1
|
Nakamura H, Tanaka T, Zheng C, Afione SA, Warner BM, Noguchi M, Atsumi T, Chiorini JA. Correction of LAMP3-associated salivary gland hypofunction by aquaporin gene therapy. Sci Rep 2022; 12:18570. [PMID: 36329045 PMCID: PMC9633788 DOI: 10.1038/s41598-022-21374-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Sjögren's disease (SjD) is a chronic autoimmune sialadenitis resulting in salivary gland hypofunction with dry mouth symptom. Previous studies showed that lysosome-associated membrane protein 3 (LAMP3) overexpression is involved in the development of salivary gland hypofunction associated with SjD. However, the molecular mechanisms are still unclear, and no effective treatment exists to reverse gland function in SjD. Analysis on salivary gland samples from SjD patients showed that salivary gland hypofunction was associated with decreased expression of sodium-potassium-chloride cotransporter-1 (NKCC1) and aquaporin 5 (AQP5), which are membrane proteins involved in salivation. Further studies revealed that LAMP3 overexpression decreased their expression levels by promoting endolysosomal degradation. Additionally, we found that LAMP3 overexpression enhanced gene transfer by increasing internalization of adeno-associated virus serotype 2 (AAV2) via the promoted endolysosomal pathway. Retrograde cannulation of AAV2 vectors encoding AQP1 gene (AAV2-AQP1) into salivary glands induced glandular AQP1 expression sufficient to restore salivary flow in LAMP3-overexpressing mice. LAMP3 could play a critical role in the development of salivary gland hypofunction in SjD by promoting endolysosomal degradation of NKCC1 and AQP5. But it also could enhance AAV2-mediated gene transfer to restore fluid movement through induction of AQP1 expression. These findings suggested that AAV2-AQP1 gene therapy is useful in reversing salivary gland function in SjD patients.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tsutomu Tanaka
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Changyu Zheng
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Sandra A Afione
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Blake M Warner
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Nakamura H, Tanaka T, Pranzatelli T, Ji Y, Yin H, Perez P, Afione SA, Jang SI, Goldsmith C, Zheng CY, Swaim WD, Warner BM, Hirata N, Noguchi M, Atsumi T, Chiorini JA. Lysosome-associated membrane protein 3 misexpression in salivary glands induces a Sjögren's syndrome-like phenotype in mice. Ann Rheum Dis 2021; 80:1031-1039. [PMID: 33658234 PMCID: PMC8292598 DOI: 10.1136/annrheumdis-2020-219649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Sjögren's syndrome (SS) is an autoimmune sialadenitis with unknown aetiology. Although extensive research implicated an abnormal immune response associated with lymphocytes, an initiating event mediated by salivary gland epithelial cell (SGEC) abnormalities causing activation is poorly characterised. Transcriptome studies have suggested alternations in lysosomal function are associated with SS, but a cause and effect linkage has not been established. In this study, we demonstrated that altered lysosome activity in SGECs by expression of lysosome-associated membrane protein 3 (LAMP3) can initiate an autoimmune response with autoantibody production and salivary dysfunction similar to SS. METHODS Retroductal cannulation of the submandibular salivary glands with an adeno-associated virus serotype 2 vector encoding LAMP3 was used to establish a model system. Pilocarpine-stimulated salivary flow and the presence of autoantibodies were assessed at several time points post-cannulation. Salivary glands from the mice were evaluated using RNAseq and histologically. RESULTS Following LAMP3 expression, saliva flow was significantly decreased and serum anti-Ro/SSA and La/SSB antibodies could be detected in the treated mice. Mechanistically, LAMP3 expression increased apoptosis in SGECs and decreased protein expression related to saliva secretion. Analysis of RNAseq data suggested altered lysosomal function in the transduced SGECs, and that the cellular changes can chemoattract immune cells into the salivary glands. Immune cells were activated via toll-like receptors by damage-associated molecular patterns released from LAMP3-expressing SGECs. CONCLUSIONS These results show a critical role for lysosomal trafficking in the development of SS and establish a causal relationship between LAMP3 misexpression and the development of SS.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Tsutomu Tanaka
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Thomas Pranzatelli
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Youngmi Ji
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Hongen Yin
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Sandra A Afione
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Shyh-Ing Jang
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Corrine Goldsmith
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Chang Yu Zheng
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - William D Swaim
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Noriyuki Hirata
- Division of Cancer Biology, Hokkaido University, Sapporo, Japan
| | | | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Sapporo, Japan
| | - John A Chiorini
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Di Pasquale G, Perez Riveros P, Tora M, Sheikh T, Son A, Teos L, Grewe B, Swaim WD, Afione S, Zheng C, Jang SI, Shitara A, Alevizos I, Weigert R, Chiorini JA. Transduction of Salivary Gland Acinar Cells with a Novel AAV Vector 44.9. Mol Ther Methods Clin Dev 2020; 19:459-466. [PMID: 33294494 PMCID: PMC7689275 DOI: 10.1016/j.omtm.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
The loss of salivary gland function caused by radiation therapy of the head and neck or autoimmune disease such as Sjögren's syndrome is a serious condition that affects a patient's quality of life. Due to the combined exocrine and endocrine functions of the salivary gland, gene transfer to the salivary glands holds the potential for developing therapies for disorders of the salivary gland and the expression of therapeutic proteins via the exocrine pathway to the mouth, upper gastrointestinal tract, or endocrine pathway, systemically, into the blood. Recent clinical success with viral vector-mediated gene transfer for the treatment of irradiation-induced damage to the salivary glands has highlighted the need for the development of novel vectors with acinar cell tropism able to result in stable long-term transduction. Previous studies with adeno-associated virus (AAV) focused on the submandibular gland and reported mostly ductal cell transduction. In this study, we have screened AAV vectors for acinar cell tropism in the parotid gland utilizing membrane-tomato floxed membrane-GFP transgenic mice to screen CRE recombinase encoding AAV vectors of different clades to rapidly identify capsid isolates able to transduce salivary gland acinar cells. We determined that AAVRh10 and a novel isolate found as a contaminant of a laboratory stock of simian adenovirus SV15, AAV44.9, are both able to transduce parotid and sublingual acinar cells. Persistence and localization of transduction of these AAVs were tested using vectors encoding firefly luciferase, which was detected 6 months after vector administration. Most luciferase expression was localized to the salivary gland compared to that of distal organs. Transduction resulted in robust secretion of recombinant protein in both blood and saliva. Transduction was species specific, with AAVRh10 having stronger transduction activity in rats compared with AAV44.9 or AAV2 but weaker in human primary salivary gland cells. This work demonstrates efficient transduction of parotid acinar cells by AAV that resulted in secretion of recombinant protein in both serum and saliva.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paola Perez Riveros
- Salivary Gland Biology and Disorder Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhibullah Tora
- Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayyab Sheikh
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leyla Teos
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brigitte Grewe
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - William D. Swaim
- Salivary Gland Biology and Disorder Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Afione
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyh-Ing Jang
- Salivary Gland Biology and Disorder Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akiko Shitara
- Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilias Alevizos
- Sjögren’s Syndrome and Salivary Gland Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roberto Weigert
- Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
CRISPR-Cas9 HDR system enhances AQP1 gene expression. Oncotarget 2017; 8:111683-111696. [PMID: 29340084 PMCID: PMC5762352 DOI: 10.18632/oncotarget.22901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/16/2017] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation (IR) isthe primarytherapeutic tool to treat patients with cancerous lesions located in the head and neck. In many patients, IR results in irreversible and severe salivary gland dysfunction or xerostomia. Currently there are no effective treatment options to reduce the effects of xerostomia. More recently, salivary gland gene therapy utilizing the water-specific protein aquaporin 1 (AQP1) has been of great interest to potentially correct salivary dysfunction. In this study, we used CRISPR-Cas9 gene editing along with the endogenous promoter of AQP1 within theHEK293 and MDCK cell lines. The successful integration of the cytomegalovirus (CMV) promoterresultedin a significant increase of AQP1 gene transcription and translation. Additionalfunctional experiments involvingthe MDCK cell line confirmedthat over-expressed AQP1increasedtransmembrane fluid flux indicative of increased intracellular fluid flux. The off-target effect of designed guided RNA sequence was analyzed and demonstrateda high specificity for the Cas9 cleavage. Considering the development of new methods for robust DNA knock-in, our results suggest that endogenous promoter replacement may be a potential treatment forsalivary gland dysfunction.
