an improvement in apparent colloidal stability at pH 5 and 9 in aquatic and terrestrial environments. HA in the background solutions promoted the overall transport of Fe3O4 NPs by enhancing the colloidal stability. The increased ionic strength in aqueous media hindered the transport by electron double-layer compression and electrostatic repulsion; however, in porous media, the transport was hindered by ionic compression. Furthermore, the transport behavior of Fe3O4 NPs was investigated in different natural waters such as rivers, lakes, taps, and groundwater. The interaction energy pattern in aquatic systems was estimated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study showed the effects of various physical-chemical conditions on Fe3O4 NP transport in aqueous and porous (sand) media.
Collapse
Affiliation(s)
- Reetha Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Shalini Anand
- Centre for Fire, Explosive and Environment Safety, Timarpur, Delhi, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosive and Environment Safety, Timarpur, Delhi, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
Ibrahim MIM, Awad EAM, Dahdouh SMM, El-Etr WMT, Marey SA, Hatamleh AA, Mahmood M, Elrys AS. Exploring the Influence of Chemical Conditions on Nanoparticle Graphene Oxide Adsorption onto Clay Minerals. Molecules 2023; 28:6162. [PMID: 37630414 PMCID: PMC10458753 DOI: 10.3390/molecules28166162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
High concentrations of graphene oxide (GO), a nanoparticle substance with rapid manufacturing development, have the ability to penetrate the soil surface down to the mineral-rich subsurface layers. The destiny and distribution of such an unusual sort of nanomaterial in the environment must therefore be fully understood. However, the way the chemistry of solutions impacts GO nanoparticle adsorption on clay minerals is still unclear. Here, the adsorption of GO on clay minerals (e.g., bentonite and kaolinite) was tested under various chemical conditions (e.g., GO concentration, soil pH, and cation valence). Non-linear Langmuir and Freundlich models have been applied to describe the adsorption isotherm by comparing the amount of adsorbed GO nanoparticle to the concentration at the equilibrium of the solution. Our results showed fondness for GO in bentonite and kaolinite under similar conditions, but the GO nanoparticle adsorption with bentonite was superior to kaolinite, mainly due to its higher surface area and surface charge. We also found that increasing the ionic strength and decreasing the pH increased the adsorption of GO nanoparticles to bentonite and kaolinite, mainly due to the interaction between these clay minerals and GO nanoparticles' surface oxygen functional groups. Experimental data fit well to the non-linear pseudo-second-order kinetic model of Freundlich. The model of the Freundlich isotherm was more fitting at a lower pH and higher ionic strength in the bentonite soil while the lowest R2 value of the Freundlich model was recorded at a higher pH and lower ionic strength in the kaolinite soil. These results improve our understanding of GO behavior in soils by revealing environmental factors influencing GO nanoparticle movement and transmission towards groundwater.
Collapse
Affiliation(s)
- Marwa I. M. Ibrahim
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Department of Soil Physics and Chemistry, Soil, Water and Environment Research Institute (SWERI), The Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Elsayed A. M. Awad
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah M. M. Dahdouh
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Wafaa M. T. El-Etr
- Department of Soil Physics and Chemistry, Soil, Water and Environment Research Institute (SWERI), The Agricultural Research Center (ARC), Giza 12619, Egypt
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohsin Mahmood
- Center for Eco-Environment Restoration Engineering of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, 35390 Giessen, Germany
| |
Collapse
|
8
|
Ali J, Wang X, Shang E, Wang Y, Zhao J, Gao B, Xia X, Li Y. Promotion effect of ultraviolet light on graphene oxide aggregation in the presence of different climatic zone's humic and fulvic acid. WATER RESEARCH 2023; 242:120261. [PMID: 37399691 DOI: 10.1016/j.watres.2023.120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Aggregation of graphene oxide (GO) is significantly affected by dissolved organic matter (DOM) in natural waters, while DOM's climate zone and light irradiation is seldom considered. This study investigated the effect of humic/fulvic acid (HA/FA) from various climate zones of China on aggregation of small (200 nm) and large (500 nm) GO under 120-h UV irradiation. GO aggregation was promoted by HA/FA because UV irradiation decreased hydrophilicity of GO and steric forces among particles. GO generated electron and hole pair under UV irradiation, which reduce GO with more hydrophilic oxygen-containing functional group (C-O) to rGO with high hydrophobicity and oxidize DOM into organic matter with smaller molecular weight. Most severe GO aggregation was observed with Makou HA from Subtropical Monsoon climate zone and Maqin FA from Plateau and Mountain climate zone, which was primarily because HA/FA's high molecular weight and aromaticity dispersed GO initially that facilitated UV penetration. GO aggregation ratio was positively correlated with graphitic fraction content (R2 = 0.82-0.99) and negatively correlated with C-O group content (R2 = 0.61-0.98) in the presence of DOM under UV irradiation. This work highlights different dispersity of GO during photochemical reactions in various climate zones, providing new insight into the environmental implications of nanomaterial release.
Collapse
Affiliation(s)
- Jawad Ali
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xinjie Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, Hebei 061100, PR China
| | - Yining Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jian Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Bowen Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
9
|
Matos D, Almeida SFP, Marques PAAP, Pinto S, Figueira E. Effects of Graphene Oxide Nanosheets in Freshwater Biofilms. Molecules 2023; 28:4577. [PMID: 37375132 DOI: 10.3390/molecules28124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Graphene oxide (GO) properties make it a promising material for graphene-based applications in areas such as biomedicine, agriculture, and the environment. Thus, its production is expected to increase, reaching hundreds of tons every year. One GO final destination is freshwater bodies, possibly affecting the communities of these systems. To clarify the effect that GO may impose in freshwater communities, a fluvial biofilm scraped from submerged river stones was exposed to a range (0.1 to 20 mg/L) of GO concentrations during 96 h. With this approach, we hypothesized that GO can: (1) cause mechanical damage and morphological changes in cell biofilms; (2) interfere with the absorption of light by biofilms; (3) and generate oxidative stress, causing oxidative damage and inducing biochemical and physiological alterations. Our results showed that GO did not inflict mechanical damage. Instead, a positive effect is proposed, linked to the ability of GO to bind cations and increase the micronutrient availability to biofilms. High concentrations of GO increased photosynthetic pigment (chlorophyll a, b, and c, and carotenoids) content as a strategy to capture the available light more effectively as a response to the shading effect. A significant increase in the enzymatic (SOD and GSTs activity) and low molecular weight (lipids and carotenoids) antioxidant response was observed, that efficiently reduced oxidative stress effects, reducing the level of peroxidation, and preserving membrane integrity. Being complex entities, biofilms are more similar to environmental communities and may provide more accurate information to evaluate the impact of GO in aquatic systems.
Collapse
Affiliation(s)
- Diana Matos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Salomé F P Almeida
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula A A P Marques
- Department of Mechanics, University of Aveiro, 3810-193 Aveiro, Portugal
- TEMA, Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sofia Pinto
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. The Comparative Toxic Impact Assessment of Carbon Nanotubes, Fullerene, Graphene, and Graphene Oxide on Marine Microalgae Porphyridium purpureum. TOXICS 2023; 11:491. [PMID: 37368591 DOI: 10.3390/toxics11060491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The growing production and application of carbon-based nanomaterials (CNMs) represent possible risks for aquatic systems. However, the variety of CNMs with different physical and chemical properties and different morphology complicate the understanding of their potential toxicity. This paper aims to evaluate and compare the toxic impact of the four most common CNMs, namely multiwalled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO) on the marine microalgae Porphyridium purpureum. The microalgae cells were exposed to the CNMs for 96 h and measured by flow cytometry. Based on the obtained results, we determined no observed effect level (NOEL), and calculated EC10 and EC50 concentrations for growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species (ROS) generation changes for each tested CNM. According to the sensitivity (growth rate inhibition) of P. purpureum, the used CNMs can be listed in the following order (EC50 in mg/L, 96 h): CNTs (2.08) > GrO (23.37) > Gr (94.88) > C60 (>131.0). The toxicity of CNTs was significantly higher than the toxic effect of the other used CNMs, and only this sample caused an increase in ROS generation in microalgae cells. This effect was apparently caused by the high affinity between particles and microalgae associated with the presence of exopolysaccharide coverage on P. purpureum cells.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Iran
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Hélio de Almeida 75, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro State University, R. São Francisco Xavier, 524, Rio de Janeiro 23070200, Brazil
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
11
|
Mamtimin X, Song W, Wang Y, Habibul N. Arsenic adsorption by carboxylate and amino modified polystyrene micro- and nanoplastics: kinetics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44878-44892. [PMID: 36697988 DOI: 10.1007/s11356-023-25475-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
We investigated adsorption characteristics of As(III) and As(V) onto two different functionalized polystyrene (PS) microplastics (MPs). Our results show that there is the potential for PS MPs to adsorb both As(III) and As(V). Using a particle size of 80-82 nm, maximum As(III) and As(V) adsorption capacities of 0.57 mg/g and 0.37 mg/g were obtained by PS-COOH MPs. These capacities were markedly higher than those for PS-NH2 MPs, which were 0.41 mg/g and 0.27 mg/g, respectively. The pseudo-second-order adsorption kinetic model was found to effectively describe the sorption kinetics of As(III)/As(V) on two different functionalized PS MPs. Langmuir isotherms better represented the equilibrium adsorption results. The kinetic models, XPS, and FTIR results indicate that hydrogen bonding, hydroxyl complexation, and outer-sphere surface complexation may have partly contributed to adsorption of As onto PS MPs. Adsorption capacity markedly decreases with increasing salinity or presence of humic acids (HA), suggesting an inhibiting effect of salinity and HA through outer-sphere complexation. These findings confirm that microplastics have great potential to adsorb As and hence are ultimately highly likely to affect the environmental behavior of As in an ecosystem.
