1
|
Bsteh G, Dal Bianco A, Zrzavy T, Berger T. Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis. Pharmacol Rev 2024; 76:564-578. [PMID: 38719481 DOI: 10.1124/pharmrev.124.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Assunta Dal Bianco
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic Adenosine Monophosphate in Cardiac and Sympathoadrenal GLP-1 Receptor Signaling: Focus on Anti-Inflammatory Effects. Pharmaceutics 2024; 16:693. [PMID: 38931817 PMCID: PMC11206770 DOI: 10.3390/pharmaceutics16060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA; (J.I.B.); (R.A.S.)
| | | | | |
Collapse
|
3
|
Zou H, Hao P, Cao Y, Li L, Ding R, Bai X, Xue Y. Hippophae rhamnoides reverses decreased CYP2D6 expression in rats with BCG-induced liver injury. Sci Rep 2023; 13:17425. [PMID: 37833431 PMCID: PMC10575986 DOI: 10.1038/s41598-023-44590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
In this study, we investigated the effect of Hippophae rhamnoides L. (HRP) on the activity of CYP2D6 via the CAMP/PKA/NF-κB pathway in rats with Bacille Calmette-Guerin (BCG)-induced immunological liver injury. BCG (125 mg/kg) was injected to establish the rat model of liver injury. HRP was administered intragastrically for one week as the intervention drug. Proteomics techniques were used to analyze protein expression levels, obtaining a comprehensive understanding of the liver injury process. ELISA or western blotting was used to detect specific protein levels. Dextromethorphan was detected using high-performance liquid chromatography to reflect the metabolic activity of CYP2D6. BCG downregulated the expression of CYP2D6, cAMP, PKA, IκB, and P-CREB and upregulated that of NF-κB, IL-1β, TNF-α, and CREB in the liver; HRP administration reversed these effects. Therefore, HRP may restore the metabolic function of the liver by reversing the downregulation of CYP2D6 through inhibition of NF-κB signal transduction and regulation of the cAMP/PKA/CREB/CYP2D6 pathway. These findings highlight the role of HRP as an alternative clinical drug for treating hepatitis B and other immune-related liver diseases.
Collapse
Affiliation(s)
- Huiqiong Zou
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou, 014060, China
| | - Peipei Hao
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou, 014060, China
| | - Yingying Cao
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou, 014060, China
| | - Li Li
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou, 014060, China
| | - Ruifeng Ding
- Department of Gastroenterology, First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Xuefeng Bai
- Department of Pathology, Baotou Cancer Hospital, Baotou, China
| | - Yongzhi Xue
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou, 014060, China.
| |
Collapse
|
4
|
Liu S, Deng S, Ding Y, Flores JJ, Zhang X, Jia X, Hu X, Peng J, Zuo G, Zhang JH, Gong Y, Tang J. Secukinumab attenuates neuroinflammation and neurobehavior defect via PKCβ/ERK/NF-κB pathway in a rat model of GMH. Exp Neurol 2023; 360:114276. [PMID: 36402169 DOI: 10.1016/j.expneurol.2022.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIMS Germinal matrix hemorrhage (GMH) is a disastrous clinical event for newborns. Neuroinflammation plays an important role in the development of neurological deficits after GMH. The purpose of this study is to investigate the anti-inflammatory role of secukinumab after GMH and its underlying mechanisms involving PKCβ/ERK/NF-κB signaling pathway. METHODS A total of 154 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. Secukinumab was administered intranasally post-GMH. PKCβ activator PMA and p-ERK activator Ceramide C6 were administered intracerebroventricularly at 24 h prior to GMH induction, respectively. Neurobehavioral tests, western blot and immunohistochemistry were used to evaluate the efficacy of Secukinumab in both short-term and long-term studies. RESULTS Endogenous IL-17A, IL-17RA, PKCβ and p-ERK were increased after GMH. Secukinumab treatment improved short- and long-term neurological outcomes, reduced the synthesis of MPO and Iba-1 in the perihematoma area, and inhibited the synthesis of proinflammatory factors, such as NF-κB, IL-1β, TNF-α and IL-6. Additionally, PMA and ceramide C6 abolished the beneficial effects of Secukinumab. CONCLUSION Secukinumab treatment suppressed neuroinflammation and attenuated neurological deficits after GMH, which was mediated through the downregulation of the PKCβ/ERK/NF-κB pathway. Secukinumab treatment may provide a promising therapeutic strategy for GMH patients.
Collapse
Affiliation(s)
- Shengpeng Liu
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xiaoli Zhang
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiaojing Jia
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
5
|
Gupta S, Sarangi PP. Inflammation driven metabolic regulation and adaptation in macrophages. Clin Immunol 2023; 246:109216. [PMID: 36572212 DOI: 10.1016/j.clim.2022.109216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Macrophages are a diverse population of phagocytic immune cells involved in the host defense mechanisms and regulation of homeostasis. Usually, macrophages maintain healthy functioning at the cellular level, but external perturbation in their balanced functions can lead to acute and chronic disease conditions. By sensing the cues from the tissue microenvironment, these phagocytes adopt a plethora of phenotypes, such as inflammatory or M1 to anti-inflammatory (immunosuppressive) or M2 subtypes, to fulfill their spectral range of functions. The existing evidence in the literature supports that in macrophages, regulation of metabolic switches and metabolic adaptations are associated with their functional behaviors under various physiological and pathological conditions. Since these macrophages play a crucial role in many disorders, therefore it is necessary to understand their heterogeneity and metabolic reprogramming. Consequently, these macrophages have also emerged as a promising target for diseases in which their role is crucial in driving the disease pathology and outcome (e.g., Cancers). In this review, we discuss the recent findings that link many metabolites with macrophage functions and highlight how this metabolic reprogramming can improve our understanding of cellular malfunction in the macrophages during inflammatory disorders. A systematic analysis of the interconnecting crosstalk between metabolic pathways with macrophages should inform the selection of immunomodulatory therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
6
|
Salicylate Sodium Suppresses Monocyte Chemoattractant Protein-1 Production by Directly Inhibiting Phosphodiesterase 3B in TNF-α-Stimulated Adipocytes. Int J Mol Sci 2022; 24:ijms24010320. [PMID: 36613764 PMCID: PMC9820166 DOI: 10.3390/ijms24010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
As a worldwide health issue, obesity is associated with the infiltration of monocytes/macrophages into the adipose tissue causing unresolved inflammation. Monocyte chemoattractant protein-1 (MCP-1) exerts a crucial effect on obesity-related monocytes/macrophages infiltration. Clinically, aspirin and salsalate are beneficial for the treatment of metabolic diseases in which adipose tissue inflammation plays an essential role. Herein, we investigated the effect and precise mechanism of their active metabolite salicylate on TNF-α-elevated MCP-1 in adipocytes. The results indicated that salicylate sodium (SAS) could lower the level of MCP-1 in TNF-α-stimulated adipocytes, which resulted from a previously unrecognized target phosphodiesterase (PDE), 3B (PDE3B), rather than its known targets IKKβ and AMPK. The SAS directly bound to the PDE3B to inactivate it, thus elevating the intracellular cAMP level and activating PKA. Subsequently, the expression of MKP-1 was increased, which led to the decrease in p-EKR and p-p38. Both PDE3B silencing and the pharmacological inhibition of cAMP/PKA compromised the suppressive effect of SAS on MCP-1. In addition to PDE3B, the PDE3A and PDE4B activity was also inhibited by SAS. Our findings identify a previously unrecognized pathway through which SAS is capable of attenuating the inflammation of adipocytes.
