1
|
Sezgin D, Aslan G, Sahin K, Tuzcu M, İlhan N, Sahna E. The effects of melatonin against atherosclerosis-induced endothelial dysfunction and inflammation in hypercholesterolemic rats. Arch Physiol Biochem 2023; 129:476-483. [PMID: 33156709 DOI: 10.1080/13813455.2020.1838550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The aim of this study was to investigate the effects of melatonin on the serum asymmetric dimethylarginine (ADMA) levels and the expressions of vaspin, visfatin, dimethylarginine dimethylaminohydrolase (DDAH), and signal transducer and activator of transcription-3 (STAT-3) for evaluation of endothelial function and inflammation in the hypercholesterolemic rats. Rats were divided into 5 groups: (1) control, (2) hypercholesterolaemia, (3) melatonin administrated concurrently with cholesterol diet, (4) melatonin administrated only last 2 weeks and fed with cholesterol diet, (5) atorvastatin administered only last 2 weeks fed with cholesterol diet. Although an increase was observed in the expressions of visfatin and STAT-3 and the serum ADMA levels, the vaspin and DDAH protein expressions were found to decrease with hypercholesterolemic diets. Melatonin was determined to restore all the parameters to the normal levels. In conclusion, melatonin may have protective and therapeutic effects on hypercholesterolaemia by regulating vaspin, STAT-3, DDAH, and ADMA signalling pathways and create similar effects with atorvastatin.
Collapse
Affiliation(s)
- Dilşad Sezgin
- Faculty of Medicine, Department of Pharmacology, Firat University, Elazig, Turkey
| | - Gülnur Aslan
- Faculty of Medicine, Department of Pharmacology, Firat University, Elazig, Turkey
| | - Kazım Sahin
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Disorders, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Faculty of Science, Department of Biology, Fırat University, Elazig, Turkey
| | - Necip İlhan
- Faculty of Medicine, Department of Biochemistry, Firat University, Elazig, Turkey
| | - Engin Sahna
- Faculty of Medicine, Department of Pharmacology, Firat University, Elazig, Turkey
| |
Collapse
|
2
|
Orhan C, Er B, Deeh PBD, Bilgic AA, Ojalvo SP, Komorowski JR, Sahin K. Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regulation Nrf2 and NF-κB Signaling Pathways in High-Fat Diet Rats. Biol Trace Elem Res 2021; 199:4162-4170. [PMID: 33409912 DOI: 10.1007/s12011-020-02526-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/29/2020] [Indexed: 12/31/2022]
Abstract
Magnesium (Mg) is an essential mineral required for many physiological processes, including ionic balances in ocular tissues. We compared the effects of different Mg-chelates (Mg oxide, MgO vs. Mg picolinate, MgPic) on retinal function in a high-fat diet (HFD) rats. Forty-two rats were divided into six groups and treated orally for 8 weeks as follows: Control, MgO, MgPic, HFD, HFD + MgO, and HFD + MgPic. Mg was administered at 500 mg of elemental Mg/kg of diet. HFD intake increased the levels of retinal MDA and NF-κB, INOS, ICAM, and VEGF but downregulated Nrf2. However, in rats supplemented with MgO and MgPic, the retinal MDA level was decreased, compared with the control and HFD rats. Activities of antioxidant enzymes (SOD, CAT, and GPx) were increased in HFD animals given Mg-chelates (p < 0.001), MgPic being the most effective. Mg supplementation significantly decreased the expression levels of NF-κB, INOS, ICAM, and VEGF in HFD rats while increasing the level of Nrf2 (p < 0.001). Mg supplementation significantly decreased the levels of NF-κB, INOS, ICAM, and VEGF and increased Nrf2 level in HFD rats (p < 0.001), with stronger effects seen from MgPic. Mg attenuated retinal oxidative stress and neuronal inflammation and could be considered as an effective treatment for ocular diseases.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Besir Er
- Department of Molecular Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Ahmet Alp Bilgic
- Department of Ophthalmology, Sabuncuoglu Serefeddin Research and Training Hospital, Amasya University, Amasya, Turkey
| | | | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
3
|
