1
|
Aljieli M, Rivière C, Lantier L, Moiré N, Lakhrif Z, Boussemart AF, Cnudde T, Lajoie L, Aubrey N, Ahmed EM, Dimier-Poisson I, Di-Tommaso A, Mévélec MN. Specific Cell Targeting by Toxoplasma gondii Displaying Functional Single-Chain Variable Fragment as a Novel Strategy; A Proof of Principle. Cells 2024; 13:975. [PMID: 38891106 PMCID: PMC11172386 DOI: 10.3390/cells13110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Toxoplasma gondii holds significant therapeutic potential; however, its nonspecific invasiveness results in off-target effects. The purpose of this study is to evaluate whether T. gondii specificity can be improved by surface display of scFv directed against dendritic cells' endocytic receptor, DEC205, and immune checkpoint PD-L1. Anti-DEC205 scFv was anchored to the T. gondii surface either directly via glycosylphosphatidylinositol (GPI) or by fusion with the SAG1 protein. Both constructs were successfully expressed, but the binding results suggested that the anti-DEC-SAG1 scFv had more reliable functionality towards recombinant DEC protein and DEC205-expressing MutuDC cells. Two anti-PD-L1 scFv constructs were developed that differed in the localization of the HA tag. Both constructs were adequately expressed, but the localization of the HA tag determined the functionality by binding to PD-L1 protein. Co-incubation of T. gondii displaying anti-PD-L1 scFv with tumor cells expressing/displaying different levels of PD-L1 showed strong binding depending on the level of available biomarker. Neutralization assays confirmed that binding was due to the specific interaction between anti-PD-L1 scFv and its ligand. A mixed-cell assay showed that T. gondii expressing anti-PD-L1 scFv predominately targets the PD-L1-positive cells, with negligible off-target binding. The recombinant RH-PD-L1-C strain showed increased killing ability on PD-L1+ tumor cell lines compared to the parental strain. Moreover, a co-culture assay of target tumor cells and effector CD8+ T cells showed that our model could inhibit PD1/PD-L1 interaction and potentiate T-cell immune response. These findings highlight surface display of antibody fragments as a promising strategy of targeting replicative T. gondii strains while minimizing nonspecific binding.
Collapse
Affiliation(s)
- Muna Aljieli
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
- Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Clément Rivière
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Louis Lantier
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Nathalie Moiré
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Zineb Lakhrif
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Anne-France Boussemart
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Thomas Cnudde
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Laurie Lajoie
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Nicolas Aubrey
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Elhadi M. Ahmed
- Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Isabelle Dimier-Poisson
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Anne Di-Tommaso
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| | - Marie-Noëlle Mévélec
- BioMAP, UMR ISP 1282 INRAE, Université de Tours, 37200 Tours, France; (M.A.); (C.R.); (L.L.); (N.M.); (Z.L.); (A.-F.B.); (L.L.); (N.A.); (I.D.-P.); (M.-N.M.)
| |
Collapse
|
2
|
Freitag PC, Brandl F, Brücher D, Weiss F, Dreier B, Plückthun A. Modular Adapters Utilizing Binders of Different Molecular Types Expand Cell-Targeting Options for Adenovirus Gene Delivery. Bioconjug Chem 2022; 33:1595-1601. [PMID: 35944553 DOI: 10.1021/acs.bioconjchem.2c00346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient and cell-specific delivery of DNA is essential for the effective and safe use of gene delivery technologies. Consequently, a large variety of technologies have been developed and applied in a wide range of ex vivo and in vivo applications, including multiple approaches based on viral vectors. However, widespread success of a technology is largely determined by the versatility of the method and the ease of use. The rationally designed adapter technology previously developed redirects widely used human adenovirus serotype 5 (HAdV-C5) to a defined cell population, by binding and blocking the adenoviral knob tropism while simultaneously allowing fusions of an N-terminal retargeting module. Here we expand modularity, and thus applicability of this adapter technology, by extending the nature of the cell-binding portion. We report successful receptor-specific transduction mediated by a retargeting module consisting of either a DARPin, a single-chain variable fragment (scFv) of an antibody, a peptide, or a small molecule ligand. Furthermore, we show that an adapter can be engineered to carry more than one specificity, allowing dual targeting. Specific HAdV-C5 retargeting was thus demonstrated to human epidermal growth factor receptor 2 (HER2), human folate receptor α, and neurotensin receptor 1, effective at vector concentrations as low as a multiplicity of infection of 2.5. Therefore, we report a modular design which allows plug-and-play combinations of different binding modules, leading to efficient and specific mono- or dual-targeting while circumventing tedious optimization procedures. This extends the technology to combinational applications of cell-specific binding, supporting research in gene therapy, synthetic biology, and biotechnology.