Collapse
|
7
|
Uttarkar A, Niranjan V. Brefeldin A variant via combinatorial screening acts as an effective antagonist inducing structural modification in EPAC2. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2110271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Rashtreeya Sikshana Samithi Trust, Bengaluru, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Rashtreeya Sikshana Samithi Trust, Bengaluru, India
| |
Collapse
|
8
|
Kouki MA, Pritchard AB, Alder JE, Crean S. Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer's Disease? J Alzheimers Dis 2021; 85:957-973. [PMID: 34897087 DOI: 10.3233/jad-215103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is protected by a highly selective barrier, the blood-brain barrier (BBB), that regulates the exchange and homeostasis of bloodborne molecules, excluding xenobiotics. This barrier forms the first line of defense by prohibiting pathogens from crossing to the CNS. Aging and chronic exposure of the BBB to pathogens renders it permeable, and this may give rise to pathology in the CNS such as Alzheimer's disease (AD). Researchers have linked pathogens associated with periodontitis to neuroinflammation and AD-like pathology in vivo and in vitro. Although the presence of periodontitis-associated bacteria has been linked to AD in several clinical studies as DNA and virulence factors were confirmed in brain samples of human AD subjects, the mechanism by which the bacteria traverse to the brain and potentially influences neuropathology is unknown. In this review, we present current knowledge about the association between periodontitis and AD, the mechanism whereby periodontal pathogens might provoke neuroinflammation and how periodontal pathogens could affect the BBB. We suggest future studies, with emphasis on the use of human in vitro models of cells associated with the BBB to unravel the pathway of entry for these bacteria to the CNS and to reveal the molecular and cellular pathways involved in initiating the AD-like pathology. In conclusion, evidence demonstrate that bacteria associated with periodontitis and their virulence factors are capable of inflecting damage to the BBB and have a role in giving rise to pathology similar to that found in AD.
Collapse
Affiliation(s)
- Mhd Ammar Kouki
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Anna Barlach Pritchard
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Jane Elizabeth Alder
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - StJohn Crean
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
9
|
Tavares LP, Negreiros-Lima GL, Lima KM, E Silva PMR, Pinho V, Teixeira MM, Sousa LP. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res 2020; 159:105030. [PMID: 32562817 DOI: 10.1016/j.phrs.2020.105030] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular signaling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the role of cAMP at inducing important features of resolution of inflammation.
Collapse
Affiliation(s)
- Luciana P Tavares
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA..
| | - Graziele L Negreiros-Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Kátia M Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Patrícia M R E Silva
- Inflammation Laboratory, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Vanessa Pinho
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Department of Morphology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Mauro M Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Lirlândia P Sousa
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Han Y, Hou R, Zhang X, Liu H, Gao Y, Li X, Qi R, Cai R, Qi Y. Amlexanox exerts anti-inflammatory actions by targeting phosphodiesterase 4B in lipopolysaccharide-activated macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118766. [PMID: 32504661 DOI: 10.1016/j.bbamcr.2020.118766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Amlexanox, an anti-inflammatory agent, is widely used for treating aphthous ulcers. Recently, amlexanox has received considerable attention because of its efficacy in mitigating metabolic inflammation via directly suppressing IKKε/TBK1. However, because the knockdown of IKKε/TBK1 has no anti-inflammatory effect on lipopolysaccharide (LPS)-primed RAW264.7 cells, the mechanism of amlexanox against classical inflammation is independent of IKKε/TBK1. In this study, we aim to examine the effects of amlexanox on LPS-treated macrophages and in a mouse model of endotoxemia. We found that amlexanox significantly inhibited the production of pro-inflammatory mediators, both in vitro and in vivo, while increased interleukin-10 level in LPS-activated macrophages. Mechanistically, amlexanox down-regulated nuclear factor κB and extracellular signal-regulated kinase/activator protein-1 signaling by elevating intracellular 3',5'-cyclic adenosine monophosphate (cAMP) level and subsequently activating protein kinase A. Molecular docking along with fluorescence polarization and enzyme inhibition assays revealed that amlexanox bound directly to phosphodiesterase (PDE) 4B to inhibit its activity. The anti-inflammatory effects of amlexanox could be abolished by the application of cAMP antagonist or PDE4B siRNA. In addition to PDE4B, the activities of PDE1C, 3A, and 3B were directly inhibited by amlexanox. Our results provide mechanistic insight into the clinical utility of amlexanox for the treatment of inflammatory disorders and might contribute to extending the clinical indications of amlexanox.
Collapse
Affiliation(s)
- Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, Teixeira LCR, Pinho V, Teixeira MM, Sugimoto MA, Sousa LP. Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis. Cells 2020; 9:E128. [PMID: 31935860 PMCID: PMC7017228 DOI: 10.3390/cells9010128] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.
Collapse
Affiliation(s)
- Graziele L. Negreiros-Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Kátia M. Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Isabella Z. Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Bruna Lorrayne O. Jardim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Juliana P. Vago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Lívia Cristina R. Teixeira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Mauro M. Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Michelle A. Sugimoto
- Programa de Pós-Graduação em Doenças Infecciosas e Medicina Tropical, Escola de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil;
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| |
Collapse
|
12
|
Dasilva G, Medina I. Lipidomic methodologies for biomarkers of chronic inflammation in nutritional research: ω-3 and ω-6 lipid mediators. Free Radic Biol Med 2019; 144:90-109. [PMID: 30902758 DOI: 10.1016/j.freeradbiomed.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
The evolutionary history of hominins has been characterized by significant dietary changes, which include the introduction of meat eating, cooking, and the changes associated with plant and animal domestication. The Western pattern diet has been linked with the onset of chronic inflammation, and serious health problems including obesity, metabolic syndrome, and cardiovascular diseases. Diets enriched with ω-3 marine PUFAs have revealed additional improvements in health status associated to a reduction of proinflammatory ω-3 and ω-6 lipid mediators. Lipid mediators are produced from enzymatic and non-enzymatic oxidation of PUFAs. Interest in better understanding the occurrence of these metabolites has increased exponentially as a result of the growing evidence of their role on inflammatory processes, control of the immune system, cell signaling, onset of metabolic diseases, or even cancer. The scope of this review has been to highlight the recent findings on: a) the formation of lipid mediators and their role in different inflammatory and metabolic conditions, b) the direct use of lipid mediators as antiinflammatory drugs or the potential of new drugs as a new therapeutic option for the synthesis of antiinflammatory or resolving lipid mediators and c) the impact of nutritional interventions to modulate lipid mediators synthesis towards antiinflammatory conditions. In a second part, we have summarized methodological approaches (Lipidomics) for the accurate analysis of lipid mediators. Although several techniques have been used, most authors preferred the combination of SPE with LC-MS. Advantages and disadvantages of each method are herein addressed, as well as the main LC-MS difficulties and challenges for the establishment of new biomarkers and standardization of experimental designs, and finally to deepen the study of mechanisms involved on the inflammatory response.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
13
|
Kayhan M, Koyas A, Akdemir I, Savas AC, Cekic C. Adenosine Receptor Signaling Targets Both PKA and Epac Pathways to Polarize Dendritic Cells to a Suppressive Phenotype. THE JOURNAL OF IMMUNOLOGY 2019; 203:3247-3255. [PMID: 31722989 DOI: 10.4049/jimmunol.1900765] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 02/05/2023]
Abstract
Extracellular adenosine accumulates in tumors and causes suppression of immune cells. Suppressive adenosine signaling is achieved through adenosine A2A and A2B receptors, which are Gs coupled, and their activation elevates cAMP levels. Gs-coupled GPCR signaling causes cAMP accumulation, which plays an anti-inflammatory role in immune cells. Protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac) are two intracellular receptors of cAMP. In this study we showed that adenosine receptor signaling polarizes activated murine dendritic cells (DCs) into a tumor-promoting suppressive phenotype. Adenosine receptor signaling activates cAMP pathway and upregulates the negative regulators of NF-κB but does not influence phosphorylation of immediate inflammatory signaling molecules downstream of TLR signaling. Pharmacologic activation of both PKA and Epac pathways by specific cAMP analogues phenocopied the effects of adenosine signaling on murine DCs, such as suppression of proinflammatory cytokines, elevation of anti-inflammatory IL-10, increased expression of regulators of NF-κB pathway, and finally suppression of T cell activation. Inhibition of effector cytokine, IL-12p40 production, and increased immunosuppressive IL-10 production by adenosine signaling is significantly reversed only when both PKA and Epac pathways were inhibited together. Adenosine signaling increased IL-10 secretion while decreasing IL-12p40 secretion in human monocyte-derived DCs. Stimulation of both PKA and Epac pathways also caused combinatorial effects in regulation of IL-12p40 secretion in human monocyte-derived DCs. Interestingly, PKA signaling alone caused similar increase in IL-10 secretion to that of adenosine signaling in human monocyte-derived DCs. Our data suggest adenosine/cAMP signaling targets both PKA/Epac pathways to fully differentiate DCs into a suppressive phenotype.