Preventive Effects against Retinal Degeneration by Centella asiatica Extract (CA-HE50) and Asiaticoside through Apoptosis Suppression by the Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10040613. [PMID: 33923585 PMCID: PMC8072678 DOI: 10.3390/antiox10040613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is caused by the chronic and gradual oxidative degeneration of the retina. Unfortunately, the general purpose of current treatments is to slow AMD progression, as the retina cannot be restored to its pre-AMD condition. We aimed to identify natural products that can be potential treatments that prevent AMD and can delay the development of late-AMD and selected Centella asiatica extract (CA-HE50), which shows excellent efficacy in cytoprotection. In animal experiments using N-methyl-N-nitrosourea (MNU), CA-HE50 dramatically increased the thickness of photoreceptors and the outer nuclear layer (ONL) and the number of nuclei in the ONL (p < 0.05). Using retinal epithelial ARPE-19 cells showed that CA-HE50 inhibited apoptosis through inhibition of the intrinsic apoptosis signaling pathway and cell cycle regulation (p < 0.05). The anti-apoptotic efficacy was confirmed to be due to activation of the Nrf2/HO-1 antioxidation pathway (p < 0.05). These results were also observed with asiaticoside, a functional substance of CA-HE50. In addition, the accumulation of oxidized-N-retinylidene-N-retinylethanolamine (A2E), which induces AMD, was inhibited by CA-HE50, resulting in increased ARPE-19 cell viability (p < 0.05). This study demonstrates that CA-HE50 is worth further research and human application tests, to develop it as a raw material for treatment or dietary supplement for the prevention of AMD.
Collapse
|
4
|
Evaluation of the neuronal and microvascular components of the macula in patients with diabetic retinopathy. Doc Ophthalmol 2021; 143:193-205. [PMID: 33861362 DOI: 10.1007/s10633-021-09834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate whether abnormal retinal microcirculation correlates with retinal neuronal changes in untreated diabetic eyes without macular edema. METHODS This study enrolled 29 diabetic patients without diabetic retinopathy (DR), 18 patients with mild non-proliferative diabetic retinopathy (NPDR), 15 patients with moderate NPDR, 14 patients with severe NPDR, 27 patients with proliferative diabetic retinopathy (PDR), and 25 healthy control subjects. Pattern electroretinography (PERG) and optical coherence tomography angiography (OCT-A) tests were performed. RESULTS Differences in the mean values for the area, acircularity index, and perimeter of foveal avascular zone were statistically significant between the healthy control group and the diabetic patients (P < 0.05 for all). P50 and N95 amplitudes were statistically significantly lower in the PDR group compared to diabetic patients without DR, control, and moderate NPDR groups (P < 0.05 for all). The whole retina vessel densities in superficial and deep capillary plexus were lower in the PDR group compared to the diabetic patients without DR and control group (P < 0.05 for all). There were statistically significant positive correlations between the amplitudes of the P50 and N95 waves with the vessel densities. CONCLUSION The existence of significant correlations between PERG and OCT-A parameters in diabetic patients has shown that vascular and neuronal changes in the macula affect each other in diabetic patients.
Collapse
|
5
|
Orhan C, Tuzcu M, Gencoglu H, Sahin E, Sahin N, Ozercan IH, Namjoshi T, Srivastava V, Morde A, Rai D, Padigaru M, Sahin K. Different Doses of β-Cryptoxanthin May Secure the Retina from Photooxidative Injury Resulted from Common LED Sources. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6672525. [PMID: 33628377 PMCID: PMC7895591 DOI: 10.1155/2021/6672525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Retinal damage associated with loss of photoreceptors is a hallmark of eye diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. Potent nutritional antioxidants were previously shown to abate the degenerative process in AMD. β-Cryptoxanthin (BCX) is an essential dietary carotenoid with antioxidant, anti-inflammatory, and provitamin A activity. It is a potential candidate for developing intervention strategies to delay the development/progression of AMD. In the current study, the effect of a novel, highly purified BCX oral formulation on the rat retinal damage model was evaluated. Rats were fed with BCX for four weeks at the doses of 2 and 4 mg/kg body weight in the form of highly bioavailable oil suspension, followed by retinal damage by exposing to the bright light-emitting diode (LED) light (750 lux) for 48 hrs. Animals were sacrificed after 48 hours, and eyes and blood samples were collected and analyzed. BCX supplementations (2 and 4 mg/kg) showed improvements in the visual condition as demonstrated by histopathology of the retina and measured parameters such as total retinal