Collapse
Affiliation(s)
- Patrick C Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Fabian Brandl
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Fabian Weiss
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Laevskaya A, Borovjagin A, Timashev PS, Lesniak MS, Ulasov I. Metabolome-Driven Regulation of Adenovirus-Induced Cell Death. Int J Mol Sci 2021; 22:ijms22010464. [PMID: 33466472 PMCID: PMC7796492 DOI: 10.3390/ijms22010464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
A viral infection that involves virus invasion, protein synthesis, and virion assembly is typically accompanied by sharp fluctuations in the intracellular levels of metabolites. Under certain conditions, dramatic metabolic shifts can result in various types of cell death. Here, we review different types of adenovirus-induced cell death associated with changes in metabolic profiles of the infected cells. As evidenced by experimental data, in most cases changes in the metabolome precede cell death rather than represent its consequence. In our previous study, the induction of autophagic cell death was observed following adenovirus-mediated lactate production, acetyl-CoA accumulation, and ATP release, while apoptosis was demonstrated to be modulated by alterations in acetate and asparagine metabolism. On the other hand, adenovirus-induced ROS production and ATP depletion were demonstrated to play a significant role in the process of necrotic cell death. Interestingly, the accumulation of ceramide compounds was found to contribute to the induction of all the three types of cell death mentioned above. Eventually, the characterization of metabolite analysis could help in uncovering the molecular mechanism of adenovirus-mediated cell death induction and contribute to the development of efficacious oncolytic adenoviral vectors.
Collapse
Affiliation(s)
- Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Anton Borovjagin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Peter S. Timashev
- Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60601, USA;
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Correspondence:
| |
Collapse
|
6
|
Cunliffe TG, Bates EA, Parker AL. Hitting the Target but Missing the Point: Recent Progress towards Adenovirus-Based Precision Virotherapies. Cancers (Basel) 2020; 12:E3327. [PMID: 33187160 PMCID: PMC7696810 DOI: 10.3390/cancers12113327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
More people are surviving longer with cancer. Whilst this can be partially attributed to advances in early detection of cancers, there is little doubt that the improvement in survival statistics is also due to the expansion in the spectrum of treatments available for efficacious treatment. Transformative amongst those are immunotherapies, which have proven effective agents for treating immunogenic forms of cancer, although immunologically "cold" tumour types remain refractive. Oncolytic viruses, such as those based on adenovirus, have great potential as anti-cancer agents and have seen a resurgence of interest in recent years. Amongst their many advantages is their ability to induce immunogenic cell death (ICD) of infected tumour cells, thus providing the alluring potential to synergise with immunotherapies by turning immunologically "cold" tumours "hot". Additionally, enhanced immune mediated cell killing can be promoted through the local overexpression of immunological transgenes, encoded from within the engineered viral genome. To achieve this full potential requires the development of refined, tumour selective "precision virotherapies" that are extensively engineered to prevent off-target up take via native routes of infection and targeted to infect and replicate uniquely within malignantly transformed cells. Here, we review the latest advances towards this holy grail within the adenoviral field.