Collapse
Affiliation(s)
- Merve Kayhan
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Altay Koyas
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Imran Akdemir
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Ali Can Savas
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Caglar Cekic
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
14
|
Chung YT, Pasquinelli V, Jurado JO, Wang X, Yi N, Barnes PF, Garcia VE, Samten B. Elevated Cyclic AMP Inhibits Mycobacterium tuberculosis-Stimulated T-cell IFN-γ Secretion Through Type I Protein Kinase A. J Infect Dis 2019; 217:1821-1831. [PMID: 29438524 DOI: 10.1093/infdis/jiy079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is critical in immune regulation, and its role in tuberculosis infection remains unclear. We determined the levels of cAMP in peripheral blood mononuclear cells (PBMC) from tuberculosis patients and the mechanisms for cAMP suppression of IFN-γ production. PBMC from tuberculosis patients contained significantly elevated cAMP than latent tuberculosis infected subjects (LTBI), with an inverse correlation with IFN-γ production. Consistent with this, the expression of cAMP response element binding protein (CREB), activating transcription factor (ATF)-2 and c-Jun were reduced in tuberculosis patients compared with LTBI. PKA type I specific cAMP analogs inhibited Mtb-stimulated IFN-g production by PBMC through suppression of Mtb-induced IFN-γ promoter binding activities of CREB, ATF-2, and c-Jun and also miR155, the target miRNA of these transcription factors. Neutralizing both IL-10 and TGF-β1 or supplementation of IL-12 restored cAMP-suppressed IFN-g production. We conclude that increased cAMP inhibits IFN-g production through PKA type I pathway in tuberculosis infection.
Collapse
Affiliation(s)
- Yoon-Tae Chung
- Department of Pulmonary Immunology, University of Texas Health Science Center, Tyler
| | - Virginia Pasquinelli
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, Universidad Nacional del Noroeste de la Provincia de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Junín, Argentina
| | - Javier O Jurado
- Departamento de Química Biológica, and Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Xisheng Wang
- Department of Pulmonary Immunology, University of Texas Health Science Center, Tyler
| | - Na Yi
- Department of Pulmonary Immunology, University of Texas Health Science Center, Tyler
| | - Peter F Barnes
- Department of Pulmonary Immunology, University of Texas Health Science Center, Tyler
| | - Veronica E Garcia
- Departamento de Química Biológica, and Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Buka Samten
- Department of Pulmonary Immunology, University of Texas Health Science Center, Tyler
| |
Collapse
|
15
|
Schepers M, Tiane A, Paes D, Sanchez S, Rombaut B, Piccart E, Rutten BPF, Brône B, Hellings N, Prickaerts J, Vanmierlo T. Targeting Phosphodiesterases-Towards a Tailor-Made Approach in Multiple Sclerosis Treatment. Front Immunol 2019; 10:1727. [PMID: 31396231 PMCID: PMC6667646 DOI: 10.3389/fimmu.2019.01727] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) characterized by heterogeneous clinical symptoms including gradual muscle weakness, fatigue, and cognitive impairment. The disease course of MS can be classified into a relapsing-remitting (RR) phase defined by periods of neurological disabilities, and a progressive phase where neurological decline is persistent. Pathologically, MS is defined by a destructive immunological and neuro-degenerative interplay. Current treatments largely target the inflammatory processes and slow disease progression at best. Therefore, there is an urgent need to develop next-generation therapeutic strategies that target both neuroinflammatory and degenerative processes. It has been shown that elevating second messengers (cAMP and cGMP) is important for controlling inflammatory damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied extensively in a wide range of disorders as they breakdown these second messengers, rendering them crucial regulators. In this review, we provide an overview of the role of PDE inhibition in limiting pathological inflammation and stimulating regenerative processes in MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dean Paes
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ben Rombaut
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bart P F Rutten
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response. Pathogens 2018; 7:pathogens7020048. [PMID: 29693583 PMCID: PMC6027212 DOI: 10.3390/pathogens7020048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.
Collapse
|
17
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
18
|
Woida PJ, Satchell KJF. Coordinated delivery and function of bacterial MARTX toxin effectors. Mol Microbiol 2017; 107:133-141. [PMID: 29114985 DOI: 10.1111/mmi.13875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 12/22/2022]
Abstract
Bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include toxins counteracting or amplifying effects of another toxin or though regulating the stability of virulence factors to remove their function once it is no longer needed. Multifunctional autoprocessing repeats-in toxin (MARTX) toxins are effector delivery toxins that form a pore into the plasma membrane of a eukaryotic cell to deliver multiple effector proteins into the cytosol of the target cell. The function of these proteins includes manipulating actin cytoskeletal dynamics, regulating signal transduction pathways and inhibiting host secretory pathways. Investigations into the molecular mechanisms of these effector domains are providing insight into how the function of some effectors overlap and regulate one another during infection. Coordinated crosstalk of effector function suggests that MARTX toxins are not simply a sum of all their parts. Instead, modulation of cell function by effector domains may depend on which other effector domain are co-delivered. Future studies will elucidate how these effectors interact with each other to modulate the bacterial host interaction.
Collapse
Affiliation(s)
- Patrick J Woida
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Pierre S, Zhang DD, Suo J, Kern K, Tarighi N, Scholich K. Myc binding protein 2 suppresses M2-like phenotypes in macrophages during zymosan-induced inflammation in mice. Eur J Immunol 2017; 48:239-249. [PMID: 29067676 DOI: 10.1002/eji.201747129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/09/2017] [Accepted: 10/17/2017] [Indexed: 02/03/2023]
Abstract
MYCBP2 is an E3 ubiquitin ligase, which is well characterized as a key element in the inhibition of neuronal growth, synapse formation and synaptic strength by regulating several signaling pathways. Although MYCBP2 was suspected to be expressed also in immune cells, to date nothing is known about its role in inflammation. We used Multi-epitope ligand cartography (MELC), a method for multiple sequential immunohistology, to show that MYCBP2 is strongly expressed in monocyte-derived macrophages during zymosan-induced inflammation. We generated a myeloid-specific knockout mouse and found that loss of MYCBP2 in myeloid cells reduced nociceptive (painful) behavior during the resolution phase (1-3 days after zymosan injection). Quantitative MELC analyses and flow cytometric analysis showed an increased number of CD206-expressing macrophages in the inflamed paw tissue. Fittingly, CD206 and arginase 1 expression was upregulated in MYCBP2-deficient bone marrow-derived macrophages after polarization with IL10 or IL4. The regulation of protein expression in these macrophages by MYCBP2 varied depending on the polarization signal. The increased IL10-induced CD206 expression in MYCBP2-deficient macrophages was mediated by p38 MAPK, while IL4-induced CD206 expression in MYCBP2-deficient macrophages was mediated by protein kinase A.
Collapse
Affiliation(s)
- Sandra Pierre
- Institut für Klinische Pharmakologie, Uniklinikum Frankfurt, Germany
| | - Dong Dong Zhang
- Institut für Klinische Pharmakologie, Uniklinikum Frankfurt, Germany
| | - Jing Suo
- Institut für Klinische Pharmakologie, Uniklinikum Frankfurt, Germany
| | - Katharina Kern
- Institut für Klinische Pharmakologie, Uniklinikum Frankfurt, Germany
| | - Neda Tarighi
- Institut für Klinische Pharmakologie, Uniklinikum Frankfurt, Germany
| | - Klaus Scholich
- Institut für Klinische Pharmakologie, Uniklinikum Frankfurt, Germany
| |
Collapse
|
20
|
Carvalho de Freitas R, Lonien SCH, Malvezi AD, Silveira GF, Wowk PF, da Silva RV, Yamauchi LM, Yamada-Ogatta SF, Rizzo LV, Bordignon J, Pinge-Filho P. Trypanosoma cruzi: Inhibition of infection of human monocytes by aspirin. Exp Parasitol 2017; 182:26-33. [PMID: 28939444 DOI: 10.1016/j.exppara.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/18/2017] [Accepted: 09/17/2017] [Indexed: 01/04/2023]
Abstract
Cell invasion by Trypanosoma cruzi and its intracellular replication are essential for progression of the parasite life cycle and development of Chagas disease. Prostaglandin E2 (PGE2) and other eicosanoids potently modulate host response and contribute to Chagas disease progression. In this study, we evaluated the effect of aspirin (ASA), a non-selective cyclooxygenase (COX) inhibitor on the T. cruzi invasion and its influence on nitric oxide and cytokine production in human monocytes. The pretreatment of monocytes with ASA or SQ 22536 (adenylate-cyclase inhibitor) induced a marked inhibition of T. cruzi infection. On the other hand, the treatment of monocytes with SQ 22536 after ASA restored the invasiveness of T. cruzi. This reestablishment was associated with a decrease in nitric oxide and PGE2 production, and also an increase of interleukin-10 and interleukin-12 by cells pre-treated with ASA. Altogether, these results reinforce the idea that the cyclooxygenase pathway plays a fundamental role in the process of parasite invasion in an in vitro model of T. cruzi infection.
