1
|
Li Y, Lin H, Sun Y, Zhao R, Liu Y, Han J, Zhu Y, Jin N, Li X, Zhu G, Li Y. Platycodin D2 Mediates Incomplete Autophagy and Ferroptosis in Breast Cancer Cells by Regulating Mitochondrial ROS. Phytother Res 2024. [PMID: 39581858 DOI: 10.1002/ptr.8386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Platycodin D2 (PD2) is a triterpenoid saponin extracted from the root of Platycodon grandiflorum, a common source of medicine and food. Platycodon grandiflorum saponins have anti-inflammatory, antioxidative, antitumor, and immunity-promoting effects. However, the effect of PD2 on breast cancer cells has not been reported. The purpose of this study is to explore the molecular mechanism underlying the effect of PD2 on breast cancer cells. We analyzed the inhibitory effects and pathways of PD2 on breast cancer by CCK-8 assay, WB assay, and immunofluorescence assay. Subsequently, autophagy and ferroptosis were analyzed using different inhibitors. It was found that PD2 caused mitochondrial damage and promoted mitochondrial reactive oxygen species (mtROS) production, leading to autophagy flux inhibition and ferroptosis. Blockage of autophagy flux and ferroptosis promoted each other, resulting in the inhibition of breast cancer cell proliferation. Similar results were obtained in the tumor-bearing model in vivo. PD2 promoted autophagy flux blockage and ferroptosis in breast cancer cells, which induced each other under the action of mtROS, thus inhibiting the proliferation of breast cancer cells. PD2 is a potential new strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
- Medical College, Yanbian University, Yanji, P. R. China
| | - Haijiao Lin
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
- Center of Children's Clinic, Affiliated Hospital to Changchun University of Chinese Medicine, Jilin Changchun, P. R. China
| | - Yu Sun
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
- Department of Neurology, Jilin Central Hospital, Jilin, P. R. China
| | - Renshuang Zhao
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
- Medical College, Yanbian University, Yanji, P. R. China
| | - Yunyun Liu
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Jicheng Han
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yilong Zhu
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
- Medical College, Yanbian University, Yanji, P. R. China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P. R. China
| | - Xiao Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P. R. China
| | - Guangze Zhu
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
- Department of Clinical Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Jilin Changchun, P. R. China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, P. R. China
| |
Collapse
|
2
|
Feng Z, Wang K, Huang J, Liu Z, Fu J, Shi J, Ma X, Li L, Wu Q. Exploration of the Active Components and Mechanism of Jiegeng (Platycodonis Radix) in the Treatment of Influenza Virus Pneumonia Through Network Pharmacology Analysis and Experimental Verification. Chem Biol Drug Des 2024; 104:e70007. [PMID: 39523498 DOI: 10.1111/cbdd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to explore the pathogenesis of platycodin D and luteolin, which are both active components in Jiegeng (Platycodonis Radix), in the treatment of influenza virus pneumonia through network pharmacology analysis combined with experimental verification. The bioactive components of Jiegeng (Platycodonis Radix) were screened by TCMSP and literature mining, and the results were standardized via the UniProt database. The action targets for the disease were identified from databases including OMIM, GeneCards, TTD, DisGeNET, and PharmGKB. Then, the visualized key target regulatory network and protein-protein interaction (PPI) network for the active components were established using Cytoscape3.7.1 software. The findings were illustrated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The intervention concentrations of platycodin D and luteolin were screened by the CCK8 method, and the important signaling pathways of platycodin D and luteolin for treating influenza virus pneumonia were verified by RT-qPCR and Western blot tests. From data mining, 89 common drug-disease targets were screened out, and five major active components of Jiegeng (Platycodonis Radix), including platycodin D and luteolin, were obtained. Besides, 11 therapeutic targets including IL-17, IL-6, TNF-α, JUN, and MAKP1 were identified by PPI network analysis. GO and KEGG enrichment analyses showed that the pathways most related to the mechanisms of Jiegeng (Platycodonis Radix) against influenza virus pneumonia included the TNF and IL-17 signaling pathways and apoptosis. In vitro experiments demonstrated that the model group exhibited a notable elevation in mRNA levels of IL-6, IL-17, TNF-α, JUN, MAPK1, and the IL-17/-acting protein ratio, as compared to the control group (p < 0.05). In contrast to the model group, the IL-6, IL-17, TNF-α, JUN, MAPK1 mRNA expression levels, and the IL-17 protein ratio in both the platycodin D group and luteolin group were considerably decreased (p < 0.05). Combined with network pharmacology and experimental verification, this study revealed that platycodin D and luteolin in Jiegeng (Platycodonis Radix) may treat influenza virus pneumonia by regulating inflammation through the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Zhiying Feng
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kangyu Wang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiawang Huang
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhuolin Liu
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingmin Fu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianing Shi
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyue Ma
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiong Wu
- Department of Traditional Chinese Medicine, College of Humanities and Management, Changsha, Hunan, China
| |
Collapse
|
3
|
Li Y, Xiao P, Sun Y, Li Y, Zhao H, Sun J, Wang X, Han X, Jin N, Li X, Bao Y. Deapioplatycodin D promotes cell senescence induced by P21 through the mediation of incomplete mitophagy via BNIP3L. Biomed Pharmacother 2024; 178:117215. [PMID: 39084076 DOI: 10.1016/j.biopha.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Deapioplatycodin D (DPD) is a triterpenoid saponin extracted from the root of Platycodon grandiflorum, which is a common source of medicine and food. Platycodon grandiflorum saponins have anti-inflammatory, antioxidative, antitumor, and immunity-promoting effects. However, the effect of DPD on hepatocellular carcinoma (HCC) cells has not been reported. The purpose of this study was to explore the cytotoxic effects and molecular mechanisms of DPD on HCC cells. Our study revealed that DPD significantly inhibits the proliferation of HCC, as demonstrated by the CCK-8 assay, and then we analyzed the inhibitory effects and pathways of DPD on HCC cells by Western blot and immunofluorescence assay, and found that DPD could increase the changes of autophagy-related protein levels, but had no significant effect on the expression of apoptosis-related proteins, and induced cell senescence. Then, transcriptomics analysis revealed that differential genes were significantly enriched in cell senescence and autophagy pathways and significant expression of mitochondrial autophagy-related gene BNIP3L and senescence-related gene P21. Subsequently, autophagy and cell senescence were analyzed using gene silencing, and it was found that DPD caused mitochondrial damage and promoted reactive oxygen species production, leading to the inhibition of autophagic fluxes and mitophagy via BNIP3L, and that DPD also mediated cell senescence via P21. Here, we found that autophagy promoted cell senescence, resulting in the inhibition of HCC cell proliferation. Similar results were obtained in the tumor-bearing model in vivo. In conclusion, DPD induces incomplete mitophagy and cell senescence in HCC cells, thereby inhibiting HCC cell proliferation. DPD is a potential new strategy for treating HCC.
