1
|
Schusterova P, Mudronova D, Penazziova KL, Hajduckova V, Csank T. Limosilactobacillus reuteri L26 Biocenol TM and its exopolysaccharide: Their influence on rotavirus-induced immune molecules in enterocyte-like cells. VET MED-CZECH 2024; 69:169-176. [PMID: 38841132 PMCID: PMC11148706 DOI: 10.17221/106/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
This study aimed to evaluate the immunomodulatory effect of the probiotic Limosilactobacillus reuteri L26 BiocenolTM (L26) and its purified exopolysaccharide (EPS) with respect to antiviral innate immune response. In our experiment, we used porcine epithelial IPEC-J2 cells as a model of the intestinal barrier in a homologous infection by porcine Rotavirus A strain OSU6 (RVA). The production of selected molecules of non-specific humoral immunity was evaluated at the mRNA level. The EPS alone significantly increased the level of interferon λ3 (IFN-λ3) mRNA in the non-infected IPEC-J2 cells (P < 0.001). We also tested whether the treatment of IPEC-J2 cells by L26 or EPS influences the replication of RVA by virus titration and real-time PCR. We found that a pre-treatment in combination with subsequent continuous stimulation has no influence on the RVA replication. However, both treatments significantly decreased the RVA-induced production of IFN-λ3 (P < 0.05) and the "SOS" cytokine interleukin 6 (IL-6; P < 0.01), already at the transcription level. In addition, the EPS treatment resulted in significantly increased IL-10 mRNA in the RVA-infected cells. In summary, we assume an immunoregulatory potential of L. reuteri L26 BiocenolTM and its EPS in the local intestinal antiviral immune response.
Collapse
Affiliation(s)
- Petra Schusterova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Katarina Loziakova Penazziova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Tomas Csank
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| |
Collapse
|
2
|
Wang Y, Yu B, Luo Y, Zheng P, Mao X, Huang Z, Yu J, Luo J, Yan H, Wu A, He J. Interferon-λ3 alleviates intestinal epithelium injury induced by porcine rotavirus in mice. Int J Biol Macromol 2023; 240:124431. [PMID: 37060970 DOI: 10.1016/j.ijbiomac.2023.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/15/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Interferons are a group of glycoproteins that are expressed in various cell types in their inflammatory responses to infections. In this study, we explored the protective effects of porcine interferon-λ3 (PIFN-λ3) on intestinal inflammation and injury in mice induced by porcine rotavirus (PRV). BALB/c mice were administrated by PIFN-λ3 or phosphate buffer solution (PBS) for three days prior to PRV infection. We show that PRV infection caused acute inflammatory responses in mice, as indicated by increases in serum concentrations of inflammatory cytokines such as the interlukin-1β (IL-1β), interlukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) (P < 0.05). However, PIFN-λ3 administration not only decreased their concentrations but also elevated the concentrations of immunoglobulin (Ig) M and IgG in the PRV challenged mice (P < 0.05). PRV infection significantly decreased the jejunal villus height and the ratio of villus height to crypt depth (V/C); however, PIFN-λ3 treatment significantly elevated the villus height and the abundance of tight junction protein ZO-1 in the jejunum (P < 0.05). Moreover, PIFN-λ3 decreased the replication of PRV in the jejunal epithelium, but significantly increased the abundance of sIgA and the activities of maltase and sucrase in the PRV-challenged mice (P < 0.05). Interestingly, PIFN-λ3 elevated the expression levels of sodium/glucose cotransporter 1 (SGLT1) and mucin 2 (MUC2) in the PRV-challenged mice (P < 0.05). Moreover, PIFN-λ3 significantly increased the expression levels of IL-10, signal transducer and activator of transcription 1 (STAT1), and critical interferon-stimulated genes such as the 2'-5' oligoadenylate synthetase-like 1 (OASL1), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and radical S-adenosyl methionine domain containing 2 (RSAD2) in the jejunum upon PRV infection (P < 0.05). The anti-virus and anti-inflammatory effect of PIFN-λ3 should make it an attractive candidate to prevent various pathogen-induced bowel diseases.
Collapse
Affiliation(s)
- Yuhan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China.
| |
Collapse
|
3
|
Different Mechanisms Are Utilized by Coronavirus Transmissible Gastroenteritis Virus To Regulate Interferon Lambda 1 and Interferon Lambda 3 Production. J Virol 2022; 96:e0138822. [PMID: 36448799 PMCID: PMC9769389 DOI: 10.1128/jvi.01388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.
Collapse
|
4
|
Chemokines induced by PEDV infection and chemotactic effects on monocyte, T and B cells. Vet Microbiol 2022; 275:109599. [DOI: 10.1016/j.vetmic.2022.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
5
|
Haley PJ. From bats to pangolins: new insights into species differences in the structure and function of the immune system. Innate Immun 2022; 28:107-121. [PMID: 35506564 PMCID: PMC9136466 DOI: 10.1177/17534259221093120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Species differences in the structure and function of the immune system of laboratory animals are known to exist and have been reviewed extensively. However, the number and diversity of wild and exotic species, along with their associated viruses, that come into contact with humans has increased worldwide sometimes with lethal consequences. Far less is known about the immunobiology of these exotic and wild species. Data suggest that species differences of the mechanisms of inflammation, innate immunity and adaptive immunity are all involved in the establishment and maintenance of viral infections across reservoir hosts. The current review attempts to collect relevant data concerning the basics of innate and adaptive immune functions of exotic and wild species followed by identification of those differences that may play a role in the maintenance of viral infections in reservoir hosts.