Collapse
Affiliation(s)
- Xiringvl Mamtimin
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Wei Song
- Technical Center for Hefei Customs, Hefei, 230022, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Nuzahat Habibul
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| |
Collapse
|
12
|
Wei X, Pan D, Tan Q, Shi X, Hou J, Tang Q, Xu Z, Wu W, Ma B. Surface charge property governing co-transport of illite colloids and Eu(III) in saturated porous media. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Connolly M, Moles G, Carniel FC, Tretiach M, Caorsi G, Flahaut E, Soula B, Pinelli E, Gauthier L, Mouchet F, Navas JM. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. NANOIMPACT 2023; 29:100447. [PMID: 36563784 DOI: 10.1016/j.impact.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tests using algae and/or cyanobacteria, invertebrates (crustaceans) and fish form the basic elements of an ecotoxicological assessment in a number of regulations, in particular for classification of a substance as hazardous or not to the aquatic environment according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS-CLP) (GHS, 2022) and the REACH regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals, EC, 2006). Standardised test guidelines (TGs) of the Organisation for Economic Co-operation and Development (OECD) are available to address the regulatory relevant endpoints of growth inhibition in algae and cyanobacteria (TG 201), acute toxicity to invertebrates (TG 202), and acute toxicity in fish (TG 203). Applying these existing OECD TGs for testing two dimensional (2D) graphene nanoforms may require more attention, additional considerations and/or adaptations of the protocols, because graphene materials are often problematic to test due to their unique attributes. In this review a critical analysis of all existing studies and approaches to testing used has been performed in order to comment on the current state of the science on testing and the overall ecotoxicity of 2D graphene materials. Focusing on the specific tests and available guidance's, a complete evaluation of aquatic toxicity testing for hazard classification of 2D graphene materials, as well as the use of alternative tests in an integrated approach to testing and assessment, has been made. This information is essential to ensure future assessments generate meaningful data that will fulfil regulatory requirements for the safe use of this "wonder" material.
Collapse
Affiliation(s)
- M Connolly
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain.
| | - G Moles
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| | - F Candotto Carniel
- UNITS, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste I-34127, Italy
| | - M Tretiach
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - G Caorsi
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - E Flahaut
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - B Soula
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - E Pinelli
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - L Gauthier
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - F Mouchet
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - J M Navas
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| |
Collapse
|
14
|
Pikula K, Johari SA, Golokhvast K. Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4149. [PMID: 36500771 PMCID: PMC9737966 DOI: 10.3390/nano12234149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted a growing interest over the last decades. They have become a material commonly used in industry, consumer products, water purification, and medicine. Despite this, the safety and toxic properties of different types of CNMs are still debatable. Multiple studies in recent years highlight the toxicity of CNMs in relation to aquatic organisms, including bacteria, microalgae, bivalves, sea urchins, and other species. However, the aspects that have significant influence on the toxic properties of CNMs in the aquatic environment are often not considered in research works and require further study. In this work, we summarized the current knowledge of colloidal behavior, transformation, and biodegradation of different types of CNMs, including graphene and graphene-related materials, carbon nanotubes, fullerenes, and carbon quantum dots. The other part of this work represents an overview of the known mechanisms of CNMs' biodegradation and discusses current research works relating to the biodegradation of CNMs in aquatic species. The knowledge about the biodegradation of nanomaterials will facilitate the development of the principals of "biodegradable-by-design" nanoparticles which have promising application in medicine as nano-carriers and represent lower toxicity and risks for living species and the environment.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St., Sanandaj 66177-15175, Iran
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
15
|
The effects of pH, ionic strength, and natural organics on the transport properties of carbon nanotubes in saturated porous medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Bi C, Junaid M, Liu Y, Guo W, Jiang X, Pan B, Li Z, Xu N. Graphene oxide chronic exposure enhanced perfluorooctane sulfonate mediated toxicity through oxidative stress generation in freshwater clam Corbicula fluminea. CHEMOSPHERE 2022; 297:134242. [PMID: 35259357 DOI: 10.1016/j.chemosphere.2022.134242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 05/20/2023]
Abstract
Graphene oxide (GO), a frequently utilized graphene family nanomaterial, is inevitably released into the aquatic environment and interacts with organic pollutants, including perfluorooctane sulfonate (PFOS), a well-known persistent organic pollutant. To determine the adverse effects of GO chronic exposure on PFOS bioaccumulation and toxicity, adult freshwater bivalves, namely Asian clams (Corbicula fluminea) were treated for 28 days with PFOS (500 ng/L) and different concentrations of GO (0.2, 1, 5 mg/L) as PFOS single and GO single exposure groups, as well as PFOS-GO mixture exposure groups. Our results demonstrated that the bioaccumulation of PFOS was significantly enhanced by co-exposure in gills and visceral masses, which was 1.64-2.91 times higher in gills than in visceral masses. Both single, as well as co-exposure, caused a significant reduction in clams' siphoning behavior, compared to the controls. Further, the co-exposure significantly increased the production of reactive oxygen species (ROS), exacerbating malondialdehyde (MDA) content, enhancing superoxide dismutase (SOD) and catalase (CAT), while decreasing glutathione reductase (GR) and glutathione S-transferase (GST) enzymatic activities in clam tissues. And co-exposure significantly altered the expressions of se-gpx, sod, cyp30, hsp40, and hsp22 genes (associated with oxidative stress and xenobiotic metabolism) both in gills and visceral masses. Moreover, co-exposure caused significant histopathological changes such as cilia degradation in the gills, expansion of tubule lumens in digestive glands, and oocyte shrinkage in gonads. Finally, the enhanced integrated biomarker response (EIBR) index revealed that co-exposure to 500 ng/L PFOS + 1 mg/L/5 mg/L GO was the most stressful circumstance. Overall, our findings suggested that the presence of GO increased PFOS bioaccumulation in tissues, inducing multifaceted negative implications at molecular and behavioral levels through oxidative stress generation in Asian clams.
Collapse
Affiliation(s)
- Chunqing Bi
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yan Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjing Guo
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xilin Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Zhengguoshen Li
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Mancillas-Salas S, Reynosa-Martinez AC, Barroso-Flores J, Lopez-Honorato E. Impact of secondary salts, temperature, and pH on the colloidal stability of graphene oxide in water. NANOSCALE ADVANCES 2022; 4:2435-2443. [PMID: 36134139 PMCID: PMC9418902 DOI: 10.1039/d2na00070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/05/2022] [Indexed: 06/16/2023]
Abstract
The stability of graphene oxide (GO) in water is extremely relevant because of its application as an adsorbent material, as well as for its fate and behavior in the environment. Zeta potential was used to study the effect of secondary salts (carbonate, sulfate, and phosphate), temperature (20 to 60 °C), and pH (5 to 9) on the stability of six different GOs produced from natural, synthetic, and amorphous graphite-with and without the use of attrition milling. Generally, GOs produced with attrition-milled graphites had lower ζ-potentials than their unmilled counterparts because of their smaller particle sizes and higher concentration of oxygen-containing functional groups. It was observed that GO produced from graphite and synthetic graphite had ζ-potential values lower than -30 mV, even at 30 °C. However, it was observed that all the GOs studied were unstable in the presence of carbonate and sulfate salts at concentrations between 170 and 1695 mg L-1, as they reached a ζ-potential of -4.1 mV. Density-functional theory electronic structure calculations suggested that the instability of GO in the presence of carbonate and sulfate was caused by the abstraction of a proton resulting in interaction energies E int of 28.3 and 168.9 kJ mol-1, respectively. Our results suggest that temperatures above 30 °C, as well as carbonate and sulfate salts at concentrations relevant to arid and semi-arid regions, could promote the formation of agglomerates of GO, thus limiting its use and mobility in water.
