1
|
Kato F, Bandou R, Yamaguchi Y, Inouye K, Inouye M. Characterization of a membrane toxin-antitoxin system, tsaAT, from Staphylococcus aureus. FEBS J 2024; 291:5015-5036. [PMID: 39356479 DOI: 10.1111/febs.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Risa Bandou
- Faculty of Dentistry, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology, Graduate School of Sciences, Osaka Metropolitan University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
2
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612536. [PMID: 39314361 PMCID: PMC11419118 DOI: 10.1101/2024.09.11.612536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point towards their having a joint role in controlling metabolism, cell division, and cell growth.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Watanabe S, Nsofor CA, Thitiananpakorn K, Tan XE, Aiba Y, Takenouchi R, Kiga K, Sasahara T, Miyanaga K, Veeranarayanan S, Shimamori Y, Lian AYS, Nguyen TM, Nguyen HM, Alessa O, Kumwenda GP, Jayathilake S, Revilleza JEC, Baranwal P, Nishikawa Y, Li FY, Kawaguchi T, Sankaranarayanan S, Arbaah M, Zhang Y, Maniruzzaman, Liu Y, Sarah H, Li J, Sugano T, Ho TMD, Batbold A, Nayanjin T, Cui L. Metabolic remodeling by RNA polymerase gene mutations is associated with reduced β-lactam susceptibility in oxacillin-susceptible MRSA. mBio 2024; 15:e0033924. [PMID: 38988221 PMCID: PMC11237739 DOI: 10.1128/mbio.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 07/12/2024] Open
Abstract
The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to β-lactam antibiotics, these strains can easily acquire reduced β-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced β-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to β-lactam in OS-MRSA. IMPORTANCE The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to β-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced β-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to β-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Chijioke A Nsofor
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- Department of Biotechnology, School of Biological Sciences, Federal University of Technology Owerri Nigeria, Owerri, Nigeria
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Remi Takenouchi
- School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yuzuki Shimamori
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Adeline Yeo Syin Lian
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Thuy Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Ola Alessa
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | | | - Sarangi Jayathilake
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | | | - Priyanka Baranwal
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yutaro Nishikawa
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Sowmiya Sankaranarayanan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Mahmoud Arbaah
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yuancheng Zhang
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Maniruzzaman
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yi Liu
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Hossain Sarah
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Junjie Li
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Takashi Sugano
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Thi My Duyen Ho
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Anujin Batbold
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Tergel Nayanjin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
4
|
Nielsen TK, Petersen IB, Xu L, Barbuti MD, Mebus V, Justh A, Alqarzaee AA, Jacques N, Oury C, Thomas V, Kjos M, Henriksen C, Frees D. The Spx stress regulator confers high-level β-lactam resistance and decreases susceptibility to last-line antibiotics in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2024:e0033524. [PMID: 38690894 DOI: 10.1128/aac.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a leading cause of mortality worldwide. MRSA has acquired resistance to next-generation β-lactam antibiotics through the horizontal acquisition of the mecA resistance gene. Development of high resistance is, however, often associated with additional mutations in a set of chromosomal core genes, known as potentiators, which, through poorly described mechanisms, enhance resistance. The yjbH gene was recently identified as a hot spot for adaptive mutations during severe infections. Here, we show that inactivation of yjbH increased β-lactam MICs up to 16-fold and transformed MRSA cells with low levels of resistance to being homogenously highly resistant to β-lactams. The yjbH gene encodes an adaptor protein that targets the transcriptional stress regulator Spx for degradation by the ClpXP protease. Using CRISPR interference (CRISPRi) to knock down spx transcription, we unambiguously linked hyper-resistance to the accumulation of Spx. Spx was previously proposed to be essential; however, our data suggest that Spx is dispensable for growth at 37°C but becomes essential in the presence of antibiotics with various targets. On the other hand, high Spx levels bypassed the role of PBP4 in β-lactam resistance and broadly decreased MRSA susceptibility to compounds targeting the cell wall or the cell membrane, including vancomycin, daptomycin, and nisin. Strikingly, Spx potentiated resistance independently of its redox-sensing switch. Collectively, our study identifies a general stress pathway that, in addition to promoting the development of high-level, broad-spectrum β-lactam resistance, also decreases MRSA susceptibility to critical antibiotics of last resort.
Collapse
Affiliation(s)
- Tobias Krogh Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Birkjær Petersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lijuan Xu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Disen Barbuti
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Viktor Mebus
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anni Justh
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abdulelah Ahmed Alqarzaee
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nicolas Jacques
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Vinai Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Camilla Henriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
García-Villada L, Degtyareva NP, Brooks AM, Goldberg JB, Doetsch PW. A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa. Sci Rep 2024; 14:8598. [PMID: 38615146 PMCID: PMC11016087 DOI: 10.1038/s41598-024-59188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Ashley M Brooks
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, NIEHS, Durham, NC, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul W Doetsch
- Genomic Integrity and Structural Biology Laboratory, NIEHS, Durham, NC, USA.
| |
Collapse
|
6
|
Zeden MS. mSphere of Influence: Targeting bacterial signaling and metabolism to overcome antimicrobial resistance. mSphere 2024; 9:e0063223. [PMID: 38305167 PMCID: PMC10900877 DOI: 10.1128/msphere.00632-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Dr Merve Suzan Zeden works in the field of molecular bacteriology and antibiotic resistance. In this mSphere of Influence article, she reflects on how three papers, entitled "c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation," "Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression," and "Evolving MRSA: high-level β-lactam resistance in Staphylococcus aureus is associated with RNA polymerase alterations and fine tuning of gene expression," made an impact on her work on bacterial metabolism and antimicrobial resistance and how it shaped her research in understanding the link in between.
Collapse
Affiliation(s)
- Merve S Zeden
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Gostev V, Sabinova K, Sopova J, Kalinogorskaya O, Sulian O, Chulkova P, Velizhanina M, Pavlova P, Danilov L, Kraeva L, Polev D, Martens E, Sidorenko S. Phenotypic and genomic characteristics of oxacillin-susceptible mecA-positive Staphylococcus aureus, rapid selection of high-level resistance to beta-lactams. Eur J Clin Microbiol Infect Dis 2023; 42:1125-1133. [PMID: 37515660 DOI: 10.1007/s10096-023-04646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
The aim of this study is to describe the phenotypic and genetic properties of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) isolates and their beta-lactam resistant derivatives obtained after selection with oxacillin. A collection of hospital- (HA-) and community-acquired (CA-) MRSA was screened for oxacillin susceptibility. Antibiotic susceptibility testing, population analysis profile (PAP), mecA expression analysis, and whole genome sequencing (WGS) were performed for 60 mecA-positive OS-MRSA isolates. Twelve high-level beta-lactam resistant derivatives selected during PAP were also subjected to WGS. OS-MRSA were more prevalent among CA-MRSA (49/205, 24%) than among HA-MRSA (11/575, 2%). OS-MRSA isolates belonged to twelve sequence types (ST), with a predominance of ST22-t223-SCCmec IVc and ST59-t1950-SCCmec V lineages. OS-MRSA were characterized by mecA promoter mutations at - 33 (C→T) or - 7 (G→T/A) along with PBP2a substitutions (S225R or E246G). The basal and oxacillin-induced levels of mecA expression in OS-MRSA isolates were significantly lower than those in control ST8-HA-MRSA isolates. Most of the OS-MRSA isolates were heteroresistant to oxacillin. High-level beta-lactam resistant OS-MRSA derivatives selected with oxacillin carried mutations in mecA auxiliary factors: relA (metabolism of purines), tyrS, cysS (metabolism of tRNAs), aroK, cysE (metabolism of amino acids and glycolysis). Cefoxitin-based tests demonstrated high specificity for OS-MRSA detection. The highest positive predictive values (PPV > 0.95) were observed for broth microdilution, the VITEK® 2 automatic system, and chromogenic media. Susceptibility testing of CA-MRSA requires special attention due to the high prevalence of difficult-to-detect OS-MRSA among them. Mis-prescription of beta-lactams for the treatment of OS-MRSA may lead to selection of high-level resistance and treatment failures.
Collapse
Affiliation(s)
- Vladimir Gostev
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia
- North-Western State Medical University Named After I. I. Mechnikov, Piskarevskij Prospect 47, Saint Petersburg, 195067, Russia
| | - Ksenia Sabinova
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia
| | - Julia Sopova
- Saint Petersburg State University, Universitetskaya Embankment, Saint Petersburg, 7-9, 199034, Russia
- Vavilov Institute of General Genetics, Universitetskaya Embankment 7-9, Saint Petersburg, 199034, Russia
| | - Olga Kalinogorskaya
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia
| | - Ofeliia Sulian
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia
| | - Polina Chulkova
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia
| | - Maria Velizhanina
- Vavilov Institute of General Genetics, Universitetskaya Embankment 7-9, Saint Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Saint Petersburg, Pushkin 8, 196608, Russia
| | - Polina Pavlova
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Universitetskaya Embankment, Saint Petersburg, 7-9, 199034, Russia
| | - Lavrentii Danilov
- Saint Petersburg State University, Universitetskaya Embankment, Saint Petersburg, 7-9, 199034, Russia
| | - Lyudmila Kraeva
- Saint Petersburg Pasteur Institute, Mira Str.14, Saint Petersburg, 197101, Russia
| | - Dmitrii Polev
- Saint Petersburg Pasteur Institute, Mira Str.14, Saint Petersburg, 197101, Russia
| | - Elvira Martens
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia
- North-Western State Medical University Named After I. I. Mechnikov, Piskarevskij Prospect 47, Saint Petersburg, 195067, Russia
| | - Sergey Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, 197022, Russia.
