1
|
Wang H, Li L, Fan X, Zhang Y, Lu Q, Ma N, Yu B, Li X, Gao J. Health Implications of Depleted Uranium: An Update. J Appl Toxicol 2024. [PMID: 39517117 DOI: 10.1002/jat.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Depleted uranium (DU), as a heavy metal material extensively utilized in the industrial sector, poses potential health risks to humans through various exposure pathways, including inhalation, ingestion, and dermal contact. To comprehensively understand the toxicological hazards of DU, this study conducted a literature search in the Web of Science Core Collection database using "DU" and "toxicity" as keywords, covering the period from January 2000 to December 2023. A total of 65 papers related to human, animal, or cellular studies on DU were included. This review delves into the latest research advancements on the origin and toxicokinetics of DU, as well as its pulmonary toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, hepatotoxicity, reproductive toxicity, cancer, bone toxicity, and hematological toxicity. The aim of this review is to gain a deeper understanding of the health hazards posed by DU, which is of significant importance for formulating corresponding protection strategies and measures.
Collapse
Affiliation(s)
- Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| |
Collapse
|
2
|
Yang Y, Dai C, Chen X, Zhang B, Li X, Yang W, Wang J, Feng J. Role of uranium toxicity and uranium-induced oxidative stress in advancing kidney injury and endothelial inflammation in rats. BMC Pharmacol Toxicol 2024; 25:14. [PMID: 38308341 PMCID: PMC10837886 DOI: 10.1186/s40360-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.
Collapse
Affiliation(s)
- Yuwei Yang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| | - Chunmei Dai
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xi Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xiaohan Li
- Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenyu Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jun Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| |
Collapse
|
3
|
Yan Z, Zhang Y, Du L, Liu L, Zhou H, Song W. U(VI) exposure induces apoptosis and pyroptosis in RAW264.7 cells. CHEMOSPHERE 2023; 342:140154. [PMID: 37714482 DOI: 10.1016/j.chemosphere.2023.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
U(VI) pollution has already led to serious harm to the environment and human health with the increase of human activities. The viability of RAW264.7 cells was assessed under various U(VI) concentration stress for 24 and 48 h. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and superoxide dismutase (SOD) activities of RAW264.7 cells under U(VI) stress were measured. The results showed that U(VI) decreased cell activity, induced intracellular ROS production, abnormal MMP, and increased SOD activity. The flow cytometry with Annexin-V/PI double labeling demonstrated that the rate of late apoptosis increased with the increase of U(VI) concentration, resulting in decreased Bcl-2 expression and increased Bax expression. The morphology of RAW264.7 cells dramatically changed after 48 h U(VI) exposure, including the evident bubble phenomenon. Besides, U(VI) also increased the proportion of LDH releases and increased GSDMD, and Ras, p38, JNK, and ERK1/2 protein expression, which indicated that the MAPK pathway was also involved. Therefore, U(VI) ultimately led to apoptosis and pyroptosis in RAW264.7 cells. This study offered convincing proof of U(VI) immunotoxicity and established the theoretical framework for further fundamental studies on U(VI) toxicity.
Collapse
Affiliation(s)
- Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Liang Du
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, PR China.
| |
Collapse
|
4
|
Rani L, Srivastav AL, Kaushal J, Shukla DP, Pham TD, van Hullebusch ED. Significance of MOF adsorbents in uranium remediation from water. ENVIRONMENTAL RESEARCH 2023; 236:116795. [PMID: 37541412 DOI: 10.1016/j.envres.2023.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Dericks P Shukla
- Department of Civil Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
5
|
Tang P, Liao Q, Tang Y, Yao X, Du C, Wang Y, Song F, Deng S, Wang Y, Qiu X, Yang F. Independent and combined associations of urinary metals exposure with markers of liver injury: Results from the NHANES 2013-2016. CHEMOSPHERE 2023; 338:139455. [PMID: 37429383 DOI: 10.1016/j.chemosphere.2023.139455] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Heavy metals entering the human body could cause damage to a variety of organs. However, the combined harmful effects of exposure to various metals on liver function are not well understood. The purpose of the study was to investigate the independent and joint relationships between heavy metal exposure and liver function in adults. METHODS The study involved 3589 adults from the National Health and Nutrition Examination Survey. Concentrations of urinary metals, including arsenic (As), cadmium (Cd), lead (Pb), antimony (Sb), barium (Ba), thallium (Tl), tungsten (W), uranium (U), were determined in urine using inductively coupled plasma mass spectrometry. Data for liver function biomarkers included alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transaminase (GGT), and alkaline phosphatase (ALP). Survey-weighted linear regression and quantile g-computation (qgcomp) were employed to evaluate the relationship of urinary metals with the markers of liver injury. RESULTS Cd, U and Ba were found to have positive correlations with ALT, AST, GGT, and ALP in the survey-weighted linear regression analyses. According to the qgcomp analyses, the total metal mixture was positively correlated with ALT (percent change: 8.15; 95% CI: 3.84, 12.64), AST (percent change: 5.55; 95% CI: 2.39, 8.82), GGT (percent change: 14.30; 95% CI: 7.81, 21.18), and ALP (percent change: 5.59; 95% CI: 2.65, 8.62), and Cd, U, and Ba were the main contributors to the combined effects. Positive joint effects were observed between Cd and U on ALT, AST, GGT and ALP, and U and Ba had positive joint effects on ALT, AST and GGT. CONCLUSION Exposures to Cd, U, and Ba were individually associated with multiple markers of liver injury. Mixed metal exposure might be adversely correlated with markers of liver function. The findings indicated the potential harmful effect of metal exposure on liver function.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xueqiong Yao
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yangcan Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuxiang Deng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yue Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
6
|
Vellingiri B. A deeper understanding about the role of uranium toxicity in neurodegeneration. ENVIRONMENTAL RESEARCH 2023; 233:116430. [PMID: 37329943 DOI: 10.1016/j.envres.2023.116430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Natural deposits and human-caused releases of uranium have led to its contamination in the nature. Toxic environmental contaminants such as uranium that harm cerebral processes specifically target the brain. Numerous experimental researches have shown that occupational and environmental uranium exposure can result in a wide range of health issues. According to the recent experimental research, uranium can enter the brain after exposure and cause neurobehavioral problems such as elevated motion related activity, disruption of the sleep-wake cycle, poor memory, and elevated anxiety. However, the exact mechanism behind the factor for neurotoxicity by uranium is still uncertain. This review primarily aims on a brief overview of uranium, its route of exposure to the central nervous system, and the likely mechanism of uranium in neurological diseases including oxidative stress, epigenetic modification, and neuronal inflammation has been described, which could present the probable state-of-the-art status of uranium in neurotoxicity. Finally, we offer some preventative strategies to workers who are exposed to uranium at work. In closing, this study highlights the knowledge of uranium's health dangers and underlying toxicological mechanisms is still in its infancy, and there is still more to learn about many contentious discoveries.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
7
|
Wolf J, Hoffman L, Southern C. Successful Management of Severe Manganese Toxicosis in Two Dogs. J Am Anim Hosp Assoc 2023; 59:152-157. [PMID: 37167249 DOI: 10.5326/jaaha-ms-7348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Manganese is a common component of human joint supplements and may be a source of ingestion and subsequent toxicosis in dogs. Although hepatotoxicity secondary to manganese toxicosis has been reported in dogs before, no descriptions of successful management of manganese toxicosis has been reported in veterinary literature. A 5 yr old spayed female Shetland sheepdog and a 5 yr old female Shetland sheepdog were evaluated following accidental ingestion of a joint supplement. Consultation with a toxicologist revealed concern for manganese toxicosis resulting in hepatic injury. Both dogs developed subsequent acute liver injury, despite decontamination and initial management with N-acetylcysteine and cholestyramine. The patients were managed with calcium ethylenediaminetetraacetic acid, paraaminosalicylic acid, allopurinol, Vitamin E, ginkgo biloba, and S-adenosylmethionine/silybin. Liver values returned to normal in both dogs. Manganese exposure was confirmed with urine manganese analysis in one dog and fecal examination in the other dog. A previous case report detailed the fatal manganese toxicosis in a dog; this case report describes the successful management of severe acute hepatic injury secondary to manganese toxicosis. The combination of medications used above may be used for successful treatment of manganese toxicosis in dogs.