Collapse
Affiliation(s)
- Rafael Carvalho de Freitas
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-970, Londrina, Paraná, Brazil
| | - Sandra Cristina Heim Lonien
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-970, Londrina, Paraná, Brazil
| | - Aparecida Donizette Malvezi
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-970, Londrina, Paraná, Brazil
| | - Guilherme Ferreira Silveira
- Laboratório de Virologia Molecular, Instituto Carlos Chagas - ICC/Fiocruz, Curitiba, 81350-010, Paraná, Brazil
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas - ICC/Fiocruz, Curitiba, 81350-010, Paraná, Brazil
| | - Rosiane Valeriano da Silva
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-970, Londrina, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-970, Londrina, Paraná, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-970, Londrina, Paraná, Brazil
| | - Luiz Vicente Rizzo
- Hospital Israelita Albert Einstein, Avenida Albert Einstein 627-701, Subsolo Bloco A., 05651-901, São Paulo, São Paulo, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas - ICC/Fiocruz, Curitiba, 81350-010, Paraná, Brazil
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86051-970, Londrina, Paraná, Brazil.
| |
Collapse
|
21
|
Bacterial Nucleotidyl Cyclase Inhibits the Host Innate Immune Response by Suppressing TAK1 Activation. Infect Immun 2017; 85:IAI.00239-17. [PMID: 28652310 DOI: 10.1128/iai.00239-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Exoenzyme Y (ExoY) is a type III secretion system effector found in 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY is a soluble nucleotidyl cyclase that increases the cytoplasmic levels of nucleoside 3',5'-cyclic monophosphates (cNMPs) to mediate endothelial Tau phosphorylation and permeability, its functional role in the innate immune response is still poorly understood. Transforming growth factor β-activated kinase 1 (TAK1) is critical for mediating Toll-like receptor (TLR) signaling and subsequent activation of NF-κB and AP-1, which are transcriptional activators of innate immunity. Here, we report that ExoY inhibits proinflammatory cytokine production through suppressing the activation of TAK1 as well as downstream NF-κB and mitogen-activated protein (MAP) kinases. Mice infected with ExoY-deficient P. aeruginosa had higher levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6), more neutrophil recruitment, and a lower bacterial load in lung tissue than mice infected with wild-type P. aeruginosa Taken together, our findings identify a previously unknown mechanism by which P. aeruginosa ExoY inhibits the host innate immune response.
Collapse
|
22
|
Abstract
Lipids are potent signaling molecules that regulate a multitude of cellular responses, including cell growth and death and inflammation/infection, via receptor-mediated pathways. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic pathways and because they elicit responses via different receptors. This review will collate the bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins, and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins) will be discussed herein.
Collapse
|
23
|
Lima KM, Vago JP, Caux TR, Negreiros-Lima GL, Sugimoto MA, Tavares LP, Arribada RG, Carmo AAF, Galvão I, Costa BRC, Soriani FM, Pinho V, Solito E, Perretti M, Teixeira MM, Sousa LP. The resolution of acute inflammation induced by cyclic AMP is dependent on annexin A1. J Biol Chem 2017; 292:13758-13773. [PMID: 28655761 DOI: 10.1074/jbc.m117.800391] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 12/17/2022] Open
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated protein known for its anti-inflammatory and pro-resolving effects. We have shown previously that the cAMP-enhancing compounds rolipram (ROL; a PDE4 inhibitor) and Bt2cAMP (a cAMP mimetic) drive caspase-dependent resolution of neutrophilic inflammation. In this follow-up study, we investigated whether AnxA1 could be involved in the pro-resolving properties of these compounds using a model of LPS-induced inflammation in BALB/c mice. The treatment with ROL or Bt2cAMP at the peak of inflammation shortened resolution intervals, improved resolution indices, and increased AnxA1 expression. In vitro studies showed that ROL and Bt2cAMP induced AnxA1 expression and phosphorylation, and this effect was prevented by PKA inhibitors, suggesting the involvement of PKA in ROL-induced AnxA1 expression. Akin to these in vitro findings, H89 prevented ROL- and Bt2cAMP-induced resolution of inflammation, and it was associated with decreased levels of intact AnxA1. Moreover, two different strategies to block the AnxA1 pathway (by using N-t-Boc-Met-Leu-Phe, a nonselective AnxA1 receptor antagonist, or by using an anti-AnxA1 neutralizing antiserum) prevented ROL- and Bt2cAMP-induced resolution and neutrophil apoptosis. Likewise, the ability of ROL or Bt2cAMP to induce neutrophil apoptosis was impaired in AnxA-knock-out mice. Finally, in in vitro settings, ROL and Bt2cAMP overrode the survival-inducing effect of LPS in human neutrophils in an AnxA1-dependent manner. Our results show that AnxA1 is at least one of the endogenous determinants mediating the pro-resolving properties of cAMP-elevating agents and cAMP-mimetic drugs.
Collapse
Affiliation(s)
- Kátia M Lima
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Juliana P Vago
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Thaís R Caux
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Graziele Letícia Negreiros-Lima
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Michelle A Sugimoto
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Luciana P Tavares
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Raquel G Arribada
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Aline Alves F Carmo
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Izabela Galvão
- the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Bruno Rocha C Costa
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Frederico M Soriani
- the Departamento de Biologia Geral, Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha 31270-901, Belo Horizonte, Brazil and
| | - Vanessa Pinho
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Egle Solito
- the William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Mauro Perretti
- the William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Mauro M Teixeira
- the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Lirlândia P Sousa
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, .,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| |
Collapse
|
24
|
Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages. Sci Rep 2017; 7:46165. [PMID: 28383060 PMCID: PMC5382768 DOI: 10.1038/srep46165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
Activation of TLR4 by lipopolysaccharide (LPS) induces both pro-inflammatory and anti-inflammatory cytokine production in macrophages. Type 4 phosphodiesterases (PDE4) are key cAMP-hydrolyzing enzymes, and PDE4 inhibitors are considered as immunosuppressors to various inflammatory responses. We demonstrate here that PDE4 inhibitors enhance the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) secretion in LPS-activated mouse peritoneal macrophages, and this response was regulated at the transcriptional level rather than an increased IL-1Ra mRNA stability. Studies with PDE4-deficient macrophages revealed that the IL-1Ra upregulation elicited by LPS alone is PKA-independent, whereas the rolipram-enhanced response was mediated by inhibition of only PDE4B, one of the three PDE4 isoforms expressed in macrophages, and it requires PKA but not Epac activity. However, both pathways activate CREB to induce IL-1Ra expression. PDE4B ablation also promoted STAT3 phosphorylation (Tyr705) to LPS stimulation, but this STAT3 activation is not entirely responsible for the IL-1Ra upregulation in PDE4B-deficient macrophages. In a model of LPS-induced sepsis, only PDE4B-deficient mice displayed an increased circulating IL-1Ra, suggesting a protective role of PDE4B inactivation in vivo. These findings demonstrate that PDE4B negatively modulates anti-inflammatory cytokine expression in innate immune cells, and selectively targeting PDE4B should retain the therapeutic benefits of nonselective PDE4 inhibitors.