Collapse
Affiliation(s)
- Yiquan Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, PR China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, PR China.
| | - Yu Sun
- Department of Neurology, Jilin Central Hospital, Jilin 132000, PR China
| | - Yaru Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Haifeng Zhao
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Jialing Sun
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Xue Wang
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Xiaohong Han
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
4
|
Zhang L, Wang X, Zhang J, Liu D, Bai G. Ethnopharmacology, phytochemistry, pharmacology and product application of Platycodon grandiflorum: A review. CHINESE HERBAL MEDICINES 2024; 16:327-343. [PMID: 39072195 PMCID: PMC11283231 DOI: 10.1016/j.chmed.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Platycodonis Radix (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in Platycodon grandiflorum (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to P. grandiflorum. This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of P. grandiflorum.
Collapse
Affiliation(s)
- Lanying Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Xinrui Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Gang Bai
- Nankai University, Tianjin 300353, China
| |
Collapse
|
5
|
Lin Z, Wang Y, Li L, Zheng B, Hu J, Zhang Y. Comparison of anti-allergic activities of different types of lotus seed resistant starch in OVA-induced mouse model. Int J Biol Macromol 2024; 270:132389. [PMID: 38754655 DOI: 10.1016/j.ijbiomac.2024.132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Currently, evidence from observational studies suggests dietary fiber intake may be associated with decreased risk of food allergy. As a type of dietary fiber, resistant starch was also widely reported to possess anti-allergic properties. However, there is a relative paucity of studies assessing the influence of resistant starch types on their anti-allergic activity and its possible underlying mechanisms. In the current study, the anti-allergic effects of RS3-type (retrograded starch), RS4-type (chemically modified starch, cross-bonded), and RS5-type (starch-palmitic acid complex) of lotus seed resistant starch were evaluated in the OVA (100 mg/kg)-induced food allergic mice model. The results showed that oral administration of RS3 or RS4 lotus seed resistant starch (0.3 g/100 g b.w.) for 25 days significantly improved adverse symptoms of food allergy such as weight loss, increases in allergy symptom score and diarrhea rate; with significant reduction of serum specific antibody IgE, TNF-α, IL-4 levels and improved Th1/Th2 balance being observed. The mechanism may involve the regulation of lotus seed resistant starch on intestinal flora and the metabolites short-chain fatty acids and bile acids. Taken together, the findings may enhance understanding towards ameliorative effects of resistant starch on food allergy, and offer valuable insights for the exploration of novel anti-allergic bioactive compounds.
Collapse
Affiliation(s)
- Zhongjing Lin
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 102448, China
| | - Lanxin Li
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China
| | - Jiamiao Hu
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Life Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom.
| | - Yi Zhang
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Fan J, Chen N, Rao W, Ding W, Wang Y, Duan Y, Wu J, Xing S. Genome-wide analysis of bZIP transcription factors and their expression patterns in response to methyl jasmonate and low-temperature stresses in Platycodon grandiflorus. PeerJ 2024; 12:e17371. [PMID: 38708338 PMCID: PMC11067905 DOI: 10.7717/peerj.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.
Collapse
Affiliation(s)
- Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Na Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, Anhui, China
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Guo X, Zhao X, Li L, Jiang M, Zhou A, Gao Y, Zheng P, Liu J, Zhao X. Platycodon grandiflorus polysaccharide inhibits the inflammatory response of 3D4/21 cells infected with PCV2. Microb Pathog 2024; 189:106592. [PMID: 38423406 DOI: 10.1016/j.micpath.2024.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Porcine circovirus type 2 (PCV2) infection cause multi-systemic inflammation in pigs. Platycodon grandiflorus polysaccharide (PGPSt) has been reported to have the effects of immune regulation and disease resistance. Nevertheless, the role and mechanism of PGPSt in the inflammatory response of 3D4/21 cells induced by PCV2 infection remain unclear. The present study aims to investigate effects of PGPSt on inflammatory response and its possible underlying mechanisms in vitro models. Cells were treated with PCV2 for 36 h to construct a cell inflammation model. The 3D4/21 cell lines were pretreated with or without PGPSt, and the changes of inflammation-related markers and the signaling pathway were detected by CCK-8, ELISA, qPCR and Western blot. The results showed that PGPSt was non-toxic to cells and protected PCV2-infected cells from inflammatory damage. PGPSt could significantly inhibit the high acetylation of histone H3 (AcH3) and histone H4 (AcH4), down-regulate HAT and up-regulate HDAC activity, and reduce the expression of pro-inflammatory enzymes iNOS and COX-2 proteins levels. Then the levels of IL-1β, IL-6 and TNF-α were significantly inhibited, and the level of IL-10 was promoted. We also observed that PGPSt inhibited the phosphorylation of p65, p38 and Erk1/2, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. In conclusion, PGPSt can reduce the inflammatory response by regulating histone acetylation, reducing the release of inflammatory factors, reducing the expression of pro-inflammatory enzymes, and inhibiting the activation of NF-κB and MAPKs signaling pathways. This suggests that PGPSt had an anti-inflammatory effect on the inflammatory response caused by PCV2 infection, which provided theoretical data support for the research.
Collapse
Affiliation(s)
- Xiaocheng Guo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China; Weifang University of Science and Technology, Weifang, Shandong, 262700, China
| | - Ximan Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Linjue Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Menglin Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Aiqin Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Yifan Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Pimiao Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| | - Xiaona Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| |
Collapse
|
8
|
Feng L, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Wang M, Luan F. Recent advances in Platycodon grandiflorum polysaccharides: Preparation techniques, structural features, and bioactivities. Int J Biol Macromol 2024; 259:129047. [PMID: 38171434 DOI: 10.1016/j.ijbiomac.2023.129047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Lile Feng
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Mei Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
9
|
Jung J, Cho YJ, Jeong M, Lee S, Kim JH, Kim J, Kim N, Lee J, Park JHY, Lee KW, Lee S. Optimization of extraction condition for platycodin D from Platycodon grandiflorum root and verification of its biological activity. Food Sci Nutr 2023; 11:6425-6434. [PMID: 37823168 PMCID: PMC10563676 DOI: 10.1002/fsn3.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 10/13/2023] Open
Abstract
Platycosides, major components of Platycodon grandiflorum (PG) extract, have been implicated in a wide range of biological effects. In particular, platycodin D (PD) is a well-known main bioactive compound of Platycosides. Despite the biological significance of PD, optimization of extract condition for PD from PG root has not been well investigated. Here, we established the optimum extraction condition as ethanol concentration of 0%, temperature of 50°C, and extraction time of 11 h to obtain PD-rich P. grandiflorum extract (PGE) by using response surface methodology (RSM) with Box-Behnken design (BBD). The 5.63 mg/g of PD was extracted from the PG root in optimum condition, and this result was close to the predicted PD content. To analyze the biological activity of PGE related to mucin production, we demonstrated the inhibitory effect of PGE on PMA-induced hyperexpression of MUC5AC as well as ERK activation, a signal mediator of MUC5AC expression. Moreover, we showed that PGE had expectorant activity in mice. These results indicated that PGE had sufficient functions as a potential mucoregulator and expectorant for treating diverse airway diseases. Additionally, we confirmed that PGE had antioxidant activity and inhibited LPS-induced proinflammatory cytokines, TNF-α, and IL-6. Taken together, PGE derived from novel optimizing conditions showed various biological effects, suggesting that PGE could be directly applied to the food industry as food material having therapeutic and preventive potential for human airway diseases.