Collapse
Affiliation(s)
- Jacob Wolf
- From the College of Veterinary Medicine, University of Florida, Gainesville, Florida (J.W., C.S.); and the United States Army, San Antonio, Texas (L.H.)
| | - Levi Hoffman
- From the College of Veterinary Medicine, University of Florida, Gainesville, Florida (J.W., C.S.); and the United States Army, San Antonio, Texas (L.H.)
| | - Carl Southern
- From the College of Veterinary Medicine, University of Florida, Gainesville, Florida (J.W., C.S.); and the United States Army, San Antonio, Texas (L.H.)
| |
Collapse
|
8
|
Hu Q, Zhang R, Zheng J, Song M, Gu C, Li W. Hydrogen sulfide attenuates uranium-induced kidney cells pyroptosis via upregulation of PI3K/AKT/mTOR signaling. J Biochem Mol Toxicol 2023; 37:e23220. [PMID: 36094782 DOI: 10.1002/jbt.23220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
We have identified that hydrogen sulfide (H2 S), a gaseous mediator, plays a crucial role in antioxidative, anti-inflammatory, and cytoprotective effects on uranium (U)-triggered rat nephrotoxicity. Pyroptosis is a special mode of inflammation and programmed cell death involved in the activation of inflammasome and Caspase-1 and the release of inflammatory cytokines. This study aims to confirm whether H2 S can alleviate U-induced rat NRK-52E cell pyroptosis and to investigate the H2 S underlying regulatory mechanism. Our results indicate that pretreatment with NaHS (an H2 S donor) significantly inhibited U-increased reactive oxygen species level, NLRP3, apoptosis-related speck-like protein consisting of a caspase recruitment domain (ASC), and cleaved Caspase-1 proteins expression, gasdermin D messenger RNA (GSDMD mRNA) expression, interleukin (IL)-1β and IL-18 contents, lactate dehydrogenase leakage, and numbers of double-positive dying kidney cells. NaHS application evidently augmented phosphorylated PI3K, AKT, and mTOR expression as well as ratios of their respective phosphorylation to the corresponding total proteins which were downregulated by U treatment. But, LY294002 (a PI3K inhibitor) administration effectively abrogated the consequences of NaHS on the levels of p-PI3K, cleaved Caspase-1, ASC and NLRP3 proteins, GSDMD mRNA expression, and (IL)-1β and IL-18 contents. Simultaneously, LY294002 significantly reversed the effects of NaHS on U-induced pyroptosis rate and cytotoxicity. Taken together, these results indicate that H2 S ameliorated U-triggered NRK-52E cells pyroptosis via upregulation of PI3K/AKT/mTOR pathway, suggesting a novel role for H2 S in the management of nephrotoxicity caused by U exposure.
Collapse
Affiliation(s)
- Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Rui Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Menghui Song
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| |
Collapse
|
9
|
Aydin D, Yalçin E, Çavuşoğlu K. Metal chelating and anti-radical activity of Salvia officinalis in the ameliorative effects against uranium toxicity. Sci Rep 2022; 12:15845. [PMID: 36151120 PMCID: PMC9508101 DOI: 10.1038/s41598-022-20115-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Uranium is a highly radioactive heavy metal that is toxic to living things. In this study, physiological, cytogenetic, biochemical and anatomical toxicity caused by uranium and the protective role of sage (Salvia officinalis L.) leaf extract against this toxicity were investigated with the help of Allium test. Germination percentage, root length, weight gain, mitotic index (MI), micronucleus (MN) formation, chromosomal aberrations (CAs), superoxide dismutase (SOD) and catalase (CAT) enzyme activities, malondialdehyde (MDA) levels and changes in root meristem cells were used as indicators of toxicity. In the experimental stage, a total of six groups, one of which was the control, were formed. Group I was treated with tap water, while group II and III were treated only with sage (190 mg/L and 380 mg/L). Groups IV, V and VI were germinated with uranyl acetate dihydrate (0.1 mg/mL), uranyl acetate dihydrate + 190 mg/L sage and uranyl acetate dihydrate + 380 mg/L sage, respectively. Allium cepa L. bulbs of each group were germinated for 72 h, and at the end of the period, routine preparation techniques were applied and physiological, cytogenetic, biochemical and anatomical analyzes were performed. As a result, uranium application caused a significant decrease (p < 0.05) in all physiological parameters and MI values. MN, CAs numbers, SOD and CAT enzyme activities and MDA levels increased significantly (p < 0.05) with uranium application. Uranium promoted CAs in the root tip cells in the form of fragment, vagrant chromosome, sticky chromosome, bridge and unequal distribution of chromatin. In addition, it caused anatomical damages such as epidermis cell damage, cortex cell damage and flattened cell nucleus in root tip meristem cells. Sage application together with uranium caused significant (p < 0.05) increases in physiological parameters and MI values and significant decreases in MN, CAs, SOD and CAT activities and MDA levels. In addition, the application of sage resulted in improvement in the severity of anatomical damages induced by uranium. It was determined that the protective role of sage observed for all parameters investigated was even more pronounced at dose of 380 mg/L. The protective role of sage against uranium toxicity is related to its antioxidant activity, and sage has 82.8% metal chelating and 72.9% DPPH removal activity. As a result, uranyl acetate exhibited versatile toxicity in A. cepa, caused cytotoxicity by decreasing the MI rate, and genotoxicity by increasing the frequencies of MN and CAs. And also, Sage acted as a toxicity-reducing agent by displaying a dose-dependent protective role against the toxic effects induced by uranyl acetate.