thickness and outer nuclear layer thickness. BCX supplementation helped reduce the burden of oxidative stress as seen by decreased serum and retinal tissue levels of malondialdehyde (MDA) and restored the antioxidant enzyme activities in BCX groups. Further, BCX supplementation modulated inflammatory markers (IL-1β, IL-6, and NF-κB), apoptotic proteins (Bax, Bcl-2, caspase 3), growth proteins and factors (GAP43, VEGF), glial and neuronal proteins (GFAP, NCAM), and heme oxygenase-1 (HO-1), along with the mitochondrial stress markers (ATF4, ATF6, Grp78, Grp94) in the rat retinal tissue. This study indicates that oral supplementation of BCX exerts a protective effect on light-induced retinal damage in the rats via reducing oxidative stress and inflammation, also protected against mitochondrial DNA damage and cellular death.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey
| | - Hasan Gencoglu
- Division of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | | | - Tejas Namjoshi
- OmniActive Health Technologies, Biotechnology Park, Pune 411057, India
| | | | - Abhijeet Morde
- OmniActive Health Technologies, Wagle Estate, Thane 400604, India
| | - Deshanie Rai
- OmniActive Health Technologies Inc, Morristown, NJ 07960, USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| |
Collapse
|
6
|
Yang P, Shao Z, Besley NA, Neal SE, Buehne KL, Park J, Karageozian H, Karageozian V, Ryde IT, Meyer JN, Jaffe GJ. Risuteganib Protects against Hydroquinone-induced Injury in Human RPE Cells. Invest Ophthalmol Vis Sci 2021; 61:35. [PMID: 32818234 PMCID: PMC7443126 DOI: 10.1167/iovs.61.10.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Cigarette smoking has been implicated in the pathogenesis of AMD. Integrin dysfunctions have been associated with AMD. Herein, we investigate the effect of risuteganib (RSG), an integrin regulator, on RPE cell injury induced by hydroquinone (HQ), an important oxidant in cigarette smoke. Methods Cultured human RPE cells were treated with HQ in the presence or absence of RSG. Cell death, mitochondrial respiration, reactive oxygen species production, and mitochondrial membrane potential were measured by flow cytometry, XFe24 analyzer, and fluorescence plate reader, respectively. Whole transcriptome analysis and gene expression were analyzed by Illumina RNA sequencing and quantitative PCR, respectively. F-actin aggregation was visualized with phalloidin. Levels of heme oxygenase-1, P38, and heat shock protein 27 proteins were measured by Western blot. Results HQ induced necrosis and apoptosis, decreased mitochondrial bioenergetics, increased reactive oxygen species levels, decreased mitochondrial membrane potential, increased F-actin aggregates, and induced phosphorylation of P38 and heat shock protein 27. HQ, but not RSG alone, induced substantial transcriptome changes that were regulated by RSG cotreatment. RSG cotreatment significantly protected against HQ-induced necrosis and apoptosis, prevented HQ-reduced mitochondrial bioenergetics, decreased HQ-induced reactive oxygen species production, improved HQ-disrupted mitochondrial membrane potential, reduced F-actin aggregates, decreased phosphorylation of P38 and heat shock protein 27, and further upregulated HQ-induced heme oxygenase-1 protein levels. Conclusions RSG has no detectable adverse effects on healthy RPE cells, whereas RSG cotreatment protects against HQ-induced injury, mitochondrial dysfunction, and actin reorganization, suggesting a potential role for RSG therapy to treat retinal diseases such as AMD.
Collapse
Affiliation(s)
- Ping Yang
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - Zixuan Shao
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Nicholas A Besley
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - Samantha E Neal
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - Kristen L Buehne
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| | - John Park
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Hampar Karageozian
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Vicken Karageozian
- Allegro Ophthalmics, LLC, San Juan Capistrano, California, United States
| | - Ian T Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina, United States
| |
Collapse
|
7
|
The Impact of Oxidative Stress on Blood-Retinal Barrier Physiology in Age-Related Macular Degeneration. Cells 2021; 10:cells10010064. [PMID: 33406612 PMCID: PMC7823525 DOI: 10.3390/cells10010064] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch's membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.
