1
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Chiu V, Yee C, Main N, Stevanovski I, Watt M, Wilson T, Angus P, Roberts T, Shackel N, Herath C. Oncogenic plasmid DNA and liver injury agent dictates liver cancer development in a mouse model. Clin Sci (Lond) 2024; 138:1227-1248. [PMID: 39254423 PMCID: PMC11427747 DOI: 10.1042/cs20240560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Primary liver cancer is an increasing problem worldwide and is associated with significant mortality. A popular method of modeling liver cancer in mice is plasmid hydrodynamic tail vein injection (HTVI). However, plasmid-HTVI models rarely recapitulate the chronic liver injury which precedes the development of most human liver cancer. We sought to investigate how liver injury using thioacetamide contributes to the pathogenesis and progression of liver cancer in two oncogenic plasmid-HTVI-induced mouse liver cancer models. Fourteen-week-old male mice received double-oncogene plasmid-HTVI (SB/AKT/c-Met and SB/AKT/NRas) and then twice-weekly intraperitoneal injections of thioacetamide for 6 weeks. Liver tissue was examined for histopathological changes, including fibrosis and steatosis. Further characterization of fibrosis and inflammation was performed with immunostaining and real-time quantitative PCR. RNA sequencing with pathway analysis was used to explore novel pathways altered in the cancer models. Hepatocellular and cholangiocellular tumors were observed in mice injected with double-oncogene plasmid-HTVI models (SB/AKT/c-Met and SB/AKT/NRas). Thioacetamide induced mild fibrosis and increased alpha smooth muscle actin-expressing cells. However, the combination of plasmids and thioacetamide did not significantly increase tumor size, but increased multiplicity of small neoplastic lesions. Cancer and/or liver injury up-regulated profibrotic and proinflammatory genes while metabolic pathway genes were mostly down-regulated. We conclude that the liver injury microenvironment can interact with liver cancer and alter its presentation. However, the effects on cancer development vary depending on the genetic drivers with differing active oncogenic pathways. Therefore, the choice of plasmid-HTVI model and injury agent may influence the extent to which injury promotes liver cancer development.
Collapse
Affiliation(s)
- Vincent Chiu
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Christine Yee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Nathan Main
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Igor Stevanovski
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Matthew Watt
- School of Biomedical Sciences, University of Melbourne, Victoria, Australia
| | - Trevor Wilson
- Hudson Institute of Medical Research, Monash University, Victoria, Australia
| | - Peter Angus
- Department of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Tara Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Nicholas Shackel
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Chandana Herath
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
- Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2024:1-14. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
5
|
Souid A, Giambastiani L, Castagna A, Santin M, Vivarelli F, Canistro D, Morosini C, Paolini M, Franchi P, Lucarini M, Raffaelli A, Giorgetti L, Ranieri A, Longo V, Pozzo L, Vornoli A. Assessment of the Antioxidant and Hypolipidemic Properties of Salicornia europaea for the Prevention of TAFLD in Rats. Antioxidants (Basel) 2024; 13:596. [PMID: 38790701 PMCID: PMC11118816 DOI: 10.3390/antiox13050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes in different growth phases; then, the potential protective effects against low-dose CCl4-induced toxicant-associated fatty liver disease (TAFLD) were investigated by administering an aqueous suspension of young leaves to rats daily for two weeks. Quantification of total and individual phenolic compounds and in vitro antioxidant activity assays (DPPH, FRAP, and ORAC) showed the highest values in young leaves compared to mature ones. Salicornia treatment mitigated CCl4-induced hepatic oxidative stress, reducing lipid peroxidation and protein carbonyl levels, and preserving the decrease in glutathione levels. Electronic paramagnetic resonance (EPR) spectroscopy confirmed these results in the liver and evidenced free radicals increase prevention in the brain. Salicornia treatment also attenuated enzymatic disruptions in the liver's drug metabolizing system and Nrf2-dependent antioxidant enzymes. Furthermore, histopathological examination revealed reduced hepatic lipid accumulation and inflammation. Overall, this study highlights Salicornia's potential as a source of bioactive compounds with effective hepatoprotective properties capable to prevent TAFLD.
Collapse
Affiliation(s)
- Aymen Souid
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Lucia Giambastiani
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Antonella Castagna
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Marco Santin
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Paola Franchi
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (P.F.); (M.L.)
| | - Marco Lucarini
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (P.F.); (M.L.)
| | - Andrea Raffaelli
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Annamaria Ranieri
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Andrea Vornoli
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| |
Collapse
|
6
|
Kim D, Kim Y, Kim Y. Effect of Purple Sweet Potato Using Different Cooking Methods on Cytoprotection against Ethanol-Induced Oxidative Damage through Nrf2 Activation in HepG2 Cells. Antioxidants (Basel) 2023; 12:1650. [PMID: 37627645 PMCID: PMC10451714 DOI: 10.3390/antiox12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to investigate the effects of different cooking methods on the hepatoprotective effects of purple sweet potatoes against alcohol-induced damage in HepG2 cells. Purple sweet potatoes (Ipomeoea batatas L. Danjami) were subjected to different cooking methods, including steaming, roasting, and microwaving. Steaming resulted in a higher cytoprotective effect against alcohol damage than the other cooking methods. Additionally, the highest inhibition of glutathione depletion and production of reactive oxygen species against alcohol-induced stress were observed in raw and/or steamed purple sweet potatoes. Compared to roasted and/or microwaved samples, steamed samples significantly increased the expression of NADPH quinone oxidoreductase 1, heme oxygenase 1, and gamma glutamate-cysteine ligase in alcohol-stimulated HepG2 cells via the activation of nuclear factor erythroid 2-related factor 2. Moreover, ten anthocyanins were detected in the raw samples, whereas five, two, and two anthocyanins were found in the steamed, roasted, and microwaved samples, respectively. Taken together, steaming purple sweet potatoes could be an effective cooking method to protect hepatocytes against alcohol consumption. These results provide useful information for improving the bioactive properties of purple sweet potatoes using different cooking methods.
Collapse
Affiliation(s)
| | | | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan 48434, Republic of Korea; (D.K.); (Y.K.)
| |
Collapse
|
7
|
Jobe MC, Mthiyane DMN, Dludla PV, Mazibuko-Mbeje SE, Onwudiwe DC, Mwanza M. Pathological Role of Oxidative Stress in Aflatoxin-Induced Toxicity in Different Experimental Models and Protective Effect of Phytochemicals: A Review. Molecules 2023; 28:5369. [PMID: 37513242 PMCID: PMC10386527 DOI: 10.3390/molecules28145369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes. Experimental models involving cell cultures and broiler chickens exposed to aflatoxin or contaminated diet have been used to investigate the ameliorative effects of phytochemicals against aflatoxin toxicity. Electronic databases such as PubMed, Science Direct, and Google Scholar were used to identify relevant data sources. The retrieved information reported on the link between aflatoxin B1-included cytotoxicity and the ameliorative potential/role of phytochemicals in chickens. Importantly, retrieved data showed that phytochemicals may potentially protect against aflatoxin B1-induced cytotoxicity by ameliorating oxidative stress and enhancing intracellular antioxidants. Preclinical data indicate that activation of nuclear factor erythroid 2-related factor 2 (Nrf2), together with its downstream antioxidant genes, may be a potential therapeutic mechanism by which phytochemicals neutralize oxidative stress. This highlights the need for more research to determine whether phytochemicals can be considered a useful therapeutic intervention in controlling mycotoxins to improve broiler health and productivity.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Doctor M N Mthiyane
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | | | - Damian C Onwudiwe
- Department of Chemistry, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Department of Animal Health, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
8
|
Nephroprotective Effect of Fennel ( Foeniculum vulgare) Seeds and Their Sprouts on CCl 4-Induced Nephrotoxicity and Oxidative Stress in Rats. Antioxidants (Basel) 2023; 12:antiox12020325. [PMID: 36829884 PMCID: PMC9952328 DOI: 10.3390/antiox12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Functional and nutritional characteristics of seed sprouts and their association with oxidative stress-related disorders have recently become a focus of scientific investigations. The biological activities of fennel seeds (FS) and fennel seed sprouts (FSS) were investigated in vitro and in vivo. The total phenolic content (TPC), total flavonoids (TF), total flavonols (TFF), and antioxidant activity (AOA) of FS and FSS were examined. HPLC and GC-MS analyses for FS and FSS were carried out. Consequently, the nephroprotective and antioxidative stress potential of FS and FSS extracts at 300 and 600 mg kg-1 on CCl4-induced nephrotoxicity and oxidative stress in rats was investigated. In this context, kidney relative weight, blood glucose level (BGL), lipid profile, kidney function (T. protein, albumin, globulin, creatinine, urea, and blood urea nitrogen (BUN)), and oxidative stress biomarkers (GSH, CAT, MDA, and SOD) in the rat's blood as well as the histopathological alteration in kidney tissues were examined. Results indicated that the sprouting process of FS significantly improved TPC, TF, TFL, and AOA in vitro. HPLC identified nineteen compounds of phenolic acids and their derivatives in FS. Thirteen phenolic compounds in FS and FSS were identified, the highest of which was vanillic acid. Six flavonoids were also identified with a predominance of kaempferol. GC-MS indicated that the trans-anethole (1-methoxy-4-[(E)-prop-1-enyl]benzene) component was predominant in FS and FSS, significantly increasing after sprouting. In in vivo examination, administering FS and FSS extracts ameliorated the BGL, triglycerides (TG), total cholesterol (CHO), and their derivative levels compared to CCl4-intoxicated rats. A notable improvement in FS and FSS with 600 mg kg-1 compared to 300 mg kg-1 was observed. A dose of 600 mg FSS kg-1 reduced the TG, CHO, and LDL-C and increased HDL-C levels by 32.04, 24.62, 63.00, and 67.17% compared to G2, respectively. The atherogenic index (AI) was significantly improved with 600 mg kg-1 of FSS extracts. FS and FSS improved kidney function, reduced malondialdehyde (MDA), and restored the activity of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Both FS and FSS extracts attenuated the histopathological alteration in CCl4-treated rats. Interestingly, FSS extract presented better efficiency as a nephroprotection agent than FS extract. In conclusion, FSS can potentially restore oxidative stability and improve kidney function after acute CCl4 kidney injury better than FS. Therefore, FS and FSS extracts might be used for their promising nephroprotective potential and to help prevent diseases related to oxidative stress. Further research on their application in humans is highly recommended.