Collapse
|
5
|
Chiorini JA. And one to bind them all. Oral Dis 2016; 22:716-718. [PMID: 27109444 DOI: 10.1111/odi.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John A Chiorini
- AAV Biology Section Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Baum BJ, Alevizos I, Chiorini JA, Cotrim AP, Zheng C. Advances in salivary gland gene therapy - oral and systemic implications. Expert Opin Biol Ther 2015; 15:1443-54. [PMID: 26149284 DOI: 10.1517/14712598.2015.1064894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. AREAS COVERED There are two major disorders affecting salivary glands: radiation damage following treatment for head and neck cancers and Sjögren's syndrome (SS). Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. EXPERT OPINION Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on SS suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding how secretory proteins are sorted. Future studies will likely employ ultrasound-assisted and pseudotyped adeno-associated viral vector-mediated gene transfer.
Collapse
Affiliation(s)
- Bruce J Baum
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ilias Alevizos
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - John A Chiorini
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ana P Cotrim
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Changyu Zheng
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| |
Collapse
|
7
|
|
8
|
Increase in muscarinic stimulation-induced Ca2+ response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo. Biochem Biophys Res Commun 2013; 439:433-7. [DOI: 10.1016/j.bbrc.2013.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/24/2013] [Indexed: 02/03/2023]
|
9
|
AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Ther 2010; 18:38-42. [PMID: 20882054 PMCID: PMC3015016 DOI: 10.1038/gt.2010.128] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously (Shan et al, 2005), we reported that adenoviral vector-mediated transfer of the human aquaporin-1 (hAQP1) cDNA to minipig parotid glands following irradiation (IRti) transiently restored salivary flow to near normal levels. This study evaluated a serotype 2, adeno-associated viral (AAV2) vector for extended correction of IR (single dose; 20 Gy)-induced, parotid salivary hypofunction in minipigs. Sixteen weeks following IR, parotid salivary flow decreased by 85-90%. AAV2hAQP1 administration at week 17 transduced only duct cells and resulted in a dose-dependent increase in salivary flow to ∼35% of pre-IR levels (to ∼1ml/10min) after 8 weeks (peak response). Administration of a control AAV2 vector or saline, was without effect. Little change was observed in clinical chemistry and hematology values after AAV2hAQP1 delivery. Vector treated animals generated high anti-AAV2 neutralizing antibody titers by week 4 (∼1:1600) and significant elevations in salivary (∼15%), but not serum, GM-CSF levels. Following vector administration, salivary [Na+] was dramatically increased, from ∼10mM to ∼55 (at 4 weeks) and 39 mM (8 weeks). The findings demonstrate that localized delivery of AAV2hAQP1 to IR-damaged parotid glands leads to increased fluid secretion from surviving duct cells, and may be useful in providing extended relief of salivary hypofunction in previously irradiated patients.
Collapse
|
10
|
Zheng C, Voutetakis A, Metzger M, Afione S, Cotrim AP, Eckhaus MA, Rivera VM, Clackson T, Chiorini JA, Donahue RE, Dunbar CE, Baum BJ. Evaluation of a rapamycin-regulated serotype 2 adeno-associated viral vector in macaque parotid glands. Oral Dis 2010; 16:269-77. [PMID: 20374510 DOI: 10.1111/j.1601-0825.2009.01631.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Salivary glands are useful target organs for local and systemic gene therapeutics. For such applications, the regulation of transgene expression is important. Previous studies by us in murine submandibular glands showed that a rapamycin transcriptional regulation system in a single serotype 2, adeno-associated viral (AAV2) vector was effective for this purpose. This study evaluated if such a vector was similarly useful in rhesus macaque parotid glands. METHODS A recombinant AAV2 vector (AAV-TF-RhEpo-2.3w), encoding rhesus erythropoietin (RhEpo) and a rapamycin-inducible promoter, was constructed. The vector was administered to macaques at either of two doses [1.5 x 10(11) (low dose) or 1.5 x 10(12) (high dose) vector genomes] via cannulation of Stensen's duct. Animals were followed up for 12-14 weeks and treated at intervals with rapamycin (0.1 or 0.5 mg kg(-1)) to induce gene expression. Serum chemistry, hematology, and RhEpo levels were measured at interval. RESULTS AAV-TF-RhEpo-2.3w administration led to low levels of rapamycin-inducible RhEpo expression in the serum of most macaques. In five animals, no significant changes were seen in serum chemistry and hematology values over the study. One macaque, however, developed pneumonia, became anemic and subsequently required euthanasia. After the onset of anemia, a single administration of rapamycin led to significant RhEpo production in this animal. CONCLUSION Administration of AAV-TF-RhEpo-2.3w to macaque parotid glands was generally safe, but led only to low levels of serum RhEpo in healthy animals following rapamycin treatment.