Collapse
|
8
|
Jabbehdari S, Handa JT. Oxidative stress as a therapeutic target for the prevention and treatment of early age-related macular degeneration. Surv Ophthalmol 2020; 66:423-440. [PMID: 32961209 DOI: 10.1016/j.survophthal.2020.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration, the leading cause of irreversible visual loss among older adults in developed countries, is a chronic, multifactorial, and progressive disease with the development of painless, central vision loss. Retinal pigment epithelial cell dysfunction is a core change in age-related macular degeneration that results from aging and the accumulated effects of genetic and environmental factors that, in part, is both caused by and leads to oxidative stress. In this review, we describe the role of oxidative stress, the cytoprotective oxidative stress pathways, and the impact of oxidative stress on critical cellular processes involved in age-related macular degeneration pathobiology. We also offer targeted therapy that may define how antioxidant therapy can either prevent or improve specific stages of age-related macular degeneration.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Hajizadeh-Sharafabad F, Ghoreishi Z, Maleki V, Tarighat-Esfanjani A. Mechanistic insights into the effect of lutein on atherosclerosis, vascular dysfunction, and related risk factors: A systematic review of in vivo, ex vivo and in vitro studies. Pharmacol Res 2019; 149:104477. [PMID: 31605782 DOI: 10.1016/j.phrs.2019.104477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
Lutein is an essential carotenoid commonly consumed in the diet; however, its dietary intake does not usually reach the minimum recommended intake to decrease the incidence of chronic diseases. Experimental and epidemiological evidence suggests an anti-atherosclerotic effect for lutein-rich foods or lutein supplementation. This systematic review aimed to assess the mechanistic pathways of lutein in the prevention of atherosclerosis. Electronic databases, including PubMed, SCOPUS, ProQuest, Embase, and Google Scholar were searched to May 2019. Original studies published in English-language journals that investigated the effects of lutein on atherosclerosis and related risk factors, including lipid profile, hemodynamic, glycemic and inflammatory measurements, and endothelial function indices, were considered. Two reviewers independently extracted data on study characteristics, methods and outcomes. The review protocol has been registered at PROSPERO database of Systematic Reviews (registration number: CRD42019121381). A total of 5818 articles were found in the first phase of the search; from these, 19 met the inclusion criteria: 3 in vitro, 1 ex vivo, 11 animal, and 4 human studies. Nine of ten studies showed positive effects of lutein on endothelial function by reducing blood pressure, arterial thickness, monocyte migration, and vascular smooth muscle cell migration. Twelve studies examined the anti-inflammatory properties of lutein and found a significant decrease in proinflammatory cytokines. Although few studies investigated the anti-hyperlipidemic effects of lutein, three animal studies and one clinical trial found a beneficial effect of lutein on lipid profile. Evidence supports positive effects of lutein on atherosclerosis development and some common risk factors of atherosclerosis, including inflammation and endothelial dysfunction. Further studies focused on the effects of lutein on hyperglycemia, lipid profile, blood pressure and coagulation are required.
Collapse
Affiliation(s)
- Fatemeh Hajizadeh-Sharafabad
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Ghoreishi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Huang Y, Shi C, Li J. The protective effect of zeaxanthin on human limbal and conjunctival epithelial cells against UV-induced cell death and oxidative stress. Int J Ophthalmol 2019; 12:369-374. [PMID: 30918802 DOI: 10.18240/ijo.2019.03.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/18/2018] [Indexed: 01/30/2023] Open
Abstract
AIM To explore the protective effect of zeaxanthin on human limbal and conjunctival epithelial cells against UV-radiation and excessive oxidative stress. METHODS Human limbal and conjunctival epithelial cells were isolated from cadaver and cultured in vitro. They were challenged with UVB radiation and H2O2 with and without zeaxanthin pretreatment. Cell viability, p38 and c-JUN NH(2)-terminal kinase (JNK) phosphorylation, IL-6, IL-8 and MCP-1 secretion and malondialdehyde (MDA) content were measured. RESULTS Zeaxanthin had no measurable cytotoxicity on limbal or conjunctival epithelial cells when used at concentrations of 5 µg/mL and below. At 30 mJ/cm2 UVB, the pretreatment of zeaxanthin increased the percentage of live cells from 50% to 69% (P=0.01) and from 66% to 75% (P=0.05) for limbal and conjunctival epithelial cells, respectively. The concentrations of IL-6, IL-8 and MCP-1 in the culture medium reduced to 66% (for IL-6 and MCP-1) and 56% (for IL-8) of the levels without zeaxanthin. This was accompanied by reduced p38 and JNK protein phosphorylation. Pretreatment of zeaxanthin also reduced intracellular MDA content caused by H2O2 stimulation from 0.86 µmol/L to 0.52 µmol/L (P=0.02) in limbal epithelial cells and from 0.96 µmol/L to 0.56 µmol/L in conjunctival epithelial cells (P=0.03). However, zeaxanthin did not have significant effect on H2O2-induced cell death in limbal or conjunctival epithelial cells. CONCLUSION Zeaxanthin is an effective reagent in reducing the detrimental effect of UV-radiation and oxidative stress on ocular surface epithelial cells.