Collapse
Affiliation(s)
- Jihyeon Jung
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Yeon Jin Cho
- Bio‐MAX Institute, Seoul National UniversitySeoulSouth Korea
| | - Minju Jeong
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Seung‐Su Lee
- BOBSNU Co., Ltd. Seoul Techno Holdings, Inc. Subsidiary CompanySuwonSouth Korea
| | - Jong Hun Kim
- Department of Food Science and BiotechnologySungshin Women's UniversitySeoulSouth Korea
| | - Jong‐Eun Kim
- Department of Food Science & TechnologyKorea National University of TransportationJeungpyeongRepublic of Korea
| | - Nara Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Jiyun Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | | | - Ki Won Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
- Bio‐MAX Institute, Seoul National UniversitySeoulSouth Korea
- Advanced Institute of Convergence TechnologySeoul National UniversitySeoulSouth Korea
- Research Institute of Agriculture and Life sciencesSeoul National University
| | - Sung‐Young Lee
- Bio‐MAX Institute, Seoul National UniversitySeoulSouth Korea
| |
Collapse
|
10
|
Xu S, Wang N, Yan D, Zhong Y. Platycoside E alleviates allergic airway inflammation in obesity-related asthma mouse model. Mol Immunol 2023; 162:74-83. [PMID: 37659168 DOI: 10.1016/j.molimm.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Overweight and obesity are related to an increased risk of asthma. The effect of platycoside E (PE) on obesity-related asthma remains unknown. METHODS To mimic obesity-related asthma conditions in vivo, C57BL/6 mice were exposed to a high-fat diet (HFD) and challenged with ovalbumin (OVA). PE was administrated intraperitoneally during the OVA treatment. Body weight was measured at 8th week before PE treatment and after sacrificing the mice. Airway inflammation and airway hyperresponsiveness (AHR) were evaluated. Immunohistochemistry staining was performed to evaluate eosinophils. Histopathological changes were determined by HE staining. Cellular model of asthma was established using IL-13 in BEAS-2B cells. Levels of proinflammatory cytokines and oxidative stress indicators were measured by ELISA kits and commercial kits, respectively. Cell viability was detected by CCK-8 assays. RESULTS IL-13 treatment led to inflammatory and oxidative damage in bronchial epithelial cells, which was relieved by PE. PE administration significantly reduced HFD-induced obesity and relieved AHR and airway inflammation in obese asthmatic mice. The expression of proinflammatory cytokines in BALF and lung tissues in obese asthmatic mice were reduced by PE. PE administration also reduced infiltration of eosinophils and inflammation scores in obese asthmatic mice. CONCLUSION PE suppresses airway inflammation and AHR in obese asthmatic mice and serves as an effective option for treating obesity-related asthma.
Collapse
Affiliation(s)
- ShanShan Xu
- Department of paediatrics, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Nan Wang
- Department of paediatrics, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Dandan Yan
- Department of paediatrics, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Yingjie Zhong
- Department of paediatrics, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
11
|
Jiang L, Niu H, Chen Y, Li X, Zhao Y, Zhang C, Li M. Quality control of Platycodon grandiflorum (Jacq.) A. DC. based on value chains and food chain analysis. Sci Rep 2023; 13:14048. [PMID: 37640759 PMCID: PMC10462715 DOI: 10.1038/s41598-023-41013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
Platycodon grandiflorum (Jacq.) A. DC. has been proposed as a medicine and food homology, thus playing an important role in disease prevention and health promotion, with great potential for research and value in clinical application. We aimed to analyze stakeholders' production behavior and financial performance from a value chain (VC) perspective and provide a basis for improving the quality of P. grandiflorum and the interests of stakeholders. P. grandiflorum collected from different producing areas were chemically analyzed, and the quality of platycodin D was evaluated. Rstudio3.6.0 was used to analyze the correlation between total platycodins (as platycodin D, platycoside E, and platycodin D3) and platycodin D in P. grandiflorum, providing the basis for quality control of P. grandiflorum. In addition, we studied the anti-inflammatory and anti-cancer activities of P. grandiflorum extract under different links. Based on the food chain energy pyramid, the transfer efficiency of active components of P. grandiflorum in different links was studied. Accordingly, 10 different types of VCs were determined in producing P. grandiflorum. Our results show that vertical coordination has led to a more consistent traceability system and strict regulation of supply chains.
Collapse
Affiliation(s)
- Linlin Jiang
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
| | - Hui Niu
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Yuan Chen
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
| | - Xing Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Yulian Zhao
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China.
| | - Minhui Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, 010020, China.
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China.
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China.
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, 014040, China.
| |
Collapse
|
12
|
Yang T, Zhao S, Yuan Y, Zhao X, Bu F, Zhang Z, Li Q, Li Y, Wei Z, Sun X, Zhang Y, Xie J. Platycodonis Radix Alleviates LPS-Induced Lung Inflammation through Modulation of TRPA1 Channels. Molecules 2023; 28:5213. [PMID: 37446875 DOI: 10.3390/molecules28135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Platycodonis Radix (PR), a widely consumed herbal food, and its bioactive constituents, platycodins, have therapeutic potential for lung inflammation. Transient Receptor Potential Ankyrin 1 (TRPA1), which is essential for the control of inflammation, may be involved in the development of inflammation in the lungs. The aim of this study was to determine the TRPA1-targeted effects of PR against pulmonary inflammation and to investigate the affinity of PR constituents for TRPA1 and their potential mechanisms of action. Using a C57BL/6J mouse lipopolysaccharides (LPS) intratracheal instillation pneumonia model and advanced analytical techniques (UPLC-Q-TOF-MS/MS, molecular docking, immuno-fluorescence), five platycodins were isolated from PR, and the interaction between these platycodins and hTRPA1 was verified. Additionally, we analyzed the impact of platycodins on LPS-induced TRPA1 expression and calcium influx in BEAS-2B cells. The results indicated that PR treatment significantly reduced the severity of LPS-triggered inflammation in the mouse model. Interestingly, there was a mild increase in the expression of TRPA1 caused by PR in healthy mice. Among five isolated platycodins identified in the PR extract, Platycodin D3 (PD3) showed the highest affinity for hTRPA1. The interaction between platycodins and TRPA1 was verified through molecular docking methods, highlighting the significance of the S5-S6 pore-forming loop in TRPA1 and the unique structural attributes of platycodins. Furthermore, PD3 significantly reduced LPS-induced TRPA1 expression and calcium ion influx in BEAS-2B cells, substantiating its own role as an effective TRPA1 modulator. In conclusion, PR and platycodins, especially PD3, show promise as potential lung inflammation therapeutics. Further research should explore the precise mechanisms by which platycodins modulate TRPA1 and their broader therapeutic potential.