Collapse
Affiliation(s)
- C Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-1190, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Baum BJ, Zheng C, Alevizos I, Cotrim AP, Liu S, McCullagh L, Goldsmith CM, McDermott N, Chiorini JA, Nikolov NP, Illei GG. Development of a gene transfer-based treatment for radiation-induced salivary hypofunction. Oral Oncol 2009; 46:4-8. [PMID: 19892587 DOI: 10.1016/j.oraloncology.2009.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
A significant long-term side effect of radiation therapy for head and neck cancers is xerostomia, a dry mouth, due to salivary gland damage. Despite continuing efforts to eliminate this problem, many patients continue to suffer. This brief review describes our efforts to develop a gene transfer approach, employing the aquaporin-1 cDNA, to treat patients with existing radiation-induced salivary hypofunction. A Phase I/II clinical trial, using a recombinant adenoviral vector to mediate gene transfer, is currently underway.
Collapse
Affiliation(s)
- Bruce J Baum
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hai B, Yan X, Voutetakis A, Zheng C, Cotrim AP, Shan Z, Ding G, Zhang C, Xu J, Goldsmith CM, Afione S, Chiorini JA, Baum BJ, Wang S. Long-term transduction of miniature pig parotid glands using serotype 2 adeno-associated viral vectors. J Gene Med 2009; 11:506-14. [PMID: 19326368 DOI: 10.1002/jgm.1319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Previously, using an adenoviral vector, we showed that miniature pigs could provide a valuable and affordable large animal model for pre-clinical gene therapy studies to correct parotid gland radiation damage. However, adenoviral vectors lead to short-term transgene expression and, ideally, a more stable correction is required. In the present study, we examined the suitability of using a serotype 2 adeno-associated viral (AAV2) vector to mediate more stable gene transfer in the parotid glands of these animals. METHODS Heparan sulfate proteoglycan was detected by immunohistochemistry. beta-galactosidase expression was determined histochemically. An AAV2 vector encoding human erythropoietin (hEpo) was administered via Stensen's duct. Salivary and serum hEpo levels were measured using an enzyme-linked immunosorbent assay. Serum chemistry and hematological analyses were performed and serum antibodies to hEpo were measured throughout the study. Vector distribution was determined by a quantitative polymerase chain reaction. RESULTS Transgene expression was vector dose-dependent, with high levels of hEpo being detected for up to 32 weeks (i.e. the longest time studied). hEpo reached maximal levels during weeks 4-8, but declined to approximately 25% of these values by week 32. Haematocrits were elevated from week 2. Transduced animals exhibited low serum anti-hEpo antibodies (1 : 8-1 : 16). Vector biodistribution at animal sacrifice revealed that most copies were in the targeted parotid gland, with few being detected elsewhere. No consistent adverse changes in serum chemistry or hematology parameters were seen. CONCLUSIONS AAV2 vectors mediate extended gene transfer to miniature pig parotid glands and should be useful for testing pre-clinical gene therapy strategies aiming to correct salivary gland radiation damage.
Collapse
Affiliation(s)
- Bo Hai
- Salivary Gland Disease Center and the Molecular Laboratory for Gene Therapy, School of Stomatology, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cotrim AP, Baum BJ. Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol 2008; 36:97-103. [PMID: 18337227 DOI: 10.1177/0192623307309925] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The concept of transferring genes to tissues for clinical applications has been discussed for nearly half a century, but our ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. While originally conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, gene therapy now is considered for many non-life-threatening conditions, including those adversely affecting a patient's quality of life. The lack of suitable treatment has become a rational basis for extending the scope of gene therapy. This manuscript reviews the general methods by which genes are transferred as well as diverse examples of clinical applications (acquired tissue damage, upper gastrointestinal tract infection, autoimmune disease, systemic protein deficiency). Despite some well-publicized problems, gene therapy has made substantive progress, including tangible success, albeit much slower than was initially predicted. Although gene therapy is still at a fairly primitive stage, it is firmly science based. There is justifiable optimism that with increased pathobiological understanding and biotechnological improvements, gene therapy will become a standard part of clinical practice within 20 years.
Collapse
Affiliation(s)
- Ana P Cotrim
- National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, Maryland 20892-1190, USA.
| | | |
Collapse
|
14
|
Tran SD, Sugito T, Dipasquale G, Cotrim AP, Bandyopadhyay BC, Riddle K, Mooney D, Kok MR, Chiorini JA, Baum BJ. Re-engineering primary epithelial cells from rhesus monkey parotid glands for use in developing an artificial salivary gland. ACTA ACUST UNITED AC 2007; 12:2939-48. [PMID: 17518661 DOI: 10.1089/ten.2006.12.2939] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is no satisfactory conventional treatment for patients who experience irreversible salivary gland damage after therapeutic radiation for head and neck cancer or because of Sjögren's syndrome. Additionally, if most parenchyma is lost, these patients also are not candidates for evolving gene transfer strategies. To help such patients, several years ago we began to develop an artificial salivary gland. In the present study, we used a non-human primate tissue source, parotid glands from rhesus monkeys, to obtain potential autologous graft cells for development of a prototype device for in situ testing. Herein, we present 3 major findings. First, we show that primary cultures of rhesus parotid gland (RPG) cells are capable of attaining a polarized orientation, with Na(+)/K(+)-adenosine triphosphatase, zonula occludens-1, and claudin-1 distributed in specific domains appropriate for epithelial cells. Second, we show that RPG cells exhibit 2 essential epithelial functions required for graft cells in an artificial salivary gland device (i.e., an effective barrier to paracellular water flow and the generation of a moderate transepithelial electrical resistance). Third, we show that RPG cells can express functional water channels, capable of mediating directional fluid movement, after transduction by adenoviral and adeno-associated virus type 2 vectors. Together these results demonstrate that it is feasible to individually prepare RPG cells for eventual use in a prototype artificial salivary gland.
Collapse
Affiliation(s)
- Simon D Tran
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-1190, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lodde BM, Mineshiba F, Kok MR, Wang J, Zheng C, Schmidt M, Cotrim AP, Kriete M, Tak PP, Baum BJ. NOD mouse model for Sjögren's syndrome: lack of longitudinal stability. Oral Dis 2006; 12:566-72. [PMID: 17054769 DOI: 10.1111/j.1601-0825.2006.01241.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The non-obese diabetic (NOD) mouse is not only a widely used model for diabetes mellitus type I, but also for the chronic autoimmune disease Sjögren's syndrome (SS), mainly affecting salivary and lacrimal glands. We studied the efficacy of local recombinant serotype 2 adeno-associated viral (rAAV2) vector transfer of immunomodulatory transgenes to alter the SS-like disease in NOD mice. Data collected over a 2-year period indicated a changing SS phenotype in these mice and this phenomenon was investigated. METHODS 10(10) particles rAAV2LacZ/gland were delivered to both submandibular glands (SMGs) of NOD/LtJ mice at 8 weeks (before sialadenitis onset) of age. Salivary flow rates were determined at 8 weeks and time of killing. Blood glucose levels and body weights were measured weekly. After killing, saliva and SMGs were harvested. Analyses of salivary output, inflammatory infiltrates (focus score), SMG cytokine profile, body weight, and diabetes mellitus status were performed. Data from six different experimental studies over 2 years were analyzed and compared. RESULTS Salivary flow rate, focus score, and SMG cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12(p70), tumor necrosis factor-alpha and IFNgamma showed changes over time. There were no differences for body weight, diabetes mellitus prevalence, or blood glucose level of non-diabetic mice. CONCLUSION This retrospective report is the first to describe longitudinal variability in the NOD mouse as a model for SS. We advise other investigators to continuously monitor the SS phenotype parameters and include appropriate controls when studying this disease in NOD mice.