Collapse
Affiliation(s)
- Deniz Aydin
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, 28200, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28200, Giresun, Turkey.
| |
Collapse
|
10
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
11
|
Wasef AK, Wahdan SA, Saeed NM, El-Demerdash E. Effects of aged garlic and ginkgo biloba extracts on the pharmacokinetics of sofosbuvir in rats. Biopharm Drug Dispos 2022; 43:152-162. [PMID: 35975782 DOI: 10.1002/bdd.2326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022]
Abstract
Sofosbuvir is a direct acting antiviral (DAA) approved for the treatment of hepatitis C virus (HCV). Sofosbuvir is a substrate of P-glycoprotein (P-gp). For this reason, inhibitors, or inducers of intestinal P-gp may alter plasma concentration of sofosbuvir and increase or decrease its efficacy causing a significant change in its pharmacokinetic parameters. The purpose of study was to evaluate the pharmacokinetic interaction between either aged garlic or ginkgo biloba extracts with sofosbuvir through targeting P-gp as well as the possible toxicities in rats. Rats were divided into four groups and treated for 14 days with saline, verapamil (15 mg/kg, PO), aged garlic extract (120 mg/kg, PO) or ginkgo biloba extract (25 mg/kg, PO) followed by a single oral dose of sofosbuvir (40 mg/kg). Validated LC-MS/MS was used to determine sofosbuvir and its metabolite GS-331007 in rat plasma. Aged garlic extract caused a significant decrease of sofosbuvir AUC(0-t) by 36% while ginkgo biloba extract caused a significant increase of sofosbuvir AUC(0-t) by 11%. Ginkgo biloba extract exhibited significant increase of sofosbuvir t1/2 by 60%, while aged garlic extract significantly increased sofosbuvir clearance by 63%. The pharmacokinetic parameters of GS-331007 were not affected. The inhibitory action of ginkgo biloba on P-gp and the subsequent increase in sofosbuvir plasma concentration did not show a significant risk of renal or hepatic toxicity. Conversely, although aged garlic extracts increased intestinal P-gp expression, they did not alter Cmax and Tmax of sofosbuvir and did not induce significant hepatic or renal toxicities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abanoub K Wasef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University (Kantara campus), Ismailia, Egypt
| | - Sara A Wahdan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha M Saeed
- Pharmacology and Toxicology department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Boateng ID. Potentialities of Ginkgo extract on toxicants, toxins, and radiation: a critical review. Food Funct 2022; 13:7960-7983. [PMID: 35801619 DOI: 10.1039/d2fo01298g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to toxins is a severe threat to human health and life in today's developing and industrialized world. Therefore, identifying a protective chemical could be valuable and fascinating in this case. The purpose of this article was to bring together thorough review of studies on Ginkgo biloba to aid in the creation of ways for delivering its phytoconstituents to treat toxicants and radiation. This review gathered and evaluated studies on the defensive impact of Ginkgo biloba extract (GBE) against toxicities caused by toxic chemical agents (such as lead, cadmium, and aluminum), natural toxins (for example, lipopolysaccharide-induced toxicity and damage, gossypol, latadenes, and lotaustralin), and radiation (for example, gamma, ultra-violet, and radio-frequency radiation). According to this review, GBE has a considerable therapeutic effect by influencing specific pathophysiological targets. Furthermore, GBE has antioxidant, anti-inflammatory, anti-apoptotic, and antigenotoxicity properties against various toxicities. These are due to flavone glycosides (primarily isorhamnetin, kaempferol, and quercetin) and terpene trilactones (ginkgolides A, B, C, and bilobalide) that aid GBEs' neutralizing effect against radiation and toxins by acting independently or synergistically. This will serve as a reference for the functional food, cosmetic, and pharmaceutical industries worldwide.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| |
Collapse
|
13
|
Adebayo OG, Ben-Azu B, Ajayi AM, Wopara I, Aduema W, Kolawole TA, Umoren EB, Onyeleonu I, Ebo OT, Ajibo DN, Akpotu AE. Gingko biloba abrogate lead-induced neurodegeneration in mice hippocampus: involvement of NF-κB expression, myeloperoxidase activity and pro-inflammatory mediators. Biol Trace Elem Res 2022; 200:1736-1749. [PMID: 34240327 DOI: 10.1007/s12011-021-02790-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Neuroimmune alterations have important implication in the neuropsychiatric symptoms and biochemical changes associated with lead-induced neurotoxicity. It has been suggested that inhibition of neuroinflammatory-mediated lead-induced neurotoxicity by phytochemicals enriched with antioxidant activities would attenuate the deleterious effects caused by lead. Hence, this study investigated the neuroinflammatory mechanism behind the effect of Ginkgo biloba supplement (GB-S) in lead-induced neurotoxicity in mice brains. Mice were intraperitoneally pretreated with lead acetate (100 mg/kg) for 30 min prior the administration of GB-S (10 and 20 mg/kg, i.p.) and ethylenediaminetetraacetic acid (EDTA) (50 mg/kg, i.p.) for 14 consecutive days. Symptoms of neurobehavioral impairment were evaluated using open field test (OFT), elevated plus maze (EPM), and tail suspension test (TST) respectively. Thereafter, mice brain hippocampi were sectioned for myeloperoxidase activity (MPO), pro-inflammatory cytokine (TNF-α and IL-6) estimation and inflammatory protein (NF-κB) expression. Furthermore, histomorphormetric studies (Golgi impregnation and Cresyl violet stainings) were carried out. GB-S (10 and 20 mg/kg) significantly restores neurobehavioral impairments based on improved locomotion, reduced anxiety- and depressive-like behavior. Moreover, GB-S reduced the MPO activity, inhibits TNF-α, IL-6 release, and downregulates NF-κB immunopositive cell expression in mice hippocampus. Histomorphometrically, GB-S also prevents the loss of pyramidal neuron in the hippocampus. The endpoint of this findings suggest that GB-S decreases neuropsychiatric symptoms induced by lead acetate through mechanisms related to inhibition of release of pro-inflammatory mediators and suppression of hippocampal pyramidal neuron degeneration in mice.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria.
