1
|
Burtscher J, Millet GP, Fresa M, Lanzi S, Mazzolai L, Pellegrin M. The link between impaired oxygen supply and cognitive decline in peripheral artery disease. Prog Cardiovasc Dis 2024; 85:63-73. [PMID: 38061613 DOI: 10.1016/j.pcad.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Although peripheral artery disease (PAD) primarily affects large arteries outside the brain, PAD is also associated with elevated cerebral vulnerabilities, including greater risks for brain injury (such as stroke), cognitive decline and dementia. In the present review, we aim to evaluate recent literature and extract information on potential mechanisms linking PAD and consequences on the brain. Furthermore, we suggest novel therapeutic avenues to mitigate cognitive decline and reduce risk of brain injury in patients with PAD. Various interventions, notably exercise, directly or indirectly improve systemic blood flow and oxygen supply and are effective strategies in patients with PAD or cognitive decline. Moreover, triggering protective cellular and systemic mechanisms by modulating inspired oxygen concentrations are emerging as potential novel treatment strategies. While several genetic and pharmacological approaches to modulate adaptations to hypoxia showed promising results in preclinical models of PAD, no clear benefits have yet been clinically demonstrated. We argue that genetic/pharmacological regulation of the involved adaptive systems remains challenging but that therapeutic variation of inspired oxygen levels (e.g., hypoxia conditioning) are promising future interventions to mitigate associated cognitive decline in patients with PAD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Marco Fresa
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stefano Lanzi
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Lucia Mazzolai
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Maxime Pellegrin
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
2
|
Gara E, Ong SG, Winkler J, Zlabinger K, Lukovic D, Merkely B, Emmert MY, Wolint P, Hoerstrup SP, Gyöngyösi M, Wu JC, Pavo N. Cell-Based HIF1α Gene Therapy Reduces Myocardial Scar and Enhances Angiopoietic Proteome, Transcriptomic and miRNA Expression in Experimental Chronic Left Ventricular Dysfunction. Front Bioeng Biotechnol 2022; 10:767985. [PMID: 35646882 PMCID: PMC9133350 DOI: 10.3389/fbioe.2022.767985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Recent preclinical investigations and clinical trials with stem cells mostly studied bone-marrow-derived mononuclear cells (BM-MNCs), which so far failed to meet clinically significant functional study endpoints. BM-MNCs containing small proportions of stem cells provide little regenerative potential, while mesenchymal stem cells (MSCs) promise effective therapy via paracrine impact. Genetic engineering for rationally enhancing paracrine effects of implanted stem cells is an attractive option for further development of therapeutic cardiac repair strategies. Non-viral, efficient transfection methods promise improved clinical translation, longevity and a high level of gene delivery. Hypoxia-induced factor 1α is responsible for pro-angiogenic, anti-apoptotic and anti-remodeling mechanisms. Here we aimed to apply a cellular gene therapy model in chronic ischemic heart failure in pigs. A non-viral circular minicircle DNA vector (MiCi) was used for in vitro transfection of porcine MSCs (pMSC) with HIF1α (pMSC-MiCi-HIF-1α). pMSCs-MiCi-HIF-1α were injected endomyocardially into the border zone of an anterior myocardial infarction one month post-reperfused-infarct. Cell injection was guided via 3D-guided NOGA electro-magnetic catheter delivery system. pMSC-MiCi-HIF-1α delivery improved cardiac output and reduced myocardial scar size. Abundances of pro-angiogenic proteins were analyzed 12, 24 h and 1 month after the delivery of the regenerative substances. In a protein array, the significantly increased angiogenesis proteins were Activin A, Angiopoietin, Artemin, Endothelin-1, MCP-1; and remodeling factors ADAMTS1, FGFs, TGFb1, MMPs, and Serpins. In a qPCR analysis, increased levels of angiopeptin, CXCL12, HIF-1α and miR-132 were found 24 h after cell-based gene delivery, compared to those in untreated animals with infarction and in control animals. Expression of angiopeptin increased already 12 h after treatment, and miR-1 expression was reduced at that time point. In total, pMSC overexpressing HIF-1α showed beneficial effects for treatment of ischemic injury, mediated by stimulation of angiogenesis.
Collapse
Affiliation(s)
- Edit Gara
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Johannes Winkler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bela Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Wolint
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Yanov YK, Kuznetsov MS, Glaznikov LA, Dvoryanchikov VV, Syroezhkin FA, Golovanov AE, Gofman VR. [Lesions of the cortical part of the auditory analyzer in explosive injury]. Vestn Otorinolaringol 2022; 87:14-20. [PMID: 35274887 DOI: 10.17116/otorino20228701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A survey of 48 victims aged 19-36 years with explosive trauma and combined damage to the auditory system was conducted to assess the level of damage to nerve structures by analyzing the bioelectric activity of the cerebral cortex. All patients underwent electroencephalography (EEG). It is established that akubarotrauma of explosive genesis almost always leads to lesions of the function of the cortical part of the auditory analyzer. Desynchronized activity on the EEG after acubarotrauma is a favorable prognostic sign, indicating only functional disorders of the cortical part of the auditory analyzer. On the contrary, EEG changes of an organic type of cortical or stem nature are an unfavorable prognostic factor, usually accompanied by sensorineural hearing loss with prolonged and incomplete hearing recovery. Promising drugs for the treatment of otoneurological disorders are antihypoxants, in particular, derivatives of triazine indole, which affect the molecular mechanisms of hypoxia development.