Collapse
Affiliation(s)
- Patrick J. Haley
- Haley Tox/Path Consulting LLC, 104 Cypress Springs Way, 78633, Georgetown Texas, United States
| |
Collapse
|
6
|
Razzuoli E, Armando F, De Paolis L, Ciurkiewicz M, Amadori M. The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. Pathogens 2022; 11:175. [PMID: 35215119 PMCID: PMC8875149 DOI: 10.3390/pathogens11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of cytokines that play a pivotal role in orchestrating the innate immune response during viral infections, thus representing the first line of defense in the host. After binding to their respective receptors, they are able to elicit a plethora of biological activities, by initiating signaling cascades which lead to the transcription of genes involved in antiviral, anti-inflammatory, immunomodulatory and antitumoral effector mechanisms. In hindsight, it is not surprising that viruses have evolved multiple IFN escape strategies toward efficient replication in the host. Hence, in order to achieve insight into preventive and treatment strategies, it is essential to explore the mechanisms underlying the IFN response to viral infections and the constraints thereof. Accordingly, this review is focused on three RNA and three DNA viruses of major importance in the swine farming sector, aiming to provide essential data as to how the IFN system modulates the antiviral immune response, and is affected by diverse, virus-driven, immune escape mechanisms.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Massimo Amadori
- National Network of Veterinary Immunology (RNIV), Via Istria 3, 25125 Brescia, Italy;
| |
Collapse
|
7
|
Yin Y, Romero N, Favoreel HW. Pseudorabies Virus Inhibits Type I and Type III Interferon-Induced Signaling via Proteasomal Degradation of Janus Kinases. J Virol 2021; 95:e0079321. [PMID: 34379505 PMCID: PMC8475505 DOI: 10.1128/jvi.00793-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Both type I and III interferons (IFNs) play a crucial role in host antiviral response by activating the JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway to trigger the expression of antiviral IFN-stimulated genes (ISGs). We report that the porcine alphaherpesvirus pseudorabies virus (PRV) triggers proteasomal degradation of the key Janus kinases Jak1 and to a lesser extent Tyk2, thereby inhibiting both type I and III IFN-induced STAT1 phosphorylation and suppressing IFN-induced expression of ISGs. UV-inactivated PRV did not interfere with IFN signaling. In addition, deletion of the EP0 gene from the PRV genome or inhibition of viral genome replication did not affect PRV-induced inhibition of IFN signaling. To our knowledge, this is the first report describing Janus kinase degradation by alphaherpesviruses. These findings thus reveal a novel alphaherpesvirus evasion mechanism of type I and type III IFNs. IMPORTANCE Type I and III interferons (IFNs) trigger signaling via Janus kinases that phosphorylate and activate signal transducer and activator of transcription (STAT) transcription factors, leading to the expression of antiviral interferon-stimulated genes (ISGs) that result in an antiviral state of host cells. Viruses have evolved various mechanisms to evade this response. Our results indicate that an alphaherpesvirus, the porcine pseudorabies virus (PRV), inhibits both type I and III IFN signaling pathways by triggering proteasome-dependent degradation of the key Janus kinases Jak1 and Tyk2 and consequent inhibition of STAT1 phosphorylation and suppression of ISG expression. Moreover, we found that this inhibition is not caused by incoming virions and does not depend on expression of the viral EP0 protein or viral true late proteins. These data for the first time address alphaherpesvirus evasion of type III IFN-mediated signaling and reveal a previously uncharacterized alphaherpesvirus mechanism of IFN evasion via proteasomal degradation of Janus kinases.
Collapse
Affiliation(s)
- Yue Yin
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Nicolás Romero
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Lopez L, Sang PC, Tian Y, Sang Y. Dysregulated Interferon Response Underlying Severe COVID-19. Viruses 2020; 12:E1433. [PMID: 33322160 PMCID: PMC7764122 DOI: 10.3390/v12121433] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Innate immune interferons (IFNs), including type I and III IFNs, constitute critical antiviral mechanisms. Recent studies reveal that IFN dysregulation is key to determine COVID-19 pathogenesis. Effective IFN stimulation or prophylactic administration of IFNs at the early stage prior to severe COVID-19 may elicit an autonomous antiviral state, restrict the virus infection, and prevent COVID-19 progression. Inborn genetic flaws and autoreactive antibodies that block IFN response have been significantly associated with about 14% of patients with life-threatening COVID-19 pneumonia. In most severe COVID-19 patients without genetic errors in IFN-relevant gene loci, IFN dysregulation is progressively worsened and associated with the situation of pro-inflammation and immunopathy, which is prone to autoimmunity. In addition, the high correlation of severe COVID-19 with seniority, males, and individuals with pre-existing comorbidities will be plausibly explained by the coincidence of IFN aberrance in these situations. Collectively, current studies call for a better understanding of the IFN response regarding the spatiotemporal determination and subtype-specificity against SARS-CoV-2 infections, which are warranted to devise IFN-related prophylactics and therapies.