Collapse
Affiliation(s)
- Sergio Mancillas-Salas
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Saltillo, AV. Industria Metalúrgica 1062 Ramos Arizpe 25900 Mexico
| | - Ana C Reynosa-Martinez
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Saltillo, AV. Industria Metalúrgica 1062 Ramos Arizpe 25900 Mexico
| | - J Barroso-Flores
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria, México 04510 D.F. Mexico
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano Toluca Estado de México 50200 Mexico
| | - Eddie Lopez-Honorato
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Saltillo, AV. Industria Metalúrgica 1062 Ramos Arizpe 25900 Mexico
- Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
18
|
Adsorption behavior and mechanism of tetracycline onto hematite: Effects of low-molecular-weight organic acids. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
19
|
Ali J, Li Y, Shang E, Wang X, Zhao J, Mohiuddin M, Xia X. Aggregation of graphene oxide and its environmental implications in the aquatic environment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Wang D, Zhang J, Cao R, Zhang Y, Li J. The detection and characterization techniques for the interaction between graphene oxide and natural colloids: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151906. [PMID: 34838546 DOI: 10.1016/j.scitotenv.2021.151906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The high dispersibility of graphene oxide (GO) and the universality of natural colloids (clay minerals, (hydr)oxides of Al, Fe, silica, etc.) make them interact easily. Many kinds of analytical methods have been used to study the interaction between GO and natural colloids. This review provides a comprehensive overview of analytical methods for the detection and quantification of interaction process. We highlighted the influence of the most relevant environmental factors (ionic strength, pH, etc.) on batch experiment, quartz crystal microbalance with dissipation monitoring measurements, and column experiments. Besides, the benefits and drawbacks of spectroscopic, microscopic techniques, theoretical models, calculation and time-resolved dynamic light scattering methods also have discussed in this work. This review can give some guidance to researchers in their selection and combination of the technique for the research of the interaction between GO and natural colloids.
Collapse
Affiliation(s)
- De Wang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jianfeng Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ruya Cao
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Yingzi Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiaxing Li
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, PR China.
| |
Collapse
|
21
|
Wei Q, Zhou K, Chen J, Zhang Q, Lu T, Farooq U, Chen W, Li D, Qi Z. Insights into the molecular mechanism of tetracycline transport in saturated porous media affected by low-molecular-weight organic acids: Role of the functional groups and molecular size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149361. [PMID: 34358745 DOI: 10.1016/j.scitotenv.2021.149361] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The transport of tetracycline possessed a great challenge in its environmental applications. This study looked at how various low-molecular-weight organic acids (LMWOAs) affect the transport of tetracycline in environments. To that end, four LMWOAs were employed in experiments; acetic acid, malonic acid, malic acid, and citric acid. It was observed that LMWOAs promoted the tetracycline passage in presence of various experimental environments. The LMWOAs steric hindrance and deposition competition facilitated tetracycline transport at pH 5.0. The other deposition mechanism for tetracycline was the electrostatic repulsion between tetracycline and sand enhanced by deprotonated LMWOAs at pH 7.0. Moreover, the enhanced effects of LMWOAs on tetracycline mobility were intensively dependent on LMWOA type with more functional groups (e.g. carboxyl and hydroxyl groups) and larger molecular size supported stronger deposition competition, steric hindrance as well as electrostatic repulsion. Additionally, cation-bridging played a vital role for the enhanced effects of LMWOAs on tetracycline transport with divalent cations (e.g., Ca2+ and Pb2+). Interestingly, tetracycline exhibited a higher mobility in the presence of Ca2+ relative to Pb2+ regardless of LMWOAs-free or LMWOAs-addition. This phenomenon was attributed to the fact that Pb2+ has a greater affinity with tetracycline and LMWOAs than Ca2+. Furthermore, under the shadow of numerous LMWOAs, the non-equilibrium two site transportation model was employed to investigate the movement of tetracycline in porous saturated media. The present study suggests that LMWOAs may be important considerations in assessing the antibiotic passage in soil as well as groundwater.
Collapse
Affiliation(s)
- Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Kun Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
22
|
Dong Y, Gao M, Qiu W, Song Z. The influence of humic and fulvic acids on polytetrafluoroethylene-adsorbed arsenic: a mechanistic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64503-64515. [PMID: 34308520 DOI: 10.1007/s11356-021-15376-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The large-scale use of polytetrafluoroethylene has resulted in ever-increasing amounts of polytetrafluoroethylene (PTFE) microplastic particles entering the environment. Given that the environment is polluted with arsenic (As(III)), and that the environment contains significant levels of humic acid (HA) and fulvic acid (FA), how PTFE and As(III) in water interacting in the presence of HA and FA needs to be urgently investigated. The results showed that As(III) was adsorbed by PTFE in the presence of HA and FA more markedly than the absence of them Adsorption equilibrium was reached at approximately 960 min and the adsorption isotherms were found to be best fitted by the Toth model. An increase in temperature was found to destroy hydrogen bonds, resulting in inhibited, non-spontaneous adsorption; a higher pH inhibited adsorption in the range 3-7. Computational and mechanistic studies revealed that PTFE formed π complexes with HA units, which increased the number of oxygen-containing functional groups on its surface. The surface of the PTFE-HA π complex was mostly negatively charged; however, the hydrogen atoms of the hydroxyl and carboxylic acid groups exhibited large positive potentials that enabled the adsorption of As(III). When the oxygen atom on As was close to the oxygen-containing functional group on PTFE-HA, the more electronegative oxygen atom forms a special intermolecular interaction in the form of O-H···O through the medium of hydrogen, which makes As adsorb on the surface of PTFE. Pore filling, hydrogen bonding, and covalent bonding are the main ways in which PTFE adsorbs As(III) in the presence of HA and FA. PTFE also adsorbed more As(III) in the presence of HA than in the presence of FA.
Collapse
Affiliation(s)
- Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
23
|
Shams M, Alam I, Chowdhury I. Interactions of nanoscale plastics with natural organic matter and silica surfaces using a quartz crystal microbalance. WATER RESEARCH 2021; 197:117066. [PMID: 33774463 DOI: 10.1016/j.watres.2021.117066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Interactions of nanoscale plastics with natural organic matter (NOM) and silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Polyethylene and polystyrene are the most used plastic polymers and most likely to accumulate in the environment, and thus their nano-scale interactions were investigated in this study. Deposition and release of polyethylene and polystyrene nanoscale plastics were investigated on silica and NOM-coated surfaces in the presence of different salt types (NaCl, CaCl2, MgCl2) and ionic strengths (IS). Polyethylene nanoscale plastics showed negligible deposition on silica surface, while significant deposition of polystyrene nanoscale plastics was observed on silica surface. However, both polyethylene and polystyrene nanoscale plastics showed significant deposition on NOM-coated surfaces, with polystyrene showing higher deposition. Increased IS resulted in greater deposition of both polyethylene and polystyrene nanoscale plastics on NOM-coated surfaces due to the functional groups, following DLVO theory. Deposited polyethylene nanoscale plastics on NOM-coated surfaces can be remobilized whereas deposition of polystyrene nanoscale plastics was irreversible on both silica and NOM-coated surfaces. Overall, higher deposition of nanoscale plastics on NOM-coated surfaces indicates that fate and mobility of nanoscale plastics in the environment will be significantly governed by their interactions with NOM.