- North-Western State Medical University Named After I. I. Mechnikov, Piskarevskij Prospect 47, Saint Petersburg, 195067, Russia.
| |
Collapse
|
8
|
Carrilero L, Urwin L, Ward E, Choudhury NR, Monk IR, Turner CE, Stinear TP, Corrigan RM. Stringent Response-Mediated Control of GTP Homeostasis Is Required for Long-Term Viability of Staphylococcus aureus. Microbiol Spectr 2023; 11:e0044723. [PMID: 36877013 PMCID: PMC10101089 DOI: 10.1128/spectrum.00447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/07/2023] Open
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen that often results in difficult-to-treat infections. One mechanism used by S. aureus to enhance survival during infection is the stringent response. This is a stress survival pathway that utilizes the nucleotides (p)ppGpp to reallocate bacterial resources, shutting down growth until conditions improve. Small colony variants (SCVs) of S. aureus are frequently associated with chronic infections, and this phenotype has previously been linked to a hyperactive stringent response. Here, we examine the role of (p)ppGpp in the long-term survival of S. aureus under nutrient-restricted conditions. When starved, a (p)ppGpp-null S. aureus mutant strain ((p)ppGpp0) initially had decreased viability. However, after 3 days we observed the presence and dominance of a population of small colonies. Similar to SCVs, these small colony isolates (p0-SCIs) had reduced growth but remained hemolytic and sensitive to gentamicin, phenotypes that have been tied to SCVs previously. Genomic analysis of the p0-SCIs revealed mutations arising within gmk, encoding an enzyme in the GTP synthesis pathway. We show that a (p)ppGpp0 strain has elevated levels of GTP, and that the mutations in the p0-SCIs all lower Gmk enzyme activity and consequently cellular GTP levels. We further show that in the absence of (p)ppGpp, cell viability can be rescued using the GuaA inhibitor decoyinine, which artificially lowers the intracellular GTP concentration. Our study highlights the role of (p)ppGpp in GTP homeostasis and underscores the importance of nucleotide signaling for long-term survival of S. aureus in nutrient-limiting conditions, such as those encountered during infections. IMPORTANCE Staphylococcus aureus is a human pathogen that upon invasion of a host encounters stresses, such as nutritional restriction. The bacteria respond by switching on a signaling cascade controlled by the nucleotides (p)ppGpp. These nucleotides function to shut down bacterial growth until conditions improve. Therefore, (p)ppGpp are important for bacterial survival and have been implicated in promoting chronic infections. Here, we investigate the importance of (p)ppGpp for long-term survival of bacteria in nutrient-limiting conditions similar to those in a human host. We discovered that in the absence of (p)ppGpp, bacterial viability decreases due to dysregulation of GTP homeostasis. However, the (p)ppGpp-null bacteria were able to compensate by introducing mutations in the GTP synthesis pathway that led to a reduction in GTP build-up and a rescue of viability. This study therefore highlights the importance of (p)ppGpp for the regulation of GTP levels and for long-term survival of S. aureus in restricted environments.
Collapse
Affiliation(s)
- Laura Carrilero
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Lucy Urwin
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ezra Ward
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Naznin R. Choudhury
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire E. Turner
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca M. Corrigan
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Nolan AC, Zeden MS, Kviatkovski I, Campbell C, Urwin L, Corrigan RM, Gründling A, O’Gara JP. Purine Nucleosides Interfere with c-di-AMP Levels and Act as Adjuvants To Re-Sensitize MRSA To β-Lactam Antibiotics. mBio 2023; 14:e0247822. [PMID: 36507833 PMCID: PMC9973305 DOI: 10.1128/mbio.02478-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The purine-derived signaling molecules c-di-AMP and (p)ppGpp control mecA/PBP2a-mediated β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) raise the possibility that purine availability can control antibiotic susceptibility. Consistent with this, exogenous guanosine and xanthosine, which are fluxed through the GTP branch of purine biosynthesis, were shown to significantly reduce MRSA β-lactam resistance. In contrast, adenosine (fluxed to ATP) significantly increased oxacillin resistance, whereas inosine (which can be fluxed to ATP and GTP via hypoxanthine) only marginally increased oxacillin susceptibility. Furthermore, mutations that interfere with de novo purine synthesis (pur operon), transport (NupG, PbuG, PbuX) and the salvage pathway (DeoD2, Hpt) increased β-lactam resistance in MRSA strain JE2. Increased resistance of a nupG mutant was not significantly reversed by guanosine, indicating that NupG is required for guanosine transport, which is required to reduce β-lactam resistance. Suppressor mutants resistant to oxacillin/guanosine combinations contained several purine salvage pathway mutations, including nupG and hpt. Guanosine significantly increased cell size and reduced levels of c-di-AMP, while inactivation of GdpP, the c-di-AMP phosphodiesterase negated the impact of guanosine on β-lactam susceptibility. PBP2a expression was unaffected in nupG or deoD2 mutants, suggesting that guanosine-induced β-lactam susceptibility may result from dysfunctional c-di-AMP-dependent osmoregulation. These data reveal the therapeutic potential of purine nucleosides, as β-lactam adjuvants that interfere with the normal activation of c-di-AMP are required for high-level β-lactam resistance in MRSA. IMPORTANCE The clinical burden of infections caused by antimicrobial resistant (AMR) pathogens is a leading threat to public health. Maintaining the effectiveness of existing antimicrobial drugs or finding ways to reintroduce drugs to which resistance is widespread is an important part of efforts to address the AMR crisis. Predominantly, the safest and most effective class of antibiotics are the β-lactams, which are no longer effective against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report that the purine nucleosides guanosine and xanthosine have potent activity as adjuvants that can resensitize MRSA to oxacillin and other β-lactam antibiotics. Mechanistically, exposure of MRSA to these nucleosides significantly reduced the levels of the cyclic dinucleotide c-di-AMP, which is required for β-lactam resistance. Drugs derived from nucleotides are widely used in the treatment of cancer and viral infections highlighting the clinical potential of using purine nucleosides to restore or enhance the therapeutic effectiveness of β-lactams against MRSA and potentially other AMR pathogens.
Collapse
Affiliation(s)
- Aaron C. Nolan
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Merve S. Zeden
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Igor Kviatkovski
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Christopher Campbell
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Lucy Urwin
- The Florey Institute, School of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca M. Corrigan
- The Florey Institute, School of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| |
Collapse
|
10
|
Molecular Characterization of Clinical Rel Mutations and Consequences for Resistance Expression and Fitness in Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0093822. [PMID: 36346240 PMCID: PMC9764984 DOI: 10.1128/aac.00938-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The stringent response (SR) is a universal stress response that acts as a global regulator of bacterial physiology and virulence, and is a contributor to antibiotic tolerance and resistance. In most bacteria, the SR is controlled by a bifunctional enzyme, Rel, which both synthesizes and hydrolyzes the alarmone (p)ppGpp via two distinct catalytic domains. The balance between these antagonistic activities is fine-tuned to the needs of the cell and, in a "relaxed" state, the hydrolase activity of Rel dominates. We have previously shown that two single amino acid substitutions in Rel (that were identified in clinical isolates from persistent infections) confer elevated basal concentrations of (p)ppGpp and consequent multidrug tolerance in Staphylococcus aureus. Here, we explore the molecular details of how these mutations bring about this increase in cellular (p)ppGpp and investigate the wider cellular consequences in terms of resistance expression, resistance development, and bacterial fitness. Using enzyme assays, we show that both these mutations drastically reduce the hydrolase activity of Rel, thereby shifting the balance of Rel activity in favor of (p)ppGpp synthesis. We also demonstrate that these mutations induce high-level, homogeneous expression of β-lactam resistance and confer a significant fitness advantage in the presence of bactericidal antibiotics (but a fitness cost in the absence of antibiotic). In contrast, these mutations do not appear to accelerate the emergence of endogenous resistance mutations in vitro. Overall, our findings reveal the complex nature of Rel regulation and the multifaceted implications of clinical Rel mutations in terms of antibiotic efficacy and bacteria survival.