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Port Harcourt, Port Harcourt, River State, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria
| | - Tolunigba A Kolawole
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Ijeoma Onyeleonu
- Department of Anatomy, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Doris N Ajibo
- Department of Pharmacy, Faculty of Clinical Sciences, University of Port Harcourt, Port Harcourt, River State, Nigeria
| | - Ajirioghene E Akpotu
- Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Enugu, Enugu State, Nigeria
| |
Collapse
|
14
|
Li W, Yu L, Fu B, Chu J, Chen C, Li X, Ma J, Tang W. Protective effects of Polygonatum kingianum polysaccharides and aqueous extract on uranium-induced toxicity in human kidney (HK-2) cells. Int J Biol Macromol 2022; 202:68-79. [PMID: 35033528 DOI: 10.1016/j.ijbiomac.2022.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/18/2022]
Abstract
The current detoxification options of uranium, a toxic radioactive heavy metal, have obvious side effects. Polygonatum kingianum (PK), a natural product with the function of antioxidant, may be effective in detoxification and prevention of uranium-induced nephrotoxicity. Here, we studied the protective effects of PK polysaccharides (PKP) and aqueous extract (PKAE) on uranium-induced toxicity in human kidney (HK-2) cells. First, the physicochemical properties of PKP and PKAE were characterized. Assays on cultured cells demonstrated that pretreatment with PKP and PKAE significantly increased metabolic activity, relieved morphological impairments, and alleviated apoptosis. The impairments caused by uranium exposure were ameliorated (mitochondrial membrane potential and ATP level increased while reactive oxygen species decreased). Molecular mechanistic studies revealed that PKP and PKAE alleviated uranium-induced cytotoxicity by regulating mitochondria-mediated apoptosis and the GSK-3β/Fyn/Nrf2 pathway. Collectively, our data support the preventive and therapeutic applications of PKP and PKAE for uranium poisoning.
Collapse
Affiliation(s)
- Wenjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Bo Fu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| |
Collapse
|
15
|
Ma M, Wang R, Xu L, Xu M, Liu S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. ENVIRONMENT INTERNATIONAL 2020; 145:106107. [PMID: 32932066 DOI: 10.1016/j.envint.2020.106107] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Uranium contamination is a global health concern. Regarding natural or anthropogenic uranium contamination, the major sources of concern are groundwater, mining, phosphate fertilizers, nuclear facilities, and military activities. Many epidemiological and laboratory studies have demonstrated that environmental and occupational uranium exposure can induce multifarious health problems. Uranium exposure may cause health risks because of its chemotoxicity and radiotoxicity in natural or anthropogenic scenarios: the former is generally thought to play a more significant role with regard to the natural uranium exposure, and the latter is more relevant to enriched uranium exposure. The understanding of the health risks and underlying toxicological mechanisms of uranium remains at a preliminary stage, and many controversial findings require further research. In order to present state-of-the-art status in this field, this review will primarily focus on the chemotoxicity of uranium, rather than its radiotoxicity, as well as the involved toxicological mechanisms. First, the natural or anthropogenic uranium contamination scenarios will be briefly summarized. Second, the health risks upon natural uranium exposure, for example, nephrotoxicity, bone toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and pulmonary toxicity, will be discussed based on the reported epidemiological cases and laboratory studies. Third, the recent advances regarding the toxicological mechanisms of uranium-induced chemotoxicity will be highlighted, including oxidative stress, genetic damage, protein impairment, inflammation, and metabolic disorder. Finally, the gaps and challenges in the knowledge of uranium-induced chemotoxicity and underlying mechanisms will be discussed.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Bjørklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, Chirumbolo S. Uranium in drinking water: a public health threat. Arch Toxicol 2020; 94:1551-1560. [DOI: 10.1007/s00204-020-02676-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
|
17
|
Omidkhoda SF, Razavi BM, Hosseinzadeh H. Protective effects of Ginkgo biloba L. against natural toxins, chemical toxicities, and radiation: A comprehensive review. Phytother Res 2019; 33:2821-2840. [PMID: 31429152 DOI: 10.1002/ptr.6469] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays in our developing and industrial world, humans' health or even their life is threatened by exposure to poisons. In this situation, detecting a protective compound could be helpful and interesting. In the present article, we collected and reviewed all studies, which have been conducted so far about the protective effects of Ginkgo biloba L. (GB), one of the most ancient medicinal tree species, against toxicities induced by chemical toxic agents, natural toxins, and also radiation. In overall, investigations showed that GB exerts the antioxidant, antiinflammatory, antiapoptotic, and antigenotoxicity effects in different toxicities. There are also some special mechanisms about its protective effects against some specific toxic agents, such as acetylcholine esterase inhibition in the aluminium neurotoxicity or membrane-bond phosphodiesterase activation in the triethyltin toxicity. Ginkgolide A was the most investigated active ingredient of G. biloba leaf extract as a protective compound against toxicities, which had the similar effects of total extract. A few clinical studies have been conducted in this field, which demonstrated the beneficial effects of GB against toxic agents. However, the promising effects of this valuable herbal extract will practically remain useless without carrying out more clinical studies and proving its effects on human beings.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - BiBi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Wahby MM, Abdallah ZM, Abdou HM, Yousef MI, Newairy ASA. Mitigating potential ofGinkgo bilobaextract and melatonin against hepatic and nephrotoxicity induced by Bisphenol A in male rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mayssaa M. Wahby
- Faculty of Science, Biochemistry Department, Alexandria University, Alexandria 21311, Egypt
| | - Zaynab M. Abdallah
- Faculty of Science, Biochemistry Department, Alexandria University, Alexandria 21311, Egypt
| | - Heba M. Abdou
- Faculty of Science, Zoology Department, Alexandria University, Alexandria 21311, Egypt
| | - Mokhtar I. Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Al-Sayeda A. Newairy
- Faculty of Science, Biochemistry Department, Alexandria University, Alexandria 21311, Egypt
| |
Collapse
|
19
|
Yi J, Yuan Y, Zheng J, Zhao T. Hydrogen sulfide alleviates uranium-induced rat hepatocyte cytotoxicity via inhibiting Nox4/ROS/p38 MAPK pathway. J Biochem Mol Toxicol 2018; 33:e22255. [PMID: 30368988 DOI: 10.1002/jbt.22255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 11/06/2022]
Abstract
As a gasotransmitter, hydrogen sulfide (H2 S) plays a crucial role in regulating the signaling pathway mediated by oxidative stress. The purpose of this study was to investigate the protective effects of H 2 S on uranium-induced rat hepatocyte cytotoxicity. Primary hepatocytes were isolated and cultured from Sprague Dawley rat liver tissues. After pretreating with sodium hydrosulfide (an H 2 S donor) for 1 hour (or GKT-136901 for 30 minutes), hepatocytes were treated by uranyl acetate for 24 hours. Cell viability, reactive oxygen species (ROS), malondialdehyde (MDA), NADPH oxidase 4 (Nox4), and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation were respectively determined. The effects of direct inhibition of Nox4 expression by GKT-136901 (a Nox4 inhibitor) on ROS and phospho-p38 MAPK levels were examined in uranium-treated hepatocytes. The results implicate that H 2 S can afford protection of rat hepatocytes against uranium-induced adverse effects through attenuating oxidative stress via prohibiting Nox4/ROS/p38 MAPK signaling.
