1
|
Kang YG, Kwon J, Kwon S, Kim AR. Synergistic Effects of Korean Mistletoe and Apple Peel Extracts on Muscle Strength and Endurance. Nutrients 2024; 16:3255. [PMID: 39408221 PMCID: PMC11478607 DOI: 10.3390/nu16193255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Muscular strength and endurance are vital for physical fitness. While mistletoe extract has shown efficacy in significantly increasing muscle strength and endurance, its accessibility is limited. This study explores combining mistletoe and apple peel extracts as an effective muscle health supplement. Analyses of histology, RNA, and protein in the combined extract-treated mouse group demonstrated significant enhancements in muscle strength and endurance, evidenced by larger muscle fibers, improved mitochondrial function, and a higher ratio of type I and IIa muscle fibers. Combining half doses of each extract resulted in greater improvements than using each extract separately, indicating a synergistic effect. Pathway analysis suggests that the observed synergy arises from complementary mechanisms, with a mistletoe extract-induced decrease in myostatin (MSTN) and an apple peel extract-induced increase in IGF1, leading to a sharp rise in AKT, S6K, and MuRF1, which promote myogenesis, along with a significant increase in PGC-1α, TFAM, and MEF2C, which are critical for mitochondrial biogenesis. This research provides practical insights into developing cost-effective, natural supplements to enhance muscle performance and endurance, with potential applications in athletic performance, improving muscle growth and endurance in children, and addressing age-related muscle decline.
Collapse
Affiliation(s)
- Youn-Goo Kang
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea;
| | - Joonhyuk Kwon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Soonjun Kwon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Ah-Ram Kim
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea;
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
2
|
Nicoletti M. The Antioxidant Activity of Mistletoes ( Viscum album and Other Species). PLANTS (BASEL, SWITZERLAND) 2023; 12:2707. [PMID: 37514321 PMCID: PMC10384781 DOI: 10.3390/plants12142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In addition to the European mistletoe, Viscum album, which is the most known and utilized one, there are several species commonly known as mistletoe. They are spread in various regions of the planet and are all characterized by hemiparasitism and epiphytic behaviour. The published studies evidence other similarities, including the sharing of important biological properties, with the common presence of antioxidant effects. However, whereas the European mistletoe is largely utilized in medical treatments, although with controversial aspects, the scientific knowledge and medical uses of other mistletoes are still insufficient. This review focuses on the controversial medical story of European mistletoe regarding its antioxidant activity and the potentiality of the other species named mistletoe pertaining to botanical families and genera different from Viscum.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Foundation in Unam Sapientiam, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
The Potential Role of Korean Mistletoe Extract as an Anti-Inflammatory Supplementation. J Immunol Res 2021; 2021:2183427. [PMID: 34307692 PMCID: PMC8263236 DOI: 10.1155/2021/2183427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/20/2021] [Indexed: 01/21/2023] Open
Abstract
Korean mistletoe has anti-inflammatory and antioxidant functions and may be a useful training supplement. We investigated the effect of Korean mistletoe extract (KME) on inflammatory markers after high-intensity exercise by 20 university male rowers (KME group vs. CON group) consuming 110 mL KME/dose (2 times a day over 8 weeks). Blood samples were collected for measurement of serum cytokine levels at baseline, immediately after exercise, and following 30 minutes of recovery. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) were used as markers for inflammation. After supplementation, IL-6 and TNF-α levels were significantly lowered in the KME group than in the CON group at baseline, immediately after exercise, and following 30 minutes of recovery. KME can reduce high-strength exercise-induced increases in the levels of serum inflammatory cytokines in active individuals and improve anti-inflammatory functions.