Collapse
|
11
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
12
|
Liang B, Xiong Z, Liang Z, Zhang C, Cai H, Long Y, Gao F, Wang J, Deng Q, Zhong H, Xie Y, Huang L, Gong S, Zhou Z. Genomic Basis of Occurrence of Cryptic Resistance among Oxacillin- and Cefoxitin-Susceptible mecA-Positive Staphylococcus aureus. Microbiol Spectr 2022; 10:e0029122. [PMID: 35608351 PMCID: PMC9241717 DOI: 10.1128/spectrum.00291-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
The oxacillin- and cefoxitin-susceptible mecA-positive Staphylococcus aureus is a novel "stealth" methicillin-resistant S. aureus (MRSA) type. Here, we sequenced the whole genome of two oxacillin- and cefoxitin-susceptible mecA-positive MRSA isolates from breast abscesses in a lactating woman and a nasal swab of a healthy student in Guangzhou for investigating the mechanism underlying its occurrence. The reversion of these isolates was selected by exposure to sub-MICs of cefoxitin with or without mupirocin. The mecA expression of both parental strains and their revertants was determined, and the whole genome of the revertants was sequenced. Comparative whole-genome analyses performed for both strains revealed that mecA of the clinical strain was mutated by a single-bp insertion at the 262nd position in the tandem repeat region of the gene, and this mutation that led to the formation of a premature stop codon. The colonizing strain was mutated by a novel G-to-A base substitution in the second promoter region (-35 bp) of mecA. The mecA expression level of strain 697 revertant was 37 times higher than that of the parental strain. Although the mecA expression level was even higher for parental strain 199 compared with that for its revertant, its cDNA sequence contained a single-bp insertion. Collectively, both the missense and single substitution mutations of the second promoter of mecA could render MRSA isolates as "stealth" MRSA, thereby emphasizing the importance of combining phenotype tests with mecA or penicillin-binding protein 2a detection for the identification of MRSA. IMPORTANCE The oxacillin- and cefoxitin-susceptible mecA-positive Staphylococcus aureus is a novel type of "stealth" methicillin-resistant S. aureus (MRSA), which is difficult to be detected using conventional methods. To investigate the genomic basis of their occurrence, we sequenced the whole genome of two previously recovered oxacillin- and cefoxitin-susceptible mecA-positive MRSA isolates from breast abscesses in a lactating woman and a nasal swab of a healthy student in Guangzhou. Complete SCCmec structure was absent except for mecA in clinical isolate 199. Additionally, a novel single-base pair insertion was observed in the clinical strain, which resulted in premature termination and a frameshift mutation. The colonizing isolate 697 had a Scc-mec-type IVa, and the second promoter region (-35 bp) of mecA was mutated by a novel G-to-A base substitution. The reversion of oxacillin- and cefoxitin-susceptible mecA-positive S. aureus to resistant MRSA isolates was selected by exposure to subminimum inhibitory cefoxitin with or without mupirocin.
Collapse
Affiliation(s)
- Bingshao Liang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhile Xiong
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhuwei Liang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chao Zhang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Hao Cai
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yan Long
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Fei Gao
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jielin Wang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qiulian Deng
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huamin Zhong
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yongqiang Xie
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lianfen Huang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhenwen Zhou
- Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
13
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
14
|
Impact of the Stringent Stress Response on the Expression of Methicillin Resistance in Staphylococcaceae Strains Carrying mecA, mecA1 and mecC. Antibiotics (Basel) 2022; 11:antibiotics11020255. [PMID: 35203858 PMCID: PMC8868139 DOI: 10.3390/antibiotics11020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
The acquisition of the resistance determinant mecA by Staphylococcus aureus is of major clinical importance, since it confers a resistant phenotype to virtually the entire large family of structurally diverse β-lactam antibiotics. While the common resistance determinant mecA is essential, the optimal expression of the resistance phenotype also requires additional factors. Previous studies showed that the great majority of clinical isolates of methicillin-resistant S. aureus (MRSA) have a heterogeneous resistant phenotype, and we observed that strains carrying methicillin genetic determinants other than mecA also produce similar heterogeneous phenotypes. All these strains were able to express high and homogeneous levels of oxacillin resistance when sub-inhibitory concentrations of mupirocin, an effector of the stringent stress response, were added to growth media. Our studies show that the gene gmk, involved in guanine metabolism, was one of the first genes to exhibit mutations in homoresistant (H*R) derivatives obtained through serial passages (with increasing concentrations of oxacillin) of the prototype mecC-carrying MRSA strain LGA251. All these observations led us to propose that a common molecular mechanism for the establishment of high and homogeneous oxacillin resistance must be present among isolates carrying different methicillin resistance determinants. In this work, we tested this hypothesis using whole-genome sequencing (WGS) to compare isogenic populations differing only in their degrees of oxacillin resistance and carrying various methicillin genetic determinants
Collapse
|
15
|
Accumulation of Succinyl Coenzyme A Perturbs the Methicillin-Resistant Staphylococcus aureus (MRSA) Succinylome and Is Associated with Increased Susceptibility to Beta-Lactam Antibiotics. mBio 2021; 12:e0053021. [PMID: 34182779 PMCID: PMC8437408 DOI: 10.1128/mbio.00530-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Penicillin binding protein 2a (PBP2a)-dependent resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact β-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to β-lactam antibiotics.
Collapse
|
16
|
Li QQ, Kang OH, Kwon DY. Study on Demethoxycurcumin as a Promising Approach to Reverse Methicillin-Resistance of Staphylococcus aureus. Int J Mol Sci 2021; 22:ijms22073778. [PMID: 33917423 PMCID: PMC8038695 DOI: 10.3390/ijms22073778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has always been a threatening pathogen. Research on phytochemical components that can replace antibiotics with limited efficacy may be an innovative method to solve intractable MRSA infections. The present study was devoted to investigate the antibacterial activity of the natural compound demethoxycurcumin (DMC) against MRSA and explore its possible mechanism for eliminating MRSA. The minimum inhibitory concentrations (MICs) of DMC against MRSA strains was determined by the broth microdilution method, and the results showed that the MIC of DMC was 62.5 μg/mL. The synergistic effects of DMC and antibiotics were investigated by the checkerboard method and the time–kill assay. The ATP synthase inhibitors were employed to block the metabolic ability of bacteria to explore their synergistic effect on the antibacterial ability of DMC. In addition, western blot analysis and qRT-PCR were performed to detect the proteins and genes related to drug resistance and S. aureus exotoxins. As results, DMC hindered the translation of penicillin-binding protein 2a (PBP2a) and staphylococcal enterotoxin and reduced the transcription of related genes. This study provides experimental evidences that DMC has the potential to be a candidate substance for the treatment of MRSA infections.
Collapse
Affiliation(s)
| | - Ok-Hwa Kang
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K. & D.-Y.K.)
| | - Dong-Yeul Kwon
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K. & D.-Y.K.)
| |
Collapse
|
17
|
Kundra S, Colomer-Winter C, Lemos JA. Survival of the Fittest: The Relationship of (p)ppGpp With Bacterial Virulence. Front Microbiol 2020; 11:601417. [PMID: 33343543 PMCID: PMC7744563 DOI: 10.3389/fmicb.2020.601417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The signaling nucleotide (p)ppGpp has been the subject of intense research in the past two decades. Initially discovered as the effector molecule of the stringent response, a bacterial stress response that reprograms cell physiology during amino acid starvation, follow-up studies indicated that many effects of (p)ppGpp on cell physiology occur at levels that are lower than those needed to fully activate the stringent response, and that the repertoire of enzymes involved in (p)ppGpp metabolism is more diverse than initially thought. Of particular interest, (p)ppGpp regulation has been consistently linked to bacterial persistence and virulence, such that the scientific pursuit to discover molecules that interfere with (p)ppGpp signaling as a way to develop new antimicrobials has grown substantially in recent years. Here, we highlight contemporary studies that have further supported the intimate relationship of (p)ppGpp with bacterial virulence and studies that provided new insights into the different mechanisms by which (p)ppGpp modulates bacterial virulence.
Collapse
Affiliation(s)
- Shivani Kundra
- Department of Oral Biology, UF College of Dentistry, Gainesville, FL, United States
| | | | - José A Lemos
- Department of Oral Biology, UF College of Dentistry, Gainesville, FL, United States
| |
Collapse
|
18
|
Gallagher LA, Shears RK, Fingleton C, Alvarez L, Waters EM, Clarke J, Bricio-Moreno L, Campbell C, Yadav AK, Razvi F, O'Neill E, O'Neill AJ, Cava F, Fey PD, Kadioglu A, O'Gara JP. Impaired Alanine Transport or Exposure to d-Cycloserine Increases the Susceptibility of MRSA to β-lactam Antibiotics. J Infect Dis 2020; 221:1000-1016. [PMID: 31628459 DOI: 10.1093/infdis/jiz542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
Prolonging the clinical effectiveness of β-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted d-cycloserine (DCS) transporter gene cycA resensitized methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. The cycA mutation also resulted in hypersusceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and d-alanine ligase required for d-alanine incorporation into cell wall peptidoglycan. Alanine transport was impaired in the cycA mutant, and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal d-ala-d-ala and reduced peptidoglycan cross-linking, prompting us to investigate synergism between β-lactams and DCS. DCS resensitized MRSA to β-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteremia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to β-lactam antibiotics.
Collapse
Affiliation(s)
- Laura A Gallagher
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rebecca K Shears
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Claire Fingleton
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Laura Alvarez
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Elaine M Waters
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Jenny Clarke
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | | | - Akhilesh K Yadav
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eoghan O'Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Connolly Hospital, Dublin, Ireland
| | - Alex J O'Neill
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Felipe Cava
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - James P O'Gara
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
19
|
Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2020; 19:256-271. [PMID: 33149273 DOI: 10.1038/s41579-020-00470-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.