Collapse
Affiliation(s)
| | | | | | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (L.L.); (P.C.S.); (Y.T.)
| |
Collapse
|
9
|
Zhao J, Zhu L, Xu L, Huang J, Sun X, Xu Z. Porcine interferon lambda 3 (IFN-λ3) shows potent anti-PRRSV activity in primary porcine alveolar macrophages (PAMs). BMC Vet Res 2020; 16:408. [PMID: 33115475 PMCID: PMC7594293 DOI: 10.1186/s12917-020-02627-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious viral disease of swine. At present, there are vaccines for the control of PRRSV infection, but the effect is not satisfactory. The recombination of attenuated vaccines causes significant difficulties with the prevention and control of PRRSV. Type III interferons (IFNs), also called IFN-λs, were newly identified and showed potent antiviral activity within the mucosal surface and immune organs. Results Therefore, primary porcine alveolar macrophages (PAMs) were used for this investigation. To this end, we found that the replication of PRRSV in PAMs was significantly reduced after pre-treatment with IFN-λ3, and such inhibition was dose- and time-dependent. The plaque formation of PRRSV abrogated entirely, and virus yields were reduced by four orders of magnitude when the primary PAMs were treated with IFN-λ3 at 1000 ng/ml. In addition, IFN-λ3 in our study was able to induce the expression of interferon-stimulated genes 15 (ISG15), 2′-5′-oligoadenylate synthase 1 (OAS1), IFN-inducible transmembrane 3 (IFITM3), and myxoma resistance protein 1(Mx1) in primary PAMs. Conclusions IFN-λ3 had antiviral activity against PRRSV and can stimulate the expression of pivotal interferon-stimulated genes (ISGs), i.e., ISG15, Mx1, OAS1, and IFITM3. So, IFN-λ3 may serve as a useful antiviral agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02627-6.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, Sichuan Province, China.
| |
Collapse
|
10
|
Porcine Epidemic Diarrhea Virus Deficient in RNA Cap Guanine-N-7 Methylation Is Attenuated and Induces Higher Type I and III Interferon Responses. J Virol 2020; 94:JVI.00447-20. [PMID: 32461321 DOI: 10.1128/jvi.00447-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022] Open
Abstract
The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.
Collapse
|
11
|
Chen YM, Helm ET, Gabler N, Hostetter JM, Burrough ER. Alterations in Intestinal Innate Mucosal Immunity of Weaned Pigs During Porcine Epidemic Diarrhea Virus Infection. Vet Pathol 2020; 57:642-652. [PMID: 32880235 DOI: 10.1177/0300985820932140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the small intestine, localized innate mucosal immunity is critical for intestinal homeostasis. Porcine epidemic diarrhea virus (PEDV) infection induces villus injury and impairs digestive function. Moreover, the infection might comprise localized innate mucosal immunity. This study investigated specific enterocyte subtypes and innate immune components of weaned pigs during PEDV infection. Four-week-old pigs were orally inoculated with PEDV IN19338 strain (n = 40) or sham-inoculated (n = 24). At day post inoculation (DPI) 2, 4, and 6, lysozyme expression in Paneth cells, cellular density of villous and Peyer's patch microfold (M) cells, and the expression of polymeric immunoglobulin receptor (pIgR) were assessed in the jejunum and ileum by immunohistochemistry, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α were measured in the jejunum by ELISA. PEDV infection led to a decrease in the ratios of villus height to crypt depth (VH-CD) in jejunum at DPI 2, 4, and 6 and in ileum at DPI 4. The number of villous M cells was reduced in jejunum at DPI 4 and 6 and in ileum at DPI 6, while the number of Peyer's patch M cells in ileum increased at DPI 2 and then decreased at DPI 6. PEDV-infected pigs also had reduced lysozyme expression in ileal Paneth cells at DPI 2 and increased ileal pIgR expression at DPI 4. There were no significant changes in IL-1β and TNF-α expression in PEDV-infected pigs compared to controls. In conclusion, PEDV infection affected innate mucosal immunity of weaned pigs through alterations in Paneth cells, villous and Peyer's patch M cells, and pIgR expression.
Collapse
|
12
|
Liu YS, Liu Q, Jiang YL, Yang WT, Huang HB, Shi CW, Yang GL, Wang CF. Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells. J Microbiol Biotechnol 2020; 30:515-525. [PMID: 31838830 PMCID: PMC9728374 DOI: 10.4014/jmb.1909.09041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.