Collapse
Affiliation(s)
- Juan Yi
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Yan Yuan
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Jifang Zheng
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Tingting Zhao
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| |
Collapse
|
20
|
Aziz TA, Hussain SA, Mahwi TO, Ahmed ZA. Efficacy and safety of Ginkgo biloba extract as an "add-on" treatment to metformin for patients with metabolic syndrome: a pilot clinical study. Ther Clin Risk Manag 2018; 14:1219-1226. [PMID: 30034238 PMCID: PMC6047609 DOI: 10.2147/tcrm.s169503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background and aim Ginkgo biloba (GKB) extract has shown to be beneficial in experimental models of metabolic and inflammatory disorders such as diabetes and metabolic syndrome (MTS). The objective of this pilot clinical study was to evaluate the effects of GKB extract as an “add-on” treatment with metformin (Met) in MTS patients. Patients and methods We performed a randomized, placebo-controlled, double-blinded clinical study in subjects with MTS. Forty patients completed the 90-day clinical trial and were randomly allocated to administer either GKB extract (120 mg capsule/day) or placebo (120 mg starch/day) as an add-on treatment with their currently used doses of Met for 90 days. During the study, body mass index (BMI), waist circumference (WC), serum leptin, glycated hemoglobin (HbA1c), fasting serum glucose (FSG), insulin, insulin resistance (IR), visceral adiposity index (VAI), lipid profile, and the inflammatory markers high sensitive C-reactive protein (hsCRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated. Results GKB extract significantly decreases HbA1c, FSG and insulin levels, IR, BMI, WC, VAI, serum leptin, and the inflammatory markers compared to baseline values. Simultaneously, GKB did not negatively affect the functions of the liver, kidney, and hematopoietic system. Conclusion The use of GKB extract as an adjuvant with Met was effective in improving the outcome of patients with MTS.
Collapse
Affiliation(s)
- Tavga Ahmed Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Kurdistan, Iraq,
| | - Saad Abdulrahman Hussain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Rafidain University College, Baghdad, Iraq
| | - Taha Othman Mahwi
- Department of Internal Medicine, College of Medicine, University of Sulaimani, Kurdistan, Iraq
| | - Zheen Aorahman Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Kurdistan, Iraq,
| |
Collapse
|
21
|
Protective Effect of Ginkgo biloba and Magnetized Water on Nephropathy in Induced Type 2 Diabetes in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1785614. [PMID: 29991974 PMCID: PMC6016160 DOI: 10.1155/2018/1785614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
We aimed in our current study to explore the protective effect of Ginkgo biloba (GB) and magnetized water (MW) against nephrotoxicity associating induced type 2 diabetes mellitus in rat. Here, we induced diabetes by feeding our lab rats on a high fat-containing diet (4 weeks) and after that injecting them with streptozotocin (STZ). We randomly divided forty rats into four different groups: nontreated control (Ctrl), nontreated diabetic (Diabetic), Diabetic+GB (4-week treatment), and Diabetic+MW (4-week treatment). After the experiment was finished, serum and kidney tissue samples were gathered. Blood levels of glucose, triglycerides, cholesterol, creatinine, and urea were markedly elevated in the diabetic group than in the control group. In all animals treated with GB and MW, the levels of urea, creatinine, and glucose were significantly reduced (all P < 0.01). GB and MW attenuated glomerular and tubular injury as well as the histological score. Furthermore, they normalized the contents of glutathione reductase and SOD2. In summary, our data showed that GB and MW treatment protected type 2 diabetic rat kidneys from nephrotoxic damages by reducing the hyperlipidemia, uremia, oxidative stress, and renal dysfunction.
Collapse
|
22
|
Yue YC, Li MH, Wang HB, Zhang BL, He W. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med 2018; 23:18. [PMID: 29769021 PMCID: PMC5956823 DOI: 10.1186/s12199-018-0706-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Depleted uranium (DU) has been widely applied in industrial and military activities, and is often obtained from producing fuel for nuclear reactors. DU may be released into the environment, polluting air, soil, and water, and is considered to exert both radiological and chemical toxicity. In humans and animals, DU can induce multiple health effects, such as renal tubular necrosis and bone malignancies. This review summarizes the known information on DU’s routes of entry, mechanisms of toxicity, and health effects. In addition, we survey the chelating agents used in ameliorating DU toxicity.