Collapse
Affiliation(s)
- Mehnaz Shams
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA 99164, USA
| | - Iftaykhairul Alam
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA 99164, USA
| | - Indranil Chowdhury
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
24
|
Chen J, Chen W, Lu T, Song Y, Zhang H, Wang M, Wang X, Qi Z, Lu M. Effects of phosphate on the transport of graphene oxide nanoparticles in saturated clean and iron oxide-coated sand columns. J Environ Sci (China) 2021; 103:80-92. [PMID: 33743921 DOI: 10.1016/j.jes.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, transport behaviors of graphene oxide (GO) in saturated uncoated (i.e., clean sand) and goethite-coated sand porous media were examined as a function of the phosphate. We found that phosphate enhanced the transport of GO over a wide range of solution chemistry (i.e., pH 5.0-9.0 and the presence of 10 mmol/L Na+ or 0.5 mmol/L Ca2+). The results were mainly ascribed to the increase of electrostatic repulsion between nanoparticles and porous media. Meanwhile, deposition site competition induced by the retained phosphate was another important mechanism leading to promote GO transport. Interestingly, when the phosphate concentration increased from 0.1 to 1.0 mmol/L, the transport-enhancement effect of phosphate in goethite-coated sand was to a much larger extent than that in clean sand. The observations were primarily related to the difference in the total mass of retained phosphate between the iron oxide-coated sand and clean sand columns, which resulted in different degrees of the electrostatic repulsion and competitive effect of phosphate. When the background solution contained 0.5 mmol/L Ca2+, phosphate could be bind to sand/ goethite-coated sand surface by cation bridging; and consequently, promoted competition between phosphate and nanoparticles for deposition sites, which was an important mechanism for the enhanced effect of phosphate. Moreover, the DLVO theory was applicable to describe GO transport behaviors in porous media in the absence or presence of phosphate. Taken together, these findings highlight the important status and role of phosphate on the transport and fate of colloidal graphene oxide in the subsurface environment.
Collapse
Affiliation(s)
- Jiuyan Chen
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fujian 350007, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany
| | - Yumeng Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Haojing Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Mengjie Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xinhai Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China.
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
25
|
Wang M, Zuo Q, Bai Y. Effects of filtration-induced size change on the subsequent transport and fate of graphene oxide in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142417. [PMID: 33049539 DOI: 10.1016/j.scitotenv.2020.142417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
A particle size change occurs ubiquitously during transport of nanoparticles in the subsurface and is likely to influence nanoparticle fate and transport behaviours. The effects of this size change on the subsequent transport of eluted graphene oxide (GO) in saturated media were therefore investigated under various ionic strength (IS) and filtration degree conditions. Aggregation kinetics revealed that size change after filtration only occurred at relatively high IS conditions. As the filtration column length increased from 15 cm to 30 cm, sizes of aggregates in filtrates for large-sized and small-sized GO populations decreased and increased, respectively, and both approached to their steady aggregate sizes. Aggregation, straining, sedimentation, bridging, DLVO interactions, or a combination of these mechanisms were involved in the size change process during filtration. After passing through the 30 cm filtration column, filtered GO, in comparison with original GO, exhibited stronger mobility than expected, suggesting neglecting size change will result in underestimation of the nanoparticle mobility in porous media.
Collapse
Affiliation(s)
- Mei Wang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China; Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou 450001, China.
| | - Qiting Zuo
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China; Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou 450001, China
| | - Yifan Bai
- Yellow River Engineering Consulting Corporation Limited, Zhengzhou 450003, China
| |
Collapse
|
26
|
Wang M, Zhang H, Chen W, Lu T, Yang H, Wang X, Lu M, Qi Z, Li D. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media. CHEMOSPHERE 2021; 265:129081. [PMID: 33288283 DOI: 10.1016/j.chemosphere.2020.129081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Since iron oxide minerals are ubiquitous in natural environments, the release of graphene oxide (GO) into environmental ecosystems can potentially interact with iron oxide particles and thus alter their surface properties, resulting in the change of their transport behaviors in subsurface systems. Column experiments were performed in this study to investigate the co-transport of GO nanoparticles and hematite colloids (a model representative of iron oxides) in saturated sand. The results demonstrated that the presence of hematite inhibited GO transport in quartz sand columns due to the formation of less negatively charged GO-hematite heteroaggregates and additional deposition sites provided by the adsorbed hematite on sand surfaces. Contrarily, GO co-present in suspensions significantly enhanced the transport of hematite colloids through different mechanisms such as the increase of electrostatic repulsion, decreased physical straining, GO-facilitated transport of hematite (i.e., highly mobile GO nanoparticles served as a mobile carrier for hematite). We also found that the co-transport behaviors of GO and hematite depended on solution chemistry (e.g., pH, ionic strength, and divalent cation (i.e., Ca2+)), which affected the electrostatic interaction as well as heteroaggregation behaviors between GO nanoparticles and hematite colloids. The findings provide an insight into the potential fate of carbon nanomaterials affected by mineral colloids existing in natural waters and soils.
Collapse
Affiliation(s)
- Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Huihui Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Xinhai Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Minghua Lu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
27
|
Wang M, Song Y, Zhang H, Lu T, Chen W, Li W, Qi W, Qi Z. Insights into the mutual promotion effect of graphene oxide nanoparticles and tetracycline on their transport in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115730. [PMID: 33007596 DOI: 10.1016/j.envpol.2020.115730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, batch and column tests were performed to investigate the co-transport of graphene oxide (GO) nanoparticles and tetracycline in saturated porous media under various solution chemistry conditions. Research indicated that GO and tetracycline had mutual promotion effect on their transport in the porous media under all the tested conditions, which was ascribed to the high adsorption capacity of tetracycline onto GO and the increased electrostatic repulsion as well as their competition for deposition sites on sand surfaces. Interestingly, the mutually promoting function of GO and tetracycline under acidic conditions was greater than that under alkaline conditions, the dominant mechanism was that the increased solution pH decreased the sorption of tetracycline onto GO and weakened the deposition site competition. Furthermore, the mutually promoting effect of GO and tetracycline was Na+ or Ca2+ concentration-dependent. Specially, increased Ca2+ concentration weakened the promoting effect of GO on tetracycline transport but magnified the promoting effect of tetracycline on GO transport. This is because higher Ca2+ concentration could cause a decrease in the adsorption of tetracycline on GO and facilitate more tetracycline molecules to occupy the deposition sites on sand surfaces. Additionally, sodium dodecyl sulfate had enhancement effect on co-transport of GO and tetracycline. Findings from this study clearly indicated that antibiotics and carbon based nanomaterials may transport together under various solution chemistry conditions, and consequently affect their fates in aquatic environments.
Collapse
Affiliation(s)
- Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yumeng Song
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Wenwen Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Wei Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
28
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
29
|
Guo B, Kamura Y, Koilraj P, Sasaki K. Co-sorption of Sr 2+ and SeO 42- as the surrogate of radionuclide by alginate-encapsulated graphene oxide-layered double hydroxide beads. ENVIRONMENTAL RESEARCH 2020; 187:109712. [PMID: 32480026 DOI: 10.1016/j.envres.2020.109712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxides (GO) and layered double hydroxides (LDHs) were applied to produce alginate beads for the remove of 90Sr2+ and 79SeO42-. The Freundlich isotherm indicated that the Sr2+ sorptions were based on the energetically heterogeneous multilayer surfaces. In contrast, the sorption behavior of SeO42- fitted to the Langmuir adsorption isotherm models, indicating that the removal of SeO42- was caused by the ion-exchange of LDHs. The synthesized LDH/GO alginates beads were also applied for setting up small-bore adsorption columns with loading synthetic SeO42- and Sr2+ contaminated wastewater. Based on the water chemistry, the adsorbed amount of Sr2+ significantly increased after using alginates beads, which was attributed to the functional groups of either GO or alginic acid. The incorporated SeO42- was highly depended on the contents of fabricated LDHs in alginate beads. Specifically, the adsorption capacity of Sr2+ (0.85-0.91 mmol/g) on GO slightly increased after alginates fabrication. Therefore, it was deduced that this layered material was partially exfoliated during the manufacture and thus increased the sorption sites. Applications of LDH/GO alginates beads in the removal of both Sr2+ and SeO42- in water and soil treatment have a significant impact on the environmental remediation.
Collapse
Affiliation(s)
- Binglin Guo
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Yuta Kamura
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Paulmanickam Koilraj
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
30
|
Ali J, Li Y, Wang X, Zhao J, Xi N, Zhang Z, Xia X. Climate-zone-dependent effect mechanism of humic acid and fulvic acid extracted from river sediments on aggregation behavior of graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137682. [PMID: 32171139 DOI: 10.1016/j.scitotenv.2020.137682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/18/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Climate factors could affect the physicochemical properties of dissolved organic matter (DOM) in river sediments, which potentially influence the stability of nanoparticles in natural waters. In this study, we extracted humic acid (HA) and fulvic acid (FA) from river sediments in different climate zones of China. Their effect with different concentrations (0.2 and 1 mg·C·L-1) on the aggregation kinetics of large (589 nm) and small graphene oxide (GO, 200 nm) in NaCl solutions was investigated. Both concentrations of HA/FA significantly inhibited the aggregation of small GO because of the steric forces rendered by DOM. For large GO, the inhibition effect of HA on aggregation was higher than FA because of the higher molecular weight, longer carbon chain length, and more structure complexity of HA. Interestingly, with 0.2 mg·C·L-1 HA and large GO, Makou in Subtropical monsoon climate zone decreased the aggregation rate more significantly due to its larger molecular weight, while, Maqin in the Plateau and mountain (PM) climate zone with smaller molecular weight and greater hydrophobicity showed lower inhibition effect on the aggregation. One mg·C·L-1 FA with high polarity from Tangke in PM climate zone and Panjin from Temperate monsoon climate zone showed more stability ability towards large GO. Derjaguin-landau-verwey-overbeek (DLVO) theory indicated that the interaction energy barrier between GO particles dependent on physicochemical characteristics of DOM and GO size. Understanding the climate-zone-dependent effect of sediment DOM on stability of GO is essential for anticipating its fate in natural systems.