Collapse
Affiliation(s)
- Yong-Shi Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, P.R. China
| | - Qiong Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, P.R. China
| | - Yan-Long Jiang
- College of Food Engineering, Jilin Engineering Normal University, 3050 KaiXuan Road, Changchun, Jilin 130052, P.R. China
| | - Wen-Tao Yang
- College of Food Engineering, Jilin Engineering Normal University, 3050 KaiXuan Road, Changchun, Jilin 130052, P.R. China
| | - Hai-Bin Huang
- College of Food Engineering, Jilin Engineering Normal University, 3050 KaiXuan Road, Changchun, Jilin 130052, P.R. China
| | - Chun-Wei Shi
- College of Food Engineering, Jilin Engineering Normal University, 3050 KaiXuan Road, Changchun, Jilin 130052, P.R. China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, P.R. China,Corresponding authors C.F.W. Phone/Fax: +86-43184533425 E-mail: G.L.Y. E-mail:
| | - Chun-Feng Wang
- College of Food Engineering, Jilin Engineering Normal University, 3050 KaiXuan Road, Changchun, Jilin 130052, P.R. China,Corresponding authors C.F.W. Phone/Fax: +86-43184533425 E-mail: G.L.Y. E-mail:
| |
Collapse
|
13
|
Npro of Classical Swine Fever Virus Suppresses Type III Interferon Production by Inhibiting IRF1 Expression and Its Nuclear Translocation. Viruses 2019; 11:v11110998. [PMID: 31683525 PMCID: PMC6893713 DOI: 10.3390/v11110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever virus (CSFV) causes a contagious disease of pigs. The virus can break the mucosal barrier to establish its infection. Type III interferons (IFN-λs) play a crucial role in maintaining the antiviral state in epithelial cells. Limited information is available on whether or how CSFV modulates IFN-λs production. We found that IFN-λ3 showed dose-dependent suppression of CSFV replication in IPEC-J2 cells. Npro-deleted CSFV mutant (∆Npro) induced significantly higher IFN-λs transcription from 24 h post-infection (hpi) than its parental strain (wtCSFV). The strain wtCSFV strongly inhibited IFN-λs transcription and IFN-λ3 promoter activity in poly(I:C)-stimulated IPEC-J2 cells, whereas ∆Npro did not show such inhibition. Npro overexpression caused significant reduction of IFN-λs transcription and IFN-λ3 promoter activity. Both wtCSFV and ∆Npro infection induced time-dependent IRF1 expression in IPEC-J2 cells, with ΔNpro showing more significant induction, particularly at 24 hpi. However, infection with wtCSFV or Npro overexpression led not only to significant reduction of IRF1 expression and its promoter activity in poly(I:C)-treated IPEC-J2 cells but also to blockage of IRF1 nuclear translocation. This study provides clear evidence that CSFV Npro suppresses IRF1-mediated type III IFNs production by inhibiting IRF1 expression and its nuclear translocation.
Collapse
|
14
|
Jennings J, Sang Y. Porcine Interferon Complex and Co-Evolution with Increasing Viral Pressure after Domestication. Viruses 2019; 11:v11060555. [PMID: 31208045 PMCID: PMC6631851 DOI: 10.3390/v11060555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Consisting of nearly 60 functional genes, porcine interferon (IFN)-complex represents an evolutionary surge of IFN evolution in domestic ungulate species. To compare with humans and mice, each of these species contains about 20 IFN functional genes, which are better characterized using the conventional IFN-α/β subtypes as examples. Porcine IFN-complex thus represents an optimal model for studying IFN evolution that resulted from increasing viral pressure during domestication and industrialization. We hypothesize and justify that porcine IFN-complex may extend its functionality in antiviral and immunomodulatory activity due to its superior molecular diversity. Furthermore, these unconventional IFNs could even confer some functional and signaling novelty beyond that of the well-studied IFN-α/β subtypes. Investigations into porcine IFN-complex will further our understanding of IFN biology and promote IFN-based therapeutic designs to confront swine viral diseases.
Collapse
Affiliation(s)
- Jordan Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
15
|
Interferon-λ3 Promotes Epithelial Defense and Barrier Function Against Cryptosporidium parvum Infection. Cell Mol Gastroenterol Hepatol 2019; 8:1-20. [PMID: 30849550 PMCID: PMC6510929 DOI: 10.1016/j.jcmgh.2019.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The epithelial response is critical for intestinal defense against Cryptosporidium, but is poorly understood. To uncover the host strategy for defense against Cryptosporidium, we examined the transcriptional response of intestinal epithelial cells (IECs) to C parvum in experimentally infected piglets by microarray. Up-regulated genes were dominated by targets of interferon (IFN) and IFN-λ3 was up-regulated significantly in infected piglet mucosa. Although IFN-λ has been described as a mediator of epithelial defense against viral pathogens, there is limited knowledge of any role against nonviral pathogens. Accordingly, the aim of the study was to determine the significance of IFN-λ3 to epithelial defense and barrier function during C parvum infection. METHODS The significance of C parvum-induced IFN-λ3 expression was determined using an immunoneutralization approach in neonatal C57BL/6 mice. The ability of the intestinal epithelium to up-regulate IFN-λ2/3 expression in response to C parvum infection and the influence of IFN-λ2/3 on epithelial defense against C parvum invasion, intracellular development, and loss of barrier function was examined using polarized monolayers of a nontransformed porcine-derived small intestinal epithelial cell line (IPEC-J2). Specifically, changes in barrier function were quantified by measurement of transepithelial electrical resistance and transepithelial flux studies. RESULTS Immunoneutralization of IFN-λ2/3 in C parvum-infected neonatal mice resulted in a significantly increased parasite burden, fecal shedding, and villus blunting with crypt hyperplasia during peak infection. In vitro, C parvum was sufficient to induce autonomous IFN-λ3 and interferon-stimulated gene 15 expression by IECs. Priming of IECs with recombinant human IFN-λ3 promoted cellular defense against C parvum infection and abrogated C parvum-induced loss of barrier function by decreasing paracellular permeability to sodium. CONCLUSIONS These studies identify IFN-λ3 as a key epithelial defense mechanism against C parvum infection.
