1
|
Tiwade PB, Fung V, VanKeulen-Miller R, Narasipura EA, Ma Y, Fenton OS. Non-Viral RNA Therapies for Non-Small Cell Lung Cancer and Their Corresponding Clinical Trials. Mol Pharm 2025; 22:1752-1774. [PMID: 40131145 DOI: 10.1021/acs.molpharmaceut.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ribonucleic acid (RNA)-based therapies represent a promising class of drugs for the treatment of non-small cell lung cancer (NSCLC) due to their ability to modulate gene expression. Therapies leveraging small interfering RNA (siRNA), messenger RNA (mRNA), microRNA (miRNA), and antisense oligonucleotides (ASOs) offer various advantages over conventional treatments, including the ability to target specific genetic mutations and the potential for personalized medicine approaches. However, the clinical translation of these therapeutics for the treatment of NSCLC faces challenges in delivery due to their immunogenicity, negative charge, and large size, which can be mitigated with delivery platforms. In this review, we provide a description of the pathophysiology of NSCLC and an overview of RNA-based therapeutics, specifically highlighting their potential application in the treatment of NSCLC. We discuss relevant classes of RNA and their therapeutic potential for NSCLC. We then discuss challenges in delivery and non-viral delivery strategies such as lipid- and polymer-based nanoparticles that have been developed to address these issues in preclinical models. Furthermore, we provide a summary table of clinical trials that leverage RNA therapies for NSCLC [which includes their National Clinical Trial (NCT) numbers] to highlight the current progress in NSCLC. We also discuss how these NSCLC therapies can be integrated with existing treatment modalities to enhance their efficacy and improve patient outcomes. Overall, we aim to highlight non-viral strategies that tackle RNA delivery challenges while showcasing RNA's potential as a next-generation therapy for NSCLC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/administration & dosage
- Clinical Trials as Topic
- Animals
- Nanoparticles/chemistry
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- RNA, Messenger/genetics
- Genetic Therapy/methods
- Drug Delivery Systems/methods
Collapse
Affiliation(s)
- Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eshan Amruth Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Driscoll J, Gondaliya P, Zinn DA, Jain R, Yan IK, Dong H, Patel T. Using aptamers for targeted delivery of RNA therapies. Mol Ther 2025; 33:1344-1367. [PMID: 40045577 DOI: 10.1016/j.ymthe.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
RNA-based treatments that can silence, introduce, or restore gene expression to target human diseases are emerging as a new class of therapeutics. Despite their potential for use in broad applications, their clinical translation has been hampered by a need for delivery to specific cells and tissues. Cell targeting based on the use of aptamers provides an approach for improving their delivery to the desired sites of action. Aptamers are nucleic acid oligonucleotides with structural conformations that provide a robust capacity for the recognition of cell surface molecules and that can be used for directed targeting. Aptamers can be directly conjugated to therapeutic RNA molecules, in the form of aptamer-oligonucleotide chimeras, or incorporated into nanoparticles used as vehicles for the delivery of these therapeutics. Herein, we discuss the use of aptamers for cell-directed RNA therapies, provide an overview of different types of aptamer-targeting RNA therapeutics, and review examples of their therapeutic applications. Challenges associated with manufacturing and scaling up production, and key considerations for their clinical implementation, are also outlined.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Piyush Gondaliya
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Dylan A Zinn
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Rupesh Jain
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Irene K Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Mańka R, Sapoń K, Zaziąbło J, Janas T, Czogalla A, Janas T. The role of RNA structural motifs in RNA-lipid raft interaction. Sci Rep 2025; 15:6777. [PMID: 40000734 PMCID: PMC11861254 DOI: 10.1038/s41598-025-91093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Here, we sought to determine the role of specific RNA structural motifs in the interaction of RNA with model lipid vesicles containing liquid-ordered domains (RAFT liposomes). We show that the presence of several small apical loops within RNA structure favors RNA affinity for RAFT liposomes while the increased number of nucleotides within bulges inhibits this affinity. FRET flow cytometry measurements confirmed a modulation of the interaction of RNA with plasma membrane by the presence of specific RNA structural motifs. The analysis of viral RNA fragments revealed that a long double helix at the apical loop increases the affinity of viral RNA to lipid rafts. The analysis of exosomal Y RNAs secreted by nematode parasites showed that the presence of the EXO-motif GGAG is strongly correlated to the presence of small number of large apical loops within RNA structure. These results show that RNA structural motifs can modulate RNA affinity to liquid-ordered membrane lipid raft domains thus suggesting the importance of these motifs both for the mechanism of RNA loading into extracellular vesicles, and for the development of RNA-based lipid biosensors for monitoring of viral RNAs in biofluids and wastewater.