Collapse
Affiliation(s)
- Tan Yang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuang Zhao
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yuan
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Fanjie Bu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhiyuan Zhang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qianqian Li
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zilu Wei
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiuyan Sun
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Junbo Xie
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
13
|
Xie L, Zhao YX, Zheng Y, Li XF. The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus. Front Pharmacol 2023; 14:1148853. [PMID: 37089949 PMCID: PMC10117678 DOI: 10.3389/fphar.2023.1148853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Chinese doctors widely prescribed Platycodon grandiflorus A. DC. (PG) to treat lung carbuncles in ancient China. Modern clinical experiences have demonstrated that PG plays a crucial role in treating chronic pharyngitis, plum pneumonia, pneumoconiosis, acute and chronic laryngitis, and so forth. Additionally, PG is a food with a long history in China, Japan, and Korea. Furthermore, Platycodin D (PLD), an oleanane-type triterpenoid saponin, is one of the active substances in PG. PLD has been revealed to have anti-inflammatory, anti-viral, anti-oxidation, anti-obesity, anticoagulant, spermicidal, anti-tumor etc., activities. And the mechanism of the effects draws lots of attention, with various signaling pathways involved in these processes. Additionally, research on PLD's pharmacokinetics and extraction processes is under study. The bioavailability of PLD could be improved by being prescribed with Glycyrrhiza uralensis Fisch. or by creating a new dosage form. PLD has been recently considered to have the potential to be a solubilizer or an immunologic adjuvant. Meanwhile, PLD was discovered to have hemolytic activity correlated. PLD has broad application prospects and reveals practical pharmacological activities in pre-clinical research. The authors believe that these activities of PLD contribute to the efficacy of PG. What is apparent is that the clinical translation of PLD still has a long way to go. With the help of modern technology, the scope of clinical applications of PLD is probable to be expanded from traditional applications to new fields.
Collapse
Affiliation(s)
| | | | | | - Xiao-Fang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Lee HS, Kim SM, Jung JI, Lim J, Woo M, Kim EJ. Immune-enhancing effect of hydrolyzed and fermented Platycodon grandiflorum extract in cyclophosphamide-induced immunosuppressed BALB/c mice. Nutr Res Pract 2023; 17:206-217. [PMID: 37009135 PMCID: PMC10042709 DOI: 10.4162/nrp.2023.17.2.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES The immunomodulatory effect of Platycodon grandiflorum (PG) has been reported, but studies on its mechanism are still lacking. This study was undertaken to confirm whether the hydrolyzed and fermented PG extract (HFPGE) obtained by adding hydrolysis and fermentation to the extraction process has an immune-enhancing effect in the in vivo system. MATERIALS/METHODS Five-week-old BALB/c mice were divided into 4 groups: normal control group (NOR), control group (CON), 150 mg/kg body weight (BW)/day HFPGE-treated group (T150), and 300 mg/kg BW/day HFPGE-treated group (T300). The mice were administered HFPGE for 4 weeks and intraperitoneally injected with cyclophosphamide (CPA, 80 mg/kg BW/day) on day 6, 7, and 8, respectively, to induce immunosuppression. The levels of immunoglobulins (Igs) and cytokines were measured in the serum. In splenocytes, proliferation and cytokine levels were measured. RESULTS Serum IgA, IgG, and IgM levels were observed to decrease after CPA treatment, which was recovered by HFPGE administration. The levels of serum interleukin (IL)-12, tumor necrosis factor (TNF)-α, IL-8, and transforming growth factor (TGF)-β were also decreased after exposure to CPA but increased after HFPGE administration. Decreased splenocyte proliferation was seen in CPA-treated mice, but was observed to increase in the T150 and T300 groups as compared to the NOR group. Compared to the CON group, splenocyte proliferation stimulated with concanavalin A (ConA) or lipopolysaccharide (LPS) in the HFPGE-treated groups was significantly increased. The cytokines secreted by ConA-stimulated splenocytes (IL-2, IL-12, interferon-γ, TNF-α) were increased in the T150 and T300 groups, and cytokines secreted by LPS-stimulated splenocytes (IL-4, IL-8, TGF-β) were also increased by HFPGE administration. CONCLUSION These results suggest that HFPGE stimulates the immunity in immunosuppressed conditions, thereby enhancing the immune response. Therefore, it is expected that HFPGE has the potential to be used as functional food and medicine for immune recovery in various immunocompromised situations.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science and Nutrition, Dongseo University, Busan 47011, Korea
| | - So Mi Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Jihoon Lim
- R&D Center, World Food Services Co. Ltd., Gangneung 25451, Korea
| | - Moonjea Woo
- R&D Center, World Food Services Co. Ltd., Gangneung 25451, Korea
| | - Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
15
|
Lancemaside A from Codonopsis lanceolata: Studies on Antiviral Activity and Mechanism of Action against SARS-CoV-2 and Its Variants of Concern. Antimicrob Agents Chemother 2022; 66:e0120122. [PMID: 36374087 PMCID: PMC9765103 DOI: 10.1128/aac.01201-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several plant-derived natural products with anti-SARS-CoV-2 activity have been evaluated for the potential to serve as chemotherapeutic agents for the treatment of COVID-19. Codonopsis lanceolata (CL) has long been used as a medicinal herb in East Asian countries to treat inflammatory diseases of the respiratory system but its antiviral activity has not been investigated so far. Here, we showed that CL extract and its active compound lancemaside A (LA) displayed potent inhibitory activity against SARS-CoV-2 infection using a pseudotyped SARS-CoV-2 entry assay system. We demonstrated that this inhibitory effect of LA was due to the alteration of membrane cholesterol and blockade of the membrane fusion between SARS-CoV-2 and host cells by filipin staining and cell-based membrane fusion assays. Our findings also showed that LA, as a membrane fusion blocker, could impede the endosomal entry pathway of SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in Vero cells with similar of IC50 values ranging from 2.23 to 3.37 μM as well as the TMPRSS2-mediated viral entry pathway in A549 cells overexpressing ACE2 and TMPRSS2 with IC50 value of 3.92 μM. We further demonstrated that LA could prevent the formation of multinucleated syncytia arising from SARS-CoV-2 spike protein-mediated membrane fusion. Altogether, the findings reported here suggested that LA could be a broad-spectrum anti-SARS-CoV-2 therapeutic agent by targeting the fusion of viral envelope with the host cell membrane.