Collapse
Affiliation(s)
- Yue Huang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Ophthalmology, Xinhua Hospital, Chong Ming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 202150, China
| | - Chun Shi
- Department of Ophthalmology, Jiangwan Hospital of Hongkou District, Shanghai 200434, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
12
|
Sahin K, Akdemir F, Orhan C, Tuzcu M, Gencoglu H, Sahin N, Ozercan IH, Ali S, Yilmaz I, Juturu V. (3R, 3'R)-zeaxanthin protects the retina from photo-oxidative damage via modulating the inflammation and visual health molecular markers. Cutan Ocul Toxicol 2019; 38:161-168. [PMID: 30513212 DOI: 10.1080/15569527.2018.1554667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Zeaxanthin protects the macula from ocular damage due to light or radiation by scavenging harmful reactive oxygen species. In the present study, zeaxanthin product (OmniXan®; OMX), derived from paprika pods (Capsicum annum; Family-Solanaceae), was tested for its efficacy in the rat retina against photooxidation. METHODS Forty-two male 8-week-old Wistar rats exposed to 12L/12D, 16L/8D and 24L/0D hours of intense light conditions were orally administrated either 0 or 100 mg/kg BW of zeaxanthin concentration. Retinal morphology was analyzed by histopathology, and target gene expressions were detected with real-time polymerase chain reaction methods. RESULTS OMX treatment significantly increased the serum zeaxanthin concentration (p < 0.001) and ameliorated oxidative damage by increasing the antioxidant enzyme activities in the retina induced by light (p < 0.001). OMX administration significantly upregulated the expression of genes, including Rhodopsin (Rho), Rod arrestin (SAG), Gα Transducin 1 (GNAT-1), neural cell adhesion molecule (NCAM), growth-associated protein 43 (GAP43), nuclear factor-(erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase (HO-1) and decreased the expression of nuclear factor-κB (NF- κB) and GFAP by OMX treatment rats. The histologic findings confirmed the antioxidant and gene expression data. CONCLUSIONS This study suggests that OMX is a potent substance that can be used to protect photoreceptor cell degeneration in the retina exposed to intense light.
Collapse
Affiliation(s)
- Kazim Sahin
- a Department of Animal Nutrition, Faculty of Veterinary Science , Firat University , Elazig , Turkey.,b Department of Nutrition, Faculty of Fisheries , Inonu University , Malatya , Turkey
| | - Fatih Akdemir
- b Department of Nutrition, Faculty of Fisheries , Inonu University , Malatya , Turkey
| | - Cemal Orhan
- a Department of Animal Nutrition, Faculty of Veterinary Science , Firat University , Elazig , Turkey
| | - Mehmet Tuzcu
- c Division of Biology, Faculty of Science , Firat University , Elazig , Turkey
| | - Hasan Gencoglu
- c Division of Biology, Faculty of Science , Firat University , Elazig , Turkey
| | - Nurhan Sahin
- a Department of Animal Nutrition, Faculty of Veterinary Science , Firat University , Elazig , Turkey
| | - Ibrahim H Ozercan
- d Department of Pathology, Faculty of Medicine , Firat University , Elazig , Turkey
| | - Shakir Ali
- e Department of Biochemistry, Faculty of Science , Jamia Hamdard , New Delhi , India
| | - Ismet Yilmaz
- f Department of Pharmacology, Faculty of Pharmacy , Inonu University , Malatya , Turkey
| | - Vijaya Juturu
- g Research and Development, OmniActive Health Technologies Inc , Morristown , NJ , USA
| |
Collapse
|
13
|