Collapse
Affiliation(s)
| | | | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (T.G.C.); (E.A.B.)
| |
Collapse
|
7
|
Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. J Control Release 2020; 327:788-800. [PMID: 32891680 PMCID: PMC8091654 DOI: 10.1016/j.jconrel.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Harnessing the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system for genome editing in eukaryotes has revolutionized basic biomedical research and translational sciences. The ability to create targeted alterations of the genome through this easy to design system has presented unprecedented opportunities to treat inherited disorders and other diseases such as cancer through gene therapy. A major hurdle is the lack of an efficient and safe in vivo delivery system, limiting most of the current gene therapy efforts to ex vivo editing of extracted cells. Here we discuss the unique features of adenoviral vectors that enable tissue specific and efficient delivery of the CRISPR-Cas machinery for in vivo genome editing.
Collapse
Affiliation(s)
- Paul Boucher
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & iPSC Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
9
|
Sharma PK, Dmitriev IP, Kashentseva EA, Raes G, Li L, Kim SW, Lu ZH, Arbeit JM, Fleming TP, Kaliberov SA, Goedegebuure SP, Curiel DT, Gillanders WE. Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene Ther 2018; 25:27-38. [PMID: 29242639 PMCID: PMC5972836 DOI: 10.1038/s41417-017-0002-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Adenoviral (Ad) vector vaccines represent one of the most promising modern vaccine platforms, and Ad vector vaccines are currently being investigated in human clinical trials for infectious disease and cancer. Our studies have shown that specific targeting of adenovirus to dendritic cells dramatically enhanced vaccine efficacy. However, this was achieved using a molecular adapter, thereby necessitating a two component vector approach. To address the mandates of clinical translation of our strategy, we here sought to accomplish the goal of DC targeting with a single-component adenovirus vector approach. To redirect the specificity of Ad vector vaccines, we replaced the Ad fiber knob with fiber-fibritin chimeras fused to DC1.8, a single-domain antibody (sdAb) specific for murine immature DC. We engineered a fiber-fibritin-sdAb chimeric molecule using the coding sequence for DC1.8, and then replaced the native Ad5 fiber knob sequence by homologous recombination. The resulting Ad5 virus, Ad5FF1.8, expresses the chimeric fiber-fibritin sdAb chimera. Infection with Ad5FF1.8 dramatically enhances transgene expression in DC2.4 dendritic cells compared with infection with native Ad5. Ad5FF1.8 infection of bone marrow-derived DC demonstrates that Ad5FF1.8 selectively infects immature DC consistent with the known specificity of DC1.8. Thus, sdAb can be used to selectively redirect the tropism of Ad5 vector vaccines, providing the opportunity to engineer Ad vector vaccines that are specifically targeted to DC, or specific DC subsets.
Collapse
Affiliation(s)
- Piyush K Sharma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- VIB Center for Inflammation Research, Myeloid Cell Immunology Laboratory, Brussels, Belgium
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel W Kim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi-Hong Lu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey M Arbeit
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Sergey A Kaliberov
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - David T Curiel
- Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Cai Z, Lv H, Cao W, Zhou C, Liu Q, Li H, Zhou F. Targeting strategies of adenovirus‑mediated gene therapy and virotherapy for prostate cancer (Review). Mol Med Rep 2017; 16:6443-6458. [PMID: 28901490 PMCID: PMC5865813 DOI: 10.3892/mmr.2017.7487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) poses a high risk to older men and it is the second most common type of male malignant tumor in western developed countries. Additionally, there is a lack of effective therapies for PCa at advanced stages. Novel treatment strategies such as adenovirus-mediated gene therapy and virotherapy involve the expression of a specific therapeutic gene to induce death in cancer cells, however, wild-type adenoviruses are also able to infect normal human cells, which leads to undesirable toxicity. Various PCa-targeting strategies in adenovirus-mediated therapy have been developed to improve tumor-targeting effects and human safety. The present review summarizes the relevant knowledge regarding available adenoviruses and PCa-targeting strategies. In addition, future directions in this area are also discussed. In conclusion, although they remain in the early stages of basic research, adenovirus-mediated gene therapy and virotherapy are expected to become important therapies for tumors in the future due to their potential targeting strategies.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Haidi Lv