Collapse
|
9
|
Hepatoprotective Effect of a New FFAR1 Agonist-N-Alkylated Isobornylamine. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010396. [PMID: 36615590 PMCID: PMC9823450 DOI: 10.3390/molecules28010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Free fatty acid receptor-1 (FFAR1) is one of the possible therapeutic targets in the search for new hepatoprotective drugs. FFAR1 agonists were found to have hypolipidemic, antifibrotic, anti-inflammatory, antiproliferative and antioxidant effects in addition to hypoglycemic action. In this work, we conducted a study of the hepatoprotective effect of the compound QS-528 (previously discovered as an agonist of FFAR1) at doses of 60, 90, 120 and 150 mg/kg on carbon tetrachloride (CCl4)-induced liver injury. At the end of the experiment, a biochemical blood assay demonstrated that the introduction of QS-528 dose-dependently reduces the levels of liver enzymes (AST, ALT and ALKP). Histological and morphometric studies of animals' livers treated with QS-528 at doses of 120 and 150 mg/kg showed a decrease in degenerative/necrotic changes in hepatocytes and an increase in the regenerative activity of the liver. In addition, no toxicity at a single oral dose of 1000 mg/kg and an increase in HepG2 cell viability in vitro were found. Thus, the compound QS-528 was found to exhibit a hepatoprotective effect against CCl4-induced toxic liver damage.
Collapse
|
10
|
Li M, He Y, Zhang W, Yin Y, Jiang Q, Loor JJ, Wang J, Wen J, Yang W, Xu C, Zhang B. Taraxasterol alleviates fatty acid-induced lipid deposition in calf hepatocytes by decreasing ROS production and endoplasmic reticulum stress. J Anim Sci 2023; 101:skad015. [PMID: 36638067 PMCID: PMC9977349 DOI: 10.1093/jas/skad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Increased concentrations of free fatty acids (FFAs) induce reactive oxygen species (ROSs) generation and endoplasmic reticulum (ER) stress, thus, increasing the risk of fatty liver in dairy cows during the periparturient period. In non-ruminants, Taraxasterol (Tara; a pentacyclic triterpenoid found in medicinal plants) plays an important role in anti-inflammatory and antioxidant reactions. Whether Tara can alleviate or prevent fatty liver in ruminants is unknown. We addressed whether Tara supply could dampen lipid accumulation, ROSs production, and ER stress caused by FFAs in calf hepatocytes. Primary calf hepatocytes were isolated from five healthy calves (1 d old, female, 30-40 kg, fasting, rectal temperature 38.7-39.7 °C). In the first experiment, hepatocytes were incubated with various concentrations of Tara (2.5, 5, and 10 μg/mL) for 12 h prior to the 1.2-mM FFAs challenge. Results indicated that the level of ROSs was lowest with 5 μg/mL Tara. Thus, to further characterize the molecular mechanisms whereby Tara protects from FFAs-induced lipid deposition in calf hepatocytes, we performed incubations with 5 μg/mL Tara for 12 h prior to a 1.2-mM FFAs challenge for an additional 12 h. Results indicated that 1.2-mM FFAs challenge increased mitochondrial membrane potential (MMP), enhanced expression of proteins and mRNA associated with ER stress (PERK, IRE1, GRP78, ATF6, and CHOP) and fatty acid synthesis (FASN, ACC1, and SREBP-1c), and ultimately led to increased lipid droplet synthesis. In contrast, Tara treatment alleviated these negative effects after 1.2-mM FFAs challenge. To determine whether Tara protects against FFAs-induced lipid droplet synthesis by alleviating oxidative stress, hepatocytes were treated with 5 μg/mL Tara for 22 h prior to H2O2 (440 μM) challenge for 2 h. Compared with H2O2 treatment alone, results revealed a marked decrease in ROSs, MMP, and protein abundance of ER stress (GRP78, ATF6, and CHOP) and lipid droplet synthesis in response to Tara prior to H2O2 challenge. Data suggested that the increase in mitochondrial ROSs production contributes to lipid accumulation in calf hepatocytes. Collectively, our in vitro data indicate that Tara alleviates fatty acid-induced lipid deposition. Further research is warranted to ascertain that Tara can be helpful in the therapeutic management of early lactating cows to control or alleviate excessive hepatic lipid deposition.
Collapse
Affiliation(s)
- Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| | - Yuxin He
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| | - Wei Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| | - Yufeng Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| | - Qianming Jiang
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing163319, Heilongjiang, China
| |
Collapse
|
11
|
Zamani M, Ashtary-Larky D, Hafizi N, Naeini F, Rezaei Kelishadi M, Clark CCT, Davoodi SH, Asbaghi O. The effect of grape products on liver enzymes: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:4491-4503. [PMID: 36264051 DOI: 10.1002/ptr.7653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/13/2022]
Abstract
The favorable influence of grape consumption on metabolic diseases has previously been shown in studies. We sought to assess the effects of grape intake on liver enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), in adults. We performed literature search in online databases, to find eligible randomized controlled trials (RCTs). we considered RCTs that met the following criteria: RCTs consisted of use of grape products on ALT, AST, and ALP in adults (≥18 years) with at least 2 weeks intervention duration. Pooling data from 11 trials showed that grape products intake significantly reduced ALP (p = .010), without any significant changes in ALT (p = .234) and AST (p = .300). In subgroup analysis, we found a significant reduction in ALP, ALT, and AST when the duration of intervention was ≥12 weeks, and when grape seed extract (GSE) was administered. The variable duration and dosage of intervention was one of the sources of bias in our meta-analysis. Additionally, participants involved in included studies had different physiological status and various age groups. Grape products administration may significantly improve ALT, AST, and ALP in adults in long-term interventions and/or when GSE is administered. It should be noted that the favorable effects of grape consumption were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadia Hafizi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Science, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sayed Hosein Davoodi
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
12
|
Amer MA, Othman AI, El-Missiry MA, Farag AA, Amer ME. Proanthocyanidins attenuated liver damage and suppressed fibrosis in CCl4-treated rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91127-91138. [PMID: 35881285 PMCID: PMC9722827 DOI: 10.1007/s11356-022-22051-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 06/12/2023]
Abstract
Liver damage and fibrosis are serious health problems without effective treatment. Proanthocyanidins (PAs) are flavonoids with several biological effects. We investigated the potential anti-fibrotic effect of proanthocyanidins on carbon tetrachloride (CCl4)-induced liver injury and fibrosis. Liver fibrosis was induced by oral administration of CCl4 three times a week for 5 and 9 weeks. PAs were daily administered in a dose of 500 mg/kg bw. Animals were divided into five groups: control groups, olive oil-treated group, Pas-treated group, CCl4-treated animals, and PAs + CCl4-treated rats. CCl4 and PAs were administered by gavage. Administration of CCl4 caused a significant elevation in alanine aminotransferase and aspartate aminotransferase activities, the concentration of alpha-2-macroglobulin, and bilirubin concentration. In addition, the protein and apolipoprotein contents were significantly decreased in the serum of CCl4-treated rats. These results were accompanied by histopathological alterations and increased inflammation, apoptosis, and DNA damage. Treatment with PAs caused remarkable regression of fibrosis and alpha-2-macroglobulin with improvement in histological characteristics of the liver after 5 and 9 weeks of intoxication. PAs could also maintain redox balance, evidenced by the prevention of lipid peroxidation and mitigation of the decrease in antioxidants. Treatment of intoxicated rats with PAs resulted in a significant decline in pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α in serum. This is associated with a remarkable decrease in apoptosis of hepatic cells shown by decreased levels of Bax, caspase-3, and -9, with increased Bcl-2. The protective effect of PAs was also evident by protecting DNA integrity in the intoxicated rats. PAs suppressed hepatic fibrosis, improved liver function and structure via modulating the interdependence between oxidative stress, inflammation, apoptosis, and DNA integrity in CCl4-treated rats.
Collapse
Affiliation(s)
- Maher A Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | | | - Aya A Farag
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Barakat H, Alkabeer IA, Aljutaily T, Almujaydil MS, Algheshairy RM, Alhomaid RM, Almutairi AS, Mohamed A. Phenolics and Volatile Compounds of Fennel ( Foeniculum vulgare) Seeds and Their Sprouts Prevent Oxidative DNA Damage and Ameliorates CCl 4-Induced Hepatotoxicity and Oxidative Stress in Rats. Antioxidants (Basel) 2022; 11:antiox11122318. [PMID: 36552526 PMCID: PMC9774655 DOI: 10.3390/antiox11122318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Researchers recently focused on studying the nutritional and functional qualities of sprouts generated from seeds. The current study investigated the total phenolic content (TPC), total flavonoids (TF), total flavonols (TFL), antioxidant activity (AOA), specific phenolic acids, and volatile chemicals in fennel seeds (FS) and fennel seed sprouts (FSS). The oxidative DNA damage prevention activity of selected FS and FSS extracts against DNA was examined. Consequently, the antioxidative stress potential of FS and FSS extracts at 300 and 600 mg kg-1 on CCl4-induced hepatotoxicity and oxidative stress in rats weas investigated. The liver's functions and oxidative stress biomarkers in rat blood were examined. FSS exhibited rich phytochemical content such as TPC, TF, TFL, and AOA with altered phenolics and volatiles. HPLC identified nineteen compounds of phenolic acids and their derivatives in FS. Thirteen phenolics and six flavonoids were predominantly identified as Vanillic acid and Kaempferol, respectively. GC-MS analysis identified fifty and fifty-one components in FS and FSS, respectively. The predominant component was Benzene, [1-(2-propenyloxy)-3-butenyl] (trans-Anethole) (38.41%), followed by trans-Anethole (Benzene, 1-methoxy-4-(2-propenyl)) (23.65%), Fenchone (11.18%), and 1,7-Octadiene, 2-methyl-6-methylene- Cyclohexene (7.17%). Interestingly, α-Pinene, Fenchone, trans-Anethole (Benzene, 1-methoxy-4-(2-propenyl)), 4-Methoxybenzaldehyde (4-Anisaldehyde), Benzeneacetic acid, α-hydroxy-4-methoxy, and Nonacosane contents were increased. While Dillapiole, 7-Octadecenoic acid, and methyl ester were newly identified and quantified in FSS. The oxidative DNA damage prevention capability of FSS and FS extracts indicated remarkable DNA protection. Administrating FS and FSS extracts at 300 and 600 mg kg-1 ameliorated AST, ALT, and ALP, as well as GSH, CAT, MDA, and SOD, in a dose-dependent manner. The most efficient treatment of FS or FSS was using a dose of 600 mg Kg-1, which recorded an improvement rate of 20.77 and 24.17, 20.36 and 24.92, and 37.49 and 37.90% for ALT, AST, and ALP, respectively. While an improvement rate of 40.08 and 37.87%, 37.17 and 46.52%, 114.56 and 154.13%, and 66.05 and 69.69% for GSH, DMA, CAT, and SOD compared to the CCl4-group, respectively. The observed protection is associated with increased phenolics and volatiles in F. vulgare. Therefore, FS and FSS are recommended as functional foods with bioactive functionality, health-promoting properties, and desired prevention capabilities that may help prevent oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
- Correspondence: or ; Tel.: +966-547141277
| | - Ibrahim Ali Alkabeer
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mona S. Almujaydil
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Raghad M. Alhomaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulkarim S. Almutairi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmed Mohamed
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
14
|
Shedding light on non-alcoholic fatty liver disease: Pathogenesis, molecular mechanisms, models, and emerging therapeutics. Life Sci 2022; 312:121185. [PMID: 36375569 DOI: 10.1016/j.lfs.2022.121185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder globally impacting an estimated 25% of the population associated with severe consequences such as cirrhosis, hepatocellular carcinoma (HCC), and overall mortality. Fatty liver disease is triggered through multiple pathways, but the most prominent cause is either diabetes or obesity, or a combination of both. Therefore, hepatic glucose, insulin and fatty acid signaling becomes a dire need to understand which is well elaborated in this review. This review summarizes the popular two-hit pathogenesis of NAFLD, the molecular mechanisms underlying hepatic insulin resistance. As fatty liver disease gets advanced, it requires in-vitro as well as in-vivo models closer to disease progression in humans for better understanding the pathological state and identifying a novel therapeutic target. This review summarizes in-vitro (2D cell-culture/co-culture, 3D spheroid/organoid/liver-on-a-chip) models as well as in-vivo (genetically/dietary/chemically induced fatty liver disease) research models. Fatty liver disease research has gathered lots of attention recently since there is no FDA approved therapy available so far. However, there have been numerous promising targets to treat fatty liver disease including potential therapeutic targets under clinical trials are listed in this review.