Bellezza I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front Pharmacol 2018; 9:1280. [PMID: 30455645 PMCID: PMC6230566 DOI: 10.3389/fphar.2018.01280] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration is one of the leading causes of vision loss in the elderly. Genetics, environmental insults, and age-related issues are risk factors for the development of the disease. All these risk factors are linked to the induction of oxidative stress. In young subjects retinal pigment epithelial cells mitigate reactive oxygen generation by the elimination of dysfunctional mitochondria, via mitophagy, and by increasing antioxidant defenses via Nrf2 activation. The high amount of UV light absorbed by the retina, together with cigarette smoking, cooperate with the aging process to increase the amount of reactive oxygen species generated by retinal pigment epithelium where oxidative stress arises. Moreover, in the elderly both the mitophagic process and Nrf2 activation are impaired thus causing retinal cell death. This review will focus on the impact of oxidative stress on the pathogenesis of age-related macular degeneration and analyze the natural and synthetic Nrf2-activating compounds that have been tested as potential therapeutic agents for the disease.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Biswal MR, Justis BD, Han P, Li H, Gierhart D, Dorey CK, Lewin AS. Daily zeaxanthin supplementation prevents atrophy of the retinal pigment epithelium (RPE) in a mouse model of mitochondrial oxidative stress. PLoS One 2018; 13:e0203816. [PMID: 30265681 PMCID: PMC6161850 DOI: 10.1371/journal.pone.0203816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023] Open
Abstract
Oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD). The dry form of AMD (geographic atrophy) is characterized by loss of RPE, photoreceptors, and macular pigments. The cumulative effects of oxidative stress impact mitochondrial function in RPE. In Sod2flox/floxVMD2-cre mice, the RPE specific deletion of Sod2, the gene for mitochondrial manganese superoxide dismutase (MnSOD), leads to elevated oxidative stress in retina and RPE, and causes changes in the RPE and underlying Bruch's membrane that share some features of AMD. This study tested the hypothesis that zeaxanthin supplementation would reduce oxidative stress and preserve RPE structure and function in these mice. Zeaxanthin in retina/RPE/choroid and liver was quantified by LC/MS, retinal function and structure were evaluated by electroretinogram (ERG) and spectral domain optical coherence tomography (SD-OCT), and antioxidant gene expression was measured by RT-PCR. After one month of supplementation, zeaxanthin levels were 5-fold higher in the retina/RPE/choroid and 12-fold higher in liver than in unsupplemented control mice. After four months of supplementation, amplitudes of the ERG a-wave (function of rod photoreceptors) and b-wave (function of the inner retina) were not different in supplemented and control mice. In contrast, the c-wave amplitude (a measure of RPE function) was 28% higher in supplemented mice than in control mice. Higher RPE/choroid expression of antioxidant genes (Cat, Gstm1, Hmox1, Nqo1) and scaffolding protein Sqstm1 were found in supplemented mice than in unsupplemented controls. Reduced nitrotyrosine content in the RPE/choroid was demonstrated by ELISA. Preliminary assessment of retinal ultrastructure indicated that supplementation supported better preservation of RPE structure with more compact basal infoldings and intact mitochondria. We conclude that daily zeaxanthin supplementation protected RPE cells from mitochondrial oxidative stress associated with deficiency in the MnSOD and thereby improved RPE function early in the disease course.