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Wenjuan Cao
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Chuan Zhou
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiangzhao Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hui Li
- Department of Neurosurgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Fenghai Zhou
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
11
|
Yoon AR, Hong J, Yun CO. A vesicular stomatitis virus glycoprotein epitope-incorporated oncolytic adenovirus overcomes CAR-dependency and shows markedly enhanced cancer cell killing and suppression of tumor growth. Oncotarget 2016; 6:34875-91. [PMID: 26430798 PMCID: PMC4741496 DOI: 10.18632/oncotarget.5332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022] Open
Abstract
Utility of traditional oncolytic adenovirus (Ad) has been limited due to low expression of coxsackie and adenovirus receptor (CAR) in cancer cells which results in poor infectivity of Ads. Here with an aim of improving the efficiency of Ad's entry to the cell, we generated a novel tropism-expanded oncolytic Ad which contains the epitope of vesicular stomatitis virus glycoprotein (VSVG) at the HI-loop of Ad fiber. We generated 9 variants of oncolytic Ads with varying linkers and partial deletion to the fiber. Only one VSVG epitope-incorporated variant, RdB-1L-VSVG, which contains 1 linker and no deletion to fiber, was produced efficiently. Production of 3-dimensionaly stable fiber in RdB-1L-VSVG was confirmed by immunoblot analysis. RdB-1L-VSVG shows a remarkable improvement in cytotoxicity and total viral yield in cancer cells. RdB-1L-VSVG demonstrates enhanced cytotoxicity in cancer cells with subdued CAR-expression as it can be internalized by an alternate pathway. Competition assays with a CAR-specific antibody (Ab) or VSVG receptor, phosphatidyl serine (PS), reveals that cell internalization of RdB-1L-VSVG is mediated by both CAR and PS. Furthermore, treatment with RdB-1L-VSVG significantly enhanced anti-tumor effect in vivo. These studies demonstrate that the strategy to expand oncolytic Ad tropism may significantly improve therapeutic profile for cancer treatment.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Korea
| |
Collapse
|
12
|
Yoon AR, Hong J, Kim SW, Yun CO. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 2016; 13:843-58. [PMID: 26967319 DOI: 10.1517/17425247.2016.1158707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. AREA COVERED Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. EXPERT OPINION Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Collapse
Affiliation(s)
- A-Rum Yoon
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Jinwoo Hong
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Sung Wan Kim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea.,b Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Chae-Ok Yun
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| |
Collapse
|
13
|
Vasiljevic S, Beale EV, Bonomelli C, Easthope IS, Pritchard LK, Seabright GE, Caputo AT, Scanlan CN, Dalziel M, Crispin M. Redirecting adenoviruses to tumour cells using therapeutic antibodies: Generation of a versatile human bispecific adaptor. Mol Immunol 2015; 68:234-43. [PMID: 26391350 DOI: 10.1016/j.molimm.2015.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Effective use of adenovirus-5 (Ad5) in cancer therapy is heavily dependent on the degree to which the virus's natural tropism can be subverted to one that favours tumour cells. This is normally achieved through either engineering of the viral fiber knob or the use of bispecific adaptors that display both adenovirus and tumour antigen receptors. One of the main limitations of these strategies is the need to tailor each engineering event to any given tumour antigen. Here, we explore bispecific adaptors that can utilise established anti-cancer therapeutic antibodies. Conjugates containing bacterially derived antibody binding motifs are efficient at retargeting virus to antibody targets. Here, we develop a humanized strategy whereby we synthesise a re-targeting adaptor based on a chimeric Ad5 ligand/antibody receptor construct. This adaptor acts as a molecular bridge analogous to therapeutic antibody mediated cross-linking of cytotoxic effector and tumour cells during immunotherapy. As a proof or principle, we demonstrate how this adaptor allows efficient viral recognition and entry into carcinoma cells through the therapeutic monoclonal antibodies Herceptin/trastuzumab and bavituximab. We show that targeting can be augmented by use of contemporary antibody enhancement strategies such as the selective elimination of competing serum IgG using "receptor refocusing" enzymes and we envisage that further improvements are achievable by enhancing the affinities between the adaptor and its ligands. Humanized bispecific adaptors offer the promise of a versatile retargeting technology that can exploit both clinically approved adenovirus and therapeutic antibodies.