Collapse
|
16
|
Zhang S, Chai X, Hou G, Zhao F, Meng Q. Platycodon grandiflorum (Jacq.) A. DC.: A review of phytochemistry, pharmacology, toxicology and traditional use. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154422. [PMID: 36087526 DOI: 10.1016/j.phymed.2022.154422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The traditional Chinese medicine Platycodon grandiflorum (Jacq.) A. DC. (PG, balloon flower) has medicinal and culinary value. It consists of a variety of chemical components including triterpenoid saponins, polysaccharides, flavonoids, polyphenols, polyethylene glycols, volatile oils and mineral components, which have medicinal and edible value. PURPOSE The ultimate goal of this review is to summarize the phytochemistry, pharmacological activities, safety and uses of PG in local and traditional medicine. METHODS A comprehensive search of published literature up to March 2022 was conducted using the PubMed, China Knowledge Network and Web of Science databases to identify original research related to PG, its active ingredients and pharmacological activities. RESULTS Triterpene saponins are the primary bioactive compounds of PG. To date, 76 triterpene saponin compounds have been isolated and identified from PG. In addition, there are other biological components, such as flavonoids, polyacetylene and phenolic acids. These extracts possess antitussive, immunostimulatory, anti-inflammatory, antioxidant, antitumor, antiobesity, antidepressant, and cardiovascular system activities. The mechanisms of expression of these pharmacological effects include inhibition of the expression of proteins such as MDM and p53, inhibition of the activation of enzymes, such as AKT, the secretion of inflammatory factors, such as IFN-γ, TNF-α, IL-2 and IL-1β, and activation of the AMPK pathway. CONCLUSION This review summarizes the chemical composition, pharmacological activities, molecular mechanism, toxicity and uses of PG in local and traditional medicine over the last 12 years. PG contains a wide range of chemical components, among which triterpene saponins, especially platycoside D (PD), play a strong role in pharmacological activity, representing a natural phytomedicine with low toxicity that has applications in food, animal feed and cosmetics. Therefore, PG has value for exploitation and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
17
|
Lan L, Huang W, Zhou H, Yuan J, Miao S, Mao X, Hu Q, Ji S. Integrated Metabolome and Lipidome Strategy to Reveal the Action Pattern of Paclobutrazol, a Plant Growth Retardant, in Varying the Chemical Constituents of Platycodon Root. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206902. [PMID: 36296498 PMCID: PMC9609321 DOI: 10.3390/molecules27206902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Platycodon root, a medicinal food homology species which has been used in Asian countries for hundreds of years, is now widely cultivated in China. Treatment with paclobutrazol, a typical plant growth retardant, has raised uncertainties regarding the quality of Platycodon root, which have been rarely investigated. In the present study, metabolomic and lipidomic differences were revealed by ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS). A significant decrease of platycodigenin-type saponins was observed in the paclobutrazol-treated sample. Carrying out a comprehensive quantitative analysis, the contents of total saponins and saccharides were determined to illustrate the mode of action of paclobutrazol on Platycodon root. This study demonstrated an exemplary research model in explaining how the exogenous matter influences the chemical properties of medicinal plants, and therefore might provide insights into the reasonable application of plant growth regulators.
Collapse
Affiliation(s)
- Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Weizhen Huang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18001678046
| |
Collapse
|
18
|
Liu Y, Chen Q, Ren R, Zhang Q, Yan G, Yin D, Zhang M, Yang Y. Platycodon grandiflorus polysaccharides deeply participate in the anti-chronic bronchitis effects of platycodon grandiflorus decoction, a representative of “the lung and intestine are related”. Front Pharmacol 2022; 13:927384. [PMID: 36160385 PMCID: PMC9489837 DOI: 10.3389/fphar.2022.927384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. (PG) root is one of the most commonly used medicine-food materials for respiratory discomfort in Asia, usually in the form of a decoction or leaching solution. As everyone knows, both of decoction and leaching solution is a polyphase dispersion system, containing low-molecular-weight water-soluble active ingredients and hydrophilic macromolecules. This study aimed to discuss the synergistic effect of Platycodon grandiflorus polysaccharide (PGP) and platycodin D (PD) in PG decoction against chronic bronchitis (CB) and the mechanism underlying. A series of PGP, PD, and PGD + PD suspensions were administrated to CB model rats, on the levels of whole animal and in situ intestinal segment with or without mesenteric lymphatic vessels ligation. It exhibited that PGP exhibited synergistic effects with PD, on improving the histopathological abnormity, mucus secretion excess, and immunological imbalance in lung of CB model rat, closely associated with its modulations on the mucosal immunity status in small intestine. The polysaccharide macromolecules in PG decoction or leaching solution should be responsible for the modulation of pulmonary immune state, possibly through the common mucosal immune between small intestine and lung. These results might be a new perspective that illustrates the classical theory of “the lung and intestine are related” in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Guiming Yan
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- *Correspondence: Dengke Yin, ; Ye Yang,
| | - Mingyan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Dengke Yin, ; Ye Yang,
| |
Collapse
|
19
|
Protective Effects of Platycodin D3 on Airway Remodeling and Inflammation via Modulating MAPK/NF-κB Signaling Pathway in Asthma Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1612829. [PMID: 35990822 PMCID: PMC9385299 DOI: 10.1155/2022/1612829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Background Asthma is a disease with airway hyperresponsive and airway inflammation. Platycodin D is a triterpenoid saponin extracted from Platycodon grandiflorus root, which has various pharmacological activities. The study mainly explored the effects of platycodin D3 (PD3) in airway remodeling and inflammation of asthma. Methods The ovalbumin (OVA)-induced asthma mice were given PD3 (20 mg/kg, 40 mg/kg, and 80 mg/kg) in different groups. The asthma mice administrated with dexamethasone (DXM) were enrolled as the positive control group, and the normal control mice and asthma model mice separately received the same volume of saline. Mouse airway lung dynamic compliance (Cdyn) and total airway resistance (RL) were measured by the EMKA animal lung function analysis system. The inflammation factor levels were estimated by ELISA. Histopathological changes were tested by HE and PAS staining. The protein and phosphorylation levels of NF-κBp65, p38, ERK1/2, and JNK1/2 were detected by Western blot. Results In asthmatic mice, PD3 enhanced the airway Cdyn and decreased RL to improve the airway hyperreactivity and alleviated the pathological injury of lung tissues. In addition, PD3 could reduce the infiltration of inflammatory cells in BALF and suppress the levels of eotaxin, IL-4, IL-5, IL-13, IFN-γ, and IgE. Furthermore, PD3 treatment inhibited the phosphorylation of NF-κBp65, p38, ERK1/2, and JNK1/2 proteins in asthma mice. Conclusion PD3 treatment alleviated the airway remodeling and inflammation in asthmatic mice, which might be related to downregulating the phosphorylated proteins in the MAPK/NF-κB signaling pathway.