Collapse
Affiliation(s)
- Manas R. Biswal
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
- Center for Vision Research, University of Florida, Gainesville, FL, United States of America
- College of Pharmacy, University of South Florida, Tampa, United States of America
- * E-mail:
| | - Bradley D. Justis
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Pingyang Han
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Hong Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | | | - Cheryl K. Dorey
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States of America
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
- Center for Vision Research, University of Florida, Gainesville, FL, United States of America
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
15
|
Baccouche B, Benlarbi M, Barber AJ, Ben Chaouacha-Chekir R. Short-Term Administration of Astaxanthin Attenuates Retinal Changes in Diet-Induced Diabetic Psammomys obesus. Curr Eye Res 2018; 43:1177-1189. [PMID: 30028214 DOI: 10.1080/02713683.2018.1484143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Psammomys obesus is a high-fat diet (HFD)-fed animal model of obesity and type 2 diabetes recently explored as a model of non-proliferative diabetic retinopathy. This study tested the protective effect of the pigment astaxanthin (AST) in the P. obesus diabetic retina. METHODS Young adult P. obesus were randomly assigned to two groups. The control group received a normal diet consisting of a plant-based regimen, and the HFD group received an enriched laboratory chow. After 3 months, control and diabetic rodents were administered vehicle or AST, daily for 7 days. Body weight, blood glucose, and plasma pentosidine were assessed. Frozen sections of retinas were immunolabeled for markers of oxidative stress, glial reactivity and retinal ganglion cell bodies, and imaged by confocal microscopy. RESULTS Retinal tissue from AST-treated control and HFD-diabetic P. obesus showed a greater expression of the antioxidant enzyme heme oxygenase-1 (HO-1). In retinas of HFD-diabetic AST-treated P. obesus, cellular retinaldehyde binding protein and glutamine synthetase in Müller cells were more intense compared to the untreated HFD-diabetic group. HFD-induced diabetes downregulated the expression of glial fibrillary acidic protein in astrocytes, the POU domain protein 3A in retinal ganglion cells, and synaptophysin throughout the plexiform layers. DISCUSSION Our results show that type 2-like diabetes induced by HFD affected glial and neuronal retinal cell homeostasis. AST treatment induced the antioxidant enzyme HO-1 and reduced glial reactivity. These findings suggest that diabetic P. obesus is a useful model of HFD-induced obesity and diabetes to evaluate early neuroglial retinal alterations and antioxidant neuroprotection mechanisms in DR.
Collapse
Affiliation(s)
- Basma Baccouche
- a Laboratoire de Physiopthologies , Alimentations et Biomolécules (PAB), Institut Supérieur de Biotechnologie de Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet , Ariana , Tunisie
- b Faculté des Sciences de Bizerte (FSB) , Université de Carthage (UCAR) , Tunis , Tunisie
| | - Maha Benlarbi
- a Laboratoire de Physiopthologies , Alimentations et Biomolécules (PAB), Institut Supérieur de Biotechnologie de Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet , Ariana , Tunisie
| | - Alistair J Barber
- c Department of Ophthalmology , Penn State Hershey Eye Center, Milton S. Hershey Medical Center, Penn State College of Medicine , Hershey , PA , USA
| | - Rafika Ben Chaouacha-Chekir
- a Laboratoire de Physiopthologies , Alimentations et Biomolécules (PAB), Institut Supérieur de Biotechnologie de Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet , Ariana , Tunisie
| |
Collapse
|
16
|
Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Res 2017; 139:82-92. [PMID: 28988945 DOI: 10.1016/j.visres.2017.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
The complex pathology of diabetic retinopathy (DR) affects both vascular and neural tissue. The characteristics of neurodegeneration are well-described in animal models but have more recently been confirmed in the clinical setting, mostly by using non-invasive imaging approaches such as spectral domain optical coherence tomography (SD-OCT). The most frequent observations report loss of tissue in the nerve fiber layer and inner plexiform layer, confirming earlier findings from animal models. In several cases the reduction in inner retinal layers is reported in patients with little evidence of vascular lesions or macular edema, suggesting that degenerative loss of neural tissue in the inner retina can occur after relatively short durations of diabetes. Animal studies also suggest that neurodegeneration leading to retinal thinning is not limited to cell death and tissue loss but also includes changes in neuronal morphology, reduced synaptic protein expression and alterations in neurotransmission, including changes in expression of neurotransmitter receptors as well as neurotransmitter release, reuptake and metabolism. The concept of neurodegeneration as an early component of DR introduces the possibility to explore alternative therapies to prevent the onset of vision loss, including neuroprotective therapies and drugs targeting individual neurotransmitter systems, as well as more general neuroprotective approaches to preserve the integrity of the neural retina. In this review we consider some of the evidence for progressive retinal neurodegeneration in diabetes, and explore potential neuroprotective therapies.