Collapse
Affiliation(s)
- Rafał Mańka
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Joanna Zaziąbło
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot‑Curie 14a, 50‑383, Wrocław, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland.
| |
Collapse
|
4
|
Luo X, McAndrews KM, Kalluri R. Natural and Bioengineered Extracellular Vesicles in Diagnosis, Monitoring and Treatment of Cancer. ACS NANO 2025; 19:5871-5896. [PMID: 39869032 DOI: 10.1021/acsnano.4c11630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics. EVs have the potential to provide a targeted, biocompatible, and efficient delivery platform for the treatment of cancer and other diseases. Natural as well as engineered EVs as nanomedicine have immense potential for disease intervention. Here, we provide an overview of current knowledge of EVs' function in cancer progression, diagnostic and therapeutic applications for EVs in the cancer setting, as well as current EV engineering strategies.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Bhullar AS, Jin K, Shi H, Jones A, Hironaka D, Xiong G, Xu R, Guo P, Binzel DW, Shu D. Engineered extracellular vesicles for combinatorial TNBC therapy: SR-SIM-guided design achieves substantial drug dosage reduction. Mol Ther 2024; 32:4467-4481. [PMID: 39369270 PMCID: PMC11638871 DOI: 10.1016/j.ymthe.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has no therapeutic targets, relies on chemotherapeutics for treatment, and is in dire need of novel therapeutic approaches for improved patient outcomes. Extracellular vesicles (EVs) serve as intercellular communicators and have been proposed as ideal drug delivery vehicles. Here, EVs were engineered with RNA nanotechnology to develop TNBC tumor inhibitors. Using super resolved-structured illumination microscopy, EVs were optimized for precise Survivin small interfering RNA (siRNA) conjugated to chemotherapeutics loading and CD44 aptamer ligand decoration, thereby enhancing specificity toward TNBC cells. Conventional treatments typically employ chemotherapy drugs gemcitabine (GEM) and paclitaxel (PTX) at dosages on the order of mg/kg respectively, per injection (intravenous) in mice. In contrast, engineered EVs encapsulating these drugs saw functional tumor growth inhibition at significantly reduced concentrations: 2.2 μg/kg for GEM or 5.6 μg/kg for PTX, in combination with 21.5 μg/kg survivin-siRNA in mice. The result is a substantial decrease in the chemotherapeutic dose required, by orders of magnitude, compared with standard regimens. In vivo and in vitro evaluations in a TNBC orthotopic xenograft mouse model demonstrated the efficacy of this decreased dosage strategy, indicating the potential for decreased chemotherapy-associated toxicity.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA
| | - Haizhu Shi
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Austen Jones
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dalton Hironaka
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Ubanako P, Mirza S, Ruff P, Penny C. Exosome-mediated delivery of siRNA molecules in cancer therapy: triumphs and challenges. Front Mol Biosci 2024; 11:1447953. [PMID: 39355533 PMCID: PMC11442288 DOI: 10.3389/fmolb.2024.1447953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
The discovery of novel and innovative therapeutic strategies for cancer treatment and management remains a major global challenge. Exosomes are endogenous nanoscale extracellular vesicles that have garnered increasing attention as innovative vehicles for advanced drug delivery and targeted therapy. The attractive physicochemical and biological properties of exosomes, including increased permeability, biocompatibility, extended half-life in circulation, reduced toxicity and immunogenicity, and multiple functionalization strategies, have made them preferred drug delivery vehicles in cancer and other diseases. Small interfering RNAs (siRNAs) are remarkably able to target any known gene: an attribute harnessed to knock down cancer-associated genes as a viable strategy in cancer management. Extensive research on exosome-mediated delivery of siRNAs for targeting diverse types of cancer has yielded promising results for anticancer therapy, with some formulations progressing through clinical trials. This review catalogs recent advances in exosome-mediated siRNA delivery in several types of cancer, including the manifold benefits and minimal drawbacks of such innovative delivery systems. Additionally, we have highlighted the potential of plant-derived exosomes as innovative drug delivery systems for cancer treatment, offering numerous advantages such as biocompatibility, scalability, and reduced toxicity compared to traditional methods. These exosomes, with their unique characteristics and potential for effective siRNA delivery, represent a significant advancement in nanomedicine and cancer therapeutics. Further exploration of their manufacturing processes and biological mechanisms could significantly advance natural medicine and enhance the efficacy of exosome-based therapies.