Collapse
|
16
|
Shan Y, Liu ZQ, Li GW, Chen C, Luo H, Liu YJ, Zhuo XH, Shi XF, Fang WH, Li XL. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation. J Zhejiang Univ Sci B 2018; 19:570-580. [PMID: 29971995 PMCID: PMC6052364 DOI: 10.1631/jzus.b1700283] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB (NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.
Collapse
Affiliation(s)
- Ying Shan
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zi-Qi Liu
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guo-Wei Li
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong Chen
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Luo
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Jie Liu
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xun-Hui Zhuo
- Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Xing-Fen Shi
- Animal Products Quality Testing Center of Zhejiang Province, Hangzhou 310020, China
| | - Wei-Huan Fang
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Liang Li
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Type III Interferon Restriction by Porcine Epidemic Diarrhea Virus and the Role of Viral Protein nsp1 in IRF1 Signaling. J Virol 2018; 92:JVI.01677-17. [PMID: 29187542 DOI: 10.1128/jvi.01677-17] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 01/16/2023] Open
Abstract
Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes.IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.
Collapse
|
18
|
IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha. Antiviral Res 2017; 140:76-82. [PMID: 28109912 PMCID: PMC7113730 DOI: 10.1016/j.antiviral.2017.01.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/02/2022]
Abstract
In contrast to type I interferons that target various types of cells and organs, interferon lambda (IFN-L) primarily acts on mucosal epithelial cells and exhibits robust antiviral activity within the mucosal surface. Porcine epidemic diarrhea virus (PEDV), which causes high morbidity and mortality in piglets, is an enteropathogenic coronavirus with economic importance. Here, we demonstrated that both recombinant porcine IFN-L1 (rpIFN-L1) and rpIFN-L3 have powerful antiviral activity against PEDV infection of both Vero E6 cells and the intestinal porcine epithelial cell line J2 (IPEC-J2). Both forms of rpIFN-L inhibited two genotypes of PEDV (strain CV777 of genotype 1 and strain LNCT2 of genotype 2). rpIFN-L1 primarily controlled viral infection in the early stage and had less antiviral activity in IPEC-J2 than in rpIFN-L3 cells infected with PEDV. In addition, rpIFN-L1 exhibited greater antiviral activity against PEDV infection of IPEC-J2 cells than that of porcine IFN-alpha. Consistent with this finding, rpIFN-L1 triggered higher levels of certain antiviral IFN-stimulated genes (ISGs) (ISG15, OASL, and MxA) in IPEC-J2 cells than porcine IFN-alpha. Although IPEC-J2 cells responded to both IFN-alpha and lambda, transcriptional profiling of ISGs (specifically ISG15, OASL, MxA, and IFITMs) differed when induced by either IFN-alpha or rpIFN-L. Therefore, our data provide the experimental evidence that porcine IFN-L suppresses PEDV infection of IPEC-J2 cells, which may offer a promising therapeutic for combating PED in piglets. Porcine IFN-lambda robustly inhibited PEDV in both Vero E6 and IPEC-J2. IFN-lambda exhibited more anti-PEDV activity and induced a better antiviral response in IPEC-J2 than IFN-alpha. Porcine IFN-lambda might represent a novel therapeutic agent for PEDV infection in the future.
Collapse
|
19
|
Shen H, Zhang C, Guo P, Liu Z, Sun M, Sun J, Li L, Dong J, Zhang J. Short communication: antiviral activity of porcine IFN-λ3 against porcine epidemic diarrhea virus in vitro. Virus Genes 2016; 52:877-882. [PMID: 27470155 PMCID: PMC7089062 DOI: 10.1007/s11262-016-1374-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022]
Abstract
A new family of IFNs called type III IFN or IFN-λ has been described, and shown to induce antiviral activity against several viruses in the cell culture. In this study, the molecular cloning, expression, and antiporcine epidemic diarrhea virus (PEDV) activity of porcine IFN-λ3 (poIFN-λ3) were reported. The full-length poIFN-λ3 cDNA sequence encoded 196 amino acids with a 23 amino acid signal peptide. Sequence alignments showed that poIFN-λ3 had an amino acid sequence similarity to Ovis aries (78.1 %), Bos taurus (76.0 %), Tupaia belangeri (71.3 %), Equus caballus (69.9 %), and Homo sapiens (69.9 %). The phylogenetic analysis based on the genomic sequences indicated that poIFN-λ3 is located in the same branch as B. taurus and O. aries IFN-λ3. The poIFN-λ3 without a signal anchor sequence was efficiently expressed in Escherichia coli, and the purified recombinant poIFN-λ3 exhibited significant antiviral effects against PEDV in a dose- and time-dependent manner. This inhibitory effect of poIFN-λ3 on PEDV was observed under three different treatment conditions. The highest inhibition of PEDV was observed in Vero E6 cell cultures pretreated with poIFN-λ3 (prior to PEDV infection). In addition, poIFN-λ3 was able to induce the expression of IFN-stimulated genes, including ISG15, OAS1, and Mx1 in Vero E6 cells. These data demonstrate that poIFN-λ3 has antiviral activity against PEDV and may serve as a useful biotherapeutic candidate to inhibit PEDV or other viruses in swine.