Collapse
|
4
|
Lee SH, Lee HY, Min KJ. Korean mistletoe (Viscum album var. coloratum) extends the lifespan via FOXO activation induced by dSir2 in Drosophila melanogaster. Geriatr Gerontol Int 2021; 21:725-731. [PMID: 34101322 DOI: 10.1111/ggi.14204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
AIM We examined the underlying mechanisms associated with the longevity effects of Korean mistletoe extract (KME) in Drosophila melanogaster. METHODS We measured the lifespan of sirtuin, chico and foxo mutant flies fed KME, the expression of the forkhead box O (FOXO) target genes and insulin-like peptide genes, and the localization of FOXO in flies fed the KME. RESULTS The longevity effect of KME was abolished in sirtuin, chico and foxo null mutant flies. In addition, the expression of FOXO target genes and the localization of FOXO into nuclei were increased in flies fed KME, but the expression of the insulin-like peptide genes was decreased by KME supplementation. CONCLUSIONS The results show that KME extends the fly lifespan through sirtuin-induced FOXO activation. We suggest that KME has potential use as a beneficial anti-aging and longevity supplement. Geriatr Gerontol Int 2021; 21: 725-731.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| |
Collapse
|
5
|
Szurpnicka A, Kowalczuk A, Szterk A. Biological activity of mistletoe: in vitro and in vivo studies and mechanisms of action. Arch Pharm Res 2020; 43:593-629. [PMID: 32621089 PMCID: PMC7340679 DOI: 10.1007/s12272-020-01247-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Mistletoe has been used as treatment of many diseases in traditional and folk medicine. To date, anticancer, immunomodulatory, cardiac, antidiabetic, hepatoprotective, neuropharmacological, antibacterial and antifungal properties of mistletoe extracts have been studied the most. In this review, we summarized in vitro and in vivo studies on the pharmacological activity of Viscum species. Furthermore, we proposed the possible mechanisms of action of this herb, which might include many signalling pathways. Mistletoe could regulate either similar or different targets in various pathways that act on membrane receptors, enzymes, ion channels, transporter proteins and transcriptional targets. Still, pharmacological activities of mistletoe have been investigated mainly for crude extracts. It is a new field for scientists to determined which chemical compounds are responsible for the individual biological activities of mistletoe and how these activities are achieved. As a result, mistletoe might become a source of new complementary therapies supporting the treatment of many diseases.
Collapse
Affiliation(s)
- Anna Szurpnicka
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Arkadiusz Szterk
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
6
|
Kim KD, Jung HY, Ryu HG, Kim B, Jeon J, Yoo HY, Park CH, Choi BH, Hyun CK, Kim KT, Fang S, Yang SH, Kim JB. Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK. Nutr Metab Cardiovasc Dis 2019; 29:409-420. [PMID: 30799179 DOI: 10.1016/j.numecd.2018.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Metabolic syndromes are prevalent worldwide and result in various complications including obesity, cardiovascular disease and type II diabetes. Betulinic acid (BA) is a naturally occurring triterpenoid that has anti-inflammatory properties. We hypothesized that treatment with BA may result in decreased body weight gain, adiposity and hepatic steatosis in a diet-induced mouse model of obesity. METHODS AND RESULTS Mice fed a high-fat diet and treated with BA showed less weight gain and tissue adiposity without any change in calorie intake. Gene expression profiling of mouse tissues and cell lines revealed that BA treatment increased expression of lipid oxidative genes and decreased that of lipogenesis-related genes. This modulation was mediated by increased AMP-activated protein kinase (AMPK) phosphorylation, which facilitates energy expenditure, lipid oxidation and thermogenic capacity and exerts protective effects against obesity and nonalcoholic fatty liver disease. Overall, BA markedly inhibited the development of obesity and nonalcoholic fatty liver disease in mice fed a high-fat diet, and AMPK activation in various tissues and enhanced thermogenesis are two possible mechanisms underlying the antiobesity and antisteatogenic effects of BA. CONCLUSIONS The current findings suggest that treatment with BA is a potential dietary strategy for preventing obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- K-D Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea
| | - H-Y Jung
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea; R&D Center, NovMetaPharma Co., Ltd., Pohang, Gyungbuk, South Korea
| | - H G Ryu
- Department of Life Sciences, POSTECH, Pohang, Gyungbuk, South Korea
| | - B Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea; R&D Center, NovMetaPharma Co., Ltd., Pohang, Gyungbuk, South Korea
| | - J Jeon
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea; R&D Center, NovMetaPharma Co., Ltd., Pohang, Gyungbuk, South Korea
| | - H Y Yoo
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea
| | - C H Park
- Mistle Biotech Co., Ltd., Pohang, Gyungbuk, South Korea
| | - B-H Choi
- Advanced Bio Convergence Center, Pohang Technopark, Pohang, Gyungbuk, South Korea
| | - C-K Hyun
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea
| | - K-T Kim
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea; Department of Life Sciences, POSTECH, Pohang, Gyungbuk, South Korea
| | - S Fang
- Severance Biomedical Science Institute, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - S H Yang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Seoul National University Biomedical Research Institute, Seoul, South Korea
| | - J-B Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea; Mistle Biotech Co., Ltd., Pohang, Gyungbuk, South Korea.
| |
Collapse
|
7
|
Han N, Kim H, Kim N, Lee W, Jeong H, Kim H, Jeong H. Leucine and glycine dipeptides of porcine placenta ameliorate physical fatigue through enhancing dopaminergic systems. Mol Med Rep 2017; 17:4120-4130. [DOI: 10.3892/mmr.2017.8335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Na‑Ra Han
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee‑Yun Kim
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na‑Rae Kim
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won‑Kyung Lee
- LG Household and Healthcare Research Park, Daejeon 34114, Republic of Korea
| | - Hyein Jeong
- LG Household and Healthcare Research Park, Daejeon 34114, Republic of Korea
| | - Hyung‑Min Kim
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun‑Ja Jeong
- Department of Food Science and Technology and Research Institute for Basic Science, Hoseo University, Asan, Chungcheongnam‑do 31499, Republic of Korea
| |
Collapse
|
8
|
Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1α. Sci Rep 2017; 7:6237. [PMID: 28740165 PMCID: PMC5524912 DOI: 10.1038/s41598-017-05303-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/26/2017] [Indexed: 01/07/2023] Open
Abstract
Robust mitochondrial respiration provides energy to support physical performance and physiological well-being, whereas mitochondrial malfunction is associated with various pathologies and reduced longevity. In the current study, we tested whether myricetin, a natural flavonol with diverse biological activities, may impact mitochondrial function and longevity. The mice were orally administered myricetin (50 mg/kg/day) for 3 weeks. Myricetin significantly potentiated aerobic capacity in mice, as evidenced by their increased running time and distance. The elevated mitochondrial function was associated with induction of genes for oxidative phosphorylation and mitochondrial biogenesis in metabolically active tissues. Importantly, myricetin treatment led to decreased PGC-1α acetylation through SIRT1 activation. Furthermore, myricetin significantly improved the healthspan and lifespan of wild-type, but not Sir-2.1-deficient, C. elegans. These results demonstrate that myricetin enhances mitochondrial activity, possibly by activating PGC-1α and SIRT1, to improve physical endurance, strongly suggesting myricetin as a mitochondria-activating agent.