Collapse
Affiliation(s)
- B M Lodde
- Gene Therapy and Therapeutics Branch/NIDCR, NIH, DHHS, Bethesda, MD 20892-1190, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Katano H, Kok MR, Cotrim AP, Yamano S, Schmidt M, Afione S, Baum BJ, Chiorini JA. Enhanced transduction of mouse salivary glands with AAV5-based vectors. Gene Ther 2006; 13:594-601. [PMID: 16341060 DOI: 10.1038/sj.gt.3302691] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) can direct transgene expression in salivary gland cells in vitro and in vivo. However, it is not known how other rAAV serotypes perform when infused into salivary glands. The capsids of serotypes 4 and 5 are distinct from rAAV2 and from each other, suggesting that they may direct binding and entry into different cell types. In the present study, we investigated the tropisms, transduction efficiencies, and antibody response to AAV vectors based on AAV serotypes 2, 4, and 5. Administration of rAAV2beta-galactosidase (betagal), rAAV4betagal, or rAAV5betagal to murine submandibular salivary glands by retrograde ductal instillation resulted in efficient transduction of salivary epithelial cells, with AAV4 and AAV5 producing 2.3 and 7.3 times more betagal activity compared with AAV2. Improved transduction with AAV5 was confirmed by QPCR of DNA extracted from glands and immunohistochemical staining for transgene expression. Like AAV2, AAV5 primarily transduced striated and intercalated ductal cells. AAV4 transduction was evident in striated, intercalated, and excretory ductal cells, as well as in convoluted granular tubules. In keeping with the encapsulated nature of the salivary gland, the majority of persistent viral genomes were found in the gland and not in other tissues. Neutralizing antibodies (NABs) found in the serum of virus-infused animals were serotype specific and there was no crossreactivity between serotypes. No NABs were detected in saliva but sialic acid conjugates present in saliva could neutralize AAV4 at low dilutions. Together our data suggest that because of differences in receptor binding and transduction pathways, other serotypes may have improved utility as gene transfer vectors in the salivary gland and these differences could be exploited in gene therapy applications.
Collapse
Affiliation(s)
- H Katano
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang J, Voutetakis A, Mineshiba F, Illei GG, Dang H, Yeh CK, Baum BJ. Effect of serotype 5 adenoviral and serotype 2 adeno- associated viral vector-mediated gene transfer to salivary glands on the composition of saliva. Hum Gene Ther 2006; 17:455-63. [PMID: 16610933 DOI: 10.1089/hum.2006.17.455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Key to the development of a useful clinical therapy is the minimization of side effects. Routine safety testing, however, does not provide information about the physiological status of many potentially useful gene transfer target sites. In this study, we evaluated the longitudinal effects of intrasalivary duct delivery of recombinant serotype 5 adenoviral (rAd5; 10(9)-10(10) particles/gland in rats) and recombinant serotype 2 adeno-associated viral (rAAV2; 10(8)-10(9) particles/gland in mice) vectors on salivary composition. Both vectors led to modest, transient alterations in several salivary components that thereafter returned to normal. The changes suggested two initial specific consequences of rAd5 and rAAV2 vector administration: (1) a modest breach of the mucosal barrier in the targeted glands, indicated by elevations in salivary albumin, total protein, and Na+ levels, and (2) an innate host response, indicated by transient elevations in either salivary lactoferrin and IgA levels (rAd5) or mucin (rAAV2). These studies are consistent with the notion that administration of modest doses of rAd5 and rAAV2 vectors to salivary glands for a therapeutic purpose can be accomplished without severe or permanent injury to the target tissue, or compromise to its essential exocrine physiological function.
Collapse
Affiliation(s)
- Jianghua Wang
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, MD 20892-1190, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Shai E, Palmon A, Panet A, Marmary Y, Sherman Y, Curran MA, Galun E, Condiotti R. Prolonged transgene expression in murine salivary glands following non-primate lentiviral vector transduction. Mol Ther 2006; 12:137-43. [PMID: 15963929 DOI: 10.1016/j.ymthe.2005.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022] Open
Abstract
Salivary glands are an accessible organ for gene therapy, enabling expression of recombinant proteins for both exocrine and endocrine secretion. Lentivirus-based vectors have many advantages for gene therapy, including their ability to infect nondividing cells and to stably integrate into the host genome, enabling long-term transgene expression without eliciting an inflammatory immune response. In the present study, murine salivary glands were inoculated with feline immunodeficiency virus (FIV)-based lentiviral vectors expressing various reporter genes. Luciferase expression was observed as early as 24 h posttransduction, peaked at 17-21 days, and remained stable for more than 80 days. Staining with X-gal suggested that mucous acinar cells were effectively transduced. FIV vector transduction with the secreted alkaline phosphatase gene increased serum levels in treated animals for up to 45 days, and the FIV vector harboring the interferon-gamma (IFN-gamma) expression cassette induced an increase in IFN-gamma serum levels as well as in the supernatant of salivary gland explant cultures. These results demonstrate that the transduction of salivary glands with nonprimate lentiviral vectors may provide a novel and highly effective vehicle for long-term endocrine transgene expression.