Collapse
|
25
|
Tao Y, Li L, Jiang B, Feng Z, Yang L, Tang J, Chen Q, Zhang J, Tan Q, Feng H, Chen Z, Zhu G. Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. Brain Behav Immun 2016; 58:118-129. [PMID: 27261088 DOI: 10.1016/j.bbi.2016.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022] Open
Abstract
Excessive inflammatory responses are involved in secondary brain injury during germinal matrix hemorrhage (GMH). The process of microglial polarization to the pro-inflammatory M1 or anti-inflammatory M2 phenotypes is considered to occur in a major immunomodulatory manner during brain inflammation. We previously found that cannabinoid receptor-2 (CB2R) stimulation attenuated microglial accumulation and brain injury following experimental GMH. However, whether CB2R has effects on microglial polarization after GMH remains unclear. Herein, we investigated the effects of CB2R stimulation on neuroinflammation after experimental GMH and the potential mechanisms that mediate M1/M2 microglial phenotype regulation. The results indicated that during the GMH acute phase, microglia primarily polarized to the M1 phenotype and induced an overwhelming release of pro-inflammatory cytokines. However, JWH133, a selective CB2R agonist, significantly prevented the pro-inflammatory cytokine release while promoting an M1 to M2 phenotype transformation in microglia, resulting in an increased anti-inflammatory cytokine release. Moreover, in thrombin-induced rat primary microglial cells, JWH133 reduced the pro-inflammatory cytokine levels and M1 phenotype by enhancing the acquisition of the M2 phenotype. Additionally, JWH133 facilitated synthesis of cyclic AMP (cAMP) and its downstream effectors, phosphorylated cAMP-dependent protein kinase (p-PKA) and exchange protein activated by cyclic-AMP 1 (Epac1). The promoting effects of JWH133 on M2 polarization were attenuated with a specific PKA inhibitor but not with an Epac inhibitor, indicating that the cAMP/PKA signaling pathway was involved in the JWH133 effects. This is the first study to propose that promotion of microglial M2 polarization through the cAMP/PKA pathway participates in the CB2R-mediated anti-inflammatory effects after GMH induction. The results will help to further understand the mechanisms that underlie neuroprotection by CB2R in GMH and promote clinical translational research for CB2R agonists.
Collapse
Affiliation(s)
- Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lin Li
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong 637000, China
| | - Bing Jiang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianbo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
26
|
Bianchi L, Del Duca E, Romanelli M, Saraceno R, Chimenti S, Chiricozzi A. Pharmacodynamic assessment of apremilast for the treatment of moderate-to-severe plaque psoriasis. Expert Opin Drug Metab Toxicol 2016; 12:1121-8. [PMID: 27376729 DOI: 10.1080/17425255.2016.1206886] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the population. Certain systemic drugs currently available for its treatment could be associated, in the long term, with organ toxicity and adverse events, thus, clinical monitoring throughout treatment is required. Moreover, tolerability issues, parenteral administration, and barriers to patient access, such as high cost and specialist management lead to treatment failure. AREAS COVERED Apremilast is an oral small molecule inhibitor of phosphodiesterase 4 (PDE4i). PDE is the major enzyme class responsible for the hydrolysis of cyclic adenosine monophosphate in immune cells (cAMP). With PDE4 inhibition, apremilast works intracellularly to modulate pro-inflammatory and anti-inflammatory mediator production critically involved in psoriasis. The aim of this paper is to focus the attention on apremilast pharmacodynamics effects, its efficacy and safety in treating moderate-to-severe plaque psoriasis. EXPERT OPINION Apremilast is an effective and well-tolerated option in treating moderate-to-severe plaque psoriasis. Its safety profile and the oral administration offer significant advantages in prescribing apremilast for the treatment of psoriasis, particularly in some subsets of patients.
Collapse
Affiliation(s)
- Luca Bianchi
- a Department of Systems Medicine, Division of Dermatology , University of Rome Tor Vergata , Rome , Italy
| | - Ester Del Duca
- a Department of Systems Medicine, Division of Dermatology , University of Rome Tor Vergata , Rome , Italy
| | - Marco Romanelli
- b Division of Dermatology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Rosita Saraceno
- a Department of Systems Medicine, Division of Dermatology , University of Rome Tor Vergata , Rome , Italy
| | - Sergio Chimenti
- a Department of Systems Medicine, Division of Dermatology , University of Rome Tor Vergata , Rome , Italy
| | - Andrea Chiricozzi
- b Division of Dermatology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
27
|
Zhang T, Gong X, Hu G, Wang X. EP2-PKA signaling is suppressed by triptolide in lipopolysaccharide-induced microglia activation. J Neuroinflammation 2015; 12:50. [PMID: 25880276 PMCID: PMC4364339 DOI: 10.1186/s12974-015-0275-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Microglia are key players for the inflammatory responses in the central nervous system. Suppression of microglial activation and the resulting production of proinflammatory molecules are considered a promising strategy to alleviate the progression of neurodegenerative disorders. Triptolide was demonstrated as a potent anti-inflammatory compound both in vitro and in vivo. The present study explored potential signal pathways of triptolide in the lipopolysaccharide (LPS)-induced inflammatory response using primary rat microglial cells. FINDINGS Microglial cells were pretreated with triptolide and stimulated with LPS. To investigate the anti-inflammatory effect of triptolide, we used Griess reagent and Western blot for NO release and iNOS expression, respectively. Moreover, we applied microglia-conditioned medium to neuronal cells and used the MTS assay to test cell viability. We found that triptolide inhibited LPS-induced NO and iNOS synthesis in microglial cells, which in turn protected neurons. To evaluate the involvement of the EP2 pathway, we used real-time PCR and Western blot to determine EP2 expression. We found that LPS induced a large increase in EP2 expression in microglia, and triptolide almost completely inhibited LPS-induced EP2 expression. Using the selective EP2 agonist butaprost and the EP2 antagonist AH6809, we determined that triptolide inhibited LPS-stimulated NO production in microglia mainly through the EP2 pathway. Additionally, by further treating triptolide-treated microglia with the downstream PKA-specific activator 6-Bnz-cAMP or the Epac-specific activator 8-pCPT-2-O-Me-cAMP, we found that 6-Bnz-cAMP but not 8-pCPT-2-O-Me-cAMP increased NO production in triptolide-LPS treated microglia. These results indicate that the EP2-PKA pathway is very important for triptolide's effects. CONCLUSIONS Triptolide inhibits LPS-stimulated NO production in microglia via a signaling mechanism involving EP2 and PKA. This finding may help establish the pharmacological function of triptolide in neurodegenerative disorders. Moreover, the observation of inflammatory EP2 signaling in primary microglia provides important evidence that EP2 regulates innate immunity in the central nervous system.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurobiology, Capital Medical University, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorder, Ministry of Education, No. 10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| | - Xiaoli Gong
- Department of Physiology, Capital Medical University, No. 10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| | - Guanzheng Hu
- Department of Neurobiology, Capital Medical University, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorder, Ministry of Education, No. 10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| | - Xiaomin Wang
- Department of Neurobiology, Capital Medical University, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorder, Ministry of Education, No. 10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
28
|
Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 2014; 40:315-27. [PMID: 24656045 PMCID: PMC4004957 DOI: 10.1016/j.immuni.2014.02.009] [Citation(s) in RCA: 611] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/27/2014] [Indexed: 12/20/2022]
Abstract
Inflammatory responses, like all biological cascades, are shaped by a delicate balance between positive and negative feedback loops. It is now clear that in addition to positive and negative checkpoints, the inflammatory cascade rather unexpectedly boasts an additional checkpoint, a family of chemicals that actively promote resolution and tissue repair without compromising host defense. Indeed, the resolution phase of inflammation is just as actively orchestrated and carefully choreographed as its induction and inhibition. In this review, we explore the immunological consequences of omega-3-derived specialized proresolving mediators (SPMs) and discuss their place within what is currently understood of the role of the arachidonic acid-derived prostaglandins, lipoxins, and their natural C15-epimers. We propose that treatment of inflammation should not be restricted to the use of inhibitors of the acute cascade (antagonism) but broadened to take account of the enormous therapeutic potential of inducers (agonists) of the resolution phase of inflammation.