Collapse
|
9
|
Jeong J, Park CH, Kim I, Kim YH, Yoon JM, Kim KS, Kim JB. Korean mistletoe (Viscum album coloratum) extract regulates gene expression related to muscle atrophy and muscle hypertrophy. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:68. [PMID: 28109285 PMCID: PMC5251312 DOI: 10.1186/s12906-017-1575-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 01/11/2017] [Indexed: 02/05/2023]
Abstract
Background Korean mistletoe (Viscum album coloratum) is a semi-parasitic plant that grows on various trees and has a diverse range of effects on biological functions, being implicated in having anti-tumor, immunostimulatory, anti-diabetic, and anti-obesity properties. Recently, we also reported that Korean mistletoe extract (KME) improves endurance exercise in mice, suggesting its beneficial roles in enhancing the capacity of skeletal muscle. Methods We examined the expression pattern of several genes concerned with muscle physiology in C2C12 myotubes cells to identify whether KME inhibits muscle atrophy or promotes muscle hypertrophy. We also investigated these effects of KME in denervated mice model. Results Interestingly, KME induced the mRNA expression of SREBP-1c, PGC-1α, and GLUT4, known positive regulators of muscle hypertrophy, in C2C12 cells. On the contrary, KME reduced the expression of Atrogin-1, which is directly involved in the induction of muscle atrophy. In animal models, KME mitigated the decrease of muscle weight in denervated mice. The expression of Atrogin-1 was also diminished in those mice. Moreover, KME enhanced the grip strength and muscle weight in long-term feeding mice. Conclusions Our results suggest that KME has beneficial effects on muscle atrophy and muscle hypertrophy.
Collapse
|
10
|
Chen CC, Liang CJ, Leu YL, Chen YL, Wang SH. Viscolin Inhibits In Vitro Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia In Vivo. PLoS One 2016; 11:e0168092. [PMID: 27977759 PMCID: PMC5158191 DOI: 10.1371/journal.pone.0168092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Viscolin, an extract of Viscum coloratum, has anti-inflammatory and anti-proliferative properties against harmful stimuli. The aim of the study was to examine the anti-proliferative effects of viscolin on platelet derived growth factor-BB (PDGF)-treated human aortic smooth muscle cells (HASMCs) and identify the underlying mechanism responsible for these effects. Viscolin reduced the PDGF-BB-induced HASMC proliferation and migration in vitro; it also arrested HASMCs in the G0/G1 phase by decreasing the protein expression of Cyclin D1, CDK2, Cyclin E, CDK4, and p21Cip1 as detected by Western blot analysis. These effects may be mediated by reduced PDGF-induced phosphorylation of ERK1/2, JNK, and P38, but not AKT as well as inhibition of PDGF-mediated nuclear factor (NF)-κB p65 and activator protein 1 (AP-1)/c-fos activation. Furthermore, viscolin pre-treatment significantly reduced neointimal hyperplasia of an endothelial-denuded femoral artery in vivo. Taken together, viscolin attenuated PDGF–BB-induced HASMC proliferation in vitro and reduced neointimal hyperplasia in vivo. Thus, viscolin may represent a therapeutic candidate for the prevention and treatment of vascular proliferative diseases.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chan-Jung Liang
- Center for Lipid and Glycomedicine Research (CLGR), Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Lipid Biosciences (CLB), Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Lim NJ, Shin JH, Kim HJ, Lim Y, Kim JY, Lee WJ, Han SJ, Kwon O. A combination of Korean mistletoe extract and resistance exercise retarded the decline in muscle mass and strength in the elderly: A randomized controlled trial. Exp Gerontol 2016; 87:48-56. [PMID: 27845200 DOI: 10.1016/j.exger.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
Abstract
Given the increased concerns about the degenerative decline in the physical performance of the elderly, there is a need for developing effective strategies to suppress the age-related loss of skeletal muscle mass and functional capacity through a lifestyle intervention. This randomized controlled trial examined whether a combination of Korean mistletoe extract (KME) supplement and exercise affected muscle mass, muscle function, and targeted molecular expressions. Sixty-seven subjects aged 55-75years were assigned to placebo, low-dose (1g/d), or high-dose (2g/d) of KME for 12weeks. The body composition was significantly changed in the high-dose group during the intervention period as determined by skeletal muscle mass (P=0.040), fat free mass (P=0.042), soft lean mass (P=0.023), skeletal muscle index (P=0.041), fat-free mass index (P=0.030), percent body fat (P=0.044), and fat mass to lean mass ratio (P=0.030). Knee strength was measured by Cybex, demonstrating a significant effect in the KME groups compared to the placebo group (P=0.026 for peak torque and P=0.057 for set total work), which was more pronounced after adjusting for age, gender, protein, and energy intake (P=0.009 for peak torque and P=0.033 for set total work). The dynamic balance ability was remarkably improved in the high-dose group over a 