Collapse
Affiliation(s)
- Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Emma V Beale
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Iona S Easthope
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Alessandro T Caputo
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Christopher N Scanlan
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
14
|
Belcaid Z, Lamfers MLM, van Beusechem VW, Hoeben RC. Changing faces in virology: the dutch shift from oncogenic to oncolytic viruses. Hum Gene Ther 2014; 25:875-84. [PMID: 25141764 DOI: 10.1089/hum.2014.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Viruses have two opposing faces. On the one hand, they can cause harm and disease. A virus may manifest directly as a contagious disease with a clinical pathology of varying significance. A viral infection can also have delayed consequences, and in rare cases may cause cellular transformation and cancer. On the other hand, viruses may provide hope: hope for an efficacious treatment of serious disease. Examples of the latter are the use of viruses as a vaccine, as transfer vector for therapeutic genes in a gene therapy setting, or, more directly, as therapeutic anticancer agent in an oncolytic-virus therapy setting. Already there is evidence for antitumor activity of oncolytic viruses. The antitumor efficacy seems linked to their capacity to induce a tumor-directed immune response. Here, we will provide an overview on the development of oncolytic viruses and their clinical evaluation from the Dutch perspective.
Collapse
Affiliation(s)
- Zineb Belcaid
- 1 Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center , 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
High scFv-receptor affinity does not enhance the antitumor activity of HER2-retargeted measles virus. Cancer Gene Ther 2014; 21:256-60. [PMID: 24874841 PMCID: PMC4096840 DOI: 10.1038/cgt.2014.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
Abstract
The relationship between ligand-receptor affinity and antitumor potency of an oncolytic virus was investigated using a panel of six HER2/neu (HER2) targeted measles viruses (MV) displaying single-chain antibodies (scFv) that bind to the same epitope on HER2, but with affinities ranging from 10−6 to 10−11 M. All viruses were able to infect SKOV3ip.1 human ovarian cancer cells in vitro, but only the high affinity MV (Kd > 10−8 M) induced cytopathic effects of syncytia formation in the cell monolayers. In contrast, all six viruses were therapeutically active in vivo against orthotopic human ovarian SKOV3ip.1 tumor xenografts in athymic mice compared to saline treated controls. The oncolytic activities of MV displaying the high affinity scFv (Kd=10−9, 10−10, 10−11 M) were not significantly superior to MV displaying scFv with Kd of 10−8 M or less. Results from this study suggest that increasing the receptor affinity of the attachment protein of an oncolytic measles virus has minimal impact on its in vivo efficacy against a tumor that expresses the targeted receptor.
Collapse
|
16
|
Peptide-based technologies to alter adenoviral vector tropism: ways and means for systemic treatment of cancer. Viruses 2014; 6:1540-63. [PMID: 24699364 PMCID: PMC4014709 DOI: 10.3390/v6041540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022] Open
Abstract
Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors.
Collapse
|
17
|
Abstract
Early-stage clinical trials of oncolytic virotherapy have reported the safety of several virus platforms, and viruses from three families have progressed to advanced efficacy trials. In addition, preclinical studies have established proof-of-principle for many new genetic engineering strategies. Thus, the virotherapy field now has available a diverse collection of viruses that are equipped to address unmet clinical needs owing to improved systemic administration, greater tumour specificity and enhanced oncolytic efficacy. The current key challenge for the field is to develop viruses that replicate with greater efficiency within tumours while achieving therapeutic synergy with currently available treatments.