Collapse
Affiliation(s)
- Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, Guangdong, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Junying Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
20
|
Diaz-San Segundo F, Montiel NA, Sturza DF, Perez-Martin E, Hickman D, Ramirez-Medina E, Grubman MJ, de Los Santos T. Combination of Adt-O1Manisa and Ad5-boIFNλ3 induces early protective immunity against foot-and-mouth disease in cattle. Virology 2016; 499:340-349. [PMID: 27743960 DOI: 10.1016/j.virol.2016.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
Foot-and-mouth-disease (FMD) remains the most infectious livestock disease worldwide. Although commercially available inactivated or adenovirus-vectored-vaccines (Ad5-FMD) are effective, they require 5-7 days to induce protection. Therefore, new control strategies that stimulate rapid immune responses are needed. Expression of bovine interferon λ3 using the Ad5-vector platform (Ad5-boIFNλ3) is able to delay disease in cattle, but clinical signs appear at 9 days after challenge. We hypothesized that combination of Ad5-boIFNλ3 and Ad5-FMD could induce immediate and lasting protection against FMD. Cattle were vaccinated with an Ad5-FMD, Ad5-boIFNλ3, or the combination of both, followed by challenge at three days post-immunization. All animals treated with Ad5-FMD combined with Ad5-boIFNλ3 were fully protected against FMD, despite the absence of systemic neutralizing antibodies or antiviral activity at the time of challenge. Induction of a strong cell-mediated immune response suggested that Ad5-boIFNλ3 is able to act as an adjuvant of Ad5-FMD vaccine in cattle.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Nestor A Montiel
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Diego F Sturza
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Eva Perez-Martin
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Danielle Hickman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA.
| |
Collapse
|
21
|
Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts. Mol Immunol 2015; 68:657-62. [DOI: 10.1016/j.molimm.2015.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/30/2022]
|
22
|
Powell JD, Dlugolenski D, Nagy T, Gabbard J, Lee C, Tompkins SM, Tripp RA. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells. PLoS One 2014; 9:e110264. [PMID: 25330303 PMCID: PMC4199677 DOI: 10.1371/journal.pone.0110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/04/2014] [Indexed: 12/03/2022] Open
Abstract
Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.
Collapse
Affiliation(s)
- Joshua D. Powell
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Daniel Dlugolenski
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jon Gabbard
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Christopher Lee
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Stephen M. Tompkins
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Expression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication. J Virol 2014; 88:11140-53. [PMID: 25031341 DOI: 10.1128/jvi.00372-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Several studies have demonstrated that the delivery of type I, II, or III interferons (IFNs) by inoculation of a replication-defective human adenovirus 5 (Ad5) vector expressing IFNs can effectively control foot-and-mouth disease (FMD) in cattle and swine during experimental infections. However, relatively high doses are required to achieve protection. In this study, we identified the functional properties of a porcine fusion protein, poIRF7/3(5D), as a biotherapeutic and enhancer of IFN activity against FMD virus (FMDV). We showed that poIRF7/3(5D) is a potent inducer of type I IFNs, including alpha IFN (IFN-α), IFN-β, and IFN-ω but not type III IFN (interleukin-28B), without inducing cytotoxicity. Expression of poIRF7/3(5D) significantly and steadily reduced FMDV titers by up to 6 log10 units in swine and bovine cell lines. Treatment with an IFN receptor inhibitor (B18R) combined with an anti-IFN-α antibody neutralized the antiviral activity in the supernatants of cells transduced with an Ad5 vector expressing poIRF7/3(5D) [Ad5-poIRF7/3(5D)]. However, several transcripts with known antiviral function, including type I IFNs, were still highly upregulated (range of increase, 8-fold to over 500-fold) by poIRF7/3(5D) in the presence of B18R. Furthermore, the sera of mice treated with Ad5-poIRF7/3(5D) showed antiviral activity that was associated with the induction of high levels of IFN-α and resulted in complete protection against FMDV challenge at 6, 24, or 48 h posttreatment. This study highlights for the first time the antiviral potential of Ad5-poIRF7/3(5D) in vitro and in vivo against FMDV. IMPORTANCE FMD remains one of the most devastating diseases that affect livestock worldwide. Effective vaccine formulations are available but are serotype specific and require approximately 7 days before they are able to elicit protective immunity. We have shown that vector-delivered IFN is an option to protect animals against many FMDV serotypes as soon as 24 h and for about 4 days postadministration. Here we demonstrate that delivery of a constitutively active transcription factor that induces the production of endogenous IFNs and potentially other antiviral genes is a viable strategy to protect against FMD.