Collapse
|
20
|
Jia Y, Chen S, Chen W, Zhang P, Su Z, Zhang L, Xu M, Guo L. A Chromosome-Level Reference Genome of Chinese Balloon Flower (Platycodon grandiflorus). Front Genet 2022; 13:869784. [PMID: 35464833 PMCID: PMC9023762 DOI: 10.3389/fgene.2022.869784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Shaoying Chen
- School of Big Data, Weifang Institute of Technology, Weifang, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Weikai Chen
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Ping Zhang
- School of Big Data, Weifang Institute of Technology, Weifang, China
| | - Zhenjing Su
- School of Big Data, Weifang Institute of Technology, Weifang, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Lei Zhang
- School of Big Data, Weifang Institute of Technology, Weifang, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Mengxin Xu
- School of Big Data, Weifang Institute of Technology, Weifang, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- *Correspondence: Li Guo,
| |
Collapse
|
21
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
22
|
Jia Z, Yan H, Wang S, Wang L, Cao Y, Lin S, Zhang Z, Wang C, Wang X, Mao J. Shufeiya Recipe Improves Monocrotaline-Induced Pulmonary Hypertension in Rats by Regulating SIRT3/FOXO3a and Its Downstream Signaling Pathways. DISEASE MARKERS 2022; 2022:3229888. [PMID: 35222742 PMCID: PMC8881168 DOI: 10.1155/2022/3229888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022]
Abstract
Pulmonary hypertension (PH) is a chronic and progressive disease caused by obstructions and functional changes of small pulmonary arteries. Current treatment options of PH are costly with patients needing long-term taking medicine. The traditional Chinese medicine (TCM) compound "Shufeiya Recipe" was used to intervene in monocrotaline- (MCT-) induced pulmonary hypertension in rats. The rats were randomly divided into the control group, model group, positive drug (Sildenafil) group, and Shufeiya Recipe low-, moderate-, and high-dose groups. The improvement effect of the Shufeiya Recipe on the mean pulmonary artery pressure (mPAP) was assessed in PH rats, and pathological staining was used to observe the pathological changes of lung tissue. The impact of the Shufeiya Recipe on oxidative stress damage in rats with pulmonary hypertension and the regulation of SIRT3/FOXO3a and its downstream signaling pathways were determined. The results showed that Shufeiya Recipe could significantly downregulate mPAP and improve lung histopathological changes; downregulate serum levels of reactive oxygen species (ROS); upregulate the concentrations of COX-1 and COX-2 and the activity of Mn-SOD; inhibit oxidative response damage; promote the protein expression of SIRT3, FOXO3a, p-PI3K, p-AKT, and p-eNOS; increase the level of expression of NO, sGC, cGMP, and PKG; and downregulate the level of protein expression of Ras, p-MEK1/2, p-ERK1/2 and c-fos. These results indicate that Shufeiya Recipe can improve MCT-induced pulmonary hypertension in rats by regulating SIRT3/FOXO3a and its downstream PI3K/AKT/eNOS and Ras/ERK signaling pathways.
Collapse
Affiliation(s)
- Zhuangzhuang Jia
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haifeng Yan
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Shuai Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lin Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yawen Cao
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Lin
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zeyu Zhang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ci Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianliang Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jingyuan Mao
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
23
|
Huang W, Lan L, Zhou H, Yuan J, Shui Miao, Mao X, Hu Q, Ji S. Comprehensive profiling of Platycodonis radix in different growing regions using liquid chromatography coupled with mass spectrometry: from metabolome and lipidome aspects. RSC Adv 2022; 12:3897-3908. [PMID: 35425426 PMCID: PMC8981106 DOI: 10.1039/d1ra08285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 11/21/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. is widely cultivated across the south and north of China. Its root, Platycodonis radix, is commonly used as a vegetable, functional food, and traditional herbal medicine with various biological benefits. It is critical to fully clarify the chemical composition of Platycodonis radix for the sake of the food industry and traditional herb markets. In this study, a strategy of metabolome and lipidome profiling based on ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS) was developed to reveal the overall chemical composition of Platycodonis radix. IN particular, comprehensive lipidome profiling was first performed for Platycodonis radix, in which 170 lipid molecular species including 55.9% glycerophospholipids, 31.2% glycerolipids, and 12.9% sphingolipids were identified. Platycodonis radix from two major production regions in China, Inner Mongolia and Anhui province, were collected and analyzed by the MS based approach combined with multivariate statistical analysis from both the metabolome and lipidome aspects. This study threw focus on the profiling investigations of Platycodonis radix from different growing regions and provided new potential in the lipidome analysis of medicinal food.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University Shanghai 201203 PR China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| |
Collapse
|
24
|
Ruksiriwanich W, Khantham C, Linsaenkart P, Chaitep T, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Režek Jambrak A, Nazir Y, Yooin W, Sommano SR, Jantrawut P, Sainakham M, Tocharus J, Mingmalairak S, Sringarm K. Anti‐inflammation of bioactive compounds from ethanolic extracts of edible bamboo mushroom (
Dictyophora indusiata
) as functional health promoting food ingredients. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Tanakarn Chaitep
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 1000 Croatia
| | - Yasir Nazir
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
| | | | | | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Department of Animal and Aquatic Sciences Faculty of Agriculture Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
25
|
Jung JI, Lee HS, Kim SM, Kim S, Lim J, Woo M, Kim EJ. Immunostimulatory activity of hydrolyzed and fermented Platycodon grandiflorum extract occurs via the MAPK and NF-κB signaling pathway in RAW 264.7 cells. Nutr Res Pract 2022; 16:685-699. [DOI: 10.4162/nrp.2022.16.6.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - So Mi Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Soyeon Kim
- R&D Center, World Food Services Co. Ltd., Gangneung 25451, Korea
| | - Jihoon Lim
- R&D Center, World Food Services Co. Ltd., Gangneung 25451, Korea
| | - Moonjea Woo
- R&D Center, World Food Services Co. Ltd., Gangneung 25451, Korea
| | - Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
26
|