Collapse
Affiliation(s)
- Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Naznin R Choudhury
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
20
|
Das B, Bhadra RK. (p)ppGpp Metabolism and Antimicrobial Resistance in Bacterial Pathogens. Front Microbiol 2020; 11:563944. [PMID: 33162948 PMCID: PMC7581866 DOI: 10.3389/fmicb.2020.563944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Single cell microorganisms including pathogens relentlessly face myriads of physicochemical stresses in their living environment. In order to survive and multiply under such unfavorable conditions, microbes have evolved with complex genetic networks, which allow them to sense and respond against these stresses. Stringent response is one such adaptive mechanism where bacteria can survive under nutrient starvation and other related stresses. The effector molecules for the stringent response are guanosine-5'-triphosphate 3'-diphosphate (pppGpp) and guanosine-3', 5'-bis(diphosphate) (ppGpp), together called (p)ppGpp. These effector molecules are now emerging as master regulators for several physiological processes of bacteria including virulence, persistence, and antimicrobial resistance. (p)ppGpp may work independently or along with its cofactor DksA to modulate the activities of its prime target RNA polymerase and other metabolic enzymes, which are involved in different biosynthetic pathways. Enzymes involved in (p)ppGpp metabolisms are ubiquitously present in bacteria and categorized them into three classes, i.e., canonical (p)ppGpp synthetase (RelA), (p)ppGpp hydrolase/synthetase (SpoT/Rel/RSH), and small alarmone synthetases (SAS). While RelA gets activated in response to amino acid starvation, enzymes belonging to SpoT/Rel/RSH and SAS family can synthesize (p)ppGpp in response to glucose starvation and several other stress conditions. In this review, we will discuss about the current status of the following aspects: (i) diversity of (p)ppGpp biosynthetic enzymes among different bacterial species including enteropathogens, (ii) signals that modulate the activity of (p)ppGpp synthetase and hydrolase, (iii) effect of (p)ppGpp in the production of antibiotics, and (iv) role of (p)ppGpp in the emergence of antibiotic resistant pathogens. Emphasis has been given to the cholera pathogen Vibrio cholerae due to its sophisticated and complex (p)ppGpp metabolic pathways, rapid mutational rate, and acquisition of antimicrobial resistance determinants through horizontal gene transfer. Finally, we discuss the prospect of (p)ppGpp metabolic enzymes as potential targets for developing antibiotic adjuvants and tackling persistence of infections.
Collapse
Affiliation(s)
- Bhabatosh Das
- Infection and Immunology Division, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
21
|
Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci Rep 2020; 10:16907. [PMID: 33037239 PMCID: PMC7547103 DOI: 10.1038/s41598-020-73796-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus strains that are susceptible to the β-lactam antibiotic oxacillin despite carrying mecA (OS-MRSA) cause serious clinical problems globally because of their ability to easily acquire β-lactam resistance. Understanding the genetic mechanism(s) of acquisition of the resistance is therefore crucial for infection control management. For this purpose, a whole-genome sequencing-based analysis was performed using 43 clinical OS-MRSA strains and 100 mutants with reduced susceptibility to oxacillin (MICs 1.0–256 µg/mL) generated from 26 representative OS-MRSA strains. Genome comparison between the mutants and their respective parent strains identified a total of 141 mutations in 46 genes and 8 intergenic regions. Among them, the mutations are frequently found in genes related to RNA polymerase (rpoBC), purine biosynthesis (guaA, prs, hprT), (p)ppGpp synthesis (relSau), glycolysis (pykA, fbaA, fruB), protein quality control (clpXP, ftsH), and tRNA synthase (lysS, gltX), whereas no mutations existed in mec and bla operons. Whole-genome transcriptional profile of the resistant mutants demonstrated that expression of genes associated with purine biosynthesis, protein quality control, and tRNA synthesis were significantly inhibited similar to the massive transcription downregulation seen in S. aureus during the stringent response, while the levels of mecA expression and PBP2a production were varied. We conclude that a combination effect of mecA upregulation and stringent-like response may play an important role in acquisition of β-lactam resistance in OS-MRSA.
Collapse
|
22
|
Panchal VV, Griffiths C, Mosaei H, Bilyk B, Sutton JAF, Carnell OT, Hornby DP, Green J, Hobbs JK, Kelley WL, Zenkin N, Foster SJ. Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathog 2020; 16:e1008672. [PMID: 32706832 PMCID: PMC7380596 DOI: 10.1371/journal.ppat.1008672] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Most clinical MRSA (methicillin-resistant S. aureus) isolates exhibit low-level β-lactam resistance (oxacillin MIC 2-4 μg/ml) due to the acquisition of a novel penicillin binding protein (PBP2A), encoded by mecA. However, strains can evolve high-level resistance (oxacillin MIC ≥256 μg/ml) by an unknown mechanism. Here we have developed a robust system to explore the basis of the evolution of high-level resistance by inserting mecA into the chromosome of the methicillin-sensitive S. aureus SH1000. Low-level mecA-dependent oxacillin resistance was associated with increased expression of anaerobic respiratory and fermentative genes. High-level resistant derivatives had acquired mutations in either rpoB (RNA polymerase subunit β) or rpoC (RNA polymerase subunit β') and these mutations were shown to be responsible for the observed resistance phenotype. Analysis of rpoB and rpoC mutants revealed decreased growth rates in the absence of antibiotic, and alterations to, transcription elongation. The rpoB and rpoC mutations resulted in decreased expression to parental levels, of anaerobic respiratory and fermentative genes and specific upregulation of 11 genes including mecA. There was however no direct correlation between resistance and the amount of PBP2A. A mutational analysis of the differentially expressed genes revealed that a member of the S. aureus Type VII secretion system is required for high level resistance. Interestingly, the genomes of two of the high level resistant evolved strains also contained missense mutations in this same locus. Finally, the set of genetically matched strains revealed that high level antibiotic resistance does not incur a significant fitness cost during pathogenesis. Our analysis demonstrates the complex interplay between antibiotic resistance mechanisms and core cell physiology, providing new insight into how such important resistance properties evolve.
Collapse
Affiliation(s)
- Viralkumar V. Panchal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Caitlin Griffiths
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bohdan Bilyk
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - David P. Hornby
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva, Switzerland
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Fergestad ME, Stamsås GA, Morales Angeles D, Salehian Z, Wasteson Y, Kjos M. Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. Microbiologyopen 2020; 9:e1057. [PMID: 32419377 PMCID: PMC7424258 DOI: 10.1002/mbo3.1057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is resistant to most β-lactams due to the expression of an extra penicillin-binding protein, PBP2a, with low β-lactam affinity. It has long been known that heterologous expression of the PBP2a-encoding mecA gene in methicillin-sensitive S. aureus (MSSA) provides protection towards β-lactams, however, some reports suggest that the degree of protection can vary between different β-lactams. To test this more systematically, we introduced an IPTG-inducible mecA into the MSSA laboratory strain RN4220. We confirm, by growth assays as well as single-cell microfluidics time-lapse microscopy experiments, that PBP2a expression protects against β-lactams in S. aureus RN4220. By testing a panel of ten different β-lactams, we conclude that there is also a great variation in the level of protection conferred by PBP2a. Expression of PBP2a resulted in an only fourfold increase in minimum inhibitory concentration (MIC) for imipenem, while a 32-fold increase in MIC was observed for cefaclor and cephalexin. Interestingly, in our experimental setup, PBP2a confers the highest protection against cefaclor and cephalexin-two β-lactams that are known to have a high specific affinity toward the transpeptidase PBP3 of S. aureus. Notably, using a single-cell microfluidics setup we demonstrate a considerable phenotypic variation between cells upon β-lactam exposure and show that mecA-expressing S. aureus can survive β-lactam concentrations much higher than the minimal inhibitory concentrations. We discuss possible explanations and implications of these results including important aspects regarding treatment of infection.