Collapse
Affiliation(s)
- Philemon Ubanako
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Bao H, Chen Y, Zhang Y, Lan H, Jin K. Exosomes-based immunotherapy for cancer: Effective components in the naïve and engineered forms. Int Immunopharmacol 2024; 139:112656. [PMID: 39043104 DOI: 10.1016/j.intimp.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
Today, cancer treatment is one of the main challenges for researchers. The main cause of tumor cell formation is mutations that lead to uncontrolled proliferation and inhibition of apoptosis in malignant cells. Tumor cells also create a microenvironment that can suppress the immune system cells' responses through various methods, including producing soluble factors and cell-to-cell communication. After being produced from tumor cells, exosomes can also affect the functions of other cells in this microenvironment. Various studies have shown that exosomes from different sources, including tumor cells and immune cells, can be used to treat cancers due to their characteristics. Since tumor cells are rich sources of various types of tumor peptides, they can induce anti-tumor responses. Immune cells also produce exosomes that mimic the functions of their cells of origin, such that exosomes derived from NK cells and CTLs can directly lead to their apoptosis after merging with tumor cells. However, many researchers have pointed out that naïve exosomes have a limited therapeutic function, and their therapeutic potential can be increased by manipulating and engineering them. There are various methods to modify exosomes and improve their therapeutic potential. In general, these methods are divided into two parts, which include changing the cell of origin of the exosome and encapsulating the exosome to carry different drugs. In this review, we will discuss the studies on the therapeutic use of naive and engineered exosomes and provide an update on new studies in this field.
Collapse
Affiliation(s)
- Huan Bao
- Department of Neurosurgery, Jiashan First People's Hospital, Jiashan First People's Hospital Luoxing Branch, Jiashan, Zhejiang 314100, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China
| | - Youni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital, Taizhou, Zhejiang 317200, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China.
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
8
|
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci 2024; 31:67. [PMID: 38992695 PMCID: PMC11238361 DOI: 10.1186/s12929-024-01055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes are extracellular vesicles generated by all cells and they carry nucleic acids, proteins, lipids, and metabolites. They mediate the exchange of substances between cells,thereby affecting biological properties and activities of recipient cells. In this review, we briefly discuss the composition of exocomes and exosome isolation. We also review the clinical applications of exosomes in cancer biology as well as strategies in exosome-mediated targeted drug delivery systems. Finally, the application of exosomes in the context of cancer therapeutics both in practice and literature are discussed.
Collapse
Affiliation(s)
- Yi-Fan Chen
- International Master Program in Translation Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei, 11696, Taiwan.
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
| |
Collapse
|
9
|
Zheng L, Li J, Li Y, Sun W, Ma L, Qu F, Tan W. Empowering Exosomes with Aptamers for Precision Theranostics. SMALL METHODS 2024:e2400551. [PMID: 38967170 DOI: 10.1002/smtd.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Indexed: 07/06/2024]
Abstract
As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.
Collapse
Affiliation(s)
- Liyan Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - LeLe Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Avila Y, Rebolledo LP, Skelly E, de Freitas Saito R, Wei H, Lilley D, Stanley RE, Hou YM, Yang H, Sztuba-Solinska J, Chen SJ, Dokholyan NV, Tan C, Li SK, He X, Zhang X, Miles W, Franco E, Binzel DW, Guo P, Afonin KA. Cracking the Code: Enhancing Molecular Tools for Progress in Nanobiotechnology. ACS APPLIED BIO MATERIALS 2024; 7:3587-3604. [PMID: 38833534 PMCID: PMC11190997 DOI: 10.1021/acsabm.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.