Collapse
Affiliation(s)
- Yu K Yanov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - M S Kuznetsov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - L A Glaznikov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - V V Dvoryanchikov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - F A Syroezhkin
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - A E Golovanov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - V R Gofman
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| |
Collapse
|
4
|
Florian M, Wang JP, Deng Y, Souza-Moreira L, Stewart DJ, Mei SHJ. Gene engineered mesenchymal stem cells: greater transgene expression and efficacy with minicircle vs. plasmid DNA vectors in a mouse model of acute lung injury. Stem Cell Res Ther 2021; 12:184. [PMID: 33726829 PMCID: PMC7962085 DOI: 10.1186/s13287-021-02245-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) and in its severe form, acute respiratory distress syndrome (ARDS), results in increased pulmonary vascular inflammation and permeability and is a major cause of mortality in many critically ill patients. Although cell-based therapies have shown promise in experimental ALI, strategies are needed to enhance the potency of mesenchymal stem cells (MSCs) to develop more effective treatments. Genetic modification of MSCs has been demonstrated to significantly improve the therapeutic benefits of these cells; however, the optimal vector for gene transfer is not clear. Given the acute nature of ARDS, transient transfection is desirable to avoid off-target effects of long-term transgene expression, as well as the potential adverse consequences of genomic integration. METHODS Here, we explored whether a minicircle DNA (MC) vector containing human angiopoietin 1 (MC-ANGPT1) can provide a more effective platform for gene-enhanced MSC therapy of ALI/ARDS. RESULTS At 24 h after transfection, nuclear-targeted electroporation using an MC-ANGPT1 vector resulted in a 3.7-fold greater increase in human ANGPT1 protein in MSC conditioned media compared to the use of a plasmid ANGPT1 (pANGPT1) vector (2048 ± 567 pg/mL vs. 552.1 ± 33.5 pg/mL). In the lipopolysaccharide (LPS)-induced ALI model, administration of pANGPT1 transfected MSCs significantly reduced bronchoalveolar lavage (BAL) neutrophil counts by 57%, while MC-ANGPT1 transfected MSCs reduced it by 71% (p < 0.001) by Holm-Sidak's multiple comparison test. Moreover, compared to pANGPT1, the MC-ANGPT1 transfected MSCs significantly reduced pulmonary inflammation, as observed in decreased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2). pANGPT1-transfected MSCs significantly reduced BAL albumin levels by 71%, while MC-ANGPT1-transfected MSCs reduced it by 85%. CONCLUSIONS Overall, using a minicircle vector, we demonstrated an efficient and sustained expression of the ANGPT1 transgene in MSCs and enhanced the therapeutic effect on the ALI model compared to plasmid. These results support the potential benefits of MC-ANGPT1 gene enhancement of MSC therapy to treat ARDS.
Collapse
Affiliation(s)
- Maria Florian
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jia-Pey Wang
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Yupu Deng
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Duncan J Stewart
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
5
|
Abstract
Hypoxia-inducible factors (HIFs) control transcriptional responses to reduced O2 availability. HIFs are heterodimeric proteins composed of an O2-regulated HIF-α subunit and a constitutively expressed HIF-1β subunit. HIF-α subunits are subject to prolyl hydroxylation, which targets the proteins for degradation under normoxic conditions. Small molecule prolyl hydroxylase inhibitors, which stabilize the HIF-α subunits and increase HIF-dependent expression of erythropoietin, are in phase III clinical trials for the treatment of anemia in patients with chronic kidney disease. HIFs contribute to the pathogenesis of many cancers, particularly the clear cell type of renal cell carcinoma in which loss of function of the von Hippel-Lindau tumor suppressor blocks HIF-2α degradation. A small molecule inhibitor that binds to HIF-2α and blocks dimerization with HIF-1β is in clinical trials for the treatment of renal cell carcinoma. Targeting HIFs for stabilization or inhibition may improve outcomes in diseases that are common causes of mortality in the US population.
Collapse
Affiliation(s)
- Gregg L Semenza
- Institute for Cell Engineering, McKusick-Nathans Institute of Genetic Medicine, and Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
6
|
Hopfner U, Maan ZN, Hu MS, Aitzetmüller MM, Zaussinger M, Kirsch M, Machens HG, Duscher D. Deferoxamine enhances the regenerative potential of diabetic Adipose Derived Stem Cells. J Plast Reconstr Aesthet Surg 2020; 73:1738-1746. [PMID: 32418841 DOI: 10.1016/j.bjps.2020.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/05/2019] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Diabetes mellitus remains a significant public health problem, consuming over $400 billion every year. While Diabetes itself can be controlled effectively, impaired wound healing still occurs frequently in diabetic patients. Adipose-derived mesenchymal stem cells (ASCs) provide an especially appealing source for diabetic wound cell therapy. With autologous approaches, the functionality of ASCs largely underlie patient-dependent factors. Diabetes is a significant diminishing factor of MSC functionality. Here, we explore a novel strategy to enhance diabetic ASC functionality through deferoxamine (DFO) preconditioning. MATERIAL AND METHODS Human diabetic ASCs have been preconditioned with 150 µM and 300 µM DFO in vitro and analyzed for regenerative cytokine expression. Murine diabetic ASCs have been preconditioned with 150 µM DFO examined for their in vitro and in vivo vasculogenic capacity in Matrigel assays. Additionally, a diabetic murine wound healing model has been performed to assess the regenerative capacity of preconditioned cells. RESULTS DFO preconditioning enhances the VEGF expression of human diabetic ASCs through hypoxia-inducible factor upregulation. The use of 150 µM of DFO was an optimal concentration to induce regenerative effects. The vasculogenic potential of preconditioned diabetic ASCs is significantly greater in vitro and in vivo. The enhanced regenerative functionality of DFO preconditioned ASCs was further confirmed in a model of diabetic murine wound healing. CONCLUSION These results demonstrate that DFO significantly induced the upregulation of hypoxia-inducible factor-1 alpha and VEGF in diabetic ASCs and showed efficacy in the treatment of diabetes-associated deficits of wound healing. The favorable status of DFO as a small molecule drug approved since decades for multiple indications makes this approach highly translatable.