Collapse
|
15
|
Barakat H, Alshimali SI, Almutairi AS, Alkhurayji RI, Almutiri SM, Aljutaily T, Algheshairy RM, Alhomaid RM, Aljalis RA, Alkhidhr MF, Abdellatif AAH. Antioxidative potential and ameliorative effects of green lentil ( Lens culinaris M.) sprouts against CCl 4-induced oxidative stress in rats. Front Nutr 2022; 9:1029793. [PMID: 36438775 PMCID: PMC9691994 DOI: 10.3389/fnut.2022.1029793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
The present study is aimed to investigate the antioxidative potential and ameliorative effects of Lens culinaris Medikus sprouts hydroalcoholic extract (LSHE) on CCl4-induced oxidative stress in rats. The research has been carried out in two successive stages. Firstly, the highest phenolic content and antioxidant activity of L. culinaris sprouts were assessed at 20 ± 1°C and 90-93% RH during sprouting. Total phenolic content (TPC), total carotenoids (TC), total flavonoids (TF), total flavonols (TFL), DPPH-RSA, and vitamin C contents of L. culinaris seeds and 6-days sprouts were determined. Subsequently, phenolics by HPLC analysis of L. culinaris seeds, 3rd and 6th-day sprouts were identified and quantified. Results indicated that 6th-day sprouts contained considerable phenolics with superior antioxidant capacity, thus selected to be examined for biological activity in a rat's module consisting of five groups. G1, normal rats orally received distilled water. G2 received 1.0 mL kg-1 of CCl4 and olive oil (1:1) intraperitoneally (i.p.) twice a week. G3 received CCl4 (i.p.) and 50 mg GAE kg-1 of LSHE daily/orally. G4 received CCl4 (i.p.) 100 mg kg-1 of LSHE orally/daily. G5 (reference group) treated by intramuscular injection (i.m.) of vit. E+Selenium (Vit. E+Se, 50 mg kg-1 twice a week). The weight gain, relative weight of organs, hypoglycemic and hypolipidemic efficiencies, liver's and kidneys' functions, and antioxidant biomarkers were examined. LSHE enhanced the weight gain recovery % and significantly reduced fasting blood glucose. The hypolipidemic effect of LSHE was dramatically reduced triglycerides (TG), total cholesterol (CHO), high- and low-density lipoproteins (HDL-c and LDL-c), and very-low-density lipoproteins (VLDL-c). Administration of 50 and 100 LSHE mg kg-1 ameliorated liver and kidney function in dose-dependent manure. Intriguingly, LSHE considerably reduced malondialdehyde (MDA) while significantly raising reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in a dose-dependent manner. In conclusion, biochemical examinations confirmed the therapeutic efficacy of LSHE as a functional product. It encouraged us to recommend L. culinaris sprout production for attenuating hepatotoxicity and nephrotoxicity, as well as being beneficial and profitable for controlling oxidative stress complications.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Saleh I. Alshimali
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulkarim S. Almutairi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Raghad I. Alkhurayji
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sarah M. Almutiri
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Raghad M. Alhomaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rashed A. Aljalis
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed F. Alkhidhr
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
16
|
Emmanuel Chimeh E, Nicodemus Emeka N, Florence Nkechi N, Amaechi Linda O, Oka Samon A, Emmanuel Chigozie A, Parker Elijah J, Barine Innocent N, Ezike Tobechukwu C, Nwachukwu Philip A, Hope Chimbuezie N, Chidimma Peace E, Onyinye Mary-Jane O, Godspower Chima N, Theresa Chinyere E, Alotaibi Saqer S, Albogami Sarah M, Gaber El-Saber B. Bioactive Compounds, anti-inflammatory, anti-nociceptive and antioxidant potentials of ethanolic leaf fraction of Sida linifolia L. (Malvaceae). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Zou L, Zhang H, Wang Q, Zhong W, Du Y, Liu H, Xing W. Simultaneous liver steatosis, fibrosis and iron deposition quantification with mDixon quant based on radiomics analysis in a rabbit model. Magn Reson Imaging 2022; 94:36-42. [PMID: 35988836 DOI: 10.1016/j.mri.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the feasibility of simultaneous quantification of liver fibrosis, liver steatosis and abnormal iron deposition using mDixon Quant based on radiomics analysis, and to eliminate the interference among different histopathologic features. METHODS One hundred and twenty rabbits that were administered CCl4 for 4-16 weeks and a cholesterol rich diet for the initial 4 weeks in the experimental group and 20 rabbits in the control group were examined using mDixon. Radiomics features of the whole liver were extracted from PDFF and R2* and radiomics models for discriminating steatosis: S0-S1 vs. S2-S4, fibrosis: F0-F2 vs. F3-F4 and iron deposition: normal vs. abnormal were constructed respectively and evaluated using receiver operating characteristic (ROC) curves with the histopathological results as reference standard. Combined corrected models merging the radscore and the other two histopathologic features were evaluated using multiple logistic regression analyses and compared with radiomics models. RESULTS The area under the ROC curve (AUC) of the radiomics model with PDFF features was 0.886 and 0.843 in the training and the test set, respectively, for the diagnosis of liver steatosis grade S0-1 and S2-S4. The radiomics model based on R2* features were 0.815 and 0.801 for distinguishing F0-F2 and F3-F4 and 0.831 and 0.738 for discriminating abnormal iron deposition in the training and test set, respectively. The corrected model for liver steatosis and fibrosis (0.944 and 0.912 in the test set) outperformed the radiomics models by eliminating the interference of histopathologic features(P < 0.05), but had comparable diagnostic performance for abnormal iron deposition(P > 0.05). CONCLUSIONS It is feasible for mDixon to simultaneously quantify whole liver steatosis, fibrosis and iron deposition based on radiomics analysis. It is valuable to minimize the interference of different pathological features for the assessment of liver steatosis and fibrosis.
Collapse
Affiliation(s)
- LiQiu Zou
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Hao Zhang
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - WenXin Zhong
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - YaNan Du
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - HaiFeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China.
| |
Collapse
|
18
|
Tibetan Medicine Shi-Wei-Gan-Ning-San Alleviates Carbon Tetrachloride-Induced Chronic Liver Injury by Inhibiting TGF-β1 in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2011876. [PMID: 36016677 PMCID: PMC9398689 DOI: 10.1155/2022/2011876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Background. Shi-Wei-Gan-Ning-San (SWGNS) is a classic Tibetan prescription, which has obvious clinical effects in the treatment of viral hepatitis, fatty liver, liver fibrosis, liver cirrhosis, liver cancer, and other liver injuries. However, animal studies and mechanism studies are still lacking. This study aimed to investigate its hepatoprotective efficacy and pharmacological mechanism in animal experiments. Methods. Chronic liver injury was induced by oral administration of carbon tetrachloride (CCl4) in Wistar rats for 13 weeks. SWGNS was administered orally to rats at doses of 235, 705, and 1410 mg/kg for 13 weeks. Blood samples were collected for biochemical, ELISA, and radioimmunoassay. Livers were harvested for H&E and immunohistochemical staining. The major constituents of SWGNS were analyzed by HPLC. In vitro experiments were used to explore the protective effect of Crocin on BRL-3A in the environment of H2O2. Results. SWGNS reversed weight loss is induced by CCl4. Serum assays showed that SWGNS reduced CCl4-induced alanine aminotransferase, aspartate aminotransferase, total bilirubin, and γ-glutamyltransferase levels and increased the total protein and albumin levels. Histopathological evaluation showed that SWGNS alleviated hepatic steatosis, fibrosis, and inflammation. Furthermore, SWNGS reduced CCl4-induced elevations of TGF-β1, hyaluronic acid, laminin, and collagen IV in serum and reduced the high expression of α-SMA in tissues. Moreover, Crocin I and II are the main components of SWGNS. Crocin attenuated the damaging effects of H2O2 on BRL-3A. Conclusions. In conclusion, SWGNS alleviated CCl4-induced chronic liver injury by inhibiting the TGF-β1 pathway. This plays an important role in promoting traditional Tibetan medicine in clinical practice.