Zheng X, Fan H, Song Z, Cheng P, Jiang H, Shi W, Xiao C, Wang J, Li Q, Yin G, Zhao X. Immobilized beta 2-adrenergic receptor: A powerful chromatographic platform for drug discovery and evaluation of drug-like property for natural products. J Chromatogr A 2021; 1659:462635. [PMID: 34731755 DOI: 10.1016/j.chroma.2021.462635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Drug discovery based on natural products like medicinal herbs remains challenging due to the technique limitations for rapidly screening and validating leads. To address the challenges, we employ the immobilized β2- adrenergic recepotor (β2-AR), an identified target of asthma, as the stationary phase in chromatographic column to screen compounds extracted from Stemonae Radix, Playtycodonis Radix, and Glycyrrhizae Radix et Rhizoma. To analyze binding properties of the extracted compounds to the immobilized receptors, we measured their retention behavior in the receptor chromatography and compared with six clinical asthma drugs. We identified tuberostemonine, platycodin D, and glycyrrhizic acid as the potential leads against asthma by our β2-AR chromatography coupled with mass spectrum (MS). The association constants of the three compounds to β2-AR were 2.85 × 10-5, 2.55 × 10-4, and 4.07 × 10-6 M with the dissociation rate constants of 6.91 ± 0.35, 11.88 ± 0.60, and 9.49 ± 0.64 min-1, respectively. Tuberostemonine, a pentacyclic Stemona alkaloids, presented the most optimum values of binding efficiency index (BEI) and surface efficiency index (SEI) as close to the diagonal of SEI-BEI optimization plane when it is compared with platycodin D, glycyrrhizic and the six clinical drugs. Our results suggest that tuberostemonine is a promising natural product to be developed for treating asthma because it exhibits better drug-like binding properties to β2-AR than the clinical drugs. As such, we demonstrate a chromatographic strategy to identify bioactive natural products based on the β2-AR immobilization, which can be widely adopted to screen natural products from mixture of herbal extracts.
Collapse
Affiliation(s)
- Xinxin Zheng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hushuai Fan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ze Song
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Peixuan Cheng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenhua Shi
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
27
|
Shin KC, Kim DW, Oh YJ, Seo MJ, Na CS, Kim YS. Improved production of deglucosylated platycodin D from saponins from balloon flower leaf by a food-grade enzyme using high hydrostatic pressure. Heliyon 2021; 7:e08104. [PMID: 34660923 PMCID: PMC8503635 DOI: 10.1016/j.heliyon.2021.e08104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Platycosides, saponins contained in balloon flower, which have been used as food health supplements for respiratory diseases, have diverse pharmacological effects. Platycosides exhibit better pharmacological activity by hydrolyzing their own sugars. However, to date, there have been no studies on the production of deglucosylated platycodin D suitable for food applications. In this study, Pluszyme 2000P, which was derived from Aspergillus niger, a food-grade microorganism, was used to completely convert platycoside E into deglucosylated platycodin D. For an efficient and economical production of deglucosylated platycodin D, the productivity was improved approximately 2.4 times by application of high hydrostatic pressure and the discarded balloon flower leaf was used as a substrate. As a result, deglucosylated platycodin D was produced with the highest concentration (3.49 mg/mL) and productivity (581.7 mg/L/h) reported so far. Our results contribute to functional saponin production and the related food industries.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dae Wook Kim
- Department of Wild Plants and Seeds Conservation, Baekdudaegan National Arboretum, Bonghwa, 36209, Republic of Korea
| | - Yu Jin Oh
- Department of Wild Plants and Seeds Conservation, Baekdudaegan National Arboretum, Bonghwa, 36209, Republic of Korea
| | - Min-Ju Seo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Chae Sun Na
- Department of Wild Plants and Seeds Conservation, Baekdudaegan National Arboretum, Bonghwa, 36209, Republic of Korea
| | - Yeong-Su Kim
- Department of Wild Plants and Seeds Conservation, Baekdudaegan National Arboretum, Bonghwa, 36209, Republic of Korea
| |
Collapse
|
28
|
Yu H, Liu M, Yin M, Shan T, Peng H, Wang J, Chang X, Peng D, Zha L, Gui S. Transcriptome analysis identifies putative genes involved in triterpenoid biosynthesis in Platycodon grandiflorus. PLANTA 2021; 254:34. [PMID: 34291354 DOI: 10.1007/s00425-021-03677-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Comprehensive transcriptome analysis of different Platycodon grandiflorus tissues discovered genes related to triterpenoid saponin biosynthesis. Platycodon grandiflorus (Jacq.) A. DC. (P. grandiflorus), a traditional Chinese medicine, contains considerable triterpenoid saponins with broad pharmacological activities. Triterpenoid saponins are the major components of P. grandiflorus. Here, single-molecule real-time and next-generation sequencing technologies were combined to comprehensively analyse the transcriptome and identify genes involved in triterpenoid saponin biosynthesis in P. grandiflorus. We quantified four saponins in P. grandiflorus and found that their total content was highest in the roots and lowest in the stems and leaves. A total of 173,354 non-redundant transcripts were generated from the PacBio platform, and three full-length transcripts of β-amyrin synthase, the key synthase of β-amyrin, were identified. A total of 132,610 clean reads obtained from the DNBSEQ platform were utilised to explore key genes related to the triterpenoid saponin biosynthetic pathway in P. grandiflorus, and 96 differentially expressed genes were selected as candidates. The expression levels of these genes were verified by quantitative real-time PCR. Our reliable transcriptome data provide valuable information on the related biosynthesis pathway and may provide insights into the molecular mechanisms of triterpenoid saponin biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Minzhen Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Tingyu Shan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
29
|
Jung JA, Noh JH, Jang MS, Gu EY, Cho MK, Lim KH, Park H, Back SM, Kim SP, Han KH. Safety evaluation of fermented Platycodon grandiflorus (Jacq.) A.DC. extract: Genotoxicity, acute toxicity, and 13-week subchronic toxicity study in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114138. [PMID: 33895248 DOI: 10.1016/j.jep.2021.114138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorus (Jacq.) A.DC. is a well-known traditional herbal medicine administered for bronchitis and inflammatory diseases. Especially, anti-inflammatory effect of fermented P. grandiflorus (Jacq.) A.DC. extract (FPGE) was higher than that of P. grandiflorus (Jacq.) A.DC. extract. However, toxicological information for FPGE is lacking. AIM OF THE STUDY In this study, we establish a toxicological profile for FPGE by testing genotoxicity, acute and 13-week subchronic toxicity. MATERIALS AND METHODS FPGE was evaluated with bacterial reverse mutation, chromosome aberration, and micronucleus test. For the acute- and 13-week subchronic toxicity tests, FPGE was administered orally at doses of 0, 750, 1500, and 3000 mg/kg in SD rats. RESULTS The results of the genotoxic assays indicated that FPGE induced neither mutagenicity nor clastogenicity. The acute toxicity test showed that FPGE did not affect animal mortality, clinical signs, body weight changes, or microscopic findings at ≤ 3000 mg/kg. The approximate lethal dose (ALD) of FPGE in SD rats was >3000 mg/kg. For the 13-week subchronic toxicity assay, no FPGE dose induced any significant change in mortality, clinical signs, body or organ weight, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination in either SD rat sex. The rat no observed adverse effects level (NOAEL) for FPGE was set to 3000 mg/kg. CONCLUSIONS The present study empirically demonstrated that FPGE has a safe preclinical profile and indicated that it could be safely integrated into health products for atopic dermatitis treatment.