12-week period as determined by Timed "Up and Go" (P=0.005 for fast walk test and P=0.024 for ordinary walk test). Consistent with these results, RT-PCR, multiplex analyses, and immunocytofluorescence staining revealed that a high-dose KME supplementation was effective for suppressing intracellular pathways related to muscle protein degradation, but stimulating those related to myogenesis. In particular, significant differences were found in atrogin-1 mRNA (P=0.002 at a single administration and P=0.001 at a 12-week administration), myogenin mRNA (P<0.0001 at a single administration and P=0.040 at a 12-week administration), and insulin growth factor 1 receptor phosphorylation (P=0.002 at a 12-week administration). These results suggest that KME supplementation together with resistance exercise may be useful in suppressing the age-related loss of muscle mass and strength in the elderly.
Collapse
Affiliation(s)
- Nam Ju Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jun Ho Shin
- Department of Rehabilitation Medicine, Ewha Womans University School of Medicine, Seoul 07985, Republic of Korea
| | - Hye Jin Kim
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science & Technology, Seoul National University of Science & Technology, Seoul, Republic of Korea
| | - Won Jun Lee
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Jeong Han
- Department of Rehabilitation Medicine, Ewha Womans University School of Medicine, Seoul 07985, Republic of Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
12
|
Kim B, Park J, Yoon HG, Choi KC, Kim K, Lee J, Chung JW, Shim S, You Y, Jun W. Effect of Ethanol Extract of Canavalia gladiata on Endurance Swimming Capacity in Mice. J Med Food 2016; 19:990-993. [PMID: 27696957 DOI: 10.1089/jmf.2016.3733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of Canavalia gladiata ethanolic extract on endurance swimming capacity were evaluated in a mouse model. The mice were orally administered distilled water (CON), hot water extract (CGW), or 80% ethanol extract (CGE). The swimming time to exhaustion was significantly prolonged in the CGE group. Of the three groups, the CGE showed the lowest blood lactate and the highest nonesterified fatty acid and muscle glycogen levels. These results suggest that the administration of CGE could improve endurance swimming capacity by enhancing lipid catabolism and thereby preserving glycogen stores.
Collapse
Affiliation(s)
- Beomjeong Kim
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Republic of Korea
| | - Jeongjin Park
- 2 Research Institute for Human Ecology, Chonnam National University , Gwangju, Republic of Korea
| | - Ho-Geun Yoon
- 3 Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University , Seoul, Republic of Korea
| | - Kyung-Chul Choi
- 4 Department of Biomedical Sciences, University of Ulsan College of Medicine , Seoul, Republic of Korea
| | - Kyungmi Kim
- 5 Department of Biofood Analysis, Korea Bio Polytechnic , Ganggyung, Republic of Korea
| | - Jeongmin Lee
- 6 Department of Medical Nutrition, Kyung Hee University , Yongin, Republic of Korea
| | - Jin Woong Chung
- 7 Department of Biological Science, Dong-A University , Busan, Republic of Korea
| | - Sangin Shim
- 8 Division of Agriculture and Life Sciences, Gyeongsang National University , Jinju, Republic of Korea
| | - Yanghee You
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Republic of Korea
| | - Woojin Jun
- 1 Division of Food and Nutrition, Chonnam National University , Gwangju, Republic of Korea.,2 Research Institute for Human Ecology, Chonnam National University , Gwangju, Republic of Korea
| |
Collapse
|
13
|
Kim T, Kim MB, Kim C, Jung HY, Hwang JK. Standardized Boesenbergia pandurata Extract Stimulates Exercise Endurance Through Increasing Mitochondrial Biogenesis. J Med Food 2016; 19:692-700. [DOI: 10.1089/jmf.2015.3630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Taeyoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Mi-Bo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Changhee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hoe-Yune Jung
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, POSTECH, Pohang, Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
14
|
A Systematic Review on the Effects of Botanicals on Skeletal Muscle Health in Order to Prevent Sarcopenia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5970367. [PMID: 27051451 PMCID: PMC4804074 DOI: 10.1155/2016/5970367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
We performed a systematic review to evaluate the evidence-based medicine regarding the main botanical extracts and their nutraceutical compounds correlated to skeletal muscle health in order to identify novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function and to improve the quality of life of older subjects. This review contains all eligible studies from 2010 to 2015 and included 57 publications. We focused our attention on effects of botanical extracts on growth and health of muscle and divided these effects into five categories: anti-inflammation, muscle damage prevention, antifatigue, muscle atrophy prevention, and muscle regeneration and differentiation.