Collapse
|
19
|
Jin YH, Lee J, Jeon S, Kim S, Min JS, Kwon S. Natural Polyphenols, 1,2,3,4,6-O-Pentagalloyglucose and Proanthocyanidins, as Broad-Spectrum Anticoronaviral Inhibitors Targeting Mpro and RdRp of SARS-CoV-2. Biomedicines 2022; 10:biomedicines10051170. [PMID: 35625907 PMCID: PMC9138959 DOI: 10.3390/biomedicines10051170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
The natural plant dietary polyphenols 1,2,3,4,6-O-Pentagalloylglucose (PGG) and proanthocyanidin (PAC) have potent antioxidant activity and a variety of pharmacological activities, including antiviral activity. In this study, we examined the inhibitory effect of PGG and PAC on SARS-CoV-2 virus infection, and elucidated its mode of action. PGG and PAC have dose-dependent inhibitory activity against SARS-CoV-2 infection in Vero cells. PGG has a lower IC50 (15.02 ± 0.75 μM) than PAC (25.90 ± 0.81 μM), suggesting that PGG has better inhibitory activity against SARS-CoV-2 than PAC. The PGG and PAC inhibit similar Mpro activities in a protease activity assay, with IC50 values of 25–26 μM. The effects of PGG and PAC on the activity of the other essential SARS-CoV-2 viral protein, RdRp, were analyzed using a cell-based activity assay system. The activity of RdRp is inhibited by PGG and PAC, and PGG has a lower IC50 (5.098 ± 1.089 μM) than PAC (21.022 ± 1.202 μM), which is consistent with their inhibitory capacity of SARS-CoV-2 infection. PGG and PAC also inhibit infection by SARS-CoV and MERS-CoV. These data indicate that PGG and PAC may be candidate broad-spectrum anticoronaviral therapeutic agents, simultaneously targeting the Mpro and RdRp proteins of SARS-CoV-2.
Collapse
Affiliation(s)
- Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- Correspondence: (Y.-H.J.); (S.K.); Tel.: +82-(42)-610-8850 (Y.-H.J.); +82-(42)-868-9675 (S.K.)
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (J.L.); (S.J.); (S.K.)
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (J.L.); (S.J.); (S.K.)
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (J.L.); (S.J.); (S.K.)
| | - Jung Sun Min
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Correspondence: (Y.-H.J.); (S.K.); Tel.: +82-(42)-610-8850 (Y.-H.J.); +82-(42)-868-9675 (S.K.)
| |
Collapse
|
20
|
Sun Y, Liu B, Xie J, Jiang X, Xiao B, Hu X, Xiang J. Aspirin attenuates liver fibrosis by suppressing TGF‑β1/Smad signaling. Mol Med Rep 2022; 25:181. [PMID: 35322863 PMCID: PMC8972277 DOI: 10.3892/mmr.2022.12697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Aspirin reduces the liver fibrosis index and inflammation in patients and rats. However, the specific mechanism underlying the effects of aspirin are yet to be elucidated. The present study aimed to investigate the effects of aspirin on thioacetamide (TAA)-induced liver fibrosis in rats and hepatic stellate cells (HSCs) via the TGF-β1/Smad signaling pathway. Liver fibrosis was induced in Sprague Dawley rats by intraperitoneal injection of 200 mg/kg TAA twice weekly for 8 weeks. Aspirin (30 mg/kg) was administered to rats by gavage once every morning over a period of 8 weeks. Masson's trichrome and H&E staining were used to detect and analyze the pathological changes in liver tissues. Western blot analysis and immunohistochemistry were applied to determine the protein expression levels of α-smooth muscle actin (α-SMA), collagen I, TGF-β1, phosphorylated (p)-Smad2 and p-Smad3. In addition, reverse transcription-quantitative PCR was performed to detect the mRNA expression levels of α-SMA, collagen type I α 1 chain (COL1A1) and TGF-β1. The results demonstrated that treatment with aspirin significantly reduced the serum levels of alanine aminotransferase, aspartate aminotransferase and hydroxyproline in the TAA + aspirin compared with that in the TAA group. In the rat liver fibrosis model, pathological changes in liver tissues were improved following treatment with aspirin. Similarly, a marked decrease was observed in protein expression levels of α-SMA, collagen I, TGF-β1, p-Smad2 and p-Smad3. Furthermore, aspirin administration decreased the mRNA levels of α-SMA, COL1A1 and TGF-β1. In addition, HSCs were treated with different concentrations of aspirin (10, 20 and 40 mmol/l), and the protein expression levels of α-SMA, collagen I, TGF-β1, p-Smad2 and p-Smad3 were reduced in a dose-dependent manner. Overall, the present study showed that aspirin attenuated liver fibrosis and reduced collagen production by suppressing the TGF-β1/Smad signaling pathway, thus revealing a potential mechanism of aspirin in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yimin Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Bingyan Liu
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jianping Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xuefeng Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Baolai Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaomiao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinjian Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
21
|
Yamamoto M, Yoshioka Y, Kitakaze T, Yamashita Y, Ashida H. Preventive effects of black soybean polyphenols on non-alcoholic fatty liver disease in three different mouse models. Food Funct 2022; 13:1000-1014. [PMID: 35015019 DOI: 10.1039/d1fo03541j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced stage, non-alcoholic steatohepatitis (NASH), are a major health issue throughout the world. Certain food components such as polyphenols are expected to possess preventive effects on NAFLD and NASH. In this study, the preventive effects of black soybean polyphenols were examined by using three NAFLD/NASH animal models. In a choline-deficient and L-amino acid-defined high-fat diet-induced NASH model, the intake of black soybean polyphenols decreased oxidative stress, but failed in attenuating liver injury and decreasing the expression of alpha-smooth muscle actin (α-SMA). In a Western diet with sucrose and fructose containing sweetened water-induced NAFLD model, black soybean polyphenols suppressed hepatic lipid accumulation, oxidative stress, aminotransferase activities in the plasma, inflammatory cytokine expression, and α-SMA expression accompanied by modulation of lipid metabolism. In a combination of Western diet and carbon tetrachloride model, black soybean polyphenols also suppressed hepatic lipid accumulation, oxidative stress, aminotransferase activities in the plasma, and α-SMA expression. In conclusion, black soybean is an attractive food for the prevention of NAFLD and NASH due to its strong antioxidant activity.
Collapse
Affiliation(s)
- Mio Yamamoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 651-8501, Japan.
| | - Yasukiyo Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo 657-8501, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 4228526, Japan
| | - Tomoya Kitakaze
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 651-8501, Japan.
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan
| | - Yoko Yamashita
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 651-8501, Japan.
| | - Hitoshi Ashida
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 651-8501, Japan.
| |
Collapse
|
22
|
An Efficient Model of Non-alcoholic Fatty Liver Disease (NAFLD) Versus Current Experimental Models: Effects of Fructose, Fat, and Carbon Tetrachloride on NAFLD. HEPATITIS MONTHLY 2021. [DOI: 10.5812/hepatmon.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Accumulation of fat in the liver is one of the causes of non-alcoholic fatty liver disease (NAFLD), which affects about 30% of the world's population. Animal models have been useful tools for investigating the mechanisms involved in the etiology of NAFLD and developing new drugs. Objectives: This study aimed to present a new model for the detection of NAFLD in rats. Methods: Forty-eight rats were randomly divided into six experimental groups: (1) control; (2) 45% fructose + 35% olive oil + carbon tetrachloride (FFC1); (3) carbon tetrachloride (1: 4 in olive oil) (C1); (4) carbon tetrachloride (1: 6 in olive oil) (C2); (5) 12.5% fructose + 12.5% olive oil (FF); and (6) 20% fructose + carbon tetrachloride (1: 4 in olive oil) (FC1). Blood samples were taken in three steps, and liver tissue was dissected at the end of the sixth week for histopathological assessments. Results: After six weeks, the alanine transaminase (131.63 ± 1.51), aspartate transaminase (275 ± 1.0), and gamma-glutamyl transferase (4.30 ± 0.1) levels increased significantly in the C1 group (P < 0.05). The serum lipid profile showed significant changes in all groups compared to the controls (P < 0.01). According to the histological results, all experimental groups, except the C2 group, showed symptoms of NAFLD; nevertheless, a higher NAFLD Activity Score (NAS) was found in the C1 group, followed by the FC1 group, compared to the other groups. Conclusions: The present results revealed that injection of 0.1 mL/kg of carbon tetrachloride (C1 group), alone or along with a diet containing 20% fructose (FC1 group), provided useful animal models of NAFLD, although carbon tetrachloride injection alone is the most effective model in inducing NAFLD model that can be used as a new strategy in nutritional and pharmacological studies.
Collapse
|
23
|
Stephen Robert J, Peddha MS, Srivastava AK. Effect of Silymarin and Quercetin in a Miniaturized Scaffold in Wistar Rats against Non-alcoholic Fatty Liver Disease. ACS OMEGA 2021; 6:20735-20745. [PMID: 34423182 PMCID: PMC8374897 DOI: 10.1021/acsomega.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/26/2021] [Indexed: 05/02/2023]
Abstract
Silymarin and quercetin (SQ) are known antioxidants with substantial free radical scavenging activities. The efficacy of SQ activity is restricted due to poor absorption and availability. This study aims to increase the hepatoprotective activity of SQ by a newer delivery technique. We have optimized a technique, miniaturized scaffold (MS), for the delivery of active compounds of SQ. SQ molecules were embedded in MS and characterized by morphology, particle size, miniaturization efficiency, and functional group. Further, the hepatoprotective effects of MSQ were investigated through in vitro and in vivo methods. Hepatotoxicity was induced in rats by carbon tetrachloride (CCl4), and subsequently, hepatotoxic rats were treated with the miniaturized scaffold of SQ (MSQ) for 8 weeks. The body weight were significantly high in groups fed with MSQ. A substantial decrease in triglyceride, total cholesterol, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase activities were observed in rats treated with MSQ. Similarly, rats treated with MSQ exhibited lower lipid accumulation in the hepatocytes. The experiments clearly demonstrated the efficacy of MSQ as a superior hepatoprotective agent against non-alcoholic fatty liver disease simulated through toxicity induced by CCl4.
Collapse
Affiliation(s)
- Jaisheela
Marry Stephen Robert
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muthukumar Serva Peddha
- Department
of Biochemistry, CSIR- Central Food Technological
Research Institute, Mysuru, 570 020 Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kumar Srivastava
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- .
Phone: 91-821-2514972. Fax: 91-821-2517233
| |
Collapse
|
24
|
DHA Protects Hepatocytes from Oxidative Injury through GPR120/ERK-Mediated Mitophagy. Int J Mol Sci 2021; 22:ijms22115675. [PMID: 34073582 PMCID: PMC8198367 DOI: 10.3390/ijms22115675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy.