Collapse
Affiliation(s)
- Ela Shai
- Goldyne Savad Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Baum BJ, Zheng C, Cotrim AP, Goldsmith CM, Atkinson JC, Brahim JS, Chiorini JA, Voutetakis A, Leakan RA, Van Waes C, Mitchell JB, Delporte C, Wang S, Kaminsky SM, Illei GG. Transfer of the AQP1 cDNA for the correction of radiation-induced salivary hypofunction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1758:1071-7. [PMID: 16368071 DOI: 10.1016/j.bbamem.2005.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/18/2005] [Accepted: 11/04/2005] [Indexed: 11/18/2022]
Abstract
The treatment of most patients with head and neck cancer includes ionizing radiation (IR). Salivary glands in the IR field suffer significant and irreversible damage, leading to considerable morbidity. Previously, we reported that adenoviral (Ad)-mediated transfer of the human aquaporin-1 (hAQP1) cDNA to rat [C. Delporte, B.C. O'Connell, X. He, H.E. Lancaster, A.C. O'Connell, P. Agre, B.J. Baum, Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc. Natl. Acad. Sci. U S A. 94 (1997) 3268-3273] and miniature pig [Z. Shan, J. Li, C. Zheng, X. Liu, Z. Fan, C. Zhang, C.M. Goldsmith, R.B. Wellner, B.J Baum, S. Wang. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol. Ther. 11 (2005) 444-451] salivary glands approximately 16 weeks following IR resulted in a dose-dependent increase in salivary flow to > or =80% control levels on day 3. A control Ad vector was without any significant effect on salivary flow. Additionally, after administration of Ad vectors to salivary glands, no significant lasting effects were observed in multiple measured clinical chemistry and hematology values. Taken together, the findings show that localized delivery of AdhAQP1 to IR-damaged salivary glands is useful in transiently increasing salivary secretion in both small and large animal models, without significant general adverse events. Based on these results, we are developing a clinical trial to test if the hAQP1 cDNA transfer strategy will be clinically effective in restoring salivary flow in patients with IR-induced parotid hypofunction.
Collapse
Affiliation(s)
- Bruce J Baum
- Gene Therapy and Therapeutics Branch, Bethesda, MD 20892-1190, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shan Z, Li J, Zheng C, Liu X, Fan Z, Zhang C, Goldsmith CM, Wellner RB, Baum BJ, Wang S. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther 2005; 11:444-51. [PMID: 15727941 DOI: 10.1016/j.ymthe.2004.11.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 11/08/2004] [Indexed: 01/02/2023] Open
Abstract
The treatment of most head and neck cancer patients includes ionizing radiation (IR). Salivary glands in the IR field suffer irreversible damage. Previously, we reported that adenoviral (Ad)-mediated transfer of the human aquaporin-1 (hAQP1) cDNA to rat submandibular glands following IR restored salivary flow to near normal levels. It is unclear if this strategy is useful in larger animals. Herein, we evaluated AdhAQP1-mediated gene transfer after parotid gland IR (20 Gy) in the miniature pig. Sixteen weeks following IR, salivation from the targeted gland was decreased by >80%. AdhAQP1 administration resulted in a dose-dependent increase in parotid salivary flow to approximately 80% of pre-IR levels on day 3. A control Ad vector was without significant effect. The effective AdhAQP1 dose was 2.5 x 10(5) pfu/microl infusate, a dose that leads to comparable transgene expression in murine and minipig salivary glands. Three days after Ad vector administration little change was observed in clinical chemistry and hematology values. These findings demonstrate that localized delivery of AdhAQP1 to IR-damaged salivary glands increases salivary secretion, without significant general adverse events, in a large animal model.
Collapse
Affiliation(s)
- Z Shan
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy, Faculty of Stomatology, Capital University of Medical Sciences, Tian Tan Xi Li No. 4, Beijing 100050, Peoples' Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lodde BM, Mineshiba F, Wang J, Cotrim AP, Afione S, Tak PP, Baum BJ. Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren's syndrome. Ann Rheum Dis 2005; 65:195-200. [PMID: 15975969 PMCID: PMC1798026 DOI: 10.1136/ard.2005.038232] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS), an autoimmune exocrinopathy mainly affecting lachrymal and salivary glands, results in ocular and oral dryness (keratoconjunctivitis sicca and xerostomia). The aetiology and pathogenesis are largely unknown; currently, only palliative treatment is available. OBJECTIVE To determine whether gene transfer of vasoactive intestinal peptide (VIP), based on its immunomodulatory properties, might be useful in the management of SS. METHODS A recombinant serotype 2 adeno-associated virus encoding the human VIP transgene (rAAV2hVIP) was constructed and its efficacy tested in the female non-obese diabetic (NOD) mouse model for SS after retrograde instillation in submandibular glands (SMGs). 10(10) particles/gland of rAAV2hVIP or rAAV2LacZ (encoding beta-galactosidase; control vector) were administered at 8 weeks of age (before sialadenitis onset). Salivary flow rates were determined before vector delivery and at time of death (16 weeks). After death, saliva, serum, and SMGs were harvested. Salivary output, inflammatory infiltrates (focus scores), VIP protein expression, cytokine profile, and serum anti-VIP antibodies were analysed. RESULTS rAAV2hVIP significantly improved the salivary flow, increased SMG and serum expression of VIP, and reduced SMG cytokines interleukin (IL) 2, IL10, IL12 (p70), and tumour necrosis factor alpha, and serum RANTES, compared with the control vector. No difference in focus scores or apoptotic rates was found; neutralising antibodies were not detected. CONCLUSIONS Local delivery of rAAV2hVIP can have disease modifying and immunosuppressive effects in SMGs of the NOD mouse model of SS. The new strategy of employing VIP prophylactically may be useful for both understanding and managing the salivary component of SS.
Collapse
Affiliation(s)
- B M Lodde
- GTTB/NIDCR, National Institutes of Health, 10 Center Drive, Room 1N114, MSC 1190, Bethesda, MD 20892-1190, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kok MR, Yamano S, Lodde BM, Wang J, Couwenhoven RI, Yakar S, Voutetakis A, Leroith D, Schmidt M, Afione S, Pillemer SR, Tsutsui MT, Tak PP, Chiorini JA, Baum BJ. Local adeno-associated virus-mediated interleukin 10 gene transfer has disease-modifying effects in a murine model of Sjögren's syndrome. Hum Gene Ther 2004; 14:1605-18. [PMID: 14633403 DOI: 10.1089/104303403322542257] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Female nonobese diabetic (NOD) mice develop spontaneous autoimmune sialadenitis and loss of salivary flow, and are a widely used model of Sjögren's syndrome. We examined the feasibility of local salivary gland immunomodulatory gene delivery to alter these sequelae in NOD mice. We constructed recombinant adeno-associated virus (rAAV) vectors encoding either human interleukin 10 (rAAVhIL-10) or beta-galactosidase (rAAVLacZ, control vector). Mice received rAAVhIL-10 or rAAVLacZ by retrograde submandibular ductal instillation either at age 8 weeks (early, before onset of sialadenitis), or at 16 weeks (late, after onset of sialadenitis). As a systemic treatment control, separate mice received intramuscular delivery of rAAVhIL-10 at each time point. Both submandibular and intramuscular delivery of vector led to low circulating levels of hIL-10. After submandibular administration of rAAVhIL-10, salivary flow rates at 20 weeks for both the early and late treatment groups were significantly higher than for both rAAVLacZ-administered and untreated mice. Systemic delivery of rAAVhIL-10 led to improved salivary flow in the late treatment group. Inflammatory infiltrates in submandibular glands, however, were significantly reduced only in mice receiving rAAVhIL-10 locally in the salivary gland compared with mice receiving this vector intramuscularly, or rAAVLacZ or no treatment. In addition, after submandibular rAAVhIL-10 delivery, NOD mice exhibited significantly lower blood glucose, and higher serum insulin, levels than all other groups, indicating some systemic benefit of this treatment. These studies show that expression of hIL-10 by rAAV vectors can have disease-modifying effects in the salivary glands of NOD mice, and suggest that local immunomodulatory gene transfer may be useful for managing the salivary gland pathology in Sjögren's syndrome.