Collapse
Affiliation(s)
- Marte Ekeland Fergestad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Gro Anita Stamsås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
24
|
The Ps and Qs of alarmone synthesis in Staphylococcus aureus. PLoS One 2019; 14:e0213630. [PMID: 31613897 PMCID: PMC6793942 DOI: 10.1371/journal.pone.0213630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
During the stringent response, bacteria synthesize guanosine-3’,5’-bis(diphosphate) (ppGpp) and guanosine-5’-triphosphate 3’-diphosphate (pppGpp), which act as secondary messengers to promote cellular survival and adaptation. (p)ppGpp ‘alarmones’ are synthesized and/or hydrolyzed by proteins belonging to the RelA/SpoT Homologue (RSH) family. Many bacteria also encode ‘small alarmone synthetase’ (SAS) proteins (e.g. RelP, RelQ) which may also be capable of synthesizing a third alarmone: guanosine-5’-phosphate 3’-diphosphate (pGpp). Here, we report the biochemical properties of the Rel (RSH), RelP and RelQ proteins from Staphylococcus aureus (Sa-Rel, Sa-RelP, Sa-RelQ, respectively). Sa-Rel synthesized pppGpp more efficiently than ppGpp, but lacked the ability to produce pGpp. Sa-Rel efficiently hydrolyzed all three alarmones in a Mn(II) ion-dependent manner. The removal of the C-terminal regulatory domain of Sa-Rel increased its rate of (p)ppGpp synthesis ca. 10-fold, but had negligible effects on its rate of (pp)pGpp hydrolysis. Sa-RelP and Sa-RelQ efficiently synthesized pGpp in addition to pppGpp and ppGpp. The alarmone-synthesizing abilities of Sa-RelQ, but not Sa-RelP, were allosterically-stimulated by the addition of pppGpp, ppGpp or pGpp. The respective (pp)pGpp-synthesizing activities of Sa-RelP/Sa-RelQ were compared and contrasted with SAS homologues from Enterococcus faecalis (Ef-RelQ) and Streptococcus mutans (Sm-RelQ, Sm-RelP). Results indicated that EF-RelQ, Sm-RelQ and Sa-RelQ were functionally equivalent; but exhibited considerable variations in their respective biochemical properties, and the degrees to which alarmones and single-stranded RNA molecules allosterically modulated their respective alarmone-synthesizing activities. The respective (pp)pGpp-synthesizing capabilities of Sa-RelP and Sm-RelP proteins were inhibited by pGpp, ppGpp and pppGpp. Our results support the premise that RelP and RelQ proteins may synthesize pGpp in addition to (p)ppGpp within S. aureus and other Gram-positive bacterial species.
Collapse
|
25
|
Hobbs JK, Boraston AB. (p)ppGpp and the Stringent Response: An Emerging Threat to Antibiotic Therapy. ACS Infect Dis 2019; 5:1505-1517. [PMID: 31287287 DOI: 10.1021/acsinfecdis.9b00204] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 1969, Cashel and Gallant first observed the presence of (p)ppGpp-the signaling molecule of the stringent response-in starved bacterial cells. Fifty years later, (p)ppGpp and the stringent response have emerged as essential master regulators of not only the bacterial response to stress but also almost all aspects of bacterial physiology, virulence, and immune evasion. More worryingly, a wealth of data now indicate that (p)ppGpp and stringent response activation pose a serious threat to the efficacy and clinical success of antimicrobial therapy. Here, we focus on the central role that (p)ppGpp and the stringent response play in the phenomenon of antibiotic tolerance, as well as the acquisition, development, and expression of antibiotic resistance. We review these consequences of stringent response activation in relation to the main proteins involved in (p)ppGpp production and control, in particular the complex interplay between monofunctional and bifunctional long RelA/SpoT homologues (RSHs) and small alarmone synthetases (SASs). We also review the growing evidence to suggest that there are multiple other indirect pathways of stringent response induction that can affect antibiotic efficacy. Finally, we summarize recent studies that indicate the in vivo and clinical impact of (p)ppGpp production on antibiotic treatment outcomes. We conclude by reviewing the progress to date in the search for novel therapeutics that target the stringent response.
Collapse
Affiliation(s)
- Joanne K. Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
26
|
Abstract
Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the Staphylococcus aureus peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.
Collapse
Affiliation(s)
- Rita Sobral
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
27
|
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
|
28
|
Bhawini A, Pandey P, Dubey AP, Zehra A, Nath G, Mishra MN. RelQ Mediates the Expression of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:339. [PMID: 30915038 PMCID: PMC6421274 DOI: 10.3389/fmicb.2019.00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
An induced stringent response, which is established by an increased level of (p)ppGpp, is required for the expression of β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA). However, it is not clear whether RSH (enzyme mediating stringent response to amino acid starvation) or small alarmone synthetases (SASs) are involved in the maintenance of (p)ppGpp level in response to β-lactams. Since the S. aureus genome encodes two active SASs (RelP and RelQ), their contribution to the expression of β-lactam resistance in MRSA was investigated. It was determined that relQ deletion renders community-associated MRSA (CA-MRSA) sensitive to β-lactams by negatively affecting the expression of mecA, and induction of (p)ppGpp synthesis by mupirocin bypasses the requirement of relQ for the expression of high-level β-lactam resistance. Surprisingly, relP deletion increased the level of β-lactam resistance. Such contradictory observations could be attributed to the fact that relQ promoter is ~5-fold stronger than the relP and is induced by oxacillin as well as deletion of either of the SASs, while relP promoter responds only to oxacillin. The stronger promoter activity of relQ, coupled with the inducibility of the relQ promoter in response to the lack of relP, results in efficient expression of relQ in the relP-deleted background. This positively affects mecA expression and renders the ΔrelP strain highly resistant. These findings indicate an important role for RelQ in the expression of high-level β-lactam resistance in MRSA.
Collapse
Affiliation(s)
- Ajita Bhawini
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Parul Pandey
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | - Aafreen Zehra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mukti Nath Mishra
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.,Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
29
|
Genetic and Transcriptomic Analyses of Ciprofloxacin-Tolerant Staphylococcus aureus Isolated by the Replica Plating Tolerance Isolation System (REPTIS). Antimicrob Agents Chemother 2019; 63:AAC.02019-18. [PMID: 30509938 DOI: 10.1128/aac.02019-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
We developed a simple, efficient, and cost-effective method, named the replica plating tolerance isolation system (REPTIS), to detect the antibiotic tolerance potential of a bacterial strain. This method can also be used to quantify the antibiotic-tolerant subpopulation in a susceptible population. Using REPTIS, we isolated ciprofloxacin (CPFX)-tolerant mutants (mutants R2, R3, R5, and R6) carrying a total of 12 mutations in 12 different genes from methicillin-sensitive Staphylococcus aureus (MSSA) strain FDA209P. Each mutant carried multiple mutations, while few strains shared the same mutation. The R2 strain carried a nonsense mutation in the stress-mediating gene, relA Additionally, two strains carried the same point mutation in the leuS gene, encoding leucyl-tRNA synthetase. Furthermore, RNA sequencing of the R strains showed a common upregulation of relA Overall, transcriptome analysis showed downregulation of genes related to translation; carbohydrate, fat, and energy metabolism; nucleotide synthesis; and upregulation of amino acid biosynthesis and transportation genes in R2, R3, and R6, similar to the findings observed for the FDA209P strain treated with mupirocin (MUP0.03). However, R5 showed a unique transcription pattern that differed from that of MUP0.03. REPTIS is a unique and convenient method for quantifying the level of tolerance of a clinical isolate. Genomic and transcriptomic analyses of R strains demonstrated that CPFX tolerance in these S. aureus mutants occurs via at least two distinct mechanisms, one of which is similar to that which occurs with mupirocin treatment.
Collapse
|
30
|
Identification of a Novel Gene Associated with High-Level β-Lactam Resistance in Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Strain Mu3 and Methicillin-Resistant S. aureus Strain N315. Antimicrob Agents Chemother 2019; 63:AAC.00712-18. [PMID: 30455230 DOI: 10.1128/aac.00712-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
β-Lactam resistance levels vary among methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates, mediated by chromosomal mutations and exogenous resistance gene mecA However, MRSA resistance mechanisms are incompletely understood. A P440L mutation in the RNA polymerase β' subunit (RpoC) in slow-vancomycin-intermediate S. aureus (sVISA) strain V6-5 is associated with conversion of heterogeneous VISA (hVISA) to sVISA. In this study, we found a V6-5-derivative strain (L4) with significantly decreased MICs to oxacillin (OX) and vancomycin. Whole-genome sequencing revealed that L4 has nonsense mutations in two genes, relQ, encoding (p)ppGpp synthetase, an alarmone of the stringent response, and a gene of unknown function. relQ deletion in the hVISA strain Mu3 did not affect OX MIC. However, introducing nonsense mutation of the unknown gene into Mu3 decreased OX MIC, whereas wild-type gene recovered high-level resistance. Thus, mutation of this unknown gene (ehoM) decreased β-lactam resistance in Mu3 and L4. Presence of relQ in a multicopy plasmid restored high-level resistance in strain L4 but not in the ehoM mutant Mu3 strain, indicating a genetic interaction between ehoM and relQ depending on the L4 genetic background. While mupirocin (a stringent response inducer) can increase the β-lactam resistance of MRSA, mupirocin supplementation in an ehoM deletion mutant of N315 did not elevate resistance. ehoM expression in N315 was induced by mupirocin, and the relative amount of ehoM transcript in Mu3 was higher than in N315 induced by the stringent response. Our findings indicate that ehoM plays an essential role in high-level β-lactam resistance in MRSA via the stringent response.