Collapse
|
15
|
Huang WC, Hsu YJ, Wei L, Chen YJ, Huang CC. Association of physical performance and biochemical profile of mice with intrinsic endurance swimming. Int J Med Sci 2016; 13:892-901. [PMID: 27994494 PMCID: PMC5165682 DOI: 10.7150/ijms.16421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/22/2016] [Indexed: 02/05/2023] Open
Abstract
We aimed to investigate the potential mediators and relationship affecting congenital exercise performance in an animal model with physical activity challenge from physiological and biochemical perspectives. A total of 75 male ICR mice (5 weeks old) were adapted for 1 week, then mice performed a non-loading and exhaustive swimming test and were assigned to 3 groups by exhaustive swimming time: low exercise capacity (LEC) (<3 hr), medium exercise capacity (MEC) (3-5 hr), and high exercise capacity (HEC) (>5 hr). After a 1-week rest, the 3 groups of mice performed an exhaustive swimming test with a 5% and 7.5% weight load and a forelimb grip-strength test, with a 1-week rest between tests. Blood samples were collected immediately after an acute exercise challenge and at the end of the experiment (resting status) to evaluate biochemical blood variables and their relation with physical performance. Physical activity, including exhaustive swimming and grip strength, was greater for HEC than other mice. The swimming performance and grip strength between groups were moderately correlated (r=0.443, p<0.05). Resting serum ammonium level was moderately correlated with endurance with a 7.5% weight load (r=-0.447, p<0.05) and with lactate level (r=0.598, p<0.05). The pulmonary morphology of the HEC group seemed to indicate benefits for aerobic exercise. Mice showed congenital exercise performance, which was significantly correlated with different physical challenges and biochemical variable values. This study may have implications for interference in intrinsic characteristics.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Li Wei
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| | - Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| |
Collapse
|
16
|
Singh BN, Saha C, Galun D, Upreti DK, Bayry J, Kaveri SV. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv 2016. [DOI: 10.1039/c5ra27381a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viscum albumL. or European mistletoe (Loranthaceae), a semi-parasitic shrub, has been used as a traditional medicine in Europe for centuries to treat various diseases like cancer, cardiovascular disorder, epilepsy, infertility, hypertension and arthritis.