Collapse
|
17
|
Tuzcu M, Orhan C, Muz OE, Sahin N, Juturu V, Sahin K. Lutein and zeaxanthin isomers modulates lipid metabolism and the inflammatory state of retina in obesity-induced high-fat diet rodent model. BMC Ophthalmol 2017; 17:129. [PMID: 28738845 PMCID: PMC5525211 DOI: 10.1186/s12886-017-0524-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/13/2017] [Indexed: 01/30/2023] Open
Abstract
Background Several studies associated high-fat intakes with a high incidence of age-related macular degeneration (AMD). Lutein and Zeaxanthin isomers (L/Zi) may counteract reactive oxygen species produced by oxidative stress. The present study was conducted to determine the possible effects of L/Zi administration on lipid profile, protein genes associated with oxidative stress and inflammation pathways in the obesity induced by a high-fat diet (HFD) in rodents. Methods Twenty-eight male Wistar rats were allocated into four groups as follows: (i) Control, (ii) Control + L/Zi, (iii) High Fat Diet (HFD), and (iv) HFD+ L/Z. L/Zi was administrated for 8 weeks at a daily dose of 100 mg/kg BW. Results L/Zi administration significantly reduced insulin and free fatty acid (FFA) levels (P < 0.001) and ameliorated the oxidative damage by reducing malondialdehyde (MDA) concentration and increasing antioxidant enzymes activities of retina induced by HFD. In addition, supplementation decreased the levels of vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB) and intercellular adhesion molecule-1 (ICAM) (P < 0.001, respectively) and improved nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) gene proteins in retinal tissues (P < 0.001). Conclusion Rats fed with HFD exhibited increased oxidative stress and upregulation of inflammatory indicators. However, L/Zi supplementation modulates genes involved oxidative stress and inflammation including NF-κB and Nrf2 signaling pathways in the retina which may contribute to ameliorating retinal damage induced by HFD.
Collapse
Affiliation(s)
- Mehmet Tuzcu
- Faculty of Science, Division of Biology, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Faculty of Veterinary, Department of Animal Nutrition, Firat University, Elazig, Turkey
| | - Omer Ersin Muz
- Department of Ophthalmology, Elazig Education and Research Hospital, Elazig, Turkey
| | - Nurhan Sahin
- Faculty of Veterinary, Department of Animal Nutrition, Firat University, Elazig, Turkey
| | - Vijaya Juturu
- Research and Development, OmniActive Health Technologies Inc., Morristown, USA
| | - Kazım Sahin
- Faculty of Veterinary, Department of Animal Nutrition, Firat University, Elazig, Turkey.
| |
Collapse
|
18
|
Sahin K, Orhan C, Akdemir F, Tuzcu M, Sahin N, Yilmaz I, Ali S, Deshpande J, Juturu V. Mesozeaxanthin protects the liver and reduces cardio-metabolic risk factors in an insulin resistant rodent model. Food Nutr Res 2017; 61:1353360. [PMID: 28804442 PMCID: PMC5533124 DOI: 10.1080/16546628.2017.1353360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/24/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Mesozeaxanthin (MZ) is a macular carotenoid which has been reported to have a number of pharmacological properties, including the antioxidant, and anticarcinogenic property, and has been stated to decrease the hepatocyte lipid content. Objective: In this study, we investigated the effect of MZ on cardio-metabolic health risk (CMHR) and its probable mechanisms of action in rats fed a high-fat diet (HFD). Design: Rats were randomly divided into four groups consisting of (i) Control, (ii) MZ, (iii) HFD, and (iv) HFD+MZ. Results: MZ treatment increased the antioxidant enzyme activities and helped improve the liver function. The treatment alleviated CMHR and decreased the level of nuclear factor kappa B (NF-κB p65) and tumor necrosis factor-alpha (TNF-α). The levels of hepatic peroxisome proliferator-activated receptor gamma (PPAR-γ), phosphorylated insulin receptor substrate 1 (p-IRS-1), β,β-carotene 9’,10’-oxygenase 2 (BCO2) and nuclear factor erythroid 2-related factor 2 (Nrf2), which decrease in HFD rats, were found to be significantly higher in MZ supplemented animals. Conclusion: MZ has antioxidant and anti-inflammatory properties and can is reported in this study toprotect against fatty liver and cardio-metabolic syndrome, possibly through regulation of PPAR-γ, IRS-1, Nrf2 and NF-κB proteins, in an insulin-resistant rodent model.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Fatih Akdemir
- Department of Nutrition, Faculty of Fisheries, Inonu University, Malatya, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Ismet Yilmaz
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Jayant Deshpande
- Research and Development, OmniActive Health Technologies Inc., Morristown, NJ, USA
| | - Vijaya Juturu
- Research and Development, OmniActive Health Technologies Inc., Morristown, NJ, USA
| |
Collapse
|