Collapse
Affiliation(s)
- Christopher D Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, Queen Elizabeth Hospital, Birmingham B15 2WD, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Hartopo AB, Emoto N, Vignon-Zellweger N, Suzuki Y, Yagi K, Nakayama K, Hirata KI. Endothelin-converting enzyme-1 gene ablation attenuates pulmonary fibrosis via CGRP-cAMP/EPAC1 pathway. Am J Respir Cell Mol Biol 2013; 48:465-76. [PMID: 23306833 DOI: 10.1165/rcmb.2012-0354oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelin-1 (ET-1) has been shown to be involved in human pulmonary fibrosis. However, recent clinical trials targeting the ET-1 pathway with ET-1 receptor antagonists failed to achieve beneficial outcomes. Another strategy opposing the actions of ET-1 involves the inhibition of endothelin-converting enzyme-1 (ECE-1). We hypothesize that ECE-1 inhibition exerts beneficial effects on pulmonary fibrosis. Pulmonary fibrosis was induced by instilling bleomycin intratracheally into ECE-1 heterozygous knockout mice (ECE-1(+/-)) and their wild-type control mice (ECE-1(+/+)). Lung inflammation and fibrosis were assessed on Days 7, 14, and 28 after bleomycin instillation. The activity of ECE-1 and the concentrations of its related peptides, ET-1, bradykinin, atrial natriuretic peptide (ANP), and calcitonin gene-related peptide (CGRP), were determined. ECE-1(+/-) mice demonstrated less lung inflammation and limited fibrosis compared with control mice. ECE-1 activity was half-reduced in ECE-1(+/-) mice, and this activity also altered ET-1 and CGRP concentrations, but not concentrations of bradykinin and ANP. ET-1 concentrations were found to be lower in ECE-1(+/-) mice after the development of fibrosis, in contrast to the unaltered concentrations during inflammation. Reduced ECE-1 activity resulted in higher CGRP concentrations, which altered the pathological functionality of the lung, indicating the activation of the CGRP pathway involving cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP and cAMP/protein kinase A in ECE-1(+/-) mice. Bleomycin instillation on Day 14 induced the accumulation of M2 macrophages expressing CGRP receptors in ECE-1(+/-) mice. Our results emphasize that the in vivo ECE-1-mediated degradation of CGRP promotes the transition from lung inflammation to fibrosis. Further, our study identified M2 macrophages as the target cells of CGRP action during this transition.
Collapse
Affiliation(s)
- Anggoro Budi Hartopo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Quan Y, Jiang J, Dingledine R. EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 2013; 288:9293-302. [PMID: 23404506 DOI: 10.1074/jbc.m113.455816] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.
Collapse
Affiliation(s)
- Yi Quan
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
31
|
Dekkers BGJ, Racké K, Schmidt M. Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther 2012; 137:248-65. [PMID: 23089371 DOI: 10.1016/j.pharmthera.2012.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibroblasts, substantially contribute to disease features by the release of inflammatory mediators, smooth muscle contraction, extracellular matrix deposition and structural changes in the airways. Current pharmacological treatment of both diseases intends to target the dynamic features of the endogenous intracellular suppressor cyclic AMP (cAMP). This review will summarize our current knowledge on cAMP and will emphasize on key discoveries and paradigm shifts reflecting the complex spatio-temporal nature of compartmentalized cAMP signalling networks in health and disease. As airway fibroblasts and airway smooth muscle cells are recognized as central players in the development and progression of asthma and COPD, we will focus on the role of cAMP signalling in their function in relation to airway function and plasticity. We will recapture on the recent identification of cAMP-sensing multi-protein complexes maintained by cAMP effectors, including A-kinase anchoring proteins (AKAPs), proteins kinase A (PKA), exchange protein directly activated by cAMP (Epac), cAMP-elevating seven-transmembrane (7TM) receptors and phosphodiesterases (PDEs) and we will report on findings indicating that the pertubation of compartmentalized cAMP signalling correlates with the pathopysiology of obstructive lung diseases. Future challenges include studies on cAMP dynamics and compartmentalization in the lung and the development of novel drugs targeting these systems for therapeutic interventions in chronic obstructive inflammatory diseases.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Center of Pharmacy, University of Groningen, The Netherlands.
| | | | | |
Collapse
|
32
|
Li J, Lin KW, Murray F, Nakajima T, Zhao Y, Perkins DL, Finn PW. Regulation of cytotoxic T lymphocyte antigen 4 by cyclic AMP. Am J Respir Cell Mol Biol 2012; 48:63-70. [PMID: 23024062 DOI: 10.1165/rcmb.2012-0155oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recent studies indicate that cyclic AMP (cAMP) induces cytotoxic T lymphocyte antigen (CTLA) 4. CTLA4 is expressed in T cells, and is a negative regulator of T cell activation. CTLA4 expression is regulated by T cell receptor plus CD28 (adaptive immune signaling) at both the transcriptional and post-transcriptional level. Here, we examine the pathways by which cAMP regulates CTLA4 expression, focusing on transcriptional activation. Elevating intracellular cAMP levels by cell-permeable cAMP analogs, the adenylyl cyclase activator, forskolin, or phosphodiesterase inhibitors increases CTLA4 mRNA expression in EL4 murine T cells and primary CD4(+) T cells. Activation of protein kinase A (using the protein kinase A-selective agonist, N6-phenyladenosine-cAMP), but not exchange proteins activated by cAMP (using the exchange proteins activated by cAMP-selective 8-pCPT-2Me-cAMP), increases CTLA4 promoter activity. Mutation constructs of the CTLA4 promoter uncover an enhancer binding site located within the -150 to -130 bp region relative to the transcription start site. Promoter analysis and chromatin immunoprecipitation assays suggest that cAMP response element-binding is a putative transcription factor induced by cAMP. We have previously shown that CTLA4 mediates decreased pulmonary inflammation in an LPS-induced murine model of acute lung injury (ALI). We observed that LPS can induce CTLA4 transcription via the same cAMP-inducible promoter region. The immunosuppressant, rapamycin, decreases cAMP and LPS-induced CTLA4 transcription in vitro. In vivo, LPS induces cAMP accumulation in bronchoalveolar lavage fluid, bronchoalveolar lavage cells, and lung tissues in ALI. We demonstrate that rapamycin decreases cAMP accumulation and CTLA4 expression in ALI. Together, these data suggest that cAMP may negatively regulate pulmonary inflammatory responses in vivo and in vitro by altering CTLA4 expression.
Collapse
Affiliation(s)
- Jinghong Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediators Inflamm 2012; 2012:327568. [PMID: 23024463 PMCID: PMC3449139 DOI: 10.1155/2012/327568] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/19/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
The local and systemic production of prostaglandin E2 (PGE2) and its actions in phagocytes lead to immunosuppressive conditions. PGE2 is produced at high levels during inflammation, and its suppressive effects are caused by the ligation of the E prostanoid receptors EP2 and EP4, which results in the production of cyclic AMP. However, PGE2 also exhibits immunostimulatory properties due to binding to EP3, which results in decreased cAMP levels. The various guanine nucleotide-binding proteins (G proteins) that are coupled to the different EP receptors account for the pleiotropic roles of PGE2 in different disease states. Here, we discuss the production of PGE2 and the actions of this prostanoid in phagocytes from different tissues, the relative contribution of PGE2 to the modulation of innate immune responses, and the novel therapeutic opportunities that can be used to control inflammatory responses.
Collapse
|
34
|
McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators Inflamm 2012; 2012:236345. [PMID: 22665949 PMCID: PMC3362132 DOI: 10.1155/2012/236345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/12/2012] [Indexed: 12/20/2022] Open
Abstract
Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.
Collapse
Affiliation(s)
- Mary K. McCarthy
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason B. Weinberg
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Shirshev SV. Role of Epac proteins in mechanisms of cAMP-dependent immunoregulation. BIOCHEMISTRY (MOSCOW) 2012; 76:981-98. [PMID: 22082266 DOI: 10.1134/s000629791109001x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents observations on the role of Epac proteins (exchange protein directly activated by cAMP) in immunoregulation mechanisms. Signaling pathways that involve Epac proteins and their domain organization and functions are considered. The role of Epac1 protein expressed in the immune system cells is especially emphasized. Molecular mechanisms of the cAMP-dependent signal via Epac1 are analyzed in monocytes/macrophages, T-cells, and B-lymphocytes. The role of Epac1 is shown in the regulation of adhesion, leukocyte chemotaxis, as well as in phagocytosis and bacterial killing. The molecular cascade initiated by Epac1 is examined under conditions of antigen activation of T-cells and immature B-lymphocytes.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia.