Collapse
Affiliation(s)
- Jawad Ali
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Xinjie Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jian Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Nannan Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhenrui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
31
|
Yin J, Fan W, Du J, Feng W, Dong Z, Liu Y, Zhou T. The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113847. [PMID: 32000020 DOI: 10.1016/j.envpol.2019.113847] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Though the main toxic mechanisms of graphene oxide (GO) to algae have been accepted as the shading effect, oxidative stress and mechanical damage, the effect of algal characteristics on these three mechanisms of GO toxicity have seldom been taken into consideration. In this study, we investigated GO toxicity to green algae (Chlorella vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii), cyanobacteria (Microcystis aeruginosa) and diatoms (Cyclotella sp.). The aim was to assess how the physiological characteristics of algae affect the toxicity of GO. Results showed that 10 mg/L of GO significantly inhibited the growth of all tested algal types, while S. obliquus and C. reinhardtii were found to be the most susceptible and tolerant species, respectively. Then, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the physiological characteristics of the assessed algae. The presence of locomotive organelles, along with smaller and more spherical cells, was more likely to alleviate the shading effect. Variations in cell wall composition led to different extents of mechanical damage as shown by Cyclotella sp. silica frustules and S. obliquus autosporine division being prone to damage. Meanwhile, growth inhibition and cell division were significantly correlated with the oxidative stress and membrane permeability, suggesting the latter two indicators can effectively signal GO toxicity to algae. The findings of this study provide novel insights into the toxicity of graphene materials in aquatic environments.
Collapse
Affiliation(s)
- Jingyu Yin
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| | - Juan Du
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Weiying Feng
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Yingying Liu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Tingting Zhou
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| |
Collapse
|
32
|
Story SD, Boggs S, Guiney LM, Ramesh M, Hersam MC, Brinker CJ, Walker SL. Aggregation morphology of planar engineered nanomaterials. J Colloid Interface Sci 2020; 561:849-853. [DOI: 10.1016/j.jcis.2019.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/12/2023]
|
33
|
Meng X, Li F, Wang X, Liu J, Ji C, Wu H. Toxicological effects of graphene on mussel Mytilus galloprovincialis hemocytes after individual and combined exposure with triphenyl phosphate. MARINE POLLUTION BULLETIN 2020; 151:110838. [PMID: 32056628 DOI: 10.1016/j.marpolbul.2019.110838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Graphene nanoparticles are increasingly released into the aquatic environment with the growth of production. However, there are rare investigations focusing on the interaction of nanoparticles with other contaminants. Triphenyl phosphate (TPP) is a frequently detected organophosphate flame retardant in the environment. This study aimed to assess the joint effects of graphene and TPP on Mytilus galloprovincialis hemocytes. Oxidative stress could be induced by graphene and TPP in mussel hemocytes, which could further cause apoptosis, DNA damage and decrease in the lysosomal membrane stability (LMS). Moreover, hemocytes could internalize graphene, thereby resulting in oxidative stress. The oxidative stress and DNA damage in hemocytes were increased in the graphene-exposed group, but significantly reduced after combined exposure of graphene and TPP. The up-regulated genes, including NF-κB, Bcl-2 and Ras, were mainly associated with reduced apoptosis and DNA damage after co-exposure to graphene and TPP.
Collapse
Affiliation(s)
- Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jialin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
34
|
Beryani A, Alavi Moghaddam MR, Tosco T, Bianco C, Hosseini SM, Kowsari E, Sethi R. Key factors affecting graphene oxide transport in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134224. [PMID: 31493572 DOI: 10.1016/j.scitotenv.2019.134224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
This study focuses on the transport in porous media of graphene oxide nanoparticles (GONP) under conditions similar to those applied in the generation of in-situ reactive zones for groundwater remediation (i.e. GO concentration of few tens of mg/l, stable suspension in alkaline solution). The experimental tests evaluated the influence on GO transport of three key factors, namely particle size (300-1200 nm), concentration (10-50 mg/L), and sand size (coarse to fine). Three sources of GONP were considered (two commercial and one synthesized in the laboratory). Particles were stably dispersed in water at pH 8.5 and showed a good mobility in the porous medium under all experimental conditions: after injection of 5 pore volumes and flushing, the highest recovery was around 90%, the lowest around 30% (only for largest particles in fine sand). The particle size was by far the most impacting parameter, with increasing mobility with decreasing size, even if sand size and particle concentration were also relevant. The source of GONP showed a minor impact on the mobility. The transport test data were successfully modeled using the advection-dispersion-deposition equations typically applied for spherical colloids. Experimental and modeling results suggested that GONP, under the explored conditions, are retained due to both blocking and straining, the latter being relevant only for large particles and/or fine sand. The findings of this study play a key role in the development of an in-situ groundwater remediation technology based on the injection of GONP for contaminant degradation or sorption. Despite their peculiar shape, GONP behavior in porous media is comparable with spherical colloids, which have been more studied by far. In particular, the possibility of modeling GONP transport using existing models ensures that they can be applied also for the design of field-scale injections of GONP, similarly to other particles already used in nanoremediation.
Collapse
Affiliation(s)
- Ali Beryani
- Civil & Environmental Engineering Department (CEE), Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., 424, 15875-4413 Tehran, Iran
| | - Mohammad Reza Alavi Moghaddam
- Civil & Environmental Engineering Department (CEE), Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., 424, 15875-4413 Tehran, Iran.
| | - Tiziana Tosco
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24. 10129 Torino, Italy
| | - Carlo Bianco
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24. 10129 Torino, Italy
| | - Seiyed Mossa Hosseini
- Physical Geography Department, University of Tehran, 16th Azar St., Enghelab Sq, 14155-6465 Tehran, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., 424, 15875-4413 Tehran, Iran
| | - Rajandrea Sethi
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24. 10129 Torino, Italy
| |
Collapse
|
35
|
Li M, Zhu J, Wang M, Fang H, Zhu G, Wang Q. Exposure to graphene oxide at environmental concentrations induces thyroid endocrine disruption and lipid metabolic disturbance in Xenopus laevis. CHEMOSPHERE 2019; 236:124834. [PMID: 31549672 DOI: 10.1016/j.chemosphere.2019.124834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) has become a topic of increasing concern for its environmental and health risks. However, the potential toxic effects of GO on wildlife remain limited. The present study chose the Xenopus laevis tadpole as a model to assess the thyroid endocrine disruption as well as the lipid metabolic disturbance of GO. Tadpoles at the 51 stage were exposed to GO (0, 0.01, 0.1, and 1 mg/L) for 21 days, when tadpoles were undergoing an extremely complicated phase of morphological changes and growth. GO treatment showed obvious developmental toxicity, such as shortened snout-to-vent length (SVL) and hind limb length (HLL), decreased body weight, and delayed developmental stage. Exposure to GO also induced obvious decreases in whole-body triiodothyronine (T3) and thyroxin (T4) concentrations. The mRNA expression of genes related to the hypothalamic-pituitary-thyroid (HPT) axis also changed significantly. Furthermore, we observed significant decline in the fatty acids and triglycerides (TGs) concomitantly with changes in the expression of genes involved in the synthesis and metabolism of lipids in GO exposure groups. In contrast, high-density lipoprotein (HDL) and total bile acid levels increased remarkably, but cholesterol and low-density lipoprotein (LDH) levels showed no obvious changes. Taken together, the results revealed for the first time that GO could induce thyroid endocrine disruption and produce obvious disturbance effect on lipid synthesis and metabolism.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Clemente Z, Silva GH, de Souza Nunes MC, Martinez DST, Maurer-Morelli CV, Thomaz AA, Castro VLSS. Exploring the mechanisms of graphene oxide behavioral and morphological changes in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30508-30523. [PMID: 31463743 DOI: 10.1007/s11356-019-05870-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
The presence of natural organic matter such as humic acid (HA) can influence the behavior of graphene oxide (GO) in the aquatic environment. In this study, zebrafish embryos were analyzed after 5 and 7 days of exposure to GO (100 mg L-1) and HA (20 mg L-1) alone or together. The results indicated that, regardless of the presence of HA, larvae exposed to GO for 5 days showed an increase in locomotor activity, reduction in the yolk sac size, and total length and inhibition of AChE activity, but there was no difference in enzyme expression. The statistical analysis indicated that the reductions in total larval length, yolk sac size, and AChE activity in larvae exposed to GO persisted in relation to the control group, but there was a recovery of these parameters in groups also exposed to HA. Larvae exposed to GO for 7 days did not show significant differences in locomotor activity, but the RT-PCR gene expression analysis evidenced an increase in the AChE expression. Since the embryos exposed to GO showed a reduction in overall length, they were submitted to confocal microscopy and their muscle tissue configuration investigated. No changes were observed in the muscle tissue. The results indicated that HA is associated with the toxicity risk modulation by GO and that some compensatory homeostasis mechanisms may be involved in the developmental effects observed in zebrafish.