Collapse
Affiliation(s)
- Ursula Hopfner
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael S Hu
- Department for Plastic Surgery, University of Pittsburgh, Pennsylvania, USA
| | - Matthias M Aitzetmüller
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Maximilian Zaussinger
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Manuela Kirsch
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Hans-Günther Machens
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Dominik Duscher
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany; Division for Plastic and Reconstructive Surgery, Kepler University Hospital, Linz, Austria.
| |
Collapse
|
7
|
Adam M, Kooreman NG, Jagger A, Wagenhäuser MU, Mehrkens D, Wang Y, Kayama Y, Toyama K, Raaz U, Schellinger IN, Maegdefessel L, Spin JM, Hamming JF, Quax PHA, Baldus S, Wu JC, Tsao PS. Systemic Upregulation of IL-10 (Interleukin-10) Using a Nonimmunogenic Vector Reduces Growth and Rate of Dissecting Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2019; 38:1796-1805. [PMID: 29880489 DOI: 10.1161/atvbaha.117.310672] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective- Recruitment of immunologic competent cells to the vessel wall is a crucial step in formation of abdominal aortic aneurysms (AAA). Innate immunity effectors (eg, macrophages), as well as mediators of adaptive immunity (eg, T cells), orchestrate a local vascular inflammatory response. IL-10 (interleukin-10) is an immune-regulatory cytokine with a crucial role in suppression of inflammatory processes. We hypothesized that an increase in systemic IL-10-levels would mitigate AAA progression. Approach and Results- Using a single intravenous injection protocol, we transfected an IL-10 transcribing nonimmunogenic minicircle vector into the Ang II (angiotensin II)-ApoE-/- infusion mouse model of AAA. IL-10 minicircle transfection significantly reduced average aortic diameter measured via ultrasound at day 28 from 166.1±10.8% (control) to 131.0±5.8% (IL-10 transfected). Rates of dissecting AAA were reduced by IL-10 treatment, with an increase in freedom from dissecting AAA from 21.5% to 62.3%. Using flow cytometry of aortic tissue from minicircle IL-10-treated animals, we found a significantly higher percentage of CD4+/CD25+/Foxp3 (forkhead box P3)+ regulatory T cells, with fewer CD8+/GZMB+ (granzyme B) cytotoxic T cells. Furthermore, isolated aortic macrophages produced less TNF-α (tumor necrosis factor-α), more IL-10, and were more likely to be MRC1 (mannose receptor, C type 1)-positive alternatively activated macrophages. These results concurred with gene expression analysis of lipopolysaccharide-stimulated and Ang II-primed human peripheral blood mononuclear cells. Conclusions- Taken together, we provide an effective gene therapy approach to AAA in mice by enhancing antiinflammatory and dampening proinflammatory pathways through minicircle-induced augmentation of systemic IL-10 expression.
Collapse
Affiliation(s)
- Matti Adam
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,Department of Cardiovascular Medicine, Cologne Cardiovascular Research Center, University of Cologne, University Heart Center, Germany (M.A., D.M., S.B.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.)
| | - Nigel Geoffrey Kooreman
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (N.G.K., J.F.H., P.H.A.Q.)
| | - Ann Jagger
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.)
| | - Markus U Wagenhäuser
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.)
| | - Dennis Mehrkens
- Department of Cardiovascular Medicine, Cologne Cardiovascular Research Center, University of Cologne, University Heart Center, Germany (M.A., D.M., S.B.)
| | - Yongming Wang
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.)
| | - Yosuke Kayama
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.)
| | - Kensuke Toyama
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.)
| | - Uwe Raaz
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.).,Heart Center, Georg-August-University Göttingen, Germany (U.R., I.N.S.)
| | - Isabel N Schellinger
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.).,Heart Center, Georg-August-University Göttingen, Germany (U.R., I.N.S.)
| | - Lars Maegdefessel
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,Department of Medicine, Karolinska Institutet, Stockholm, Sweden (L.M.)
| | - Joshua M Spin
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.)
| | - Jaap F Hamming
- Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (N.G.K., J.F.H., P.H.A.Q.)