Collapse
|
25
|
Okesola MA, Ajiboye BO, Oyinloye BE, Osukoya OA, Owero-ozeze OS, I. Ekakitie L, Kappo AP. Effect of Solanum macrocarpon Linn leaf aqueous extract on the brain of an alloxan-induced rat model of diabetes. J Int Med Res 2021; 48:300060520922649. [PMID: 32602393 PMCID: PMC7328495 DOI: 10.1177/0300060520922649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective This study was designed to evaluate the protective effect of aqueous extract of Solanum macrocarpon Linn leaf in the brain of an alloxan-induced rat model of diabetes. Methods The experimental model of diabetes was induced by a single intraperitoneal injection of freshly prepared alloxan. Rats were then divided into six groups: normal control, diabetes control, diabetes group treated with metformin, and three diabetes groups treated with different concentrations of S. macrocarpon. Rats were sacrificed on day 14 of the experiment and different brain biochemical parameters were assessed and compared between groups. Results Administration of different doses of S. macrocarpon leaf aqueous extract was associated with significantly reduced levels of fasting blood glucose, lipid peroxidation, neurotransmitters, cholinesterases, cyclooxygenase-2 and nitric oxide compared with diabetes control rats. In addition, antioxidant enzyme activities were significantly increased in diabetes rats administered 12.45, 24.9 and 49.8 mg/kg body weight of S. macrocarpon versus diabetes control rats. Conclusion Aqueous extract of S. macrocarpon Linn leaf may be useful in the management of diabetic neuropathy.
Collapse
Affiliation(s)
- Mary A. Okesola
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Basiru O. Ajiboye
- Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
- Basiru O. Ajiboye, Room A20, Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratory, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Ekiti State, Nigeria.
| | - Babatunji E. Oyinloye
- Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Olukemi A. Osukoya
- Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Ofogho S. Owero-ozeze
- Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Lisa I. Ekakitie
- Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Abidemi P. Kappo
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
26
|
Attenuation of Perfluorooctane Sulfonate-Induced Steatohepatitis by Grape Seed Proanthocyanidin Extract in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8818160. [PMID: 33457418 PMCID: PMC7787751 DOI: 10.1155/2020/8818160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an environmentally persistent pollutant, has been revealed to elicit hepatic toxicity. In the current study, we investigated the protective role of grape seed proanthocyanidin extract (GSPE) against PFOS-caused steatohepatitis in mice. Animals were exposed intragastrically to PFOS (10 mg/kg/day), GSPE (150 mg/kg/day), or their combination. After 21 days of treatment, mice exposed to PFOS exhibited steatosis, oxidative stress, and inflammation in the liver. Nevertheless, simultaneous administration of GSPE resumed the declined serum hepatic enzyme activities and histological abnormalities in PFOS-exposed mice. Furthermore, GSPE supplementation reduced the contents of triglyceride (TG) and total cholesterol (TC) and expression of lipid metabolism-associated genes CD36 and fatty acid-binding protein 4 (FABP4) in the liver of mice treated with PFOS. Moreover, GSPE suppressed the generation of lipid peroxidative product malondialdehyde and restored the activity of superoxide dismutase in the liver of PFOS-exposed mice. In addition, GSPE repressed the PFOS-induced hepatic overproduction of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Our results demonstrate that GSPE attenuates PFOS-caused steatohepatitis in mice by regulating lipid metabolism, oxidative stress, and inflammatory response.
Collapse
|
27
|
Nutraceutical Properties of Polyphenols against Liver Diseases. Nutrients 2020; 12:nu12113517. [PMID: 33203174 PMCID: PMC7697723 DOI: 10.3390/nu12113517] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Current food tendencies, suboptimal dietary habits and a sedentary lifestyle are spreading metabolic disorders worldwide. Consequently, the prevalence of liver pathologies is increasing, as it is the main metabolic organ in the body. Chronic liver diseases, with non-alcoholic fatty liver disease (NAFLD) as the main cause, have an alarming prevalence of around 25% worldwide. Otherwise, the consumption of certain drugs leads to an acute liver failure (ALF), with drug-induced liver injury (DILI) as its main cause, or alcoholic liver disease (ALD). Although programs carried out by authorities are focused on improving dietary habits and lifestyle, the long-term compliance of the patient makes them difficult to follow. Thus, the supplementation with certain substances may represent a more easy-to-follow approach for patients. In this context, the consumption of polyphenol-rich food represents an attractive alternative as these compounds have been characterized to be effective in ameliorating liver pathologies. Despite of their structural diversity, certain similar characteristics allow to classify polyphenols in 5 groups: stilbenes, flavonoids, phenolic acids, lignans and curcuminoids. Herein, we have identified the most relevant compounds in each group and characterized their main sources. By this, authorities should encourage the consumption of polyphenol-rich products, as most of them are available in quotidian life, which might reduce the socioeconomical burden of liver diseases.
Collapse
|
28
|
Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl 4-Induced Oxidative Stress in Rats. Nutrients 2020; 12:nu12102904. [PMID: 32977429 PMCID: PMC7598205 DOI: 10.3390/nu12102904] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/17/2022] Open
Abstract
Quinoa (Chenopodium quinoa) is classified as one of the pseudo-cereal grains rich in both macronutrients and micronutrients. This study tracks changes in the polyphenol composition of red quinoa (RQ) and yellow quinoa (YQ) seeds during germination. The antioxidant bioactivity of raw and germinated seed was also determined in vitro. Phenolic acids and their derivatives and flavonoids were identified by using HPLC-DAD and quantified after 0, 3, and 6 days of germination. Subsequently, the extracts of 6-day-old quinoa sprouts were prepared to biologically evaluate their functional properties against CCl4-induced oxidative stress in rats. The results indicated that antioxidant activity (AOA) of total phenolic compounds (TPC), and flavonoids significantly increased in RQ and YQ sprouts during germination up to 9 days. RQ sprouts exhibited stronger bioactive compound diversity than YQ sprouts as observed in HPLC analysis. Among the 11 and 8 quantified polyphenols, ferulic acid and quercetin were predominant phenolic acid and flavonoid in RQ and YQ sprouts, respectively. After 6 days of germination, 16 and 8 polyphenols were detected and quantified in RQ and YQ sprouts, respectively. Interestingly, the treatment of rats at a dose of 30 mg of Gallic acid Equivalent (GAE) kg−1 significantly reduced fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase AST, and total bilirubin (TIBIL) and improved liver inflammation. Furthermore, RQ and YQ sprouts improved the blood profile by significantly decreasing low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) and increasing high-density lipoproteins (HDL). Moreover, RQ and YQ sprout extracts significantly reduced malonaldehyde (MDA) and efficiently enhanced the reduced glutathione (GSH) and superoxide dismutase (SOD) activities in oxidative stress-induced rats as compared to CCl4-rats. In conclusion, red quinoa sprouts (RQS) and yellow quinoa sprouts (YQS) provide naturally synthesized polyphenols, possessing superior antioxidant activity, and their ethanolic extracts have promising effects and potential health benefits to counter induced oxidative stress. Incorporating quinoa sprouts as functional food ingredients should be considered and scaling-up its production is beneficial.
Collapse
|
29
|
Lobo A, Liu Y, Song Y, Liu S, Zhang R, Liang H, Xin H. Effect of procyanidins on lipid metabolism and inflammation in rats exposed to alcohol and iron. Heliyon 2020; 6:e04847. [PMID: 32964156 PMCID: PMC7490533 DOI: 10.1016/j.heliyon.2020.e04847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Lifestyle involving uncontrolled alcohol consumption coupled regularly with red meat and other iron sources has detrimental effects on the liver, which in the long term, results in Alcoholic Liver Disease (ALD). Procyanidin has lately garnered increasing attention and has become the focus of research owing to its antioxidant properties. This study explores the anti-inflammatory effects of procyanidins, in preventing ALD, by analyzing the biological activities of the compound on liver injury caused by excessive alcohol and iron. Method Male SPF Wistar rats were placed in 4 groups; the control Group A (basic diet); the model Group B (excess alcohol 8–12 mL/kg/d and iron 1000 mg/kg diet); the low dose procyanidin Group C (model group diet plus 60 mg/kg/d of procyanidin); and the high dose procyanidin Group D (model group diet plus 120 mg/kg/d of procyanidin). Serum biochemical markers for liver damage were measured spectrophotometrically. The NFκB and IκB mRNA expression levels were determined using RT-PCR; the NFκB p65 and IκB protein expression levels were assessed via western blotting, while ELISA was used to detect serum inflammatory factors. Results The pathological score of the model Group B, low and high dose procyanidin Groups C and D were 6.58 ± 0.90,4.69 ± 0.70 and 2.00 ± 0.73, respectively (P < 0.05). The results showed that high alcohol and iron contents in the model group led to significant damage of liver structure, increased low-density lipoproteins (LDLs), steatosis, and increased levels of inflammatory cytokines. High amounts of procyanidins led to the preservation of the liver structure, production of high-density lipoproteins, and reduction in serum inflammatory cytokines while also significantly decreasing the expression levels of NFκB p65. Conclusion The results prove that procyanidins have hepatoprotective potential and could be effective in reversing histopathology, possibly by alleviating inflammation and improving lipid metabolism.
Collapse
Affiliation(s)
- Amara Lobo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao 266071, China
| | - Ying Liu
- Basic Medical College, Qingdao University, 38 Deng Zhou Road, Qingdao 266021, China
| | - Yuqing Song
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao 266071, China
| | - Song Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao 266071, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao 266071, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, 38 Deng Zhou Road, Qingdao 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao 266071, China
| |
Collapse
|
30
|
Park HJ, Lee SM, Kim HS, Kim JY, Lee SH, Jang JS, Lee MH. Hepatoprotective effect of meal replacement seeds juice based on sweet potato (MRSJ) against CCl 4-induced cytotoxicity in HepG2 cells. Food Sci Biotechnol 2020; 29:693-704. [PMID: 32419968 PMCID: PMC7221099 DOI: 10.1007/s10068-019-00709-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
Abstract
A sweet potato-based Meal Replacement Seeds Juice (MRSJ) was developed by mixing sweet potatoes and carrots with four types of seeds. Consuming the MRSJ rather than the whole vegetables or whole seeds improved digestive function, proving that it is suitable for the elderly. Its rich composition of minerals, vitamins, and unsaturated fatty acids implicates it as an excellent nutrient source. Notably, the ethyl acetate fraction of MRSJ contains abundant phenolics. The antioxidant activity assays showed that these phenolics have high radical scavenging activity, reducing power, and antioxidant capacity similar to l-ascorbic acid. The ethyl acetate fraction exerted protective effects against CCl4- or H2O2-induced hepatotoxicity via DNA protection, lipid accumulation inhibition, and cell protection, wherein ALT and AST activities in the cell culture solution decreased significantly. These findings suggest that MRSJ consumption may protect against liver diseases. Moreover, MRSJ as an excellent nutrient source may be developed as an age-neutral food.