Collapse
Affiliation(s)
- Zaira Clemente
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, 13820-000, Brazil.
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
| | - Gabriela Helena Silva
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, 13820-000, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, 13416-000, Brazil
| | - Miriam Celi de Souza Nunes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13087-883, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, 13416-000, Brazil
| | - Claudia Vianna Maurer-Morelli
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13087-883, Brazil
| | - Andre Alexandre Thomaz
- Department of Quantum Electronics, Institute of Physics "Gleb Wataghin", University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
- National Institute of Photonics Applied to Cell Biology (INFABIC), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
| | | |
Collapse
|
37
|
Xia T, Lin Y, Guo X, Li S, Cui J, Ping H, Zhang J, Zhong R, Du L, Han C, Zhu L. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:723-730. [PMID: 31112926 DOI: 10.1016/j.envpol.2019.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Increasing production and application of nanomaterials lead to their environmental release possible. The nanomaterials with different properties may transport together in porous media, and consequently affect their environmental fates. In this study, column experiments were conducted to investigate the co-transport of two typical nanomaterials, graphene oxide (GO) and nano-titanium dioxide (nTiO2), in saturated quartz sand in NaCl and CaCl2 electrolyte solutions under both favorable and unfavorable conditions. The breakthrough curves as well as the retained profiles of single and binary nanoparticles were examined. The results indicated that nTiO2 significantly enhanced the GO retention under all examined conditions, especially at lower pH, higher ionic strength and the presence of divalent cation Ca2+. This might be attributed to the formation of less negatively charged and larger-sized GO-nTiO2 agglomerates as well as the increased retention sites on sand surface by preferentially deposited nTiO2. However, GO merely slightly enhanced the transport of nTiO2 in NaCl solutions, whereas had negligible effect on nTiO2 transport and retention in CaCl2 solutions. The highly hydrophilic and mobile GO served as a carrier and facilitated the transport of nTiO2 in NaCl solutions. In CaCl2 solutions, the strong attachment affinity between positively charged nTiO2 and negatively charged quartz sand (at pH 4.5), and dramatical accumulation of large nTiO2 agglomerates near the column inlets (at pH 6.5) led to significant deposition of nTiO2 on quartz sand. The co-presence of GO failed to counteract the retention of nTiO2 particles on sand.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yixuan Lin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Shunli Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jingshan Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Huaixiang Ping
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Rongwei Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lisha Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Chunxiao Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
38
|
Chen J, Lu T, Wang Y, Li J, Fu X, Qi Z, Zhang Q. Transport of graphene oxide nanoparticles in saturated kaolinite- and goethite-coated sand columns: effects of low-molecular-weight organic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24922-24932. [PMID: 31243660 DOI: 10.1007/s11356-019-05683-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The effects of low-molecular-weight organic acids (LMWOAs) on the transport of graphene oxide nanoparticles in saturated kaolinite- and goethite-coated sand columns were studied. Acetic acid, glycolic acid, malonic acid, and tartaric acid were chosen in the experiments. LMWOAs enhanced the mobility of GO by electrostatic/steric repulsion. In addition, they competed with GO for limited deposition sites on grain surfaces. The effects of organic acids on the transport of GO strongly depended on organic acid species. In general, the transport enhancement effects followed the order of tartaric acid > malonic acid > glycolic acid > acetic acid; this difference may be related to the number and type of functional groups of organic acids. Different LMWOAs enhanced the transport of GO in goethite-coated sand to a larger extent than did in kaolinite-coated sand under the test conditions; this was likely related to the differences of physicochemical characteristics between goethite and kaolinite. Organic acids significantly inhibited the deposition of GO at 0.5 mM Ca2+; this was possible that Ca2+ enhanced adsorption of organic acids by complexing with the surface O-functionalities of both LMWOAs and sand grain. Consequently, more organic acid molecules competed with GO for deposition sites on grain surfaces. Additionally, a two-site transport model was used to fit the transport data. Our findings have important implications for the understanding of the deposition and fate of GO in soil especially in rhizosphere environments where various low-molecular-weight organic acids are active.
Collapse
Affiliation(s)
- Jiuyan Chen
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
- Henan University Minsheng College, Kaifeng, 475004, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Ying Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
- Henan University Minsheng College, Kaifeng, 475004, China
| | - Jiaqi Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
- Henan University Minsheng College, Kaifeng, 475004, China
| | - Xiaowen Fu
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhichong Qi
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
39
|
Zeng Z, Wang Y, Zhou Q, Yang K, Lin D. New insight into the aggregation of graphene oxide in synthetic surface water: Carbonate nanoparticle formation on graphene oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:366-374. [PMID: 31022642 DOI: 10.1016/j.envpol.2019.03.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO), used in a wide variety of applications, is increasingly being introduced into aquatic environments; this situation calls for research on GO aggregation and sedimentation to regulate the environmental behaviors and risks. Many studies have investigated the aggregation and the mechanism of GO in water with a single background salt (monosalt system); however, this may not reflect real water environments where multiple salts coexist (multisalt system). A typical synthetic surface water (soft water) with representative multisalts was therefore used to study the aggregation and sedimentation of GO. The GO concentration-dependent aggregation (low concentration aggregation, high concentration stability) was observed in the soft water, and this concentration-dependent aggregation is opposite to the aggregation in monosalt systems (NaCl or CaCl2 solutions). The presence of GO sheets induced the formation of amorphous CaMg(CO3)2 nanoparticles on the GO surfaces in the soft water, and the formed nanoparticles promoted the aggregation and sedimentation of low concentrations of GO through bridging action. Neutral and alkaline conditions were favorable for the formation of CaMg(CO3)2 nanoparticles and the induced GO aggregation. These findings show a new mechanism of GO aggregation in environmentally relevant waters and help us to better evaluate the environmental fate of GO.
Collapse
Affiliation(s)
- Zhiyuan Zeng
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanlong Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Qingbo Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Zhao FF, Wang SC, Zhu ZL, Wang SG, Liu FF, Liu GZ. Effects of oxidation degree on photo-transformation and the resulting toxicity of graphene oxide in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:1106-1114. [PMID: 31146316 DOI: 10.1016/j.envpol.2019.03.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/09/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has been demonstrated to be key component for diverse applications. However, their potential environmental reactivity, fate and risk have not been fully evaluated to date. In this study, we investigated the photochemical reactivity of four types of GO with different oxidation degrees in aqueous environment, and their related toxicity to two bacterial models Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was further compared. After UV-irradiation, a large amount of oxygen functional groups on GO were reduced and the electronic conjugations within GO were restored as indicated by UV-visible absorption spectra, X-ray photoelectron spectroscopy and Raman spectroscopy analysis. Moreover, the higher the oxidation degree of the pristine GO was, the more obvious of the photo-transformation changes were. In order to further reveal the photochemical reactivity mechanisms, the reactive oxygen species (ROS) generation of GO was monitored. The quantity of ROS including singlet oxygen (1O2), superoxide anions (O2·-), and hydroxyl radicals (·OH) increased with increasing oxidation degree of GO, which was in accordance with the previous characterization results. Scanning electron microscopy and cell growth analyses of E. coli and S. aureus showed that the photochemical transformation enhanced the toxicity of GO, which might be due to an increase in functional group density. The higher conductivity of the reduced graphene oxide (RGO) was responsible for its stronger toxicity than GO through membrane damage and oxidative stress to bacteria. This study revealed that the oxidation degrees play important roles in photochemical transformation and the resulting toxicity of GO, which is helpful for understanding the environmental behaviors and risks of GO in aquatic environments.