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, The Netherlands (N.G.K., J.F.H., P.H.A.Q.)
| | - Stephan Baldus
- Department of Cardiovascular Medicine, Cologne Cardiovascular Research Center, University of Cologne, University Heart Center, Germany (M.A., D.M., S.B.)
| | - Joseph C Wu
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.)
| | - Philip S Tsao
- From the Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, CA (M.A., N.G.K., A.J., M.U.W., Y.W., YK., K.T., U.R., I.N.S., L.M., J.M.S., J.C.W., P.S.T.).,VA Palo Alto Health Care System, CA (M.A., A.J., M.U.W., Y.K., K.T., U.R., I.N.S., J.M.S., P.S.T.)
| |
Collapse
|
8
|
Simons KH, de Vries MR, de Jong RCM, Peters HAB, Jukema JW, Quax PHA. IRF3 and IRF7 mediate neovascularization via inflammatory cytokines. J Cell Mol Med 2019; 23:3888-3896. [PMID: 30932349 PMCID: PMC6533520 DOI: 10.1111/jcmm.14247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To elucidate the role of interferon regulatory factor (IRF)3 and IRF7 in neovascularization. METHODS Unilateral hind limb ischaemia was induced in Irf3-/- , Irf7-/- and C57BL/6 mice by ligation of the left common femoral artery. Post-ischaemic blood flow recovery in the paw was measured with laser Doppler perfusion imaging. Soleus, adductor and gastrocnemius muscles were harvested to investigate angiogenesis and arteriogenesis and inflammation. RESULTS Post-ischaemic blood flow recovery was decreased in Irf3-/- and Irf7-/- mice compared to C57BL/6 mice at all time points up to and including sacrifice, 28 days after surgery (t28). This was supported by a decrease in angiogenesis and arteriogenesis in soleus and adductor muscles of Irf3-/- and Irf7-/- mice at t28. Furthermore, the number of macrophages around arterioles in adductor muscles was decreased in Irf3-/- and Irf7-/- mice at t28. In addition, mRNA expression levels of pro-inflammatory cytokines (tnfα, il6, ccl2) and growth factor receptor (vegfr2), were decreased in gastrocnemius muscles of Irf3-/- and Irf7-/- mice compared to C57BL/6 mice. CONCLUSION Deficiency of IRF3 and IRF7 results in impaired post-ischaemic blood flow recovery caused by attenuated angiogenesis and arteriogenesis linked to a lack of inflammatory components in ischaemic tissue. Therefore, IRF3 and IRF7 are essential regulators of neovascularization.
Collapse
Affiliation(s)
- Karin H. Simons
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Margreet R. de Vries
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. M. de Jong
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Hendrika A. B. Peters
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - J. Wouter Jukema
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Paul H. A. Quax
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
9
|
Liu L, Cui Y, Li X, Que X, Xiao Y, Yang C, Zhang J, Xie X, Cowan PJ, Tian J, Hao H, Liu Z. Concomitant overexpression of triple antioxidant enzymes selectively increases circulating endothelial progenitor cells in mice with limb ischaemia. J Cell Mol Med 2019; 23:4019-4029. [PMID: 30973215 PMCID: PMC6533526 DOI: 10.1111/jcmm.14287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China.,Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xin Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xingyi Que
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuan Xiao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Chunlin Yang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Jia Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xiaoyun Xie
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Peter J Cowan
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Immunology Research Centre, St. Vincent's Hospital, Melbourne, Australia
| | - Jie Tian
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
10
|
Rasool S, Geetha T, Broderick TL, Babu JR. High Fat With High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front Physiol 2018; 9:1054. [PMID: 30258366 PMCID: PMC6143817 DOI: 10.3389/fphys.2018.01054] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle utilizes both free fatty acids (FFAs) and glucose that circulate in the blood stream. When blood glucose levels acutely increase, insulin stimulates muscle glucose uptake, oxidation, and glycogen synthesis. Under these conditions, skeletal muscle preferentially oxidizes glucose while the oxidation of fatty acids (FAs) oxidation is reciprocally decreased. In metabolic disorders associated with insulin resistance, such as diabetes and obesity, both glucose uptake, and utilization muscle are significantly reduced causing FA oxidation to provide the majority of ATP for metabolic processes and contraction. Although the causes of this metabolic inflexibility or disrupted "glucose-fatty acid cycle" are largely unknown, a diet high in fat and sugar (HFS) may be a contributing factor. This metabolic inflexibility observed in models of obesity or with HFS feeding is detrimental because high rates of FA oxidation in skeletal muscle can lead to the buildup of toxic metabolites of fat metabolism and the accumulation of pro-inflammatory cytokines, which further exacerbate the insulin resistance. Further, HFS leads to skeletal muscle atrophy with a decrease in myofibrillar proteins and phenotypically characterized by loss of muscle mass and strength. Overactivation of ubiquitin proteasome pathway, oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction are some of the mechanisms involved in muscle atrophy induced by obesity or in mice fed with HFS. In this review, we will discuss how HFS diet negatively impacts the various physiological and metabolic mechanisms in skeletal muscle.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, Glendale, AZ, United States
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| |
Collapse
|
11
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Borton AH, Benson BL, Neilson LE, Saunders A, Alaiti MA, Huang AY, Jain MK, Proweller A, Ramirez-Bergeron DL. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery. J Am Heart Assoc 2018; 7:e009205. [PMID: 29858371 PMCID: PMC6015385 DOI: 10.1161/jaha.118.009205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. METHODS AND RESULTS We used ArntSMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. ArntSMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of ArntSMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. ArntSMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. CONCLUSIONS Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in ArntSMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Receptor Nuclear Translocator/biosynthesis
- Aryl Hydrocarbon Receptor Nuclear Translocator/genetics
- Blotting, Western
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Immunohistochemistry
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/pathology
- Lower Extremity/blood supply
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Peripheral Vascular Diseases/genetics
- Peripheral Vascular Diseases/metabolism
- Peripheral Vascular Diseases/pathology
- RNA/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Anna Henry Borton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Lee E Neilson
- Neurological Institute, University Hospitals, Cleveland, OH
| | - Ashley Saunders
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - M Amer Alaiti
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Angie Fowler Adolescent and Young Adult Cancer Institute and University Hospitals Rainbow Babies and Children's Hospital University Hospitals, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Aaron Proweller
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| |
Collapse
|
13
|
The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metab 2018; 27:898-913.e7. [PMID: 29617647 PMCID: PMC5887987 DOI: 10.1016/j.cmet.2018.02.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/29/2017] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
Abstract
Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia.