Collapse
Affiliation(s)
- Marc R Kok
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Voutetakis A, Wang J, Baum BJ. Utilizing endocrine secretory pathways in salivary glands for systemic gene therapeutics. J Cell Physiol 2004; 199:1-7. [PMID: 14978729 DOI: 10.1002/jcp.10429] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian salivary glands are commonly used models of exocrine secretion. However, there is substantial experimental evidence showing the physiological existence of endocrine secretory pathways in these tissues. The use of gene transfer technology in vivo has allowed the unambiguous demonstration of these endocrine pathways. We and others have exploited such findings and evaluated salivary glands as possible target tissues for systemic applications of gene therapeutics. Salivary glands present numerous advantages for this purpose, including being well encapsulated, which limits extra-glandular vector dissemination, and having the luminal membranes of almost all parenchymal cells accessible via intraoral delivery of vectors through the main excretory ducts. Existing studies suggest that clinical benefits will result from salivary gland targeted systemic gene therapeutics.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, Maryland 20892-1190, USA
| | | | | |
Collapse
|
24
|
Kok MR, Baum BJ, Tak PP, Pillemer SR. Use of localised gene transfer to develop new treatment strategies for the salivary component of Sjögren's syndrome. Ann Rheum Dis 2003; 62:1038-46. [PMID: 14583564 PMCID: PMC1754372 DOI: 10.1136/ard.62.11.1038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Effective treatment for Sjögren's syndrome (SS) might be developed locally by introducing genes encoding cytokines, which are potentially anti-inflammatory, or by introducing a cDNA encoding a soluble form of a key cytokine receptor, which can act as an antagonist and decrease the availability of certain cytokines, such as soluble tumour necrosis factor alpha receptors. Currently, the preferred choice of viral vector for immunomodulatory gene transfer is recombinant adeno-associated virus. The use of gene transfer to help determine the pathophysiology and to alter the course of the SS-like disease in the NOD mouse model can ultimately lead to the development of new treatments for managing the salivary component in patients with SS.
Collapse
Affiliation(s)
- M R Kok
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
25
|
Baum BJ, Goldsmith CM, Kok MR, Lodde BM, van Mello NM, Voutetakis A, Wang J, Yamano S, Zheng C. Advances in vector-mediated gene transfer. Immunol Lett 2003; 90:145-9. [PMID: 14687716 DOI: 10.1016/j.imlet.2003.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clinical applications of gene transfer technology initially targeted the treatment of inherited monogenetic disorders and cancers refractory to conventional therapies. Today, gene transfer approaches are being developed for most tissues and for multiple disorders including those affecting quality of life. The focus herein is eventual application of gene transfer technology for the management of organ-directed autoimmunity. A specific example is presented: Sjögren's syndrome and localized salivary gland gene transfer. The status of relevant pre-clinical gene transfer studies is reviewed, with an emphasis on use of adenoviral and adeno-associated viral vectors. Current limitations of effective organ-directed gene transfer are also discussed.
Collapse
Affiliation(s)
- Bruce J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Building 10, Room 1N113, MSC-1190, Bethesda, MD 20892-1190, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This article provides a review of the application of gene transfer technology to studies of salivary glands. Salivary glands provide an uncommon target site for gene transfer but offer many experimental situations likely of interest to the cell biologist. The reader is provided with a concise overview of salivary biology, along with a general discussion of the strategies available for gene transfer to any tissue. In particular, adenoviral vectors have been useful for proof of concept studies with salivary glands. Several examples are given, using adenoviral-mediated gene transfer, for addressing both biological and clinical questions. Additionally, benefits and shortcomings affecting the utility of this technology are discussed.
Collapse
Affiliation(s)
- Bruce J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- J M Vitolo
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Shai E, Falk H, Honigman A, Panet A, Palmon A. Gene transfer mediated by different viral vectors following direct cannulation of mouse submandibular salivary glands. Eur J Oral Sci 2002; 110:254-60. [PMID: 12120712 DOI: 10.1034/j.1600-0722.2002.21200.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The salivary gland has been suggested as an accessible organ for gene transfer to express recombinant proteins locally in the saliva, as well as for secretion to the blood circulation. The aim of this study was to evaluate the efficiency of gene transfer to salivary glands using different viral vectors: adenovirus, vaccinia, herpes simplex type 1 (HSV), and two retroviral vectors (murine leukemia virus (MuLV) and lentivirus). We show, by in situ staining and beta-galactosidase reporter activity assay, that the adenoviral and vaccinia vectors were able to deliver the reporter gene efficiently to acinar and duct cells. The HSV vector was less efficient and infected only the acinar cells. The lentiviral vector infected acinar and duct cells, but at a relatively low efficiency. The MuLV vector did not infect the salivary gland unless cell proliferation was induced. Host immune responses to viral infection, inflammation, apoptosis and lymphocyte infiltration, in the transduced glands, were assessed. The DNA viral vectors induced local lymphocyte infiltration and apoptosis. In contrast, the retroviral vectors did not induce an immune response. Our results describe the outcome of salivary gland infection with each of the five different viral vectors and indicate their advantages and limitations for transferring genes to the salivary glands.
Collapse
Affiliation(s)
- Ela Shai
- Department of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
29
|
Hoque ATMS, Yamano S, Liu X, Swaim WD, Goldsmith CM, Delporte C, Baum BJ. Expression of the aquaporin 8 water channel in a rat salivary epithelial cell. J Cell Physiol 2002; 191:336-41. [PMID: 12012329 DOI: 10.1002/jcp.10106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aquaporins are a family of water channels considered to play an important role in fluid transport across plasma membranes. Among the reported isoforms, relatively little is known about the functional role of aquaporin 8 (AQP8), and there are no cell lines known to express the AQP8 protein. We report here that the rat submandibular epithelial cell line, SMIE, expresses AQP8. Using RT-PCR, the presence of mRNA for AQP8 was demonstrated in these cells. Confocal immunofluorescence experiments revealed that the AQP8 protein is primarily present in the apical membranes of SMIE cells. When grown as a polarized monolayer on collagen coated polycarbonate filters, and exposed on their apical surface to different hyperosmotic (440, 540, or 640 mOsm) solutions, net fluid movement across SMIE cells was 8-25-fold that seen under isosmotic conditions. Similarly, when grown on coverslips and then exposed to a hypertonic solution, SMIE cells shrunk as a function of time. Together, these results suggest that SMIE cells endogenously express functional AQP8 water channels.