Collapse
Affiliation(s)
- Fei-Fei Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Su-Chun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Zhi-Lin Zhu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China.
| | - Guang-Zhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
41
|
Li J, Chen J, Lu T, Wang Y, Zhang H, Shang Z, Li D, Zhou Y, Qi Z. Effects of low-molecular weight organic acids on the transport of graphene oxide nanoparticles in saturated sand columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:94-102. [PMID: 30798247 DOI: 10.1016/j.scitotenv.2019.02.242] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The impact of low-molecular weight organic acids (LMWOAs) on the transport of graphene oxide (GO) nanoparticles in saturated quartz sand was investigated. The different LMWOAs such as acetic acid, glycolic acid, malonic acid, and tartaric acid were used in experiments. The effects of LMWOAs on the transport of GO were markedly dependent upon organic acid species. In general, the transport enhancement effects followed the order of tartaric acid > malonic acid > glycolic acid > acetic acid, the regular pattern might be related to amount and type of functional groups of LMWOAs. Additionally, the different enhanced ability of LMWOAs was determined by their molecular weight. In the presence of Na+, the main deposition mechanism was ascribed to steric hindrance and competition between LMWOA and GO for deposition sites on grain surfaces under acidic conditions (i.e., pH 4.0 and 5.0). Batch adsorption experiments indicated the extents of competitive adsorption between LMWOAs and GO on quartz sand. In addition, the DLVO theory was not applicable to describe the transport of GO in the presence of LMWOAs at pH 5.0. Nevertheless, electrostatic and steric repulsion, existing between GO and sand grains, were the most important deposition mechanisms under the neutral condition (i.e., pH 7.0). When Ca2+ was the main cation in the background solution, the transport enhancement effects followed quite similar order to those of Na+, mainly due to different complexing strength of organic acids.
Collapse
Affiliation(s)
- Jiaqi Li
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiuyan Chen
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany
| | - Ying Wang
- Henan University Minsheng College, Kaifeng 475004, China
| | - Haojing Zhang
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhongbo Shang
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Deliang Li
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China.
| |
Collapse
|
42
|
Xia T, Ma P, Qi Y, Zhu L, Qi Z, Chen W. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:383-391. [PMID: 30690234 DOI: 10.1016/j.envpol.2019.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The increasing production and use of graphene-based nanomaterials (e.g., graphene oxide (GO) and reduced graphene oxide (RGO)) will lead to their environmental release. To date, transport of RGOs in saturated porous media is poorly understood. Here, we examined the transport behaviors of three RGO materials obtained by reducing a GO product with commonly used reducing agents - N2H4, NaBH4 and L-ascorbic acid (referred to as N2H4-RGO, NaBH4-RGO and VC-RGO, respectively). When the dominant background cation was Na+, K+ or Mg2+, the mobility of the RGOs and GO in saturated quartz sand correlated well with their surface C/O ratio. Interestingly, the lower mobility of the more reduced materials (the ones with higher C/O values) was not only the results of their less negative surface charges and larger particle sizes, but also the outcome of their greater hydrophobicity, in line with the calculated extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) profiles. Counterintuitively, when the background cation was Ca2+, the least reduced material among the three RGOs, VC-RGO, exhibited the lowest mobility. Analysis of electrophoretic and aggregation properties, as well as pH-effect experiments, indicated that the surprisingly low mobility of VC-RGO was attributable to the strong cation-bridging effect (primarily Ca2+-bridging between RGO and quartz sand) associated with this material, as VC-RGO contained the highest amount of surface carboxyl group (a strong metal-binding moiety). Notably, enhanced attachment (due to increased hydrophobic effect and cation-bridging) and particle aggregation appeared to work synergistically to increase RGO retention, as the attachment of large RGO aggregates significantly enhanced particle straining by narrowing the flow path. These observations reveal a largely overlooked link between the mobility of graphene-based materials and their key physicochemical properties.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Pengkun Ma
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Yu Qi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Zhichong Qi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
43
|
Qi Z, Du T, Ma P, Liu F, Chen W. Transport of graphene oxide in saturated quartz sand containing iron oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1450-1459. [PMID: 30677911 DOI: 10.1016/j.scitotenv.2018.12.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The environmental implications of graphene oxide (GO) have received much attention. Transport of GO in subsurface environment is a critical process affecting the migration and potential risks of this important class of carbonaceous nanomaterials. To date, the effects of heterogeneity in porous media, in particular, iron oxides, on GO transport are not well studied. In this study, we investigated the transport properties of GO in saturate quartz sand as affected by the presence of iron oxides, using goethite, hematite and ferrihydrite as the model iron oxide species, and applied a two-site transport model (which accounts for both attachment and straining) to fit the transport data. We found that iron oxide coating on sand surfaces markedly inhibited GO transport, mainly due to increased electrostatic attraction between particles and collectors, as the positively charged iron oxides provided favorable deposition sites for the negatively charged GO nanosheets. Additionally, increased surface roughness was likely an additional mechanism leading to the enhanced GO deposition. The extent of transport inhibition by iron oxides also depended on the morphology iron oxides, in that at the same Fe loading a larger effect was observed when iron oxides existed as the coating on sand surface than as discreet particles. The presence of iron oxide coatings (tested using goethite) could magnify the effects of cations on GO transport. Specifically, the presence of goethite facilitated the accumulation of cations on the surface of sand, and in the case of Ca2+, the binding of GO via the cation-bridging mechanism was enhanced, as goethite contained abundant surface hydroxyl groups that are strong metal-complexing moieties.
Collapse
Affiliation(s)
- Zhichong Qi
- College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan University, Kaifeng, Henan 475004, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tingting Du
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Pengkun Ma
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Fangfei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
44
|
Liang Y, Bradford SA, Šimůnek J, Klumpp E. Mechanisms of graphene oxide aggregation, retention, and release in quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:70-79. [PMID: 30502736 DOI: 10.1016/j.scitotenv.2018.11.258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
The roles of graphene oxide (GO) particle geometry, GO surface orientation, surface roughness, and nanoscale chemical heterogeneity on interaction energies, aggregation, retention, and release of GO in porous media were not fully considered in previous studies. Consequently, mechanisms controlling the environmental fate of GO were incompletely or inaccurately quantified. To overcome this limitation, plate-plate interaction energies were modified to account for these factors and used in conjunction with a mathematical model to interpret the results of GO aggregation, retention, and release studies. Calculations revealed that these factors had a large influence on the predicted interaction energy parameters. Similar to previous literature, the secondary minimum was predicted to dominate on smooth, chemically homogeneous surfaces that were oriented parallel to each other, especially at higher ionic strength (IS). Conversely, shallow primary minimum interactions were sometimes predicted to occur on surfaces with nanoscale roughness and chemical heterogeneity due to adsorbed Ca2+ ions, especially when the GO particles were oriented perpendicular to the interacting surface. Experimental results were generally consistent with these predictions and indicated that the primary minimum played a major role in GO retention and the secondary minimum contributed to GO release with IS reduction. Cation exchange (Na+ replacing Ca2+) enhanced GO release with IS reduction when particles were initially deposited in the presence of Ca2+ ions. However, retained GO were always completely recovered into the excess deionized water when the sand pore structure was destroyed during excavation, and this indicates that primary minima were shallow and that the pore structure also played an important role in GO retention. Further evidence for the role of pore structure on GO retention was obtained by conducting experiments in finer textured sand and at higher input concentrations that induced greater aggregation. In both cases, greater GO retention occurred, and retention profiles became more hyperexponential in shape.