Collapse
|
31
|
Miragaia M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front Microbiol 2018; 9:2723. [PMID: 30483235 PMCID: PMC6243372 DOI: 10.3389/fmicb.2018.02723] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
The understanding of the mechanisms of antibiotic resistance development are fundamental to alert and preview beforehand, the large scale dissemination of resistance to antibiotics, enabling the design of strategies to prevent its spread. The mecA-mediated methicillin resistance conferring resistance to broad-spectrum β-lactams is globally spread in staphylococci including hospitals, farms and community environments, turning ineffective the most widely used and efficient class of antibiotics to treat staphylococcal infections. The use of whole genome sequencing (WGS) technologies at a bacterial population level has provided a considerable progress in the identification of key steps that led to mecA-mediated β-lactam resistance development and dissemination. Data obtained from multiple studies indicated that mecA developed from a harmless core gene (mecA1) encoding the penicillin-binding protein D (PbpD) from staphylococcal species of animal origin (S. sciuri group) due to extensive β-lactams use in human created environments. Emergence of the resistance determinant involved distortion of PbpD active site, increase in mecA1 expression, addition of regulators (mecR1, mecI) and integration into a mobile genetic element (SCCmec). SCCmec was then transferred into species of coagulase-negative staphylococci (CoNS) that are able to colonize both animals and humans and subsequently transferred to S. aureus of human origin. Adaptation of S. aureus to the exogenously acquired SCCmec involved, deletion and mutation of genes implicated in general metabolism (auxiliary genes) and general stress response and the adjustment of metabolic networks, what was accompanied by an increase in β-lactams minimal inhibitory concentration and the transition from a heterogeneous to homogeneous resistance profile. Nowadays, methicillin-resistant S. aureus (MRSA) carrying SCCmec constitutes one of the most important worldwide pandemics. The stages of development of mecA-mediated β-lactam resistance described here may serve as a model for previewing and preventing the emergence of resistance to other classes of antibiotics.
Collapse
Affiliation(s)
- Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
32
|
Ma Z, Lasek-Nesselquist E, Lu J, Schneider R, Shah R, Oliva G, Pata J, McDonough K, Pai MP, Rose WE, Sakoulas G, Malik M. Characterization of genetic changes associated with daptomycin nonsusceptibility in Staphylococcus aureus. PLoS One 2018; 13:e0198366. [PMID: 29879195 PMCID: PMC5991675 DOI: 10.1371/journal.pone.0198366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022] Open
Abstract
The extensive use of daptomycin (DAP) for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the last decade has led to the emergence of DAP non-susceptible (DNS) Staphylococcus aureus strains. A better understanding of the molecular changes underlying DAP-non-susceptibility is required for early diagnosis and intervention with alternate combination therapies. The phenotypic changes associated with DNS strains have been well established. However, the genotypic changes—especially the kinetics of expression of the genes responsible for DAP-non-susceptibility are not well understood. In this study, we used three clinically derived isogenic pairs of DAP-susceptible (DAP-S) and DNS S. aureus strains to study gene expression profiles with the objective of identifying the potential genotypic changes associated with DAP-nonsusceptibility. We determined the expression profiles of genes involved in cell membrane (CM) charge, autolysis, cell wall (CW) synthesis, and penicillin binding proteins in DAP-S and DNS isogenic pairs. Our results demonstrate characteristic expression profiles for mprF, dltABCD, vraS, femB, and pbp2a genes, which are common to all the DNS S. aureus strains tested. Whole genome sequencing of DAP-S and DNS clinical isolates of S. aureus showed non-synonymous mutations in all DNS strains in genes involved in CM charge, CM composition, CW thickness and CW composition. To conclude, this study unravels some of the complex molecular changes involved in the development of DAP-nonsusceptibility by demonstrating distinct differences in gene expression profiles and mutations in the DNS S. aureus strains. This knowledge will aid in rapid identification of DNS S. aureus in clinical settings.
Collapse
Affiliation(s)
- Zhuo Ma
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Erica Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jackson Lu
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Ryan Schneider
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Riddhi Shah
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - George Oliva
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Janice Pata
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Kathleen McDonough
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Manjunath P. Pai
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Warren E. Rose
- Universtiy of Wisconsin-Madison, School of Pharmacy, Madison, Wisconsin, United States of America
| | - George Sakoulas
- Center for Immunity, Infection & Inflammation, UCSD School of Medicine, La Jolla, California, United States of America
| | - Meenakshi Malik
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Genetic Determinants of High-Level Oxacillin Resistance in Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:AAC.00206-18. [PMID: 29555636 DOI: 10.1128/aac.00206-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/11/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains carry either a mecA- or a mecC-mediated mechanism of resistance to beta-lactam antibiotics, and the phenotypic expression of resistance shows extensive strain-to-strain variation. In recent communications, we identified the genetic determinants associated with the stringent stress response that play a major role in the antibiotic resistant phenotype of the historically earliest "archaic" clone of MRSA and in the mecC-carrying MRSA strain LGA251. Here, we sought to test whether or not the same genetic determinants also contribute to the resistant phenotype of highly and homogeneously resistant (H*R) derivatives of a major contemporary MRSA clone, USA300. We found that the resistance phenotype was linked to six genes (fruB, gmk, hpt, purB, prsA, and relA), which were most frequently targeted among the analyzed 20 H*R strains (one mutation per clone in 19 of the 20 H*R strains). Besides the strong parallels with our previous findings (five of the six genes matched), all but one of the repeatedly targeted genes were found to be linked to guanine metabolism, pointing to the key role that this pathway plays in defining the level of antibiotic resistance independent of the clonal type of MRSA.
Collapse
|
34
|
Prevalence of Slow-Growth Vancomycin Nonsusceptibility in Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2017; 61:AAC.00452-17. [PMID: 28827421 PMCID: PMC5655046 DOI: 10.1128/aac.00452-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
We previously reported a novel phenotype of vancomycin-intermediate Staphylococcus aureus (VISA), i.e., “slow VISA,” whose colonies appear only after 72 h of incubation. Slow-VISA strains can be difficult to detect because prolonged incubation is required and the phenotype is unstable. To develop a method for detection of slow-VISA isolates, we studied 23 slow-VISA isolates derived from the heterogeneous VISA (hVISA) clinical strain Mu3. We identified single nucleotide polymorphisms (SNPs) in genes involved in various pathways which have been implicated in the stringent response, such as purine/pyrimidine synthesis, cell metabolism, and cell wall peptidoglycan synthesis. We found that mupirocin, which also induces the stringent response, caused stable expression of vancomycin resistance. On the basis of these results, we developed a method for detection of slow-VISA strains by use of 0.032 μg/ml mupirocin (Yuki Katayama, 7 March 2017, patent application PCT/JP2017/008975). Using this method, we detected 53 (15.6%) slow-VISA isolates among clinical methicillin-resistant S. aureus (MRSA) isolates. In contrast, the VISA phenotype was detected in fewer than 1% of isolates. Deep-sequencing analysis showed that slow-VISA clones are present in small numbers among hVISA isolates and proliferate in the presence of vancomycin. This slow-VISA subpopulation may account in part for the recurrence and persistence of MRSA infection.
Collapse
|
35
|
Antibiotic Resistance as a Stress Response: Recovery of High-Level Oxacillin Resistance in Methicillin-Resistant Staphylococcus aureus "Auxiliary" ( fem) Mutants by Induction of the Stringent Stress Response. Antimicrob Agents Chemother 2017. [PMID: 28630179 DOI: 10.1128/aac.00313-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Studies with methicillin-resistant Staphylococcus aureus (MRSA) strain COL have shown that the optimal resistance phenotype requires not only mecA but also a large number of "auxiliary genes" identified by Tn551 mutagenesis. The majority of auxiliary mutants showed greatly increased levels of oxacillin resistance when grown in the presence of sub-MICs of mupirocin, suggesting that the mechanism of reduced resistance in the auxiliary mutants involved the interruption of a stringent stress response, causing reduced production of penicillin-binding protein 2A (PBP 2A).
Collapse
|
36
|
Rolo J, Worning P, Boye Nielsen J, Sobral R, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Westh H, Tomasz A, de Lencastre H, Miragaia M. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. PLoS Genet 2017; 13:e1006674. [PMID: 28394942 PMCID: PMC5402963 DOI: 10.1371/journal.pgen.1006674] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 04/24/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics. The emergence and rise of mecA-mediated β-lactam resistance in staphylococci has been one of the greatest concerns of the scientific and medical communities worldwide. However, little is known regarding the origin of the mecA gene determinant. In this study we demonstrate that antibiotic pressure in the human environment and in food additives used in livestock was the major driving force of the evolution and spread of resistance to β-lactams. Furthermore, we confirm the previous findings suggesting that the development of resistance occurs in primitive species of staphylococci through diversification of a native penicillin binding protein involved in cell wall synthesis. We also demonstrate that resistance was achieved through four distinct mechanisms: accumulation of substitutions in a specific domain of the protein; diversification of the promoter of the gene; acquisition of SCCmec, and adaptation of the genetic background. Our results highlight the resources that primitive bacteria used to thrive in a changing environment that has led to the methicillin-resistant Staphylococcus aureus (MRSA) pandemics.
Collapse
Affiliation(s)
- Joana Rolo
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Peder Worning
- MRSA Knowledge Center, Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Jesper Boye Nielsen
- MRSA Knowledge Center, Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Rita Sobral
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rory Bowden
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Ons Bouchami
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Peter Damborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luca Guardabassi
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St Kitts, West Indies
| | - Vincent Perreten
- Department of Molecular Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Henrik Westh
- MRSA Knowledge Center, Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Tomasz
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, United States of America
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, United States of America
| | - Maria Miragaia
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
- * E-mail:
| |
Collapse
|
37
|
Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to β-Lactams. Antimicrob Agents Chemother 2017; 61:AAC.02173-16. [PMID: 28115345 PMCID: PMC5365698 DOI: 10.1128/aac.02173-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/15/2017] [Indexed: 01/29/2023] Open
Abstract
The nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the Escherichia coli (p)ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p)ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p)ppGpp synthesis. We show that in a biochemical system from purified E. coli components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p)ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to β-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p)ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.