Collapse
Affiliation(s)
- Yelixza
I. Avila
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Laura P. Rebolledo
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Renata de Freitas Saito
- Comprehensive
Center for Precision Oncology, Centro de Investigação
Translacional em Oncologia (LIM24), Departamento
de Radiologia e Oncologia, Faculdade de Medicina da Universidade de
São Paulo and Instituto do Câncer do Estado de São
Paulo, São Paulo, São Paulo 01246-903, Brazil
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing
University, Nanjing, Jiangsu 210023, P. R. China
| | - David Lilley
- School
of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Robin E. Stanley
- Signal
Transduction Laboratory, National Institute of Environmental Health
Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ya-Ming Hou
- Thomas
Jefferson
University, Department of Biochemistry
and Molecular Biology, 233 South 10th Street, BLSB 220 Philadelphia, Pennsylvania 19107, United States
| | - Haoyun Yang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Joanna Sztuba-Solinska
- Vaccine
Research and Development, Early Bioprocess Development, Pfizer Inc., 401 N Middletown Road, Pearl
River, New York 10965, United States
| | - Shi-Jie Chen
- Department
of Physics and Astronomy, Department of Biochemistry, Institute of
Data Sciences and Informatics, University
of Missouri at Columbia, Columbia, Missouri 65211, United States
| | - Nikolay V. Dokholyan
- Departments
of Pharmacology and Biochemistry & Molecular Biology Penn State College of Medicine; Hershey, Pennsylvania 17033, United States
- Departments
of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cheemeng Tan
- University of California, Davis, California 95616, United States
| | - S. Kevin Li
- Division
of Pharmaceutical Sciences, James L Winkle
College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiaoming He
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Xiaoting Zhang
- Department
of Cancer Biology, Breast Cancer Research Program, and University
of Cincinnati Cancer Center, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Wayne Miles
- Department
of Cancer Biology and Genetics, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Elisa Franco
- Department
of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Daniel W. Binzel
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
11
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
12
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
14
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
16
|
Ho YS, Cheng TC, Guo P. Targeted Delivery of Potent Chemical Drugs and RNAi to Drug-Resistant Breast Cancer Using RNA-Nanotechnology and RNA-Ligand Displaying Extracellular vesicles. RNA NANOMED 2024; 1:16-43. [PMID: 40125243 PMCID: PMC11927007 DOI: 10.59566/isrnn.2024.0101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This review describes a new technology to treat breast-cancer-drug-resistance by targeting the ABC as the multi-homo-subunit ATPase, enlightening by the Christmas-lighting budge with serial circuit and the asymmetrical homo-hexamer of the phi29 DNA packaging motor with sequential revolving mechanism. Chemotherapeutics has been widely used in breast cancer treatments, but drug resistance has raised a serious concern. RNA therapeutics has emerged as the third milestone in pharmaceutical drug development. RNA nanoparticles are dynamic, mild, and deformative, resulting in spontaneous, rapid, and efficient accumulation in tumor vasculature after IV injection. Their negative charge and favorable size bypass the nonspecific targeting of vital organs and normal cells. This motile and deformable nature also led to the fast passing of glomerular filters and their movement into the urine for rapid body clearance for those non-tumor-accumulated nanoparticles, resulting in undetectable toxicity. Extracellular vesicles have shown potential as a delivery system for RNAi and chemotherapeutic drugs in vivo, contributing to the efficacy of cancer remission. However, the lack of cell-targeting ligands on extracellular vesicles and the nonspecific entry into healthy cells has led to safety concerns. This review addresses how to apply RNA nanotechnology and RNA-ligand displaying extracellular vesicles for specific delivery to breast cancer. The particular focus is on using and combining the RNA and extracellular vesicle technology to deal with breast cancer drug resistance. The targeting capabilities and drug safety can be improved through extracellular vesicle engineering techniques, such as affixing ligands on the extracellular vesicle surface utilizing arrow-tail RNA nanoparticles, ultimately addressing off-target effects and toxicity. Using RNA ligands for specific targeting and the efficient membrane fusion of extracellular vesicles has enabled the development of ligand-displayed extracellular vesicles capable of delivering both RNAi and chemical drugs to cells with precision, effectively inhibiting tumor growth. The negative charge inherent in the vesicles results in electrostatic repulsion, reducing non-specific binding to healthy cells that contain negatively charged lipid membranes. By leveraging the principles of RNA nanotechnology, the engineering of extracellular vesicles offers a promising avenue for addressing breast cancer drug resistance. This review also discusses applying the series of circuit mechanisms in Christmas-decorating-lighting to develop effective therapeutics to combat breast cancer chemoresistance by targeting the ABC drug transporter and breast cancer surface receptors.