Collapse
Affiliation(s)
- Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Scott A Bradford
- US Salinity Laboratory, USDA, ARS, Riverside, CA, United States.
| | - Jiří Šimůnek
- Department of Environmental Sciences, University of California, Riverside, CA, United States
| | - Erwin Klumpp
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
45
|
Shen M, Hai X, Shang Y, Zheng C, Li P, Li Y, Jin W, Li D, Li Y, Zhao J, Lei H, Xiao H, Li Y, Yan G, Cao Z, Bu Q. Insights into aggregation and transport of graphene oxide in aqueous and saturated porous media: Complex effects of cations with different molecular weight fractionated natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:843-851. [PMID: 30530152 DOI: 10.1016/j.scitotenv.2018.11.387] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
The stability of nanomaterials in aquatic environment is a critical factor that governs their fate and ecotoxicity. Meanwhile, the interaction between nanomaterials and ubiquitous natural organic matter (NOM) is a vital process that influences the transport and biological effects of nanomaterials in the environment. However, impacts of NOM on the aggregation and transport of two-dimensional nanomaterials, especially for the increasingly used graphene oxide (GO), are not well understood. Particularly, there is lack of exploration on potential impacts of the heterogeneous properties of NOM on GO behaviour, especially that induced by the wide molecular weight (MW) span of NOM. In this study, effects of several kinds of well-characterized MW fractionated Suwannee River NOM (Mf-SRNOMs) on the aggregation and transport of GO in aqueous media and saturated porous media were investigated. Our results suggest that the stability and migration capacity of GO under most investigated electrolyte conditions are promoted by all Mf-SRNOMs, and efficiencies of different Mf-SRNOMs are generally positively correlated with their MW. Primarily, mechanisms including MW-dependent steric hindrance and sorption of Mf-SRNOMs onto GO are critical in stabilizing GO, and thus facilitating its transport. However, the stronger sorption of higher Mf-SRNOMs onto the GO basal plane through π-π interaction further facilitated the cation bridging between both ends of Mf-SRNOM and GO, and resulted in heteroaggregation of NOM-GO. Moreover, the weight analysis indicated that despite the fact that high Mf-SRNOMs only occupied a small percentage of pristine-SRNOM, they showed a stronger contribution towards pristine-SRNOM's capacity in stabilizing GO, when compared with that of lower MW counterpart. These findings pointed out that complex effects of the heterogeneities of NOM and cations should be highly relevant when the aggregation and transport behaviour of two-dimensional nanomaterials is investigated, and NOM fractions that are highly aromatic and of a higher MW should receive greater attention.
Collapse
Affiliation(s)
- Mohai Shen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China.
| | - Xiao Hai
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Yaxin Shang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Chuanrong Zheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Peiwen Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Yao Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Wanwan Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Danlin Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Yajuan Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Jingyi Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Hengtao Lei
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Hui Xiao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Yunbei Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Guangxuan Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-, Beijing, Beijing 100083, China
| |
Collapse
|
46
|
Jahan S, Alias YB, Bakar AFBA, Yusoff IB. Transport and retention behavior of carbonaceous colloids in natural aqueous medium: Impact of water chemistry. CHEMOSPHERE 2019; 217:213-222. [PMID: 30415119 DOI: 10.1016/j.chemosphere.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/21/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media. CNPs and GOQDs (30 mg/L) were dispersed in natural river water (RW) and passed through the column at a flow rate of 1 mL/min, which mimicking the natural water flow rate. After every 10 min, the column effluents were collected and the mass recovery and retention profiles were monitored. Results indicated that the transport of both carbonaceous colloids was predominantly controlled by surface potential and ionic composition of natural water. The CNPs with its high surface potential (-40 mV) exhibited more column transport and was less susceptible to solution pH (5.6-6.8) variation as compared to GOQDs (-24 mV). The results showed that, monovalent salt (NaCl) was one of the dominating factors for the retention and transport of carbonaceous colloids compared to divalent salt (CaCl2). Furthermore, the presence of natural organic matter (NOM) increased the transport of both carbonaceous colloids and thereby decreases the tendency for column retention.
Collapse
Affiliation(s)
- Shanaz Jahan
- Department of Geology, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Yatimah Binti Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia; University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Ismail Bin Yusoff
- Department of Geology, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
47
|
Hlongwane GN, Dodoo-Arhin D, Wamwangi D, Daramola MO, Moothi K, Iyuke SE. DNA hybridisation sensors for product authentication and tracing: State of the art and challenges. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1016/j.sajce.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Loureiro S, Gonçalves SF, Gonçalves G, Hortiguela MJ, Rebelo S, Ferro MC, Vila M. Eco-friendly profile of pegylated nano-graphene oxide at different levels of an aquatic trophic chain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:192-200. [PMID: 29990731 DOI: 10.1016/j.ecoenv.2018.06.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Nanographene oxide (nGO) has been recently proposed as a new antitumoral therapeutic agent, drug delivery carrier and gene transfection vehicle, among others. Treatment is carried out by hyperthermia induced by infrared irradiation. After treatment, the nanosystems will be inevitably excreted and released to the environment. To understand the potential impacts of pegylated nGO (nGO-PEG), three key species from different trophic levels were used: the green micro-algae Raphidocelis subcapitata (growth inhibition test), the cladocera Daphnia magna (acute and chronic tests), and the fish Danio rerio (fish embryo test). Besides a regular standard procedure to assess toxicity, and considering the mode of action of nGO-PEG in cancer treatment, a simultaneous infrared lamp exposure was carried out for D. magna and D. rerio. Additionally, and taking advantage of the phenotypic transparency of D. magna, nGO-PEG was fluorescently tagged to evaluate the potential uptake of nGO-PEG. The R. subcapitata growth inhibition test showed effects during the first 48 h, recovering till the end of the test (96 h). No acute or chronic effects were observed for D. magna, under standard or infrared light exposures although confocal microscope images showed nGO-PEG uptake. Very small percentages of mortality and abnormalities were observed in D. rerio exposed with and without the infrared lamp. Although low hazard may be expected for nGO-PEG in aquatic ecosystems, further studies with species with different life traits should be accomplished, in order to derive more accurate conclusions.
Collapse
Affiliation(s)
- Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Gil Gonçalves
- Department of Mechanical Engineering, TEMA-NRG, University of Aveiro, Portugal
| | | | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Carmona Ferro
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, Portugal
| | - Mercedes Vila
- Department of Mechanical Engineering, TEMA-NRG, University of Aveiro, Portugal
| |
Collapse
|
49
|
Zou W, Zhou Q, Zhang X, Mu L, Hu X. Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:221-231. [PMID: 29753824 DOI: 10.1016/j.ecoenv.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The effects of graphene oxide (GO) carbon nanomaterials on ecosystems have been well characterized, but the toxicity of GO at predicted environmental concentrations to living organisms at the protein level remain largely unknown. In the present work, the adverse effects and mechanisms of GO at predicted environmental concentrations were evaluated by integrating proteomics and standard analyses for the first time. The abundances of 243 proteins, including proteins involved in endocytosis (e.g., cltcb, arf6, capzb and dnm1a), oxidative stress (e.g., gpx4b, sod2, and prdx1), cytoskeleton assembly (e.g., krt8, krt94, lmna and vim), mitochondrial function (e.g., ndufa10, ndufa8, cox5aa, and cox6b1), Ca2+ handling (e.g., atp1b2a, atp1b1a, atp6v0a1b and ncx4a) and cardiac function (e.g., tpm4a, tpm2, tnni2a.1 and tnnt3b), were found to be notably altered in response to exposure 100 μg/L GO. The results revealed that GO caused malformation and mortality, likely through the downregulation of proteins related to actin filaments and formation of the cytoskeleton, and induced oxidative stress and mitochondrial disorders by altering the levels of antioxidant enzymes and proteins associated with the mitochondrial membrane respiratory chain. Exposure to GO also increased the heart rate of zebrafish larvae and induced pericardial edema, likely by changing the expression of proteins related to Ca2+ balance and cardiac function. This study provides new proteomic-level insights into GO toxicity against aquatic organisms, which will greatly benefit our understanding of the bio-safety of GO and its toxicity at predicted environmental concentrations.
Collapse
Affiliation(s)
- Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture), Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
50
|
De Marchi L, Pretti C, Gabriel B, Marques PAAP, Freitas R, Neto V. An overview of graphene materials: Properties, applications and toxicity on aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1440-1456. [PMID: 29727968 DOI: 10.1016/j.scitotenv.2018.03.132] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Due to unique chemical and physical properties, nanomaterials from the Graphene family are being increasingly introduced in all fields of science. The specific roles they can occupy within different applications are attracting increased attention by several industrial sectors. These carbon nanoparticles are released into the environment especially accumulating in aquatic systems. Since the discovery of graphene, a number of research actives are being conducted to find out the toxic potential of the Graphene family materials to different organism's models. Although their toxicity effects are well described for biomedical applications, few data were produced with the specific aim of assessing the toxic effects of these carbon nanomaterials in the aquatic environment. The purpose of this review is to compile up-to-date information on properties, applications and characterization methods of graphene family materials in aquatic environments and identified biological toxic impacts of these NMs, with special focus on graphene oxide based on the most recent literature.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), 3810-193 Aveiro, Portugal; Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Bárbara Gabriel
- Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), 3810-193 Aveiro, Portugal
| | - Victor Neto
- Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|