Collapse
Affiliation(s)
- Hye-Jung Park
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Song Min Lee
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Hee Sook Kim
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Ji-Youn Kim
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Sang-Hyeon Lee
- Major in Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan, 46958 Korea
| | - Jeong Su Jang
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Mun Hyon Lee
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| |
Collapse
|
31
|
Abd-Elhakim YM, Ghoneim MH, Ebraheim LLM, Imam TS. Taurine and hesperidin rescues carbon tetrachloride-triggered testicular and kidney damage in rats via modulating oxidative stress and inflammation. Life Sci 2020; 254:117782. [PMID: 32407847 DOI: 10.1016/j.lfs.2020.117782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/26/2022]
Abstract
AIMS This study assessed the prophylactic or therapeutic effects of taurine (TR) and/or hesperidin (HES) on carbon tetrachloride (CCl4) induced acute kidney and testicular injury in rats. MAIN METHODS Rats were randomly divided into nine experimental groups including control; corn oil; CCl4; HES/CCl4; TR/CCl4; HES + TR/CCl4; CCl4/HES; CCl4/TR; and CCl4/HES + TR groups. CCl4 was intraperitoneally injected with a single dose of 2 ml /kg b.w. HES and TR were orally gavaged twice weekly 100 mg/kg b.w. for four weeks. Kidney function, inflammatory response, sexual hormones, and oxidative stress indicators were assessed. Histomorphological and immune-histochemical studies of the inflammatory marker nuclear factor kappa (NF-κB) in renal and testicular tissues were performed. KEY FINDINGS The results showed that the TR and/or HES treatment significantly suppressed CCl4 induced rise of urea, uric acid, potassium, and follicle-stimulating hormone levels. However, significant restoration of sodium, testosterone, and luteinizing hormone was apparent in CCl4 exposed rats received HES and/or TR. Also, the HES and/or TR treatment significantly rescues CCl4 induced oxidative stress and inflammation. Moreover, the HES and/or TR dosing significantly repaired the CCl4 evoked altered renal and testicular architecture and suppressed NF-κB immunoexpression. Notably, alleviating CCl4 induced renal and testicular damage was more effective in the prophylactic groups than the therapeutic groups. Also, most of the estimated parameters of the HES + TR group did not significantly vary from those of single TR or HES. SIGNIFICANCE In conclusion, HES or TR could efficiently guard against CCl4 nephro-and reprotoxic effects, but both bioactive combinations afford only a limited synergistic outcome.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Mervat H Ghoneim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L M Ebraheim
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
32
|
Yousefi-Manesh H, Dehpour AR, Ansari-Nasab S, Hemmati S, Sadeghi MA, Shahraki RH, Shirooie S, Nabavi SM, Nkuimi Wandjou JG, Sut S, Caprioli G, Dall’Acqua S, Maggi F. Hepatoprotective Effects of Standardized Extracts from an Ancient Italian Apple Variety (Mela Rosa dei Monti Sibillini) against Carbon Tetrachloride (CCl 4)-Induced Hepatotoxicity in Rats. Molecules 2020; 25:E1816. [PMID: 32326503 PMCID: PMC7222006 DOI: 10.3390/molecules25081816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this research was to examine the effect of the hydroalcoholic extracts from the peel (APE) and pulp (APP) of a traditional apple cultivar from central Italy (Mela Rosa dei Monti Sibillini) on CCl4-induced hepatotoxicity in rats. Phytoconstituents were determined by liquid chromatography-mass spectrometry (LC-MS) analysis showing an abundance of proanthocyanidins and flavonol derivatives together with the presence of annurcoic acid in APE. Wistar rats received APE/APP (30 mg/kg oral administration) for three days before CCl4 injection (2 mL/kg intraperitoneal once on the third day). Treatment with both APE and APP prior to CCl4 injection significantly decreased the serum levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) compared to the CCl4 group. Besides, pretreatment with APE reversed the CCl4 effects on superoxide dismutase (SOD), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α) and interleukin-1beta (IL-1β) levels in liver tissue in rats and reduced tissue damage as shown in hematoxylin and eosin staining. These results showed that this ancient Italian apple is worthy of use in nutraceuticals and dietary supplements to prevent and/or protect against liver disorders.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Sedighe Ansari-Nasab
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Sara Hemmati
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Mohammad Amin Sadeghi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
| | - Reza Hashemi Shahraki
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran;
- Preclinical Core Facility, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran;
| | | | - Stefania Sut
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy;
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.G.N.W.); (G.C.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.G.N.W.); (G.C.)
| |
Collapse
|
33
|
Xiang C, Cao M, Miao A, Gao F, Li X, Pan G, Zhang W, Zhang Y, Yu P, Teng Y. Antioxidant activities of anastatin A & B derivatives and compound 38c's protective effect in a mouse model of CCl 4-induced acute liver injury. RSC Adv 2020; 10:14337-14346. [PMID: 35498475 PMCID: PMC9051925 DOI: 10.1039/d0ra00822b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
Anastatins A and B, two flavonoid compounds isolated from desert plant Anastatica hierochuntica, have protective activities for primary rat hepatocytes. Anastatins A and B, and their derivatives, were synthesized by our group previously. In this study, the antioxidant activity and cytotoxicity of these compounds were studied using chemical assessment methods, cell proliferation inhibition experiments, and cell oxidative damage models. The best compound, 38c, was used to study the hepatoprotection activity and mechanism by using a CCl4-induced liver injury model in mice. The results show that most of these flavonoid compounds have good antioxidant activity and low cytotoxicity in vitro. Among them, the most potent compound was 38c, which exhibited a protective effect on CCl4-induced hepatic injury by suppressing the amount of CYP2E1. These findings indicate that anastatin flavonoid derivatives have potential therapeutic utility against oxidative hepatic injury.
Collapse
Affiliation(s)
- Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| | - Menglin Cao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| | - Ai Miao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| | - Feng Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xuzhe Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| | - Guojun Pan
- School of Life Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences Changcheng Road 619 Tai'an City 271000 Shandong province China
| | - Wenqiang Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR8232 CNRS 4 Place Jussieu 75005 Paris France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
34
|
Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. Journal of Food Science and Technology 2019; 57:1205-1215. [PMID: 32180617 DOI: 10.1007/s13197-019-04113-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
Grapes are one of the most highly consumed fruits across the world. In ancient Europe the leaves and the sap of grape plants has been used in traditional treatment for ages. Besides being a wellspring for vitamins and fibre, the skin and seeds of grapes are highly rich in Polyphenols specifically proanthocyanidins, which can be used as a functional ingredient to address various health issues by boosting the natural bio-processes of the body. Since, grape seeds are by product of wine making companies therefore can be easily procured. The present review article briefly describes the various pharmacological activities of grape seed extract and different experimental studies were done which supports the beneficial health qualities of the extract. Through different and various studies, it was proved that the proanthocyanidin rich grape seed extract provides benefits against many diseases i.e. inflammation, cardiovascular disease, hypertension, diabetes, cancer, peptic ulcer, microbial infections, etc. Therefore, beside from using it as a nutraceutical or cosmeceutical, as a result they may have a potential to substitute or complement in currently used drugs in the treatment of diseases by developing it into other successful pharmaceutical formulations for better future prospective.
Collapse
Affiliation(s)
- Madhavi Gupta
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Sanjay Dey
- Division of Pharmaceutics, Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Banitabla, Ulberia, Howrah, West Bengal India
| | - Daphisha Marbaniang
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Paulami Pal
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Subhabrata Ray
- B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal India
| | - Bhaskar Mazumder
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| |
Collapse
|
35
|
Jia L, Wang T, Sun Y, Zhang M, Tian J, Chen H, Shen Z, Khan Abro H, Su N, Cui J. Protective Effect of Selenium-Enriched Red Radish Sprouts on Carbon Tetrachloride-Induced Liver Injury in Mice. J Food Sci 2019; 84:3027-3036. [PMID: 31529805 DOI: 10.1111/1750-3841.14727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the effect of Se (Selenium) treatment on nutritional quality in radish sprouts. The results showed that 15 µM sodium selenite significantly increased phenolics compounds, flavonoids compounds, anthocyanins, and some essential amino acid content, while improving the total antioxidant capacity of radish sprouts. Besides, the Se-enriched radish sprouts significantly alleviated the liver damage caused by carbon tetrachloride (CCl4 ) in mice and improved the antioxidant capacity of the liver in mice, whereas the Se-enriched radish sprouts alleviated the inflammatory reaction and apoptosis caused by CCl4 . These results imply that Se-enriched radish sprouts have a positive impact on mice with CCl4 -induced liver injury, and that in future Se-enriched radish sprouts could be developed into an effective food and health care product for the liver injury prevention. PRACTICAL APPLICATION: Because selenium is an essential trace element in the human body, selenium-enriched sprouts can help eliminate free radicals in the body, relieve aging, and selenium-deficient diseases. They are easy to grow and have low costs. Hence, selenium-enriched sprouts have a great potential of being widely consumed.
Collapse
Affiliation(s)
- Li Jia
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Tao Wang
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Yuanyuan Sun
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Miaoran Zhang
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Jiyuan Tian
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Hui Chen
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Hashmat Khan Abro
- College of Agriculture, Guangxi Univ., Nanning, Guangxi, 530004, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural Univ., Nanjing, Jiangsu, 210095, China
| |
Collapse
|
36
|
Yan Y, Fang J, Wen X, Teng X, Li B, Zhou Z, Peng S, Arisha AH, Liu W, Hua J. Therapeutic applications of adipose-derived mesenchymal stem cells on acute liver injury in canines. Res Vet Sci 2019; 126:233-239. [PMID: 31635840 DOI: 10.1016/j.rvsc.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/18/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
In this study, canine adipose-derived mesenchymal stem cells (cADSCs) therapeutic potential was investigated in artificially induced acute liver injury model by CCl4 in canines. The primary cADSCs cells were cultured and then intravenously administered into the canine animal model. Six cross-breed dogs were divided into three groups including blank control group, CCl4 model group, CCl4 induced cADSCs transplantation group. The results showed that after intraperitoneal injection of CCl4 solution, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Albumin (ALB) in peripheral blood of experimental canines confirmed the correct induction of acute liver injury. Moreover, the liver structure showed clear macroscopic damage. The cADSCs were homed in the liver of the administered animals. The AST, ALT and ALB in the peripheral blood rapidly decreased. H&E and PAS histological evaluation showed that both the structure of canine liver tissue and the ability to synthesize hepatic glycogen could be restored to the control level after cADSCs transplantation. Therefore, cADSCs can play a therapeutic role in the recovery of liver injury. Overall, this study demonstrates that the primary cADSCs transplantation into the acute liver injury model induced by intravenous injection can play a certain therapeutic role in the recovery of liver in canines. These results may provide a new treatment idea for acute liver disease in pets clinically.