Collapse
|
14
|
Matkar PN, Singh KK, Rudenko D, Kim YJ, Kuliszewski MA, Prud'homme GJ, Hedley DW, Leong-Poi H. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:69489-69506. [PMID: 27542226 PMCID: PMC5342493 DOI: 10.18632/oncotarget.11060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an intense fibrotic reaction termed tumor desmoplasia, which is in part responsible for its aggressiveness. Endothelial cells have been shown to display cellular plasticity in the form of endothelial-to-mesenchymal transition (EndMT) that serves as an important source of fibroblasts in pathological disorders, including cancer. Angiogenic co-receptor, neuropilin-1 (NRP-1) actively binds TGFβ1, the primary mediator of EndMT and is involved in oncogenic processes like epithelial-to-mesenchymal transition (EMT). NRP-1 and TGFβ1 signaling have been shown to be aberrantly up-regulated in PDAC. We report herein a positive correlation between NRP-1 levels, EndMT and fibrosis in human PDAC xenografts. Loss of NRP-1 in HUVECs limited TGFβ1-induced EndMT as demonstrated by gain of endothelial and loss of mesenchymal markers, while maintaining endothelial cell architecture. Knockdown of NRP-1 down-regulated TGFβ canonical signaling (pSMAD2) and associated pro-fibrotic genes. Overexpression of NRP-1 exacerbated TGFβ1-induced EndMT and up-regulated TGFβ signaling and expression of pro-fibrotic genes. In vivo, loss of NRP-1 attenuated tumor perfusion and size, accompanied by reduction in EndMT and fibrosis. This study defines a previously unrecognized role of NRP-1 in regulating TGFβ1-induced EndMT and fibrosis, and advocates NRP-1 as a therapeutic target to reduce tumor fibrosis and PDAC progression.
Collapse
Affiliation(s)
- Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Krishna Kumar Singh
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Dmitriy Rudenko
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Yu Jin Kim
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Michael A Kuliszewski
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Gerald J Prud'homme
- Division of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - David W Hedley
- Division of Medical Oncology and Hematology, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Burke JM, Kincaid RP, Aloisio F, Welch N, Sullivan CS. Expression of short hairpin RNAs using the compact architecture of retroviral microRNA genes. Nucleic Acids Res 2017; 45:e154. [PMID: 28973449 PMCID: PMC5622367 DOI: 10.1093/nar/gkx653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/19/2017] [Indexed: 12/03/2022] Open
Abstract
Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects. Additionally, typical U6/H1 promoters encompass the majority of the ∼270 base pairs (bp) of vector space required for shRNA expression. This can limit the efficacy and/or number of delivery vector options, particularly when delivery of multiple gene/shRNA combinations is required. Here, we develop a compact shRNA (cshRNA) expression system based on retroviral microRNA (miRNA) gene architecture that uses RNAP III type II promoters. We demonstrate that cshRNAs coded from as little as 100 bps of total coding space can precisely generate small interfering RNAs (siRNAs) that are active in the RNA-induced silencing complex (RISC). We provide an algorithm with a user-friendly interface to design cshRNAs for desired target genes. This cshRNA expression system reduces the coding space required for shRNA expression by >2-fold as compared to the typical U6/H1 promoters, which may facilitate therapeutic RNAi applications where delivery vector space is limiting.
Collapse
Affiliation(s)
- James M Burke
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Center for Synthetic and Systems Biology, Center for Infectious Disease and Department Molecular Biosciences, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Rodney P Kincaid
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Center for Synthetic and Systems Biology, Center for Infectious Disease and Department Molecular Biosciences, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Francesca Aloisio
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Center for Synthetic and Systems Biology, Center for Infectious Disease and Department Molecular Biosciences, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Nicole Welch
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Center for Synthetic and Systems Biology, Center for Infectious Disease and Department Molecular Biosciences, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Christopher S Sullivan
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Center for Synthetic and Systems Biology, Center for Infectious Disease and Department Molecular Biosciences, 1 University Station A5000, Austin, TX 78712-0162, USA
| |
Collapse
|
16
|
Madrigal JL, Stilhano R, Silva EA. Biomaterial-Guided Gene Delivery for Musculoskeletal Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:347-361. [PMID: 28166711 PMCID: PMC5749599 DOI: 10.1089/ten.teb.2016.0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy is a promising strategy for musculoskeletal tissue repair and regeneration where local and sustained expression of proteins and/or therapeutic nucleic acids can be achieved. However, the musculoskeletal tissues present unique engineering and biological challenges as recipients of genetic vectors. Targeting specific cell populations, regulating expression in vivo, and overcoming the harsh environment of damaged tissue accompany the general concerns of safety and efficacy common to all applications of gene therapy. In this review, we will first summarize these challenges and then discuss how biomaterial carriers for genetic vectors can address these issues. Second, we will review how limitations specific to given vectors further motivate the utility of biomaterial carriers. Finally, we will discuss how these concepts have been combined with tissue engineering strategies and approaches to improve the delivery of these vectors for musculoskeletal tissue regeneration.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Roberta Stilhano
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| |
Collapse
|
17
|
Parma L, Baganha F, Quax PHA, de Vries MR. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 2017; 816:107-115. [PMID: 28435093 DOI: 10.1016/j.ejphar.2017.04.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
Acute cardiovascular events, due to rupture or erosion of an atherosclerotic plaque, represent the major cause of morbidity and mortality in patients. Growing evidence suggests that plaque neovascularization is an important contributor to plaque growth and instability. The vessels' immaturity, with profound structural and functional abnormalities, leads to recurrent intraplaque hemorrhage. This review discusses new insights of atherosclerotic neovascularization, including the effects of leaky neovessels on intraplaque hemorrhage, both in experimental models and humans. Furthermore, modalities for in vivo imaging and therapeutic interventions to target plaque angiogenesis will be discussed.