Collapse
Affiliation(s)
- Brahma N. Singh
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Chaitrali Saha
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| | - Danijel Galun
- Clinic for Digestive Surgery
- Clinical Centre of Serbia
- Belgrade
- Serbia
- Medical School
| | - Dalip K. Upreti
- Lichenology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| | - Srini V. Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| |
Collapse
|
17
|
Morris G, Berk M, Galecki P, Walder K, Maes M. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases. Mol Neurobiol 2015; 53:1195-1219. [PMID: 25598355 DOI: 10.1007/s12035-015-9090-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023]
Abstract
Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia.,The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia.,Department of Psychiatry, University of Melbourne, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville, 3052, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ken Walder
- Metabolic Research Unit, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil. .,Impact Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
18
|
Wu RM, Sun YY, Zhou TT, Zhu ZY, Zhuang JJ, Tang X, Chen J, Hu LH, Shen X. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol Sin 2014; 35:1274-84. [PMID: 25152028 PMCID: PMC4186987 DOI: 10.1038/aps.2014.70] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023] Open
Abstract
AIM Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan found in traditional Chinese herbs, has been determined to exhibit a variety of pharmacological activities, including anti-tumor, anti-inflammation, neuroprotection, and endurance enhancement. In the present study, we investigated the antioxidation and anti-fatigue effects of arctigenin in rats. METHODS Rat L6 skeletal muscle cell line was exposed to H2O2 (700 μmol/L), and ROS level was assayed using DCFH-DA as a probe. Male SD rats were injected with arctigenin (15 mg·kg(-1)·d(-1), ip) for 6 weeks, and then the weight-loaded forced swimming test (WFST) was performed to evaluate their endurance. The levels of antioxidant-related genes in L6 cells and the skeletal muscles of rats were analyzed using real-time RT-PCR and Western blotting. RESULTS Incubation of L6 cells with arctigenin (1, 5, 20 μmol/L) dose-dependently decreased the H2O2-induced ROS production. WFST results demonstrated that chronic administration of arctigenin significantly enhanced the endurance of rats. Furthermore, molecular biology studies on L6 cells and skeletal muscles of the rats showed that arctigenin effectively increased the expression of the antioxidant-related genes, including superoxide dismutase (SOD), glutathione reductase (Gsr), glutathione peroxidase (GPX1), thioredoxin (Txn) and uncoupling protein 2 (UCP2), through regulation of two potential antioxidant pathways: AMPK/PGC-1α/PPARα in mitochondria and AMPK/p53/Nrf2 in the cell nucleus. CONCLUSION Arctigenin efficiently enhances rat swimming endurance by elevation of the antioxidant capacity of the skeletal muscles, which has thereby highlighted the potential of this natural product as an antioxidant in the treatment of fatigue and related diseases.
Collapse
Affiliation(s)
- Ruo-ming Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan-yan Sun
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ting-ting Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhi-yuan Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-jing Zhuang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-hong Hu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xu Shen
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
19
|
Kim MJ, Park JH, Kwon DY, Yang HJ, Kim DS, Kang S, Shin BK, Moon NR, Song BS, Kim JH, Park S. The supplementation of Korean mistletoe water extracts reduces hot flushes, dyslipidemia, hepatic steatosis, and muscle loss in ovariectomized rats. Exp Biol Med (Maywood) 2014; 240:477-87. [PMID: 25258426 DOI: 10.1177/1535370214551693] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/24/2014] [Indexed: 01/13/2023] Open
Abstract
Since Korean mistletoe (Viscum album) has been used for alleviating metabolic diseases, it may also prevent the impairment of energy, glucose, lipid, and bone metabolisms in an estrogen-deficient animal model. We determined that long-term consumption of Korean mistletoe water extract (KME) can alleviate menopausal symptoms such as hot flush, increased abdominal fat mass, dyslipidemia, hyperglycemia, and decreased bone mineral density in ovariectomized (OVX) rats fed a high-fat diet, and explored the mechanisms of the effects. OVX rats were divided into four groups and fed high-fat diets supplemented with either 0.6% dextrin (control), 0.2% lyophilized KME + 0.4% dextrin (KME-L), or 0.6% lyophilized KME (KME-H). Sham rats were fed with the high-fat diets with 0.6% dextrin as a normal-control without estrogen deficiency. After eight weeks, OVX rats exhibited impaired energy, glucose and lipid metabolism, and decreased uterine and bone masses. KME-L did not alleviate energy dysfunction. However, KME-H lowered serum levels of total-, LDL-cholesterol, and triglycerides and elevated serum HDL-cholesterol levels in OVX rats with dyslipidemia, to similar levels as normal-control rats. Furthermore, KME-H improved HOMA-IR, an indicator of insulin resistance, in OVX rats. Surprisingly, KME-H fed rats had greater lean mass in the abdomen and leg without differences in fat mass but neither dosage of KME altered bone mineral density in the lumbar spine and femur. The increased lean mass was related to greater phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the quadriceps muscles. Hepatic triglyceride contents were lowered with KME-H in OVX rats by increasing carnitine palmitoyltransferase-1 (CPT-1) expression and decreasing fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) expression. In conclusion, KME may be useful for preventing some menopausal symptoms such as hot flushes, dyslipidemia, hepatic steatosis, and loss of muscle mass in post-menopausal women.