Collapse
Affiliation(s)
- Yuan Yan
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Jia Fang
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Xinyu Wen
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Xin Teng
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Wenshuai Liu
- Department of Pathology, Yangling Demonstration Zone Hospital, Yangling, Shaanxi Province, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
37
|
Xia T, Zhang B, Duan W, Li Y, Zhang J, Song J, Zheng Y, Wang M. Hepatoprotective efficacy of Shanxi aged vinegar extract against oxidative damage in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Kim MJ, Kim MJ, Han DW, Kim JI. Hepatoprotective Effect of Fresh Grape Juice Prepared by a Low-Speed Masticating Juicer in db/db Mice. Prev Nutr Food Sci 2019; 24:95-101. [PMID: 31008102 PMCID: PMC6456238 DOI: 10.3746/pnf.2019.24.1.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Abstract
This study investigated the hepatoprotective effect of fresh grape juice prepared using a low-speed masticating (LSM) juicer or a high-speed centrifugal (HSC) juicer in mice. Six-week-old db/db mice were fed on an AIN-93G diet or a diet containing 1% freeze-dried LSM or HSC grape juice for 7 weeks. Treatment with LSM grape juice significantly decreased hepatic triglycerides, serum aspartate transaminase activities, and homeostasis model assessment for insulin resistance values, whereas HSC juice did not significantly influence these parameters. The LSM grape juice showed higher antioxidant and anti-inflammatory activities than HSC juice. The benefits of LSM grape juice are probably due to a much higher proanthocyanidin content than that of HSC juice. These results suggest that LSM grape juice can exert hepatoprotective effects in db/db mice, partly through improving insulin resistance and promoting antioxidant and inflammatory activities.
Collapse
Affiliation(s)
- Min-Ju Kim
- Bio-Food Research Center, Hurom Co., Ltd., Gyeongnam 50969, Korea
| | - Myo-Jeong Kim
- Department of Smart Foods and Drugs, Graduate School of Inje University, Gyeongnam 50834, Korea
| | - Do Won Han
- Department of Smart Foods and Drugs, Graduate School of Inje University, Gyeongnam 50834, Korea
| | - Jung-In Kim
- Department of Smart Foods and Drugs, Graduate School of Inje University, Gyeongnam 50834, Korea
| |
Collapse
|
39
|
Lin TA, Ke BJ, Cheng CS, Wang JJ, Wei BL, Lee CL. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients 2019; 11:nu11020395. [PMID: 30781895 PMCID: PMC6412755 DOI: 10.3390/nu11020395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
The late stages of liver fibrosis are considered to be irreversible. Red quinoa (Chenopodium formosanum Koidz), a traditional food for Taiwanese aborigines, was gradually developed as a novel supplemental food due to high dietary fibre and polyphenolic compounds. Its bran was usually regarded as the agricultural waste, but it contained a high concentration of rutin known as an antioxidant and anti-inflammatory agent. This study is to explore the effect of red quinoa bran extracts on the prevention of carbon tetrachloride (CCl4)-induced liver fibrosis. BALB/c mice were intraperitoneally injected CCl4 to induce liver fibrosis and treated with red quinoa whole seed powder, bran ethanol extracts, bran water extracts, and rutin. In the results, red quinoa powder provided more protection than rutin against CCl4-induced oxidative stress, pro-inflammatory factor expression and fibrosis development. However, the bran ethanol extract with high rutin content provided the most liver protection and anti-fibrosis effect via blocking the tumor necrosis factor alpha (TNF-α)/interleukin 6 (IL-6) pathway and transforming growth factor beta 1 (TGF-β1) pathway.
Collapse
Affiliation(s)
- Ting-An Lin
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Bo-Jun Ke
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | | | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 831, Taiwan.
| | - Bai-Luh Wei
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|
40
|
Jia D, Wang YY, Wang P, Huang Y, Liang DY, Wang D, Cheng C, Zhang C, Guo L, Liang P, Wang Y, Jia Y, Li C. SVIP alleviates CCl 4-induced liver fibrosis via activating autophagy and protecting hepatocytes. Cell Death Dis 2019; 10:71. [PMID: 30683843 PMCID: PMC6347612 DOI: 10.1038/s41419-019-1311-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Prolonged parenchymal cell death leads to activation of fibrogenic cells and extracellular matrix accumulation and eventually liver fibrosis. Autophagy, a major catabolic process of intracellular degradation and recycling, participates in hepatic fibrosis. However, the precise role of autophagy in the pathogenesis of hepatic fibrosis is controversial. The present study aims to investigate the key role of small VCP/p97 interacting protein (SVIP) against CCl4-induced hepatic fibrosis via activating autophagy. Autophagy could be activated by SVIP in HepG2 cells, but starvation cannot increase SVIP expression in vitro and in vivo. Moreover, SVIP expression, in agreement with autophagic activity and the volume of lipid droplets, first increases and then decreases during the progression of liver fibrosis with CCl4 treatment in vivo and in vivo. Further, overexpression of SVIP can protect HepG2 cells from the toxicity of CCl4, which could be enhanced by starvation. Finally, starvation keeps SVIP and autophagy at such high levels in the rat livers that markedly delays the progress of hepatic fibrosis. Probably, the protective effect of SVIP is associated with stabilizing nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) and transcription factor EB (TFEB). The current study provides insight into the biological role of SVIP and autophagy in regulating hepatic fibrosis, targeting SVIP might be a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Dan Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuan Yuan Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pin Wang
- Administration Department, Dalian Medical University, Dalian, China
| | - Yao Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - David Yuke Liang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Dongmei Wang
- Department of Experimental Functionality, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuandong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Caihua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pin Liang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Yujie Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Cong Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
41
|
Proanthocyanidins Antagonize Arsenic-Induced Oxidative Damage and Promote Arsenic Methylation through Activation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8549035. [PMID: 30805085 PMCID: PMC6360624 DOI: 10.1155/2019/8549035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 11/18/2022]
Abstract
Purpose To investigate the effects of grape seed proanthocyanidin extract (GSPE) on oxidative damage and arsenic (As) methylation and to clarify the role of Nrf2 in the process. Methods L-02 cells were treated with arsenic (25 μM) and GSPE (10, 25, and 50 mg/L) for 24 h. Cell viability was analyzed by MTT assay. Cell apoptosis and ROS fluorescence were detected by flow cytometry. Oxidative stress marker levels were measured using commercial kits. mRNA and protein expression were detected by qRT-PCR and western blotting. The cellular concentrations of methylation products were measured by HPLC-HGAFS. Arsenic methylation ability of cells was determined. Results Cell survival rate was significantly lower in the As group than in the control group (P < 0.05), while cell apoptosis increased and the number of apoptotic cells decreased gradually after GSPE intervention. Superoxide dismutase, glutathione, and sulfhydryl levels in the intervention group were significantly higher (P < 0.05), while MDA and ROS levels were significantly lower (P < 0.05) than those in the As group. The mRNA and protein expression of Nrf2, HO-1, NQO1, and glutathione-S-transferase increased in the As + GSPE group compared with that in the As group (P < 0.05). GSPE significantly increased methylated As level, primary methylation index, secondary methylation index, average growth rate of methylation, and average methylation speed compared with the GSPE untreated group (P < 0.05). After Nrf2 inhibition, the effect of GSPE decreased significantly. Conclusion GSPE activates the Nrf2 signaling pathway to antagonize As-induced oxidative damage and to promote As methylation metabolism. Therefore, GSPE may be a potential agent for relieving As-induced hepatotoxicity.
Collapse
|
42
|
Grape Seed Proanthocyanidin Extract Alleviates AflatoxinB₁-Induced Immunotoxicity and Oxidative Stress via Modulation of NF-κB and Nrf2 Signaling Pathways in Broilers. Toxins (Basel) 2019; 11:toxins11010023. [PMID: 30621062 PMCID: PMC6356337 DOI: 10.3390/toxins11010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a widely spread mycotoxin contaminates food and feed, causing severe oxidative stress damages and immunotoxicity. Grape seed proanthocyanidin (GSPE), a natural antioxidant with wide range of pharmacological and medicinal properties. The goal of the present study was to investigate the protective effects of GSPE against AFB1-induced immunotoxicity and oxidative stress via NF-κB and Nrf2 signaling pathways in broiler chickens. For the experiment, 240 one-day old Cobb chicks were allocated into four dietary treatment groups of six replicates (10 birds per replicate): 1. Basal diet (control); 2. Basal diet + AFB1 1mg/kg contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg (GSPE); 4. Basal diet + AFB1 1 mg/kg + GSPE 250 mg/kg (AFB1 + GSPE). The results showed that GSPE significantly decreased serum inflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-10, and IL-6 induced by AFB1. Similarly, GSPE + AFB1 treated group revealed a significant decrease in mRNA expressions of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6) in the splenic tissue compared to the AFB1 treatment group. In addition, western blotting results manifested that GSPE treatment normalized the phosphorylation of nuclear factor kappa B (p65) and the degradation of IκBα protein induced by AFB1. Furthermore, GSPE enhanced the antioxidant defense system through activating the nuclear factor-erythroid-2-related factor (Nrf2) signaling pathway. The mRNA and protein expression level of Nrf2 and its down streaming associated genes were noted up-regulated by the addition of GSPE, and down-regulated in the AFB1 group. Taken together, GSPE alleviates AFB1-induced immunotoxicity and oxidative damage by inhibiting the NF-κB and activating the Nrf2 signaling pathways in broiler chickens. Conclusively, our results suggest that GSPE could be considered as a potential natural agent for the prevention of AFB1-induced immunotoxicity and oxidative damage.