Collapse
Affiliation(s)
- Laura Parma
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Fabiana Baganha
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Paul H A Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margreet R de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Sinha I, Sakthivel D, Olenchock BA, Kruse CR, Williams J, Varon DE, Smith JD, Madenci AL, Nuutila K, Wagers AJ. Prolyl Hydroxylase Domain-2 Inhibition Improves Skeletal Muscle Regeneration in a Male Murine Model of Obesity. Front Endocrinol (Lausanne) 2017; 8:153. [PMID: 28725215 PMCID: PMC5497248 DOI: 10.3389/fendo.2017.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity leads to a loss of muscle mass and impaired muscle regeneration. In obese individuals, pathologically elevated levels of prolyl hydroxylase domain enzyme 2 (PHD2) limit skeletal muscle hypoxia-inducible factor-1 alpha and vascular endothelial growth factor (VEGF) expression. Loss of local VEGF may further impair skeletal muscle regeneration. We hypothesized that PHD2 inhibition would restore vigorous muscle regeneration in a murine model of obesity. Adult (22-week-old) male mice were fed either a high-fat diet (HFD), with 60% of calories derived from fat, or a regular diet (RD), with 10% of calories derived from fat, for 16 weeks. On day 5 following cryoinjury to the tibialis anterior muscle, newly regenerated muscle fiber cross-sectional areas were significantly smaller in mice fed an HFD as compared to RD, indicating an impaired regenerative response. Cryoinjured gastrocnemius muscles of HFD mice also showed elevated PHD2 levels (twofold higher) and reduced VEGF levels (twofold lower) as compared to RD. Dimethyloxalylglycine, a cell permeable competitive inhibitor of PHD2, restored VEGF levels and significantly improved regenerating myofiber size in cryoinjured mice fed an HFD. We conclude that pathologically increased PHD2 in the obese state drives impairments in muscle regeneration, in part by blunting VEGF production. Inhibition of PHD2 over activity in the obese state normalizes VEGF levels and restores muscle regenerative potential.
Collapse
Affiliation(s)
- Indranil Sinha
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- *Correspondence: Indranil Sinha, ; Amy J. Wagers,
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Benjamin A. Olenchock
- Harvard Medical School, Boston, MA, United States
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Carla R. Kruse
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jeremy Williams
- University of California San Francisco, San Francisco, CA, United States
| | - David E. Varon
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jessica D. Smith
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Arin L. Madenci
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Amy J. Wagers
- Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Joslin Diabetes Center, Boston, MA, United States
- *Correspondence: Indranil Sinha, ; Amy J. Wagers,
| |
Collapse
|
20
|
Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease. Kidney Int 2016; 91:616-627. [PMID: 27927598 DOI: 10.1016/j.kint.2016.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) is associated with increased risk and worse prognosis of cardiovascular disease, including peripheral artery disease. An impaired angiogenic response to ischemia may contribute to poor outcomes of peripheral artery disease in patients with CKD. Hypoxia inducible factors (HIF) are master regulators of angiogenesis and therefore represent a promising target for therapeutic intervention. To test this we induced hind-limb ischemia in rats with CKD caused by 5/6 nephrectomy and administered two different treatments known to stabilize HIF protein in vivo: carbon monoxide and a pharmacological inhibitor of prolyl hydroxylation 2-(1-chloro-4- hydroxyisoquinoline-3-carboxamido) acetate (ICA). Expression levels of pro-angiogenic HIF target genes (Vegf, Vegf-r1, Vegf-r2, Ho-1) were measured by qRT-PCR. Capillary density was measured by CD31 immunofluorescence staining and HIF expression was evaluated by immunohistochemistry. Capillary density in ischemic skeletal muscle was significantly lower in CKD animals compared to sham controls. Rats with CKD showed significantly lower expression of HIF and all measured pro-angiogenic HIF target genes, including VEGF. Both HIF stabilizing treatments rescued HIF target gene expression in animals with CKD and led to significantly higher ischemia-induced capillary sprouting compared to untreated controls. ICA was effective regardless of whether it was administered before or after induction of ischemia and led to a HIF expression in skeletal muscle. Thus, impaired ischemia-induced angiogenesis in rats with CKD can be improved by HIF stabilization, even if started after onset of ischemia.