| |
Collapse
|
36
|
Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. Cell Signal 2011; 23:1257-66. [DOI: 10.1016/j.cellsig.2011.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 12/14/2022]
|
37
|
Oliveira CJF, Sá-Nunes A, Francischetti IMB, Carregaro V, Anatriello E, Silva JS, Santos IKFDM, Ribeiro JMC, Ferreira BR. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem 2011; 286:10960-9. [PMID: 21270122 DOI: 10.1074/jbc.m110.205047] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-α while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of ∼110 pmol/μl) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) ∼100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Collapse
Affiliation(s)
- Carlo José F Oliveira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim SH, Serezani CH, Okunishi K, Zaslona Z, Aronoff DM, Peters-Golden M. Distinct protein kinase A anchoring proteins direct prostaglandin E2 modulation of Toll-like receptor signaling in alveolar macrophages. J Biol Chem 2011; 286:8875-83. [PMID: 21247892 DOI: 10.1074/jbc.m110.187815] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) direct a proinflammatory program in macrophages. One mediator whose generation is induced by TLR ligation is prostaglandin E(2) (PGE(2)), which is well known to increase intracellular cAMP upon G protein-coupled receptor ligation. How PGE(2)/cAMP shapes the nascent TLR response and the mechanisms by which it acts remain poorly understood. Here we explored PGE(2)/cAMP regulation of NO production in primary rat alveolar macrophages stimulated with the TLR4 ligand LPS. Endogenous PGE(2) synthesis accounted for nearly half of the increment in NO production in response to LPS. The enhancing effect of PGE(2) on LPS-stimulated NO was mediated via cAMP, generated mainly upon ligation of the E prostanoid 2 receptor and acting via protein kinase A (PKA) rather than via the exchange protein activated by cAMP. Isoenzyme-selective cAMP agonists and peptide disruptors of protein kinase A anchoring proteins (AKAPs) implicated PKA regulatory subunit type I (RI) interacting with an AKAP in this process. Gene knockdown of potential RI-interacting AKAPs expressed in alveolar macrophages revealed that AKAP10 was required for PGE(2) potentiation of LPS-induced NO synthesis. AKAP10 also mediated PGE(2) potentiation of the expression of cytokines IL-10 and IL-6, whereas PGE(2) suppression of TNF-α was mediated by AKAP8-anchored PKA-RII. Our data illustrate the pleiotropic manner in which G protein-coupled receptor-derived cAMP signaling can influence TLR responses in primary macrophages and suggest that AKAP10 may coordinate increases in gene expression.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
39
|
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 2010; 50:35-51. [PMID: 20655950 DOI: 10.1016/j.plipres.2010.07.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 01/02/2023]
Abstract
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).
Collapse
Affiliation(s)
- Melanie J Stables
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| | | |
Collapse
|
40
|
Avni D, Philosoph A, Meijler MM, Zor T. The ceramide-1-phosphate analogue PCERA-1 modulates tumour necrosis factor-alpha and interleukin-10 production in macrophages via the cAMP-PKA-CREB pathway in a GTP-dependent manner. Immunology 2010; 129:375-85. [PMID: 19922425 PMCID: PMC2826682 DOI: 10.1111/j.1365-2567.2009.03188.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 08/26/2009] [Accepted: 09/21/2009] [Indexed: 12/31/2022] Open
Abstract
The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry, Life Sciences Institute, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
41
|
Abstract
cAMP is a second messenger that is essential for relaying hormonal responses in many biological processes. The discovery of the cAMP target Epac explained various effects of cAMP that could not be attributed to the established targets PKA and cyclic nucleotide-gated ion channels. Epac1 and Epac2 function as guanine nucleotide exchange factors for the small G protein Rap. cAMP analogs that selectively activate Epac have helped to reveal a role for Epac in processes ranging from insulin secretion to cardiac contraction and vascular permeability. Advances in the understanding of the activation mechanism of Epac and its regulation by diverse anchoring mechanisms have helped to elucidate the means by which cAMP fulfills these functions via Epac.
Collapse
Affiliation(s)
- Martijn Gloerich
- Department of Physiological Chemistry, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
42
|
Grandoch M, Roscioni SS, Schmidt M. The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol 2009; 159:265-84. [PMID: 19912228 DOI: 10.1111/j.1476-5381.2009.00458.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic degenerative inflammatory diseases, such as chronic obstructive pulmonary disease and Alzheimer's dementia, afflict millions of people around the world, causing death and debilitation. Despite the global impact of these diseases, there have been few innovative breakthroughs into their cause, treatment or cure. As with many debilitating disorders, chronic degenerative inflammatory diseases may be associated with defective or dysfunctional responses to second messengers, such as cyclic adenosinemonophosphate (cAMP). The identification of the cAMP-activated guanine nucleotide exchange factors for Ras-like GTPases, Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II), profoundly altered the prevailing assumptions concerning cAMP signalling, which until then had been solely associated with protein kinase A (PKA). Studies of the molecular mechanisms of Epac-related signalling have demonstrated that these novel cAMP sensors regulate many physiological processes either alone and/or in concert with PKA. These include calcium handling, cardiac and smooth muscle contraction, learning and memory, cell proliferation and differentiation, apoptosis, and inflammation. The diverse signalling properties of cAMP might be explained by spatio-temporal compartmentalization, as well as A-kinase anchoring proteins, which seem to coordinate Epac signalling networks. Future research should focus on the Epac-regulated dynamics of cAMP, and, hopefully, the development of compounds that specifically interfere with the Epac signalling system in order to determine the precise significance of Epac proteins in chronic degenerative inflammatory disorders.
Collapse
Affiliation(s)
- Maria Grandoch
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | | | | |
Collapse
|
43
|
Fraser DA, Laust AK, Nelson EL, Tenner AJ. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:6175-85. [PMID: 19864605 DOI: 10.4049/jimmunol.0902232] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
C1q, the first component of the classical complement pathway, is also a pattern recognition receptor involved in the recognition and clearance of apoptotic cells. C1q deficiency in humans leads to development of lupus-like autoimmune disease, and it has been speculated that impaired clearance of apoptotic cells may contribute to disease development. Since phagocytes initiate specific and appropriate immune responses as a result of initial ligand-receptor interactions, regulation of gene expression by C1q may also contribute to the sculpting of an immune response to the ingested "self-Ags." In this study, the role of C1q in apoptotic cell clearance and subsequent modulation of cytokine release by phagocytes was assessed including donor matched human monocytes, monocyte-derived macrophages (HMDMs), and dendritic cells (DCs). First, C1q binding is much greater to late compared with early apoptotic cells. Second, C1q binding to apoptotic cells significantly enhanced the levels of ingestion by monocytes but had no effect on HMDM and DC uptake. Third, in the presence of serum, C1q bound to apoptotic cells, activated the complement pathway, leading to C3b deposition, and enhancement of uptake of apoptotic cells by monocytes, HMDMs, and DCs. Finally, although C1q, either immobilized on a plate or bound to apoptotic cells, modulates the LPS-induced cytokine levels released by human monocytes, HMDMs, and DCs toward a more limited immune response, both the degree and direction of modulation differed significantly depending on the differentiation state of the phagocyte, providing further evidence of the integration of these cell- and environment-specific signals in determining appropriate immune responses.
Collapse
Affiliation(s)
- Deborah A Fraser
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
44
|
Métrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc'h F. Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflugers Arch 2009; 459:535-46. [PMID: 19855995 DOI: 10.1007/s00424-009-0747-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 12/24/2022]
Abstract
Exchange proteins directly activated by cyclic AMP (Epac) were discovered 10 years ago as new sensors for the second messenger cyclic AMP (cAMP). Epac family, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2 and function independently of protein kinase A. Given the importance of cAMP in the cardiovascular system, numerous molecular and cellular studies using specific Epac agonists have analyzed the role and the regulation of Epac proteins in cardiovascular physiology and pathophysiology. The specific functions of Epac proteins may depend upon their microcellular environments as well as their expression and localization. This review discusses recent data showing the involvement of Epac in vascular cell migration, endothelial permeability, and inflammation through specific signaling pathways. In addition, we present evidence that Epac regulates the activity of various cellular compartments of the cardiac myocyte and influences calcium handling and excitation-contraction coupling. The potential role of Epac in cardiovascular disorders such as cardiac hypertrophy and remodeling is also discussed.