Collapse
Affiliation(s)
- A T M Shamsul Hoque
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Yamano S, Huang LY, Ding C, Chiorini JA, Goldsmith CM, Wellner RB, Golding B, Kotin RM, Scott DE, Baum BJ. Recombinant adeno-associated virus serotype 2 vectors mediate stable interleukin 10 secretion from salivary glands into the bloodstream. Hum Gene Ther 2002; 13:287-98. [PMID: 11812284 DOI: 10.1089/10430340252769806] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have constructed a recombinant adeno-associated virus serotype 2 vector encoding human interleukin 10 (rAAVhIL10). IL-10 is a potent antiinflammatory/immune cytokine, which has received growing attention for its therapeutic potential. Human IL-10 (hIL-10) production was virus dose dependent after in vitro infection of HSG cells, a human submandibular gland cell line. The vector-derived hIL-10 produced was biologically active, as the medium from rAAVhIL10-infected HSG cells caused a dose-dependent blockade of IL-12 secretion from spleen cells of IL-10 knockout mice challenged with heat-killed Brucella abortus. Administration of rAAVhIL10 (10(10) genomes per gland) to both mouse submandibular glands led to hIL-10 secretion into the bloodstream (approximately 1-5 pg/ml), that is, in an endocrine manner, which was stable for approximately 2 months. Salivary gland administration of rAAVhIL10 under experimental conditions was more efficacious than intravenous administration (approximately 0.5-0.7 pg/ml). Also, hIL-10 was readily secreted in vitro from organ cultures of minced submandibular glands infected with rAAVhIL10, 6 or 8 weeks earlier. Consistent with these results, hIL-10 mRNA was detected by reverse transcription-polymerase chain reaction in submandibular glands of mice infected with rAAVhIL10 but not from control mice. At these doses, little to no hIL-10 was detected in mouse saliva. Using a rAAV serotype 2 vector encoding beta-galactosidase, we observed that the primary parenchymal target cells were ductal. These findings represent the first report of rAAV use to target exocrine glands for systemic secretion of a therapeutic protein, and support the notion that rAAV serotype 2 vectors may be useful in salivary glands for local (periglandular) and systemic gene-based protein therapeutics.
Collapse
Affiliation(s)
- Seiichi Yamano
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang YW, Hsieh YC. Protamine sulfate enhances the transduction efficiency of recombinant adeno-associated virus-mediated gene delivery. Pharm Res 2001; 18:922-7. [PMID: 11496950 DOI: 10.1023/a:1010923924844] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The purpose of this study was to evaluate glucose responsiveness in HepG2 human hepatoma cells transduced by a recombinant adeno-associated virus (rAAV) vector containing the insulin gene promoter. and to investigate the effect of protamine sulfate on rAAV-mediated gene delivery. METHODS Recombinant AAV vector, AAV.Ins.Luc.delta EGFP, was employed to transduce HepG2 hepatoma cells. Virus infection was carried out either in the absence or presence of protamine sulfate, followed by fluorescence microscopic examination, luciferase activity assay, and flow cytometric analysis. Electrokinetic measurements were carried out to determine the effect of protamine sulfate on zeta potential of the cells and the virus. RESULTS Glucose-responsive luciferase gene expression was obtained in rAAV-transduced HepG2 cells. Addition of 5 microg/ml protamine reversed the zeta potential of the cells and the virus particles, leading to enhanced transgene expression in rAAV-transduced HepG2 cells. Enhancement of protamine sulfate on rAAV-mediated gene transfer was dose-dependent. Addition of more than 5 microg/ml protamine resulted in a reduction of infectability of the virus. CONCLUSIONS Glucose responsiveness in the millimolar concentration range can be obtained in rAAV-transduced HepG2 cells. Protamine sulfate, up to 5 microg/ml, enhanced the rAAV transduction efficiency in HepG2 cells. The enhancement was correlated with zeta potential of the cells and the virus.
Collapse
Affiliation(s)
- Y W Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei.
| | | |
Collapse
|
32
|
Abstract
In the last decade, two areas of biomedical research--gene therapy and tissue engineering--have especially captured the imagination of the public. Both areas offer the potential for the treatment of clinical conditions that now are considered impossible or extremely difficult to manage by conventional therapeutic measures. Gene therapy has made remarkable scientific progress in the laboratory, but has yet to realize its enormous clinical promise. Tissue engineering studies have led to some tangible clinical breakthroughs, but the routine replacement of whole internal organs is still well into the future. This report will examine the applications of gene therapy and tissue engineering to salivary glands, with a focus on the repair of irreversible gland damage.
Collapse
Affiliation(s)
- B J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892-1190, USA.
| |
Collapse
|
33
|
Nguyen KH, Brayer J, Cha S, Diggs S, Yasunari U, Hilal G, Peck AB, Humphreys-Beher MG. Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice. ARTHRITIS AND RHEUMATISM 2000; 43:2297-306. [PMID: 11037890 DOI: 10.1002/1529-0131(200010)43:10<2297::aid-anr18>3.0.co;2-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Antibodies directed against general and specific target-organ autoantigens are present in the sera of human patients and animal models with autoimmune disease. The relevance of these autoantibodies to the disease process remains ambiguous in most cases. In autoimmune exocrinopathy (Sjögren's syndrome), autoantibodies to the intracellular nuclear proteins SSA/Ro and SSB/La, as well as the cell surface muscarinic cholinergic receptor (M3) are observed. To evaluate the potential role of these factors in the loss of secretory function of exocrine tissues, a panel of monoclonal and polyclonal antibodies was developed for passive transfer into the NOD animal model. METHODS Monoclonal antibodies to mouse SSB/La, rat M3 receptor, and a rabbit polyclonal antiparotid secretory protein antibody were obtained for this study. These antibody reagents were subsequently infused into NOD-scid mice. Saliva flow rates were subsequently monitored over a 72-hour period. Submandibular gland lysates were examined by Western blotting for alteration of the distribution of the water channel protein aquaporin (AQP). RESULTS Evaluation of the secretory response indicated that only antibodies directed toward the extracellular domains of the M3 receptor were capable of mediating the exocrine dysfunction aspect of the clinical pathology of the autoimmune disease. In vitro stimulation with a muscarinic agonist of submandibular gland cells isolated from mice treated with anti-M3 antibody, but not saline or the isotype control, failed to translocate AQP to the plasma membrane. CONCLUSION These findings define a clear role for the humoral immune response and the targeting of the cell surface M3 signal transduction receptor as primary events in the development of clinical symptoms of autoimmune exocrinopathy. Furthermore, the anti-M3 receptor activity may negatively affect the secretory response through perturbation of normal signal transduction events, leading to translocation of the epithelial cell water channel.