Collapse
Affiliation(s)
- Yong-Chao Yue
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Ming-Hua Li
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Hai-Bo Wang
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
23
|
Ren J, Hao Y, Gao R, Zhang Y, Ran Y, Liu J, Dai X, Xiong W, Su Y, Li R. Effect of a novel polyethylene glycol compound on lung lavage in dogs after the inhalation of depleted uranium dust. Int J Radiat Biol 2018; 94:462-471. [DOI: 10.1080/09553002.2018.1446228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiong Ren
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rui Gao
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
24
|
Bjørklund G, Christophersen OA, Chirumbolo S, Selinus O, Aaseth J. Recent aspects of uranium toxicology in medical geology. ENVIRONMENTAL RESEARCH 2017; 156:526-533. [PMID: 28431380 DOI: 10.1016/j.envres.2017.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Uranium (U) is a chemo-toxic, radiotoxic and even a carcinogenic element. Due to its radioactivity, the effects of U on humans health have been extensively investigated. Prolonged U exposure may cause kidney disease and cancer. The geological distribution of U radionuclides is still a great concern for human health. Uranium in groundwater, frequently used as drinking water, and general environmental pollution with U raise concerns about the potential public health problem in several areas of Asia. The particular paleo-geological hallmark of India and other Southern Asiatic regions enhances the risk of U pollution in rural and urban communities. This paper highlights different health and environmental aspects of U as well as uptake and intake. It discusses levels of U in soil and water and the related health issues. Also described are different issues of U pollution, such as U and fertilizers, occupational exposure in miners, use and hazards of U in weapons (depleted U), U and plutonium as catalysts in the reaction between DNA and H2O2, and recycling of U from groundwater to surface soils in irrigation. For use in medical geology and U research, large databases and data warehouses are currently available in Europe and the United States.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Olle Selinus
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Hedmark University of Applied Sciences, Elverum, Norway
| |
Collapse
|
25
|
Yuan Y, Zheng J, Zhao T, Tang X, Hu N. Hydrogen sulfide alleviates uranium-induced acute hepatotoxicity in rats: Role of antioxidant and antiapoptotic signaling. ENVIRONMENTAL TOXICOLOGY 2017; 32:581-593. [PMID: 26991019 DOI: 10.1002/tox.22261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
As an endogenous gaseous mediator, H2 S exerts antioxidative, antiapoptotic, and cytoprotective effects in livers. This study was designed to investigate the protective role of H2 S against uranium-induced hepatotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2 S production was determined in livers. The levels of endogenous H2 S and H2 S-producing enzymes (CBS and CSE) were measured in liver homogenates from uranium -intoxicated rats. In rats injected intraperitoneally (i.p.) with uranyl acetate or NaHS (an H2 S donor) alone or in combination, we examined biochemical parameters to assess liver function, revealed hepatic histopathological alteration, investigated oxidative stress markers, and explored apoptotic signaling in liver homogenates. The results suggest that uranium-intoxication in rats decreased CBS and CSE protein expression, H2 S synthesis capacity, and endogenous H2 S generation. NaHS administration in uranium-intoxicated rats produced amelioration in liver biochemical indices and histopathological effects, decreased MDA content, and increased GSH level and antioxidative enzymes activities like SOD, CAT, GPx, and GST. NaHS administration in uranium-intoxicated rats attenuated uranium-activated phosphorylation state of JNK. NaHS treatment in uranium-intoxicated rats increased antiapoptotic Bcl-2 but decreased pro-apoptotic Bax, resulting in the rise of Bcl-2/Bax ratio. NaHS treatment in uranium-intoxicated rats reduced the apoptosis mediator caspase-3 and cytochrome c release and elevated ATP contents. Taken together, these data implicate that H2 S can afford protection to rat livers against uranium-induced adverse effects mediated by up-regulation of antioxidant and antiapoptotic signaling. The anti-apoptotic property of H2 S may be involved, at least in part, in inhibiting JNK signaling. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 581-593, 2017.
Collapse
Affiliation(s)
- Yan Yuan
- Department of Biology, Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Jifang Zheng
- Department of Biology, Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Tingting Zhao
- Department of Biology, Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Xiaoqing Tang
- Department of Physiology, Institute of Neuroscience, Medical College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province, 421001, People's Republic of China
| |
Collapse
|
26
|
Sangeetha Vijayan P, Rekha PD, Dinesh U, Arun AB. Biochemical and histopathological responses of the Swiss albino mice treated with uranyl nitrate and its recovery. Ren Fail 2016; 38:770-5. [DOI: 10.3109/0886022x.2016.1160248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
27
|
Zheng J, Zhao T, Yuan Y, Hu N, Tang X. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways. Chem Biol Interact 2015; 242:353-62. [PMID: 26523793 DOI: 10.1016/j.cbi.2015.10.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 10/27/2015] [Indexed: 01/14/2023]
Abstract
As an endogenous gaseous mediator, H2S exerts anti-oxidative, anti-inflammatory and cytoprotective effects in kidneys. This study was designed to investigate the protective effect of H2S against uranium-induced nephrotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2S formation was explored in kidneys. The levels of endogenous H2S and H2S-producing enzymes (CBS and CSE) were measured in renal homogenates from rats intoxicated by an intraperitoneally (i.p.) injection of uranyl acetate at a single dose of 2.5, 5 or 10 mg/kg. In rats injected i.p. with uranyl acetate (5 mg/kg) or NaHS (an H2S donor, 28 or 56 μmol/kg) alone or in combination, we determined biochemical parameters and histopathological alteration to assess kidney function, examined oxidative stress markers, and investigated Nrf2 and NF-κB pathways in kidney homogenates. The results suggest that uranium intoxication in rats decreased endogenous H2S generation as well as CBS and CSE protein expression. NaHS administration in uranium-intoxicated rats ameliorated the renal biochemical indices and histopathological effects, lowered MDA accumulation, and restored GSH level and anti-oxidative enzymes activities like SOD, CAT, GPx and GST. NaHS treatment in uranium-intoxicated rats activated uranium-inhibited protein expression and nuclear translocation of transcription factor Nrf2, which increased protein expression of downstream target-Nrf2 genes HO-1, NQO-1, GCLC, and TXNRD-1. NaHS administration in uranium-intoxicated rats inhibited uranium-induced nuclear translocation and phosphorylation of transcription factor κB/p65, which decreased protein expression of target-p65 inflammatory genes TNF-α, iNOS, and COX-2. Taken together, these data implicate that H2S can afford protection to rat kidneys against uranium-induced adverse effects through induction of antioxidant defense by activating Nrf2 pathway and reduction of inflammatory response by suppressing NF-κB pathway.