Collapse
|
24
|
Perez-Martin E, Diaz-San Segundo F, Weiss M, Sturza DF, Dias CC, Ramirez-Medina E, Grubman MJ, de los Santos T. Type III interferon protects swine against foot-and-mouth disease. J Interferon Cytokine Res 2014; 34:810-21. [PMID: 24786495 DOI: 10.1089/jir.2013.0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent years, we have developed novel strategies to control foot-and-mouth disease (FMD), including the use of biotherapeutics such as interferons (IFN) delivered by a replication-defective human adenovirus type 5 (Ad5). Swine can be sterilely protected after vaccination with an Ad5 that encodes porcine type I IFN (poIFN-α), and cattle can be similarly protected or develop significantly reduced disease when treated with an Ad5 delivering bovine type III IFN (boIFN-λ3). Here, we have evaluated the efficacy of porcine IFN-λ3 (poIFN-λ3) against FMD virus in vivo. Swine inoculated with different doses of Ad5-poIFN-λ3 were protected against disease in a dose-dependent manner. Despite the absence of systemic antiviral activity, 7 out of 10 Ad5-poIFN-λ3 inoculated animals did not develop disease or viremia, and the other 3 inoculated animals displayed delayed and milder disease by 7 days postchallenge as compared with control animals inoculated with an Ad5 control vector. While analysis of gene expression showed significant induction of IFN and IFN-stimulated genes in Ad5-poIFN-λ3-treated cultured porcine epithelial kidney cells, there was limited gene induction in peripheral blood monocytes isolated from treated swine. These results suggest that treatment with Ad5-poIFN-λ3 is an effective biotherapeutic strategy against FMD in swine.
Collapse
Affiliation(s)
- Eva Perez-Martin
- 1 Plum Island Animal Disease Center , North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim SM, Kim SK, Park JH, Lee KN, Ko YJ, Lee HS, Seo MG, Shin YK, Kim B. A recombinant adenovirus bicistronically expressing porcine interferon-α and interferon-γ enhances antiviral effects against foot-and-mouth disease virus. Antiviral Res 2014; 104:52-8. [DOI: 10.1016/j.antiviral.2014.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/20/2022]
|
26
|
Yang L, Xu L, Li Y, Li J, Bi Y, Liu W. Molecular and functional characterization of canine interferon-epsilon. J Interferon Cytokine Res 2013; 33:760-8. [PMID: 23964570 DOI: 10.1089/jir.2013.0037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we provide the first comprehensive annotation of the entire family of canine interferons (IFNs). Canine IFN-ε (IFNE), IFN-κ (IFNK), and IFN-λ (IFNL) were discovered for the first time. Ten functional and 2 truncated IFN-α (IFNA) pseudogenes were found in the genome, which also enriched the existing knowledge about canine IFNA. The canine type I IFN genes are clustered on chromosome 11, and their relative arrangements are illustrated. To further investigate the biological activity of canine IFNE, it was expressed and purified in Escherichia coli. Recombinant canine IFNE (rCaIFN-ε) displayed potent antiviral activity on both homologous and heterologous animal cells in vitro, indicating that rCaIFN-ε has more broad cross-species activity than recombinant canine IFNA (rCaIFN-α). The antiviral activities of rCaIFN-ε and rCaIFN-α7 against different viruses on MDCK cells were also evaluated. The antiviral activities of recombinant canine IFNK and IFNL were demonstrated using a VSV-MDCK virus-target cell system. rCaIFN-ε exhibited a significant anti-proliferative response against A72 canine tumor cells and MDCK canine epithelial cells in a dose-dependent manner. rCaIFN-α7 was approximately 16-fold more potent than rCaIFN-ε in promoting natural killer cell cytotoxicity activity. Further, rCaIFN-ε can activate the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Limin Yang
- 1 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology , Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Li ML, Xu WW, Gao YD, Guo Y, Wang WJ, Wang C, Jiang SY, Willden A, Huang JF, Zhang HT. Interferon-lambda3 (IFN-λ3) and its cognate receptor subunits in tree shrews (Tupaia belangeri): genomic sequence retrieval, molecular identification and expression analysis. PLoS One 2013; 8:e60048. [PMID: 23555878 PMCID: PMC3610868 DOI: 10.1371/journal.pone.0060048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/20/2013] [Indexed: 02/06/2023] Open
Abstract
Type III IFNs (IFN-λs) constitute a new subfamily with antiviral activities by signaling through a unique receptor complex composed of IFN-λs receptor 1 (IFNλR1) and interleukin-10 receptor 2 (IL10R2). As tree shrews (Tupaia belangeri) have shown susceptiblility to several human viruses, they are a potentially important model for analyzing viral infection. However, little is known about their IFN-λs system. We used the tree shrew genome to retrieve IFN-λs and their receptor contig sequences by BLASTN and BLASTZ algorithms, and GenScan was used to scan transcripts from the putative contig sequences. RT-PCR and bioinformatic methods were then used to clone and characterize the IFN-λs system. Due to its highest identity with human IFN-λ3, we opted to define one intact IFN-λ gene, tsIFN-λ3, as well as its two receptor subunits, tsIFNλR1 and tsIL10R2. Additionally, our results showed that tsIFN-λ3 contained many features conserved in IFN-λ3 genes from other mammals, including conserved signal peptide cleavage and glycosylation sites, and several residues responsible for binding to the type III IFNR. We also found six transcript variants in the receptors: three in tsIFNλR1, wherein different extracellular regions exist in three transmembrane proteins, resulting in different affinities with IFN-λs; and three more variants in tsIL10R2, encoding one transmembrane and two soluble proteins. Based on tissue distribution in the liver, heart, brain, lung, intestine, kidney, spleen, and stomach, we found that IFN-λs receptor complex was expressed in a variety of organs although the expression level differed markedly between them. As the first study to find transcript variants in IL-10R2, our study offers novel insights that may have important implications for the role of IFN-λs in tree shrews’ susceptibility with a variety of human viruses, bolstering the arguments for using tree shrews as an animal model in the study of human viral infections.