Collapse
Affiliation(s)
- Min Jung Kim
- Division of Metabolism and Functionality Research, Korean Food Research Institutes, Sungnam 463-746, South Korea
| | - Jong-Heum Park
- Biotechnology Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 305-353, South Korea
| | - Dae Young Kwon
- Division of Metabolism and Functionality Research, Korean Food Research Institutes, Sungnam 463-746, South Korea
| | - Hye Jeong Yang
- Division of Metabolism and Functionality Research, Korean Food Research Institutes, Sungnam 463-746, South Korea
| | - Da Sol Kim
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, South Korea
| | - Suna Kang
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, South Korea
| | - Bae Keun Shin
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, South Korea
| | - Na Rang Moon
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, South Korea
| | - Beom-Seok Song
- Biotechnology Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 305-353, South Korea
| | - Jae-Hun Kim
- Biotechnology Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 305-353, South Korea
| | - Sunmin Park
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, South Korea
| |
Collapse
|
20
|
Lee SH, Kim IB, Kim JB, Park DH, Min KJ. The effects of Korean mistletoe extract on endurance during exercise in mice. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.881917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
21
|
Korean mistletoe (Viscum album coloratum) extract extends the lifespan of nematodes and fruit flies. Biogerontology 2013; 15:153-64. [DOI: 10.1007/s10522-013-9487-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022]
|
22
|
The Korean Mistletoe (Viscum album coloratum) Extract Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:168207. [PMID: 23935653 PMCID: PMC3725881 DOI: 10.1155/2013/168207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/14/2013] [Indexed: 01/07/2023]
Abstract
This study investigates the inhibitory effects of Korean mistletoe extract (KME) on adipogenic factors in 3T3-L1 cells and obesity and nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Male C57Bl/6 mice fed a high-fat diet were treated with KME (3 g/kg/day) for 15 weeks for the antiobesity and NAFLD experiments. Body weight and daily food intake were measured regularly during the experimental period. The epididymal pad was measured and liver histology was observed. The effects of KME on thermogenesis and endurance capacity were measured. The effects of KME on adipogenic factors were examined in 3T3-L1 cells. Body and epididymal fat pad weights were reduced in KME-treated mice, and histological examination showed an amelioration of fatty liver in KME-treated mice, without an effect on food consumption. KME potently induces mitochondrial activity by activating thermogenesis and improving endurance capacity. KME also inhibited adipogenic factors in vitro. These results demonstrate the inhibitory effects of KME on obesity and NAFLD in mice fed a high-fat diet. The effects appear to be mediated through an enhanced mitochondrial activity. Therefore, KME may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.
Collapse
|
23
|
Yi JS, Kim CW, Lee JK, Meng FJ. Identification of Populations of Korean Mistletoe ( Viscum AlbumL. Var. Coloratum) from Gangwon-Do in Korea by AFLP. BIOTECHNOL BIOTEC EQ 2013. [DOI: 10.5504/bbeq.2013.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|