Collapse
Affiliation(s)
- Jin A Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jung-Ho Noh
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Min Seong Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Eun-Young Gu
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Min-Kyung Cho
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Kwang-Hyun Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seng-Min Back
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Phil Kim
- STR Biotech Co., Ltd., Chuncheon, 24232, Republic of Korea
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
30
|
Lee EG, Kim KH, Hur J, Kang JY, Lee HY, Lee SY. Platycodin D attenuates airway inflammation via suppression Th2 transcription factor in a murine model of acute asthma. J Asthma 2021; 59:1279-1289. [PMID: 34129415 DOI: 10.1080/02770903.2021.1941084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Bronchial asthma is a common chronic inflammatory condition of the airway tissue. Platycodin D (PLD) has antiinflammatory effects in a mouse model of allergic asthma. In this work, the anti-asthma potential of PLD was studied by investigation of its effect to suppress airway inflammation and mucin production, a murine model of asthma and the possible mechanisms.Methods: Mice were randomly assigned to five experimental groups: control, ovalbumin (OVA), OVA+ICS (intranasal fluticasone), OVA+PLD and OVA+PLD/ICS. Airway histological studies were evaluated by the H&E staining; IL-4, IL-5, and IL-13 in bronchoalveolar lavage fluid were evaluated by ELISA; GATA3 and IRF4 mRNA of airway were measured by RT-PCR and their protein level were measured by Western blotting.Results: Our study showed that PLD suppressed eosinophilic inflammation and mucin production in bronchial mucosa. Moreover, PLD inhibited production of Th2 cytokines such as IL-4, IL-5, and IL-13. Protein production of GATA3 and IRF4, were also decreased in PLD treated OVA asthma model. Taken together, our results provided evidence that PLD inhibits the airway inflammation via suppression of Th2 transcription factor production.Conclusion: These findings suggest that PLD may effectively ameliorate the progression of asthma. These results suggest that PLD could be used as a therapy for allergic asthma.
Collapse
Affiliation(s)
- Eung Gu Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung Hoon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hur
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hwa Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
31
|
Yan H, Qian G, Yang R, Luo Z, Wang X, Xie T, Zhao X, Shan J. Huanglong Antitussive Granule Relieves Acute Asthma Through Regulating Pulmonary Lipid Homeostasis. Front Pharmacol 2021; 12:656756. [PMID: 33967801 PMCID: PMC8103164 DOI: 10.3389/fphar.2021.656756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Asthma is a respiratory disease with chronic airway inflammatory, and individuals with asthma exacerbations is one of the most frequent causes of hospitalization. Huanglong antitussive granule (HL Granule), a Chinese proprietary herbal medicine, has been proved to be effective in the clinical treatment of pulmonary disease. This study is devoted to the pharmacodynamics of HL Granule in acute asthma and the possible mechanism from the perspective of lipidomics. Methods: Mice were divided into four groups, control group, acute asthma model group, HL Granule treatment and montelukast sodium treatment group. Acute asthma was induced by ovalbumin (OVA). Histopathology, pulmonary function and enzyme linked immunosorbent assay (ELISA) were used to validated model and effect of HL Granule. Lipids were detected by ultra-high-performance liquid chromatography coupled to hybrid Quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS) and identified by MS-DAIL and built-in Lipidblast database. Differentially expressed lipids recalled in HL Granule treatment group were extracted for heatmap, enrichment analysis and correlation analysis. Results: HL Granule was effective in decreasing airway hyperresponsiveness (AHR), airway inflammatory and the levels of IL-4 and IL-5. A total of 304 and 167 lipids were identified in positive and negative ion mode, respectively. Among these, 104 and 73 lipids were reserved in HL Granule group (FDR < 0.05), including acylcarnitine (ACar), fatty acid (FA), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), diglyceride (DG), triglyceride (TG), sphingomyelin (SM) and ceramide (Cer). Furthermore, 118 and 273 correlations among 47 and 96 lipids in the positive and negative were observed, with ether-linked phosphatidylethanolamine (PEe) and phosphatidylcholine (PCe) (FDR < 0.001, Spearman correlation coefficient r 2 > 0.75). Conclusion: HL Granule might improve pulmonary lipid homeostasis and could be used as an alternative or supplementary therapy in clinical for the treatment of asthma.
Collapse
Affiliation(s)
- Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiying Qian
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Rui Yang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianzheng Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats. Molecules 2020; 25:molecules25215020. [PMID: 33138217 PMCID: PMC7662589 DOI: 10.3390/molecules25215020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to assess the activity of extracts from Platycodon grandiflorum A. DC (PG) in a model of chronic bronchitis in rats. The research was carried out on three water extracts: E1 – from roots of field cultivated PG; E2 – from biotransformed roots of PG; E3 – from callus of PG. The extracts differed in saponins and inulin levels—the highest was measured in E3 and the lowest in E1. Identification of secondary metabolites was performed using two complementary LC-MS systems. Chronic bronchitis was induced by sodium metabisulfite (a source of SO2). Animals were treated with extracts for three weeks (100 mg/kg, intragastrically) and endothelial growth factor (VEGF), transforming growth factors (TGF-β1, -β2, -β3), and mucin 5AC (MUC5AC) levels were determined in bronchoalveolar lavage fluid, whereas C reactive protein (CRP) level was measured in serum. Moreover, mRNA expression were assessed in bronchi and lungs. In SO2-exposed rats, an elevation of the CRP, TGF-β1, TGF-β2, VEGF, and mucin was found, but the extracts’ administration mostly reversed this phenomenon, leading to control values. The results showed a strong anti-inflammatory effect of the extracts from PG.
Collapse
|