Collapse
Affiliation(s)
- Tanner S Miest
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | - Roberto Cattaneo
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| |
Collapse
|
18
|
Abstract
Cancer gene therapy approaches have benefited greatly from the utilization of molecular-based therapeutics. Of these, adenovirus-based interventions hold much promise as a platform for targeted therapeutic delivery to tumors. However, a barrier to this progression is the lack of native adenovirus receptor expression on a variety of cancer types. As such, any adenovirus-based cancer therapy must take into consideration retargeting the vector to nonnative cellular surface receptors. Predicated upon the knowledge gained in native adenovirus biology, several strategies to transductionally retarget adenovirus have emerged. Herein, we describe the biological hurdles as well as strategies utilized in adenovirus transductional targeting, covering the progress of both adapter-based and genetic manipulation-based targeting. Additionally, we discuss recent translation of these targeting strategies into a clinical setting.
Collapse
Affiliation(s)
- Matthew S Beatty
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | | |
Collapse
|
19
|
Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc Natl Acad Sci U S A 2013; 110:E869-77. [PMID: 23431166 DOI: 10.1073/pnas.1213653110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses (Ads) have shown promise as vectors for gene delivery in clinical trials. Efficient viral targeting to a tissue of choice requires both ablation of the virus' original tropism and engineering of an efficient receptor-mediated uptake by a specific cell population. We have developed a series of adapters binding to the virus with such high affinity that they remain fully bound for >10 d, block its natural receptor binding site and mediate interaction with a surface receptor of choice. The adapter contains two fused modules, both consisting of designed ankyrin repeat proteins (DARPins), one binding to the fiber knob of adenovirus serotype 5 and the other binding to various tumor markers. By solving the crystal structure of the complex of the trimeric knob with three bound DARPins at 1.95-Å resolution, we could use computer modeling to design a link to a trimeric protein of extraordinary kinetic stability, the capsid protein SHP from the lambdoid phage 21. We arrived at a module which binds the knob like a trimeric clamp. When this clamp was fused with DARPins of varying specificities, it enabled adenovirus serotype 5-mediated delivery of a transgene in a human epidermal growth factor receptor 2-, epidermal growth factor receptor-, or epithelial cell adhesion molecule-dependent manner with transduction efficiencies comparable to or even exceeding those of Ad itself. With these adapters, efficiently produced in Escherichia coli, Ad can be converted rapidly to new receptor specificities using any ligand as the receptor-binding moiety. Prefabricated Ads with different payloads thus can be retargeted readily to many cell types of choice.
Collapse
|
20
|
Yu D, Jin C, Ramachandran M, Xu J, Nilsson B, Korsgren O, Le Blanc K, Uhrbom L, Forsberg-Nilsson K, Westermark B, Adamson R, Maitland N, Fan X, Essand M. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures. PLoS One 2013; 8:e54952. [PMID: 23372800 PMCID: PMC3555985 DOI: 10.1371/journal.pone.0054952] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/18/2012] [Indexed: 12/14/2022] Open
Abstract
Recombinant adenovirus serotype 5 (Ad5) vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR) on the surface of target cell for efficient transduction, which limits it’s utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection) show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.
Collapse
Affiliation(s)
- Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jing Xu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Berith Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology, Karolinska University Hospital, Huddinge, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rachel Adamson
- Department of Biology, YCR Cancer Research Unit, University of York, Heslington, United Kingdom
| | - Norman Maitland
- Department of Biology, YCR Cancer Research Unit, University of York, Heslington, United Kingdom
| | - Xiaolong Fan
- Rausing Laboratory, Lund University, Lund, Sweden
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
21
|
Reetz J, Herchenröder O, Schmidt A, Pützer BM. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|