Collapse
Affiliation(s)
- K H Nguyen
- Kaiser Permanente, San Jose, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang YW, Kotin RM. Glucose-responsive gene delivery in pancreatic Islet cells via recombinant adeno-associated viral vectors. Pharm Res 2000; 17:1056-61. [PMID: 11087036 DOI: 10.1023/a:1026445426982] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Recent progress in genetic engineering presents the possibility of providing physiologically regulated glucose metabolism in individuals with diabetes. The objective of this study is to explore the feasibility of obtaining glucose dependent gene expression in the pancreatic beta-cell lines via recombinant adeno-associated virus type 2 (rAAV) mediated gene transfer. METHODS Two transcription cassettes containing the luciferase gene under the control of the rat insulin I gene promoter and the enhanced green fluorescent protein (EGFP) open reading frame under the control of the immediate early gene promoter of human cytomegalovirus (CMV) were placed in series between the inverted terminal repeats (ITRs) of AAV. The rAAV vectors produced were used to transduce pancreatic beta-cell line grown in the absence or presence of various concentrations of glucose. Luciferase activity assays were performed at 72 hr post-transduction. RESULTS Glucose-responsive reporter gene expression was obtained in both calcium phosphate transfected HIT-T15 and betaHC-9 cells, demonstrating regulated luciferase gene expression under control of the insulin gene promoter. At MOI of 100, rAAV-transduced betaHC-9 cells exhibited glucose-dependent luciferase activities, which were approximately 4.3 fold higher than those transfected by the calcium phosphate coprecipitation method at 20 mM glucose. CONCLUSIONS Delivery of the insulin gene promoter via rAAV was shown in this study to result in glucose-dependent control of the reporter gene expression. The results suggest that rAAV is an efficient viral vector for gene transfer into the pancreatic islet cells.
Collapse
Affiliation(s)
- Y W Yang
- School of Pharmacy, National Taiwan University, Taipei
| | | |
Collapse
|
35
|
|
36
|
Stern M, Ulrich K, Robinson C, Copeland J, Griesenbach U, Masse C, Cheng S, Munkonge F, Geddes D, Berthiaume Y, Alton E. Pretreatment with cationic lipid-mediated transfer of the Na+K+-ATPase pump in a mouse model in vivo augments resolution of high permeability pulmonary oedema. Gene Ther 2000; 7:960-6. [PMID: 10849556 DOI: 10.1038/sj.gt.3301193] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resolution of pulmonary oedema is mediated by active absorption of liquid across the alveolar epithelium. A key component of this process is the sodium-potassium ATPase (Na+K+-ATPase) enzyme located on the basolateral surface of epithelial cells and up-regulated during oedema resolution. We hypothesised that lung liquid clearance could be further up-regulated by lipid-mediated transfer and expression of exogenous Na+K+-ATPase cDNA. We demonstrate proof of this principle in a model of high permeability pulmonary oedema induced by intraperitoneal injection of thiourea (2.5 mg/kg) in C57/BL6 mice. Pretreatment of mice (24 h before thiourea) by nasal sniffing of cationic liposome (lipid #67)-DNA complexes encoding the alpha and beta subunits of Na+K+-ATPase (160 microg per mouse), significantly (P<0.01) decreased the wet:dry weight ratios measured 2 h after thiourea injection compared with control animals, pretreated with an equivalent dose of an irrelevant gene. Whole lung Na+K+-ATPase activity was significantly (P<0.05) increased in mice pretreated with Na+K+-ATPase cDNA compared both with untreated control animals as well as animals pretreated with the irrelevant gene. Nested RT-PCR on whole lung homogenates confirmed gene transfer by detection of vector-specific mRNA in three of four mice studied 24 h after gene transfer. This demonstration of a significant reduction in pulmonary oedema following in vivo gene transfer raises the possibility of gene therapy as a novel, localised approach for pulmonary oedema in clinical settings such as ARDS and lung transplantation.
Collapse
Affiliation(s)
- M Stern
- Department of Gene Therapy, Imperial College at the National Heart and Lung Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yamano S, Baum BJ. Prospects for gene-based immunopharmacology in salivary glands. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:281-6. [PMID: 10875746 DOI: 10.1254/jjp.82.281] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The clinical potential of gene transfer is increasing. One likely major application of this emerging biotechnology will be for gene therapeutics, the use of a gene as a drug. Salivary glands provide an unusual but increasingly valuable target site for gene transfer. Studies in animal salivary glands from several laboratories, including our own, have provided proof of this concept. In this review, we provide a background and perspective on possible strategies for gene-based immunopharmacology in salivary glands. We use as a target disease model the autoimmune exocrinopathy Sjögren's syndrome.
Collapse
Affiliation(s)
- S Yamano
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-1190, USA
| | | |
Collapse
|
38
|
Abstract
Fluid transport is a major function of the gastrointestinal (GI) tract with more than 9 litres of fluid being absorbed or secreted across epithelia in human salivary gland, stomach, the hepatobiliary tract, pancreas, small intestine and colon. This review evaluates the evidence that aquaporin-type water channels are involved in GI fluid transport. The aquaporins are a family of small ( approximately 30 kDa) integral membrane proteins that function as water channels. At least seven aquaporins are expressed in various tissues in the GI tract: AQP1 in intrahepatic cholangiocytes, AQP4 in gastric parietal cells, AQP3 and AQP4 in colonic surface epithelium, AQP5 in salivary gland, AQP7 in small intestine, AQP8 in liver, pancreas and colon, and AQP9 in liver. There are functional data suggesting that some GI cell types expressing aquaporins have high or regulated water permeability; however, there has been no direct evidence for a role of aquaporins in GI physiology. Recently, transgenic mice have been generated with selective deletions of various aquaporins. Preliminary evaluation of GI function suggests a role for AQP1 in dietary fat processing and AQP4 in colonic fluid absorption. Further study of aquaporin function in the GI tract should provide new insights into normal GI physiology and disease mechanisms, and may yield novel therapies to regulate fluid movement in GI diseases.
Collapse
Affiliation(s)
- T Ma
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0521, USA
| | | |
Collapse
|