Collapse
|
38
|
Full-Genome Sequencing Identifies in the Genetic Background Several Determinants That Modulate the Resistance Phenotype in Methicillin-Resistant Staphylococcus aureus Strains Carrying the Novel mecC Gene. Antimicrob Agents Chemother 2017; 61:AAC.02500-16. [PMID: 28069659 DOI: 10.1128/aac.02500-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/01/2017] [Indexed: 12/30/2022] Open
Abstract
Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant-the mecC gene-was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant.
Collapse
|
39
|
Abstract
Enterococci are ancient commensal bacteria that recently emerged as leading causes of antibiotic-resistant, hospital-acquired infection. Vancomycin-resistant enterococci (VRE) epitomize why drug-resistant enterococcal infections are a problem: VRE readily colonize the antibiotic-perturbed gastrointestinal (GI) tract where they amplify to large numbers, and from there, they infect other body sites, including the bloodstream, urinary tract, and surgical wounds. VRE are resistant to many antimicrobials and host defenses, which facilitates establishment at the site of infection and confounds therapeutic clearance. Having evolved to colonize the GI tract, VRE are comparatively ill adapted to the human bloodstream. A recent study by Honsa and colleagues (E. S. Honsa et al., mBio 8:e02124-16, 2017, https://doi.org/10.1128/mBio.02124-16) found that a strain of vancomycin-resistant Enterococcus faecium evolved antibiotic tolerance within the bloodstream of an immunocompromised host by activating the stringent response through mutation of relA Precisely how VRE colonize and infect and the selective pressures that led to the outgrowth of relA mutants are the subjects of ongoing research.
Collapse
|
40
|
In Vitro Tolerance of Drug-Naive Staphylococcus aureus Strain FDA209P to Vancomycin. Antimicrob Agents Chemother 2017; 61:AAC.01154-16. [PMID: 27855063 PMCID: PMC5278750 DOI: 10.1128/aac.01154-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022] Open
Abstract
The mechanisms underlying bacterial tolerance to antibiotics are unclear. A possible adaptation strategy was explored by exposure of drug-naive methicillin-susceptible Staphylococcus aureus strain FDA209P to vancomycin in vitro. Strains surviving vancomycin treatment (vancomycin survivor strains), which appeared after 96 h of exposure, were slow-growing derivatives of the parent strain. Although the vancomycin MICs for the survivor strains were within the susceptible range, the cytokilling effects of vancomycin at 20-fold the MIC were significantly lower for the survivor strains than for the parent strain. Whole-genome sequencing demonstrated that ileS, encoding isoleucyl-tRNA synthetase (IleRS), was mutated in two of the three vancomycin survivor strains. The IleRS Y723H mutation is located close to the isoleucyl-tRNA contact site and potentially affects the affinity of IleRS binding to isoleucyl-tRNA, thereby inhibiting protein synthesis and leading to vancomycin tolerance. Introduction of the mutation encoding IleRS Y723H into FDA209P by allelic replacement successfully transferred the vancomycin tolerance phenotype. We have identified mutation of ileS to be one of the bona fide genetic events leading to the acquisition of vancomycin tolerance in S. aureus, potentially acting via inhibition of the function of IleRS.
Collapse
|
41
|
RelA Mutant Enterococcus faecium with Multiantibiotic Tolerance Arising in an Immunocompromised Host. mBio 2017; 8:mBio.02124-16. [PMID: 28049149 PMCID: PMC5210501 DOI: 10.1128/mbio.02124-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serious bacterial infections in immunocompromised patients require highly effective antibacterial therapy for cure, and thus, this setting may reveal novel mechanisms by which bacteria circumvent antibiotics in the absence of immune pressure. Here, an infant with leukemia developed vancomycin-resistant Enterococcus faecium (VRE) bacteremia that persisted for 26 days despite appropriate antibiotic therapy. Sequencing of 22 consecutive VRE isolates identified the emergence of a single missense mutation (L152F) in relA, which constitutively activated the stringent response, resulting in elevated baseline levels of the alarmone guanosine tetraphosphate (ppGpp). Although the mutant remained susceptible to both linezolid and daptomycin in clinical MIC testing and during planktonic growth, it demonstrated tolerance to high doses of both antibiotics when growing in a biofilm. This biofilm-specific gain in resistance was reflected in the broad shift in transcript levels caused by the mutation. Only an experimental biofilm-targeting ClpP-activating antibiotic was able to kill the mutant strain in an established biofilm. The relA mutation was associated with a fitness trade-off, forming smaller and less-well-populated biofilms on biological surfaces. We conclude that clinically relevant relA mutations can emerge during prolonged VRE infection, causing baseline activation of the stringent response, subsequent antibiotic tolerance, and delayed eradication in an immunocompromised state. The increasing prevalence of antibiotic-resistant bacterial pathogens is a major challenge currently facing the medical community. Such pathogens are of particular importance in immunocompromised patients as these individuals may favor emergence of novel resistance determinants due to lack of innate immune defenses and intensive antibiotic exposure. During the course of chemotherapy, a patient developed prolonged bacteremia with vancomycin-resistant Enterococcus faecium that failed to clear despite multiple front-line antibiotics. The consecutive bloodstream isolates were sequenced, and a single missense mutation identified in the relA gene, the mediator of the stringent response. Strains harboring the mutation had elevated baseline levels of the alarmone and displayed heightened resistance to the bactericidal activity of multiple antibiotics, particularly in a biofilm. Using a new class of compounds that modulate ClpP activity, the biofilms were successfully eradicated. These data represent the first clinical emergence of mutations in the stringent response in vancomycin-resistant entereococci.
Collapse
|
42
|
Chung M, Kim CK, Conceição T, Aires-De-Sousa M, De Lencastre H, Tomasz A. Heterogeneous oxacillin-resistant phenotypes and production of PBP2A by oxacillin-susceptible/mecA-positive MRSA strains from Africa. J Antimicrob Chemother 2016; 71:2804-9. [PMID: 27278899 DOI: 10.1093/jac/dkw209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/04/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Recent surveillance of MRSA colonizing patients and healthcare workers in two African countries (Angola and São Tomé and Príncipe) reported the frequent recovery of oxacillin-susceptible MRSA (OS-MRSA): Staphylococcus aureus strains that gave positive results with the mecA DNA probe, but had low oxacillin MIC values characteristic of susceptible S. aureus. This apparent dissociation of the drug-resistant phenotype from mecA-the primary genetic determinant of resistance-prompted us to perform a more detailed analysis on nine of the African OS-MRSA strains. METHODS Oxacillin MIC values were determined by Etest and population analysis profiles with and without induction of the stringent stress response by mupirocin. Biochemical profiling using SDS-PAGE followed by western blotting was used for the detection of PBP2A protein produced. RESULTS Cultures of the African MRSA strains (ST88-IVa and ST8-V) showed heterogeneous oxacillin resistance in which the majority of cells exhibited low oxacillin MICs (≤0.75 mg/L), but highly resistant subpopulations were also present with oxacillin MIC values up to several hundred mg/L and with frequencies of 10(-4) to 10(-6). The same strains after induction of the stringent stress response by mupirocin 'converted' the heterogeneous phenotypes into a more homogeneous and higher level resistance. After induction by oxacillin and mupirocin, each of the nine African OS-MRSA strains produced PBP2A-the protein product of mecA. CONCLUSIONS The resistant phenotype of OS-MRSA resembles the phenotypes of historically early MRSA clones. The nature of genetic determinants responsible for the heterogeneous phenotypes of OS-MRSA remains to be determined.
Collapse
Affiliation(s)
- Marilyn Chung
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Choon Keun Kim
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Teresa Conceição
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | | | - Hermínia De Lencastre
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, NY 10065, USA Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Alexander Tomasz
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
43
|
Role of the Stringent Stress Response in the Antibiotic Resistance Phenotype of Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2016; 60:2311-7. [PMID: 26833147 DOI: 10.1128/aac.02697-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/25/2016] [Indexed: 01/03/2023] Open
Abstract
Resistance to beta-lactam antibiotics in methicillin-resistantStaphylococcus aureus(MRSA) requires the presence of an acquired genetic determinant,mecAormecC, which encode penicillin-binding protein PBP2A or PBP2A', respectively. Although all MRSA strains share a mechanism of resistance, the phenotypic expression of beta-lactam resistance shows considerable strain-to-strain variation. The stringent stress response, a stress response that results from nutrient limitation, was shown to play a key role in determining the resistance level of an MRSA strain. In the present study, we validated the impact of the stringent stress response on transcription and translation ofmecAin the MRSA clinical isolate strain N315, which also carries known regulatory genes (mecI/mecR1/mecR2andblaI/blaR1) formecAtranscription. We showed that the impact of the stringent stress response on the resistance level may be restricted to beta-lactam resistance based on a "foreign" determinant such asmecA, as opposed to resistance based on mutations in the nativeS. aureusdeterminantpbpB(encoding PBP2). Our observations demonstrate that high-level resistance mediated by the stringent stress response follows the current model of beta-lactam resistance in which the native PBP2 protein is also essential for expression of the resistance phenotype. We also show that theStaphylococcus sciuri pbpDgene (also calledmecAI), the putative evolutionary precursor ofmecA, confers oxacillin resistance in anS. aureusstrain, generating a heterogeneous phenotype that can be converted to high and homogenous resistance by induction of the stringent stress response in the bacteria.