Collapse
|
21
|
de Vries MR, Quax PHA. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol 2016; 27:499-506. [PMID: 27472406 DOI: 10.1097/mol.0000000000000339] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The review discusses the recent literature on plaque angiogenesis and its relation to inflammation and plaque destabilization. Furthermore, it discusses how plaque angiogenesis can be used to monitor atherosclerosis and serve as a therapeutic target. RECENT FINDINGS Histopathologic studies have shown a clear relationship between plaque angiogenesis, intraplaque hemorrhage (IPH), plaque vulnerability, and cardiovascular events. Hypoxia is a main driver of plaque angiogenesis and the mechanism behind angiogenesis is only partly known. IPH, as the result of immature neovessels, is associated with increased influx of inflammatory cells in the plaques. Experimental models displaying certain features of human atherosclerosis such as plaque angiogenesis or IPH are developed and can contribute to unraveling the mechanism behind plaque vulnerability. New imaging techniques are established, with which plaque angiogenesis and vulnerability can be detected. Furthermore, antiangiogenic therapies in atherosclerosis gain much attention. SUMMARY Plaque angiogenesis, IPH, and inflammation contribute to plaque vulnerability. Histopathologic and imaging studies together with specific experimental studies have provided insights in plaque angiogenesis and plaque vulnerability. However, more extensive knowledge on the underlying mechanism is required for establishing new therapies for patients at risk.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
22
|
Paik KJ, Maan ZN, Zielins ER, Duscher D, Whittam AJ, Morrison SD, Brett EA, Ransom RC, Hu MS, Wu JC, Gurtner GC, Longaker MT, Wan DC. Short Hairpin RNA Silencing of PHD-2 Improves Neovascularization and Functional Outcomes in Diabetic Wounds and Ischemic Limbs. PLoS One 2016; 11:e0150927. [PMID: 26967994 PMCID: PMC4788284 DOI: 10.1371/journal.pone.0150927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
The transcription factor hypoxia-inducible factor 1-alpha (HIF-1α) is responsible for the downstream expression of over 60 genes that regulate cell survival and metabolism in hypoxic conditions as well as those that enhance angiogenesis to alleviate hypoxia. However, under normoxic conditions, HIF-1α is hydroxylated by prolyl hydroxylase 2, and subsequently degraded, with a biological half-life of less than five minutes. Here we investigated the therapeutic potential of inhibiting HIF-1α degradation through short hairpin RNA silencing of PHD-2 in the setting of diabetic wounds and limb ischemia. Treatment of diabetic mouse fibroblasts with shPHD-2 in vitro resulted in decreased levels of PHD-2 transcript demonstrated by qRT-PCR, higher levels of HIF-1α as measured by western blot, and higher expression of the downstream angiogenic genes SDF-1 and VEGFα, as measured by qRT-PCR. In vivo, shPHD-2 accelerated healing of full thickness excisional wounds in diabetic mice compared to shScr control, (14.33 ± 0.45 days vs. 19 ± 0.33 days) and was associated with an increased vascular density. Delivery of shPHD-2 also resulted in improved perfusion of ischemic hind limbs compared to shScr, prevention of distal digit tip necrosis, and increased survival of muscle tissue. Knockdown of PHD-2 through shRNA treatment has the potential to stimulate angiogenesis through overexpression of HIF-1α and upregulation of pro-angiogenic genes downstream of HIF-1α, and may represent a viable, non-viral approach to gene therapy for ischemia related applications.
Collapse
Affiliation(s)
- Kevin J. Paik
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Zeshaan N. Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Elizabeth R. Zielins
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Alexander J. Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shane D. Morrison
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Elizabeth A. Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ryan C. Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 2015; 12:157-68. [DOI: 10.1038/nrneph.2015.193] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Driesen T, Schuler D, Schmetter R, Heiss C, Kelm M, Fischer JW, Freudenberger T. A systematic approach to assess locoregional differences in angiogenesis. Histochem Cell Biol 2015; 145:213-25. [PMID: 26526138 DOI: 10.1007/s00418-015-1379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Skeletal muscle tissue differs with regard to the abundance of glycolytic and oxidative fiber types. In this context, capillary density has been described to be higher in muscle tissue with more oxidative metabolism as compared to that one with more glycolytic metabolism, and the highest abundance of capillaries has been found in boneward-oriented moieties of skeletal muscle tissue. Importantly, capillary formation is often analyzed as a measure for angiogenesis, a process that describes neo-vessel formation emanating from preexisting vessels, occurring, i.e., after arterial occlusion. However, a standardized way for investigation of calf muscle capillarization after surgically induced unilateral hind limb ischemia in mice, especially considering these locoregional differences, has not been provided so far. In this manuscript, a novel, methodical approach for reliable analysis of capillary density was established using anatomic-morphological reference points, and a software-assisted way of capillary density analysis is described. Thus, the systematic approach provided conscientiously considers intra-layer differences in capillary formation and therefore guarantees for a robust, standardized analysis of capillary density as a measure for angiogenesis. The significance of the methodology is further supported by the observation that capillary density in the calf muscle layers analyzed negatively correlates with distal lower limb perfusion measured in vivo.