Collapse
Affiliation(s)
- Jifang Zheng
- Institute of Biology, Pharmacy and Life College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Tingting Zhao
- Institute of Biology, Pharmacy and Life College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Yan Yuan
- Institute of Biology, Pharmacy and Life College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Xiaoqing Tang
- Institute of Neuroscience, Medical College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
28
|
Poisson C, Stefani J, Manens L, Delissen O, Suhard D, Tessier C, Dublineau I, Guéguen Y. Chronic uranium exposure dose-dependently induces glutathione in rats without any nephrotoxicity. Free Radic Res 2014; 48:1218-31. [PMID: 25056594 DOI: 10.3109/10715762.2014.945441] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Uranium is a heavy metal naturally found in the earth's crust that can contaminate the general public population when ingested. The acute effect and notably the uranium nephrotoxicity are well known but knowledge about the effect of chronic uranium exposure is less clear. In a dose-response study we sought to determine if a chronic exposure to uranium is toxic to the kidneys and the liver, and what the anti-oxidative system plays in these effects. Rats were contaminated for 3 or 9 months by uranium in drinking water at different concentrations (0, 1, 40, 120, 400, or 600 mg/L). Uranium tissue content in the liver, kidneys, and bones was linear and proportional to uranium intake after 3 and 9 months of contamination; it reached 6 μg per gram of kidney tissues for the highest uranium level in drinking water. Nevertheless, no histological lesions of the kidney were observed, nor any modification of kidney biomarkers such as creatinine or KIM-1. After 9 months of contamination at and above the 120-mg/L concentration of uranium, lipid peroxidation levels decreased in plasma, liver, and kidneys. Glutathione concentration increased in the liver for the 600-mg/L group, in the kidney it increased dose dependently, up to 10-fold, after 9 months of contamination. Conversely, chronic uranium exposure irregularly modified gene expression of antioxidant enzymes and activities in the liver and kidneys. In conclusion, chronic uranium exposure did not induce nephrotoxic effects under our experimental conditions, but instead reinforced the antioxidant system, especially by increasing glutathione levels in the kidneys.
Collapse
Affiliation(s)
- C Poisson
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX , Fontenay-aux-Roses , France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hepatoprotective effect of Ginkgo biloba leaf extract on lantadenes-induced hepatotoxicity in guinea pigs. Toxicon 2014; 81:1-12. [DOI: 10.1016/j.toxicon.2014.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 12/17/2022]
|
30
|
Shelley R, Kim NS, Parsons PJ, Lee BK, Agnew J, Jaar BG, Steuerwald AJ, Matanoski G, Fadrowski J, Schwartz BS, Todd AC, Simon D, Weaver VM. Uranium associations with kidney outcomes vary by urine concentration adjustment method. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:58-64. [PMID: 23591699 PMCID: PMC5457699 DOI: 10.1038/jes.2013.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/15/2013] [Accepted: 02/12/2013] [Indexed: 05/21/2023]
Abstract
Uranium is a ubiquitous metal that is nephrotoxic at high doses. Few epidemiologic studies have examined the kidney filtration impact of chronic environmental exposure. In 684 lead workers environmentally exposed to uranium, multiple linear regression was used to examine associations of uranium measured in a 4-h urine collection with measured creatinine clearance, serum creatinine- and cystatin-C-based estimated glomerular filtration rates, and N-acetyl-β-D-glucosaminidase (NAG). Three methods were utilized, in separate models, to adjust uranium levels for urine concentration--μg uranium/g creatinine; μg uranium/l and urine creatinine as separate covariates; and μg uranium/4 h. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 μg/4 h and were highly correlated (rs=0.95). After adjustment, higher ln-urine uranium was associated with lower measured creatinine clearance and higher NAG in models that used urine creatinine to adjust for urine concentration but not in models that used total uranium excreted (μg/4 h). These results suggest that, in some instances, associations between urine toxicants and kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and outcome metrics, rather than nephrotoxic. These findings support consideration of non-creatinine-based methods of adjustment for urine concentration in nephrotoxicant research.
Collapse
Affiliation(s)
- Rebecca Shelley
- Division of Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Nam-Soo Kim
- Institute of Industrial Medicine, SoonChunHyang University, Asan, South Korea
| | - Patrick J. Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, New York
| | - Byung-Kook Lee
- Institute of Industrial Medicine, SoonChunHyang University, Asan, South Korea
| | - Jacqueline Agnew
- Division of Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Bernard G. Jaar
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Amy J. Steuerwald
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, New York
| | - Genevieve Matanoski
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health
| | - Jeffrey Fadrowski
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Brian S. Schwartz
- Division of Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew C. Todd
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, New York
| | | | - Virginia M. Weaver
- Division of Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
31
|
Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J. Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta Gen Subj 2012; 1820:1940-50. [PMID: 22940002 DOI: 10.1016/j.bbagen.2012.08.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Kidney is known as the most sensitive target organ for depleted uranium (DU) toxicity in comparison to other organs. Although the oxidative stress and mitochondrial damage induced by DU has been well investigated, the precise mechanism of DU-induced nephrotoxicity has not been thoroughly recognized yet. METHODS Kidney mitochondria were obtained using differential centrifugation from Wistar rats and mitochondrial toxicity endpoints were then determined in both in vivo and in vitro uranyl acetate (UA) exposure cases. RESULTS Single injection of UA (0, 0.5, 1 and 2mg/kg, i.p.) caused a significant increase in blood urea nitrogen and creatinine levels. Isolated mitochondria from the UA-treated rat kidney showed a marked elevation in oxidative stress accompanied by mitochondrial membrane potential (MMP) collapse as compared to control group. Incubation of isolated kidney mitochondria with UA (50, 100 and 200μM) manifested that UA can disrupt the electron transfer chain at complex II and III that leads to induction of reactive oxygen species (ROS) formation, lipid peroxidation, and glutathione oxidation. Disturbances in oxidative phosphorylation were also demonstrated through decreased ATP concentration and ATP/ADP ratio in UA-treated mitochondria. In addition, UA induced a significant damage in mitochondrial outer membrane. Moreover, MMP collapse, mitochondrial swelling and cytochrome c release were observed following the UA treatment in isolated mitochondria. GENERAL SIGNIFICANCE Both our in vivo and in vitro results showed that UA-induced nephrotoxicity is linked to the impairment of electron transfer chain especially at complex II and III which leads to subsequent oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Shaki
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
32
|
Hao Y, Ren J, Liu J, Luo S, Ma T, Li R, Su Y. The Protective Role of Zinc against Acute Toxicity of Depleted Uranium in Rats. Basic Clin Pharmacol Toxicol 2012; 111:402-10. [DOI: 10.1111/j.1742-7843.2012.00910.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/30/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Jiong Ren
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Ting Ma
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| |
Collapse
|
33
|
Al Kaddissi S, Legeay A, Elia AC, Gonzalez P, Camilleri V, Gilbin R, Simon O. Effects of uranium on crayfish Procambarus clarkii mitochondria and antioxidants responses after chronic exposure: what have we learned? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:218-224. [PMID: 22154145 DOI: 10.1016/j.ecoenv.2011.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 05/29/2023]
Abstract
We examined the impacts of Uranium (U) on mitochondria and on the response of antioxidants in the gills and the hepatopancreas of crayfish Procambarus clarkii after long-term exposure (30 and 60 days) to an environmentally relevant concentration (30 μg U/L). The expression of mitochondrial genes (12s, atp6, and cox1), as well as the genes involved in oxidative stress responses (sod(Mn) and mt) were evaluated. The activities of antioxidant enzymes (SOD, CAT, GPX and GST) were also studied. U accumulation in organs induced changes in genes' expression. The evolution of these transcriptional responses and differences between gene expression levels at high and low doses of exposure were also discussed. This study demonstrated that, after long-term exposure, U caused a decrease in antioxidant activities and induced oxidative stress. A possible ROS-mediated U cytotoxic mechanism is proposed. Expression levels of the investigated genes can possibly be used as a tool to evaluate U toxicity and seem to be more sensitive than the enzymatic activities. However a multiple biomarker approach is recommended as the perturbed pathways and the mode of action of this pollutant are not completely understood.