Collapse
|
44
|
ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci U S A 2016; 113:E1710-9. [PMID: 26951678 DOI: 10.1073/pnas.1522179113] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.
Collapse
|
45
|
Moura de Sousa J, Sousa A, Bourgard C, Gordo I. Potential for adaptation overrides cost of resistance. Future Microbiol 2015; 10:1415-31. [PMID: 26343510 DOI: 10.2217/fmb.15.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM To investigate the cost of antibiotic resistance versus the potential for resistant clones to adapt in maintaining polymorphism for resistance. MATERIALS & METHODS Experimental evolution of Escherichia coli carrying different resistance alleles was performed under an environment devoid of antibiotics and evolutionary parameters estimated from their frequencies along time. RESULTS & CONCLUSION Costly resistance mutations were found to coexist with lower cost resistances for hundreds of generations, contrary to the hypothesis that the cost of a resistance dictates its extinction. Estimated evolutionary parameters for the different resistance backgrounds suggest a higher adaptive potential of clones with costly antibiotic resistance mutations, overriding their initial cost of resistance and allowing their maintenance in the absence of drugs.
Collapse
Affiliation(s)
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal
| | - Catarina Bourgard
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal
| |
Collapse
|
46
|
Abstract
Staphylococcus aureus is a major human and veterinary pathogen worldwide. Methicillin-resistant S. aureus (MRSA) poses a significant and enduring problem to the treatment of infection by such strains. Resistance is usually conferred by the acquisition of a nonnative gene encoding a penicillin-binding protein (PBP2a), with significantly lower affinity for β-lactams. This resistance allows cell-wall biosynthesis, the target of β-lactams, to continue even in the presence of typically inhibitory concentrations of antibiotic. PBP2a is encoded by the mecA gene, which is carried on a distinct mobile genetic element (SCCmec), the expression of which is controlled through a proteolytic signal transduction pathway comprising a sensor protein (MecR1) and a repressor (MecI). Many of the molecular and biochemical mechanisms underlying methicillin resistance in S. aureus have been elucidated, including regulatory events and the structure of key proteins. Here we review recent advances in this area.
Collapse
Affiliation(s)
- Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Gavin K. Paterson
- School of Biological, Biomedical, and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
47
|
Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D. ComGA-RelA interaction and persistence in the Bacillus subtilis K-state. Mol Microbiol 2015; 97:454-71. [PMID: 25899641 DOI: 10.1111/mmi.13040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2015] [Indexed: 01/17/2023]
Abstract
The bistably expressed K-state of Bacillus subtilis is characterized by two distinct features; transformability and arrested growth when K-state cells are exposed to fresh medium. The arrest is manifested by a failure to assemble replisomes and by decreased rates of cell growth and rRNA synthesis. These phenotypes are all partially explained by the presence of the AAA(+) protein ComGA, which is also required for the binding of transforming DNA to the cell surface and for the assembly of the transformation pilus that mediates DNA transport. We have discovered that ComGA interacts with RelA and that the ComGA-dependent inhibition of rRNA synthesis is largely bypassed in strains that cannot synthesize the alarmone (p)ppGpp. We propose that the interaction of ComGA with RelA prevents the hydrolysis of (p)ppGpp in K-state cells, which are thus trapped in a non-growing state until ComGA is degraded. We show that some K-state cells exhibit tolerance to antibiotics, a form of type 1 persistence, and we propose that the bistable expression of both transformability and the growth arrest are bet-hedging adaptations that improve fitness in the face of varying environments, such as those presumably encountered by B. subtilis in the soil.
Collapse
Affiliation(s)
- Jeanette Hahn
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Andrew W Tanner
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - David Dubnau
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
48
|
Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S, Meredith TC. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 2015; 16:252. [PMID: 25888466 PMCID: PMC4389836 DOI: 10.1186/s12864-015-1361-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Staphylococcus aureus readily develops resistance to antibiotics and achieving effective therapies to overcome resistance requires in-depth understanding of S. aureus biology. High throughput, parallel-sequencing methods for analyzing transposon mutant libraries have the potential to revolutionize studies of S. aureus, but the genetic tools to take advantage of the power of next generation sequencing have not been fully developed. RESULTS Here we report a phage-based transposition system to make ultra-high density transposon libraries for genome-wide analysis of mutant fitness in any Φ11-transducible S. aureus strain. The high efficiency of the delivery system has made it possible to multiplex transposon cassettes containing different regulatory elements in order to make libraries in which genes are over- or under-expressed as well as deleted. By incorporating transposon-specific barcodes into the cassettes, we can evaluate how null mutations and changes in gene expression levels affect fitness in a single sequencing data set. Demonstrating the power of the system, we have prepared a library containing more than 690,000 unique insertions. Because one unique feature of the phage-based approach is that temperature-sensitive mutants are retained, we have carried out a genome-wide study of S. aureus genes involved in withstanding temperature stress. We find that many genes previously identified as essential are temperature sensitive and also identify a number of genes that, when disrupted, confer a growth advantage at elevated temperatures. CONCLUSIONS The platform described here reliably provides mutant collections of unparalleled genotypic diversity and will enable a wide range of functional genomic studies in S. aureus.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Leigh M Matano
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Samir H Moussa
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael S Gilmore
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
49
|
Rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2015; 59:3281-9. [PMID: 25801565 DOI: 10.1128/aac.05100-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
Enterobacteriaceae strains producing the Klebsiella pneumoniae carbapenemase (KPC) have disseminated worldwide, causing an urgent threat to public health. KPC-producing strains often exhibit low-level carbapenem resistance, which may be missed by automated clinical detection systems. In this study, eight Klebsiella pneumoniae strains with heterogeneous resistance to imipenem were used to elucidate the factors leading from imipenem susceptibility to high-level resistance as defined by clinical laboratory testing standards. Time-kill analysis with an inoculum as low as 3 × 10(6) CFU/ml and concentrations of imipenem 8- and 16-fold higher than the MIC resulted in the initial killing of 99.9% of the population. However, full recovery of the population occurred by 20 h of incubation in the same drug concentrations. Population profiles showed that recovery was mediated by a heteroresistant subpopulation at a frequency of 2 × 10(-7) to 3 × 10(-6). Samples selected 2 h after exposure to imipenem were as susceptible as the unexposed parental strain and produced the major outer membrane porin OmpK36. However, between 4 to 8 h after exposure, OmpK36 became absent, and the imipenem MIC increased at least 32-fold. Individual colonies isolated from cultures after 20 h of exposure revealed both susceptible and resistant subpopulations. Once induced, however, the high-level imipenem resistance was maintained, and OmpK36 remained unexpressed even without continued carbapenem exposure. This study demonstrates the essential coordination between blaKPC and ompK36 expression mediating high-level imipenem resistance from a population of bacteria that initially exhibits a carbapenem-susceptibility phenotype.
Collapse
|
50
|
Bugrysheva JV, Pappas CJ, Terekhova DA, Iyer R, Godfrey HP, Schwartz I, Cabello FC. Characterization of the RelBbu Regulon in Borrelia burgdorferi Reveals Modulation of Glycerol Metabolism by (p)ppGpp. PLoS One 2015; 10:e0118063. [PMID: 25688856 PMCID: PMC4331090 DOI: 10.1371/journal.pone.0118063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response. We have previously shown that the B. burgdorferi stringent response is mediated by a single enzyme, RelBbu, with both (p)ppGpp synthase and hydrolase activities, and that a B. burgdorferi 297 relBbu null deletion mutant was defective in adapting to stationary phase, incapable of down-regulating synthesis of rRNA and could not infect mice. We have now used this deletion mutant and microarray analysis to identify genes comprising the rel regulon in B. burgdorferi cultured at 34°C, and found that transcription of genes involved in glycerol metabolism is induced by relBbu. Culture of the wild type parental strain, the relBbu deletion mutant and its complemented derivative at 34°C and 25°C in media containing glucose or glycerol as principal carbon sources revealed a growth defect in the mutant, most evident at the lower temperature. Transcriptional analysis of the glp operon for glycerol uptake and metabolism in these three strains confirmed that relBbu was necessary and sufficient to increase transcription of this operon in the presence of glycerol at both temperatures. These results confirm and extend previous findings regarding the stringent response in B. burgdorferi. They also demonstrate that the stringent response regulates glycerol metabolism in this organism and is likely crucial for its optimal growth in ticks.
Collapse
Affiliation(s)
- Julia V. Bugrysheva
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Christopher J. Pappas
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Darya A. Terekhova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Henry P. Godfrey
- Department of Pathology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Felipe C. Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
- * E-mail:
| |
Collapse
|