Collapse
Affiliation(s)
- Ming-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wen-Wen Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yue-Dong Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Wen-Ju Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Chao Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Shi-You Jiang
- University of the Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Andrew Willden
- Editorial Department, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hua-Tang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Chongqing Center for Biomedical Research and Equipment Development, Chongqing Academy of Science and Technology, Chongqing, China
- * E-mail:
| |
Collapse
|
28
|
Interaction between innate immunity and porcine reproductive and respiratory syndrome virus. Anim Health Res Rev 2012; 12:149-67. [PMID: 22152291 DOI: 10.1017/s1466252311000144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity provides frontline antiviral protection and bridges adaptive immunity against virus infections. However, viruses can evade innate immune surveillance potentially causing chronic infections that may lead to pandemic diseases. Porcine reproductive and respiratory syndrome virus (PRRSV) is an example of an animal virus that has developed diverse mechanisms to evade porcine antiviral immune responses. Two decades after its discovery, PRRSV is still one of the most globally devastating viruses threatening the swine industry. In this review, we discuss the molecular and cellular composition of the mammalian innate antiviral immune system with emphasis on the porcine system. In particular, we focus on the interaction between PRRSV and porcine innate immunity at cellular and molecular levels. Strategies for targeting innate immune components and other host metabolic factors to induce ideal anti-PRRSV protection are also discussed.
Collapse
|
29
|
Bovine type III interferon significantly delays and reduces the severity of foot-and-mouth disease in cattle. J Virol 2012; 86:4477-87. [PMID: 22301155 DOI: 10.1128/jvi.06683-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferons (IFNs) are the first line of defense against viral infections. Although type I and II IFNs have proven effective to inhibit foot-and-mouth disease virus (FMDV) replication in swine, a similar approach had only limited efficacy in cattle. Recently, a new family of IFNs, type III IFN or IFN-λ, has been identified in human, mouse, chicken, and swine. We have identified bovine IFN-λ3 (boIFN-λ3), also known as interleukin 28B (IL-28B), and demonstrated that expression of this molecule using a recombinant replication-defective human adenovirus type 5 (Ad5) vector, Ad5-boIFN-λ3, exhibited antiviral activity against FMDV in bovine cell culture. Furthermore, inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and upregulation of IFN-stimulated gene expression in the upper respiratory airways and skin. In the present study, we demonstrated that disease could be delayed for at least 6 days when cattle were inoculated with Ad5-boIFN-λ3 and challenged 24 h later by intradermolingual inoculation with FMDV. Furthermore, the delay in the appearance of disease was significantly prolonged when treated cattle were challenged by aerosolization of FMDV, using a method that resembles the natural route of infection. No clinical signs of FMD, viremia, or viral shedding in nasal swabs was found in the Ad5-boIFN-λ3-treated animals for at least 9 days postchallenge. Our results indicate that boIFN-λ3 plays a critical role in the innate immune response of cattle against FMDV. To this end, this work represents the most successful biotherapeutic strategy so far tested to control FMDV in cattle.
Collapse
|
30
|
Díaz-San Segundo F, Weiss M, Perez-Martín E, Koster MJ, Zhu J, Grubman MJ, de los Santos T. Antiviral activity of bovine type III interferon against foot-and-mouth disease virus. Virology 2011; 413:283-92. [DOI: 10.1016/j.virol.2011.02.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/03/2011] [Accepted: 02/26/2011] [Indexed: 12/20/2022]
|
31
|
Lunney JK, Chen H. Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Res 2010; 154:161-9. [PMID: 20709118 DOI: 10.1016/j.virusres.2010.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 12/30/2022]
Abstract
This manuscript focuses on the advances made using genomic approaches to identify biomarkers that define genes and pathways that are correlated with swine resistance to infection with porcine reproductive and respiratory syndrome virus (PRRSV), the most economically important swine viral pathogen worldwide. International efforts are underway to assess resistance and susceptibility to infectious pathogens using tools such as gene arrays, single nucleotide polymorphisms (SNPs) chips, genome-wide association studies (GWAS), proteomics, and advanced bioinformatics. These studies should identify new candidate genes and biological pathways associated with host PRRS resistance and alternate viral disease processes and mechanisms; they may unveil biomarkers that account for genetic control of PRRS or, alternately, that reveal new targets for therapeutics or vaccines. Previous genomic approaches have expanded our understanding of quantitative trait loci (QTL) controlling traits of economic importance in pig production, e.g., feed efficiency, meat production, leanness; only recently have these included health traits and disease resistance. Genomic studies should have substantial impact for the pig industry since it is now possible to include the use of biomarkers for basic health traits alongside broader set of markers utilized for selection of pigs for improved performance and reproductive traits, as well as pork quality. Additionally these studies may reveal alternate PRRS control mechanisms that can be exploited for novel drugs, biotherapeutics and vaccine designs.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, ANRI, ARS, USDA, BARC-East, Beltsville, MD 20705, USA.
| | | |
Collapse
|