Collapse
|
43
|
Mu M, Zuo S, Wu RM, Deng KS, Lu S, Zhu JJ, Zou GL, Yang J, Cheng ML, Zhao XK. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4107-4115. [PMID: 30584275 PMCID: PMC6284527 DOI: 10.2147/dddt.s186726] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose Liver fibrosis is a worldwide health issue. Development of effective new drugs for treatment of this disease is of great importance. This study investigated the therapeutic effects of ferulic acid on liver fibrosis in vitro and in vivo. Materials and methods Human hepatic stellate cell line (HSC) LX-2 was used for in vitro assays. Transforming growth factor β1 (TGF-β1) was used to induce hepatic fibrosis in LX-2 cells. Western blot was used to detect protein levels of collagen I, fibronectin, α-smooth muscle actin (SMA), p-Smad2, p-Smad3, p-p38, and p-JNK. Gene expression was measured by RT-qPCR. Fluorescence staining was used to determine localization of Smad4. CCl4-induced hepatic fibrosis in SD rats was used as an in vivo model. Histological features were detected by hematoxylin and eosin staining. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hexadecenoic acid (HA), and hydroxyproline (Hyp) were measured by ELISA. Results TGF-β1 treatment significantly increased levels of collagen I, fibronectin, α-SMA, p-Smad2, p-Smad3, and Smad4 in LX-2 cells. Ferulic acid improved TGF-β1-induced hepatic fibrosis via regulation of the TGF-β1/Smad pathway. Consistent with in vitro data, CCl4 caused severe hepatic fibrosis in SD rats, as determined by ALT, AST, HA, and Hyp upregulation. Protein levels of p-Smad2 and p-Smad3 in liver tissues were significantly increased following treatment with CCl4. All CCL4-induced changes were markedly attenuated by ferulic acid treatment. Conclusion Ferulic acid potently improved hepatic fibrosis via inhibition of the TGF-β1/Smad pathway in vitro and in vivo. These findings provided evidence for potential use of ferulic acid to treat or prevent liver fibrosis.
Collapse
Affiliation(s)
- Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rong-Min Wu
- Department of Ultrasonography, The Maternity Hospital of Guizhou, Guiyang, Guizhou, China
| | - Kai-Sheng Deng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Shuang Lu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Juan-Juan Zhu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Gao-Liang Zou
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Jing Yang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Ming-Liang Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Xue-Ke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| |
Collapse
|
44
|
Metabolomic Study to Determine the Mechanism Underlying the Effects of Sagittaria sagittifolia Polysaccharide on Isoniazid- and Rifampicin-Induced Hepatotoxicity in Mice. Molecules 2018; 23:molecules23123087. [PMID: 30486347 PMCID: PMC6321494 DOI: 10.3390/molecules23123087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, a non-targeted metabolic profiling method based on ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was used to characterize the plasma metabolic profile associated with the protective effects of the Sagittaria sagittifolia polysaccharide (SSP) on isoniazid (INH)—and rifampicin (RFP)-induced hepatotoxicity in mice. Fourteen potential biomarkers were identified from the plasma of SSP-treated mice. The protective effects of SSP on hepatotoxicity caused by the combination of INH and RFP (INH/RFP) were further elucidated by investigating the related metabolic pathways. INH/RFP was found to disrupt fatty acid metabolism, the tricarboxylic acid cycle, amino acid metabolism, taurine metabolism, and the ornithine cycle. The results of the metabolomics study showed that SSP provided protective effects against INH/RFP-induced liver injury by partially regulating perturbed metabolic pathways.
Collapse
|
45
|
Tabeshpour J, Mehri S, Shaebani Behbahani F, Hosseinzadeh H. Protective effects of Vitis vinifera
(grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytother Res 2018; 32:2164-2190. [DOI: 10.1002/ptr.6168] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
- Neurocognitive Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Fatemeh Shaebani Behbahani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
46
|
Dimethylthiourea ameliorates carbon tetrachloride-induced acute liver injury in ovariectomized mice. Biomed Pharmacother 2018; 104:427-436. [PMID: 29787990 DOI: 10.1016/j.biopha.2018.05.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS In order to clarify hepato-protective actions of estrogen, we examined the progress of carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in sham and ovariectomized (ovx) mice and the effects of dimethylthiourea (DMTU), a hydroxyl radical scavenger, and meloxicam (Melo), a selective cox-2 inhibitor, on the development of CCl4-induced ALI. MAIN METHODS Female C57BL/6 J mice weighing 15-20 g were performed sham or ovx operation at 8 weeks of age. Blood and liver samples were collected 15 and 24 h after CCl4 administration. Sham and ovx mice were given DMTU, Melo or saline intraperitoneally 30 min before CCl4 or corn oil administration. KEY FINDINGS ALT levels in ovx mice were significantly increased compared to those in sham mice. DMTU reduced ALT levels in ovx mice to the same levels as those in sham mice after CCl4 injection. CCl4 upregulated TNF-α, IL-6, cox-2 and iNOS expression in ovx mice compared to the levels in sham mice. DMTU significantly reduced cox-2 and iNOS expression levels upregulated by CCl4 in ovx mice. However, pretreatment with Melo had no effects on ALT levels and the gene expression levels of TNF-α, IL-6 and HO-1 in either sham or ovx mice, indicating that cox-2 may not participate in increase of CCl4-induced ALI caused by estrogen deficiency. SIGNIFICANCE Ovariectomy accelerated the development of CCl4-induced acute liver injury, and DMTU reduced liver injury. These results suggest that estrogen may act as an antioxidant in the development CCl4-induced acute liver injury.
Collapse
|
47
|
Byun JH, Kim J, Choung SY. Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl 4-Induced Liver Injury in Sprague-Dawley Rats. Biomol Ther (Seoul) 2018; 26:218-223. [PMID: 29129047 PMCID: PMC5839501 DOI: 10.4062/biomolther.2017.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride (CCl4)-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of CCl4 (1.5 ml/kg, twice a week for 14 days). The administration of CCl4 exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2′-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to CCl4 induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in CCl4 induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by CCl4 via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.
Collapse
Affiliation(s)
- Jae-Hyuk Byun
- Department of Life and Nanopharmaceutical Sciences, Graduate School, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
48
|
Meng X, Li Y, Li S, Gan RY, Li HB. Natural Products for Prevention and Treatment of Chemical-Induced Liver Injuries. Compr Rev Food Sci Food Saf 2018; 17:472-495. [DOI: 10.1111/1541-4337.12335] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ.; Guangzhou 510080 China
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ.; Guangzhou 510080 China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine; The Univ. of Hong Kong; Hong Kong China
| | - Ren-You Gan
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ.; Guangzhou 510080 China
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center; Sun Yat-sen Univ.; Guangzhou 510006 China
| |
Collapse
|
49
|
Ali Rajput S, Sun L, Zhang N, Mohamed Khalil M, Gao X, Ling Z, Zhu L, Khan FA, Zhang J, Qi D. Ameliorative Effects of Grape Seed Proanthocyanidin Extract on Growth Performance, Immune Function, Antioxidant Capacity, Biochemical Constituents, Liver Histopathology and Aflatoxin Residues in Broilers Exposed to Aflatoxin B₁. Toxins (Basel) 2017; 9:toxins9110371. [PMID: 29140290 PMCID: PMC5705986 DOI: 10.3390/toxins9110371] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/05/2023] Open
Abstract
Aflatoxicosis is a grave threat to the poultry industry. Dietary supplementation with antioxidants showed a great potential in enhancing the immune system; hence, protecting animals against aflatoxin B1-induced toxicity. Grape seed proanthocyanidin extract (GSPE) one of the most well-known and powerful antioxidants. Therefore, the purpose of this research was to investigate the effectiveness of GSPE in the detoxification of AFB1 in broilers. A total of 300 one-day-old Cobb chicks were randomly allocated into five treatments of six replicates (10 birds per replicate), fed ad libitum for four weeks with the following dietary treatments: 1. Basal diet (control); 2. Basal diet + 1 mg/kg AFB1 contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg; (GSPE 250 mg/kg) 4. Basal diet + AFB1 (1 mg/kg) + GSPE 250 mg/kg; (AFB1 + GSPE 250 mg/kg) 5. Basal diet + AFB1 (1mg/kg) + GSPE 500 mg/kg, (AFB1 + GSPE 500 mg/kg). When compared with the control group, feeding broilers with AFB1 alone significantly reduced growth performance, serum immunoglobulin contents, negatively altered serum biochemical contents, and enzyme activities, and induced histopathological lesion in the liver. In addition, AFB1 significantly increased malondialdehyde content and decreased total superoxide dismutase, catalase, glutathione peroxide, glutathione-S transferase, glutathione reductase activities, and glutathione concentration within the liver and serum. The supplementation of GSPE (250 and 500 mg/kg) to AFB1 contaminated diet reduced AFB1 residue in the liver and significantly mitigated AFB1 negative effects. From these results, it can be concluded that dietary supplementation of GSPE has protective effects against aflatoxicosis caused by AFB1 in broiler chickens.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mahmoud Mohamed Khalil
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Benha, Kalubia 13736, Egypt.
| | - Xin Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhao Ling
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Luoyi Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Farhan Anwar Khan
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar 25120, Pakistan.
| | - Jiacai Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
50
|
Serairi-Beji R, Aidi Wannes W, Hamdi A, Tej R, Ksouri R, Saidani-Tounsi M, Lachaal M, Karray-Bouraoui N. Antioxidant and hepatoprotective effects of Asparagus albus
leaves in carbon tetrachloride-induced liver injury rats. J Food Biochem 2017. [DOI: 10.1111/jfbc.12433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raja Serairi-Beji
- Laboratoire des Plantes Aromatiques et Medicinales, Centre de Biotechnologie de Borj-Cedria, B.P. 901, 2050 Hammam-Lif; Tunisie
| | - Wissem Aidi Wannes
- Laboratoire des Plantes Aromatiques et Medicinales, Centre de Biotechnologie de Borj-Cedria, B.P. 901, 2050 Hammam-Lif; Tunisie
| | - Amel Hamdi
- Unité de Physiologie et de Biochimie de la Tolérance au Stress Chez les Plantes, Faculté des Sciences de Tunis, El Manar II; Tunis Tunisie
| | - Rabeb Tej
- Unité de Physiologie et de Biochimie de la Tolérance au Stress Chez les Plantes, Faculté des Sciences de Tunis, El Manar II; Tunis Tunisie
| | - Riadh Ksouri
- Laboratoire des Plantes Aromatiques et Medicinales, Centre de Biotechnologie de Borj-Cedria, B.P. 901, 2050 Hammam-Lif; Tunisie
| | - Moufida Saidani-Tounsi
- Laboratoire des Plantes Aromatiques et Medicinales, Centre de Biotechnologie de Borj-Cedria, B.P. 901, 2050 Hammam-Lif; Tunisie
| | - Mokhtar Lachaal
- Unité de Physiologie et de Biochimie de la Tolérance au Stress Chez les Plantes, Faculté des Sciences de Tunis, El Manar II; Tunis Tunisie
| | - Najoua Karray-Bouraoui
- Unité de Physiologie et de Biochimie de la Tolérance au Stress Chez les Plantes, Faculté des Sciences de Tunis, El Manar II; Tunis Tunisie
| |
Collapse
|