Collapse
Affiliation(s)
- Simone Al Kaddissi
- Laboratory of Radioecology and Ecotoxicology, Institute of Radioprotection and Nuclear Safety, Bd 186, BP 3, 13115 Saint-Paul-Lez-Durance, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Cavuşoğlu K, Yapar K, Oruç E, Yalçın E. Protective effect of Ginkgo biloba L. leaf extract against glyphosate toxicity in Swiss albino mice. J Med Food 2011; 14:1263-72. [PMID: 21859351 DOI: 10.1089/jmf.2010.0202] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to investigate the protective role of Ginkgo biloba L. leaf extract against the active agent of Roundup® herbicide (Monsanto, Creve Coeur, MO, USA). The Swiss Albino mice were randomly divided into six groups, with each group consisting of six animals: Group I (control) received an intraperitoneal injection of dimethyl sulfoxide (0.2 mL, once only), Group II received glyphosate at a dose of 50 mg/kg of body weight, Group III received G. biloba at a dose of 50 mg/kg of body weight, Group IV received G. biloba at a dose of 150 mg/kg of body weight, Group V received G. biloba (50 mg/kg of body weight) and glyphosate (50 mg/kg of body weight), and Group VI received G. biloba (150 mg/kg of body weight) and glyphosate (50 mg/kg of body weight). The single dose of glyphosate was given intraperitoneally. Animals from all the groups were sacrificed at the end of 72 hours, and their blood, bone marrow, and liver and kidney tissues were analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), and glutathione (GSH) levels and the presence of micronucleus (MN), chromosomal aberrations (CAs), and pathological damages. The results indicated that serum AST, ALT, BUN, and creatinine levels significantly increased in mice treated with glyphosate alone compared with the other groups (P<.05). Besides, glyphosate-induced oxidative damage caused a significant decrease in GSH levels and a significant increase in MDA levels of the liver and kidney tissues. Moreover, glyphosate alone-treated mice presented higher frequencies of CAs, MNs, and abnormal metaphases compared with the controls (P<.05). These mice also displayed a lower mean mitotic index than the controls (P<.05). Treatment with G. biloba produced amelioration in indices of hepatotoxicity, nephrotoxicity, lipid peroxidation, and genotoxicity relative to Group II. Each dose of G. biloba provided significant protection against glyphosate-induced toxicity, and the strongest effect was observed at a dose of 150 mg/kg of body weight. Thus, in vivo results showed that G. biloba extract is a potent protector against glyphosate-induced toxicity, and its protective role is dose-dependent.
Collapse
Affiliation(s)
- Kültiğin Cavuşoğlu
- Department of Biology, Faculty of Science and Arts, Giresun University, Giresun, Turkey.
| | | | | | | |
Collapse
|
35
|
Bernatoniene J, Majiene D, Peciura R, Laukeviciene A, Bernatoniene R, Mekas T, Kasauskas A, Kopustinskiene D. The Effect of Ginkgo biloba
Extract on Mitochondrial Oxidative Phosphorylation in the Normal and Ischemic Rat Heart. Phytother Res 2011; 25:1054-60. [DOI: 10.1002/ptr.3399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy; Kaunas University of Medicine; A. Mickeviciaus str. 9 LT-44307 Kaunas Lithuania
| | - Daiva Majiene
- Department of Drug Technology and Social Pharmacy; Kaunas University of Medicine; A. Mickeviciaus str. 9 LT-44307 Kaunas Lithuania
- Institute for Biomedical Research; Kaunas University of Medicine; Eiveniu str. 4 LT-50009 Kaunas Lithuania
| | - Rimantas Peciura
- Department of Drug Technology and Social Pharmacy; Kaunas University of Medicine; A. Mickeviciaus str. 9 LT-44307 Kaunas Lithuania
| | - Ale Laukeviciene
- Department of Physiology; Kaunas University of Medicine; Kaunas, A. Mickeviciaus str. 9 LT-44307 Kaunas Lithuania
| | - Ruta Bernatoniene
- Department of Pharmaceutical Chemistry; Kaunas University of Medicine; A. Mickeviciaus str. 9 LT-44307 Kaunas Lithuania
| | - Tauras Mekas
- Department of Drug Technology and Social Pharmacy; Kaunas University of Medicine; A. Mickeviciaus str. 9 LT-44307 Kaunas Lithuania
| | - Arturas Kasauskas
- Department of Biochemistry; Kaunas University of Medicine; Eiveniu str. 4 LT-50009 Kaunas Lithuania
| | - Dalia Kopustinskiene
- Institute for Biomedical Research; Kaunas University of Medicine; Eiveniu str. 4 LT-50009 Kaunas Lithuania
- Department of Biochemistry; Kaunas University of Medicine; Eiveniu str. 4 LT-50009 Kaunas Lithuania
| |
Collapse
|
36
|
Vicente-Vicente L, Quiros Y, Pérez-Barriocanal F, López-Novoa JM, López-Hernández FJ, Morales AI. Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicol Sci 2010; 118:324-47. [PMID: 20554698 DOI: 10.1093/toxsci/kfq178] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As in the case of other heavy metals, a considerable body of evidence suggests that overexposure to uranium may cause pathological alterations to the kidneys in both humans and animals. In the present work, our aim was to analyze the available data from a critical perspective that should provide a view of the real danger of the nephrotoxicity of this metal for human beings. A further aim was to elaborate a comparative compilation of the renal pathophysiological data obtained in humans and experimental animals with a view to gaining more insight into our knowledge of the mechanisms of action and renal damage. Finally, we address the existing perspectives for the improvement of diagnostic methods and the treatment of intoxications by uranium, performing an integrated analysis of all these aspects.
Collapse
Affiliation(s)
- Laura Vicente-Vicente
- Unidad de Toxicología, Universidad de Salamanca, Edificio Departamental, S-19, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|