Collapse
Affiliation(s)
- Mélanie Métrich
- Inserm, UMR-S 769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry 92296, France
| | | | | | | | | | | |
Collapse
|
45
|
Aronoff DM, Lewis C, Serezani CH, Eaton KA, Goel D, Phipps JC, Peters-Golden M, Mancuso P. E-prostanoid 3 receptor deletion improves pulmonary host defense and protects mice from death in severe Streptococcus pneumoniae infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:2642-9. [PMID: 19635910 DOI: 10.4049/jimmunol.0900129] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostaglandins (PGs) are potent lipid mediators that are produced during infections and whose synthesis and signaling networks present potential pharmacologic targets for immunomodulation. PGE(2) acts through the ligation of four distinct G protein-coupled receptors, E-prostanoid (EP) 1-4. Previous in vitro and in vivo studies demonstrated that the activation of the G(alphas)-coupled EP2 and EP4 receptors suppresses inflammatory responses to microbial pathogens through cAMP-dependent signaling cascades. Although it is speculated that PGE(2) signaling via the G(alphai)-coupled EP3 receptor might counteract EP2/EP4 immunosuppression in the context of bacterial infection (or severe inflammation), this has not previously been tested in vivo. To address this, we infected wild-type (EP3(+/+)) and EP3(-/-) mice with the important respiratory pathogen Streptococcus pneumoniae or injected mice i.p. with LPS. Unexpectedly, we observed that EP3(-/-) mice were protected from mortality after infection or LPS. The enhanced survival observed in the infected EP3(-/-) mice correlated with enhanced pulmonary clearance of bacteria; reduced accumulation of lung neutrophils; lower numbers of circulating blood leukocytes; and an impaired febrile response to infection. In vitro studies revealed improved alveolar macrophage phagocytic and bactericidal capacities in EP3(-/-) cells that were associated with an increased capacity to generate NO in response to immune stimulation. Our studies underscore the complex nature of PGE(2) immunomodulation in the context of host-microbial interactions in the lung. Pharmacological targeting of the PGE(2)-EP3 axis represents a novel area warranting greater investigative interest in the prevention and/or treatment of infectious diseases.
Collapse
Affiliation(s)
- David M Aronoff
- Divisions of Infectious Diseases,University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wall EA, Zavzavadjian JR, Chang MS, Randhawa B, Zhu X, Hsueh RC, Liu J, Driver A, Bao XR, Sternweis PC, Simon MI, Fraser IDC. Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal 2009; 2:ra28. [PMID: 19531803 DOI: 10.1126/scisignal.2000202] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The activation of macrophages through Toll-like receptor (TLR) pathways leads to the production of a broad array of cytokines and mediators that coordinate the immune response. The inflammatory potential of this response can be reduced by compounds, such as prostaglandin E(2), that induce the production of cyclic adenosine monophosphate (cAMP). Through experiments with cAMP analogs and multigene RNA interference (RNAi), we showed that key anti-inflammatory effects of cAMP were mediated specifically by cAMP-dependent protein kinase (PKA). Selective inhibitors of PKA anchoring, time-lapse microscopy, and RNAi screening suggested that differential mechanisms of PKA action existed. We showed a specific role for A kinase-anchoring protein 95 in suppressing the expression of the gene encoding tumor necrosis factor-alpha, which involved phosphorylation of p105 (also known as Nfkb1) by PKA at a site adjacent to the region targeted by inhibitor of nuclear factor kappaB kinases. These data suggest that crosstalk between the TLR4 and cAMP pathways in macrophages can be coordinated through PKA-dependent scaffolds that localize specific pools of the kinase to distinct substrates.
Collapse
Affiliation(s)
- Estelle A Wall
- Alliance for Cellular Signaling, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Peters-Golden M. Putting on the brakes: cyclic AMP as a multipronged controller of macrophage function. Sci Signal 2009; 2:pe37. [PMID: 19531801 DOI: 10.1126/scisignal.275pe37] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Macrophages orchestrate innate immune responses in tissues by activating various proinflammatory signaling programs. A key mechanism for preventing inflammatory disease states that result from excessive activation of such programs is the generation of the second messenger cyclic adenosine monophosphate (cAMP) by ligation of certain guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). The pleiotropic actions of this cyclic nucleotide on various inflammatory functions of macrophages are mediated by diverse molecular mechanisms, including the assembly of distinct multiprotein complexes. A better understanding of crosstalk between cAMP signaling and proinflammatory pathways in macrophages may provide a basis for improved immunomodulatory strategies.
Collapse
Affiliation(s)
- Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5642, USA.
| |
Collapse
|
48
|
Goldsmith M, Avni D, Ernst O, Glucksam Y, Levy-Rimler G, Meijler MM, Zor T. Synergistic IL-10 induction by LPS and the ceramide-1-phosphate analog PCERA-1 is mediated by the cAMP and p38 MAP kinase pathways. Mol Immunol 2009; 46:1979-87. [PMID: 19362373 DOI: 10.1016/j.molimm.2009.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/08/2009] [Accepted: 03/14/2009] [Indexed: 01/13/2023]
Abstract
Expression of the anti-inflammatory cytokine IL-10 can be induced either by TLR agonists such as lipopolysaccharide (LPS), or by various endogenous stimuli, in particular those acting via a cAMP-dependent signaling pathway. We have previously reported that the synthetic phospho-ceramide analogue-1 (PCERA-1) increases cAMP level and subsequently down-regulates production of TNFalpha and up-regulates production of IL-10 in LPS-stimulated macrophages. The objective of this study was to determine the mechanism of activity of PCERA-1 and the role of cAMP in LPS-induced IL-10 production. We show here that PCERA-1 induces IL-10 production in synergism with various TLR agonists in mouse RAW264.7 macrophages. Cooperativity is evident both at the mRNA and protein levels. IL-10 production by LPS and PCERA-1 is mediated by the cAMP pathway and by the p38 MAP kinase. Phosphorylation of p38 is cooperatively accomplished by LPS and PCERA-1 or other cAMP inducers. Furthermore, the activity of PCERA-1 can be partially mimicked by a cell-permeable analog of cAMP, and blocked by the protein kinase A (PKA) inhibitor H89. Finally, in the absence of PCERA-1, the residual IL-10 induction by LPS depends on the basal cAMP level as it can be largely elevated by the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results thus indicate that IL-10 induction by LPS critically depends on basal cAMP level, and that a co-stimulus by a TLR agonist and a cAMP-elevating agent results in synergistic PKA-dependent and p38-dependent IL-10 production.
Collapse
Affiliation(s)
- Meir Goldsmith
- Department of Biochemistry, Life Sciences Institute, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
49
|
Ansteinsson VE, Samuelsen JT, Dahl JE. Filler particles used in dental biomaterials induce production and release of inflammatory mediatorsin vitro. J Biomed Mater Res B Appl Biomater 2009; 89:86-92. [DOI: 10.1002/jbm.b.31190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Kojima F, Kapoor M, Kawai S, Yang L, Aronoff DM, Crofford LJ. Prostaglandin E2 activates Rap1 via EP2/EP4 receptors and cAMP-signaling in rheumatoid synovial fibroblasts: involvement of Epac1 and PKA. Prostaglandins Other Lipid Mediat 2009; 89:26-33. [PMID: 19464664 DOI: 10.1016/j.prostaglandins.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/02/2009] [Accepted: 03/14/2009] [Indexed: 10/21/2022]
Abstract
The small GTPase Rap1 is implicated in a variety of cellar functions. In this study, we investigated the effect of prostaglandin E(2) (PGE(2)) on Rap1 activation in rheumatoid synovial fibroblasts (RSF). Rap1 was expressed in RSF, and GTP-bound active Rap1 (GTP-Rap1) was rapidly increased by PGE(2). The effect of PGE(2) was mimicked by an EP2 receptor agonist, an EP4 agonist and a cAMP-elevating agent forskolin with association to the increase of cAMP, but not by an EP1 or an EP3 agonist. RSF expressed the downstream signaling partners of cAMP, exchange protein directly activated by cAMP (Epac1) and protein kinase A (PKA). Both 8-pCPT-2-O-Me-cAMP (an Epac-specific cAMP analog) and 6-Bnz-cAMP (a PKA-specific cAMP analog) activated Rap1 in RSF. Activation of Rap1 by PGE(2) via cAMP-signaling may play an important role in the articular pathology of rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Fumiaki Kojima
- Division of Rheumatology, Department of Internal Medicine, University of Kentucky, Kentucky Clinic, Lexington, KY 40536-0284, USA
| | | | | | | | | | | |
Collapse
|