Collapse
Affiliation(s)
- T Driesen
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - D Schuler
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - R Schmetter
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - C Heiss
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - M Kelm
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - J W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - T Freudenberger
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
25
|
Karsikas S, Myllymäki M, Heikkilä M, Sormunen R, Kivirikko KI, Myllyharju J, Serpi R, Koivunen P. HIF-P4H-2 deficiency protects against skeletal muscle ischemia-reperfusion injury. J Mol Med (Berl) 2015; 94:301-10. [PMID: 26452676 DOI: 10.1007/s00109-015-1349-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
We show here that mice hypomorphic for hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2) (Hif-p4h-2 (gt/gt)), the main regulator of the stability of the HIFα subunits, have normoxic stabilization of HIF-1α and HIF-2α in their skeletal muscles. The size of the capillaries, but not their number, was increased in the skeletal muscles of the Hif-p4h-2 (gt/gt) mice, whereas the amount of glycogen was reduced. The expression levels of genes for glycolytic enzymes, glycogen branching enzyme 1 and monocarboxylate transporter 4, were increased in the Hif-p4h-2 (gt/gt) skeletal muscles, whereas no significant increases were detected in the levels of any vasculature-influencing factor studied. Serum lactate levels of the Hif-p4h-2 (gt/gt) mice recovered faster than those of the wild type following exercise. The Hif-p4h-2 (gt/gt) mice had elevated hepatic phosphoenolpyruvate carboxykinase activity, which may have contributed to the faster clearance of lactate. The Hif-p4h-2 (gt/gt) mice had smaller infarct size following limb ischemia-reperfusion injury. The increased capillary size correlated with the reduced infarct size. Following ischemia-reperfusion, glycogen content and ATP/ADP and CrP/Cr levels of the skeletal muscle of the Hif-p4h-2 (gt/gt) mice were higher than in the wild type. The higher glycogen content correlated with increased expression of phosphofructokinase messenger RNA (mRNA) and the increased ATP/ADP and CrP/Cr levels with reduced apoptosis, suggesting that HIF-P4H-2 deficiency supported energy metabolism during ischemia-reperfusion and protection against injury. Key messages: HIF-P4H-2 deficiency protects skeletal muscle from ischemia-reperfusion injury. The mechanisms involved are mediated via normoxic HIF-1α and HIF-2α stabilization. HIF-P4H-2 deficiency increases capillary size but not number. HIF-P4H-2 deficiency maintains energy metabolism during ischemia-reperfusion.
Collapse
Affiliation(s)
- Sara Karsikas
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Mikko Myllymäki
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Minna Heikkilä
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raija Sormunen
- Biocenter Oulu, Department of Pathology, University of Oulu, Oulu, Finland
| | - Kari I Kivirikko
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
26
|
Gaspar V, de Melo-Diogo D, Costa E, Moreira A, Queiroz J, Pichon C, Correia I, Sousa F. Minicircle DNA vectors for gene therapy: advances and applications. Expert Opin Biol Ther 2014; 15:353-79. [PMID: 25539147 DOI: 10.1517/14712598.2015.996544] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nucleic-acid-based biopharmaceuticals enclose a remarkable potential for treating debilitating or life-threatening diseases that currently remain incurable. This promising area of research envisages the creation of state-of-the-art DNA vaccines, pluripotent cells or gene-based therapies, which can be used to overcome current issues. To achieve this goal, DNA minicircles are emerging as ideal nonviral vectors due to their safety and persistent transgene expression in either quiescent or actively dividing cells. AREAS COVERED This review focuses on the characteristics of minicircle DNA (mcDNA) technology and the current advances in their production. The possible modifications to further improve minicircle efficacy are also emphasized and discussed in light of recent advances. As a final point, the main therapeutic applications of mcDNA are summarized, with a special focus on pluripotent stem cells production and cancer therapy. EXPERT OPINION Achieving in-target and persistent transgene expression is a challenging issue that is of critical importance for a successful therapeutic outcome. The use of miniaturized mcDNA cassettes with additional modifications that increase and prolong expression may contribute to an improved generation of biopharmaceuticals. The unique features of mcDNA render it an attractive alternative to overcome current technical issues and to bridge the significant gap that exists between basic research and clinical applications.
Collapse
Affiliation(s)
- Vítor Gaspar
- University of Beira Interior, CICS-UBI - Health Sciences Research Center , Av. Infante D. Henrique, 6200-506, Covilhã , Portugal +351 275 329 002, +351 275 329 055 ; +351 275 329 099 ; ;
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Maan ZN, Rodrigues M, Rennert RC, Whitmore A, Duscher D, Januszyk M, Hu M, Whittam AJ, Davis CR, Gurtner GC. Understanding regulatory pathways of neovascularization in diabetes. Expert Rev Endocrinol Metab 2014; 9:487-501. [PMID: 30736211 DOI: 10.1586/17446651.2014.938054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus and its associated comorbidities represent a significant health burden worldwide. Vascular dysfunction is the major contributory factor in the development of these comorbidities, which include impaired wound healing, cardiovascular disease and proliferative diabetic retinopathy. While the etiology of abnormal neovascularization in diabetes is complex and paradoxical, the dysregulation of the varied processes contributing to the vascular response are due in large part to the effects of hyperglycemia. In this review, we explore the mechanisms by which hyperglycemia disrupts chemokine expression and function, including the critical hypoxia inducible factor-1 axis. We place particular emphasis on the therapeutic potential of strategies addressing these pathways; as such targeted approaches may one day help alleviate the healthcare burden of diabetic sequelae.
Collapse
Affiliation(s)
- Zeshaan N Maan
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Melanie Rodrigues
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Robert C Rennert
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Arnetha Whitmore
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Dominik Duscher
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Michael Januszyk
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Michael Hu
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Alexander J Whittam
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Christopher R Davis
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | | |
Collapse
|