Collapse
Affiliation(s)
- Yuan Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
17
|
Shou J, Li S, Shi W, Zhang S, Zeng Z, Guo Z, Ye Z, Wen Z, Qiu H, Wang J, Zhou M. 3WJ RNA Nanoparticles-Aptamer Functionalized Exosomes From M2 Macrophages Target BMSCs to Promote the Healing of Bone Fractures. Stem Cells Transl Med 2023; 12:758-774. [PMID: 37740533 PMCID: PMC10630079 DOI: 10.1093/stcltm/szad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/25/2023] [Indexed: 09/24/2023] Open
Abstract
Up to now, impaired bone regeneration severely affects the healing of bone fractures, thus bringing tremendous suffering to patients. As a vital mediator between inflammatory response and bone regeneration, M2 macrophage-derived exosomes (M2-Exos) attenuate inflammation and promote tissue repair. However, due to a lack of specific targeting property, M2-Exos will be rapidly eliminated after systematic administration, thus compromising their effectiveness in promoting bone regeneration. To solve this hurdle, we initially harvested and characterized the pro-osteogenic properties of M2-Exos. A bone marrow mesenchymal stem cell (BMSC)-specific aptamer was synthesized and 3-way junction (3WJ) RNA nanoparticles were applied to conjugate the BMSC-specific aptamer and M2-Exos. In vitro assays revealed that M2-Exos bore the representative features of exosomes and significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. 3WJ RNA nanoparticles-aptamer functionalized M2-Exos (3WJ-BMSCapt/M2-Exos) maintained the original physical characteristics of M2-Exos, but bore a high specific binding ability to BMSCs. Furthermore, when being systemically administered in the mice model with femoral bone fractures, these functionalized M2-Exos mainly accumulated at the bone fracture site with a slow release of exosomal cargo, thereby significantly accelerating the healing processes compared with the M2-Exos group. Our study indicated that the 3WJ-BMSCapt/M2-Exos with BMSCs targeting ability and controlled release would be a promising strategy to treat bone fractures.
Collapse
Affiliation(s)
- Jiali Shou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Ultrasound Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Shuyi Li
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, the People’s Republic of China
| | - Wenzhe Shi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Sijuan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zheng Zeng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zecong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Ziming Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zhuohao Wen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Huiguo Qiu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
| |
Collapse
|
18
|
Yang L, Li Z, Binzel DW, Guo P, Williams TM. Targeting oncogenic KRAS in non-small cell lung cancer with EGFR aptamer-conjugated multifunctional RNA nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:559-571. [PMID: 37637206 PMCID: PMC10448464 DOI: 10.1016/j.omtn.2023.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
KRAS mutations are one of the most common oncogenic driver mutations in human cancers, including non-small cell lung cancer (NSCLC), and have established roles in cancer pathogenesis and therapeutic resistance. The development of effective inhibitors of mutant KRAS represents a significant challenge. Three-way junction (3WJ)-based multi-functional RNA nanoparticles have the potential to serve as an effective in vivo siRNA delivery platform with the ability to enhance tumor targeting specificity and visualize biodistribution through an imaging moiety. Herein, we assembled novel EGFRapt-3WJ-siKRASG12C mutation targeted nanoparticles to target EGFR-expressing human NSCLC harboring a KRASG12C mutation to silence KRASG12C expression in a tumor cell-specific fashion. We found that EGFRapt-3WJ-siKRASG12C nanoparticles potently depleted cellular KRASG12C expression, resulting in attenuation of downstream MAPK pathway signaling, cell proliferation, migration/invasion ability, and sensitized NSCLC cells to chemoradiotherapy. In vivo, these nanoparticles induced tumor growth inhibition in KRASG12C NSCLC tumor xenografts. Together, this study suggests that the 3WJ pRNA-based platform has the potential to suppress mutant KRAS activity for the treatment of KRAS-driven human cancers, and warrants further development for clinical translation.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhefeng Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Terence M. Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
19
|
Li W, Li M, Huang Q, He X, Shen C, Hou X, Xue F, Deng Z, Luo Y. Advancement of regulating cellular signaling pathways in NSCLC target therapy via nanodrug. Front Chem 2023; 11:1251986. [PMID: 37744063 PMCID: PMC10512551 DOI: 10.3389/fchem.2023.1251986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of high cancer-associated mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common type of LC. The mechanisms of NSCLC evolution involve the alterations of multiple complex signaling pathways. Even with advances in biological understanding, early diagnosis, therapy, and mechanisms of drug resistance, many dilemmas still need to face in NSCLC treatments. However, many efforts have been made to explore the pathological changes of tumor cells based on specific molecular signals for drug therapy and targeted delivery. Nano-delivery has great potential in the diagnosis and treatment of tumors. In recent years, many studies have focused on different combinations of drugs and nanoparticles (NPs) to constitute nano-based drug delivery systems (NDDS), which deliver drugs regulating specific molecular signaling pathways in tumor cells, and most of them have positive implications. This review summarized the recent advances of therapeutic targets discovered in signaling pathways in NSCLC as well as the related NDDS, and presented the future prospects and challenges.
Collapse
Affiliation(s)
- Wenqiang Li
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Huang
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Xiaoyu He
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fulai Xue
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Kumar SK, Sasidhar MV. Recent Trends in the Use of Small Extracellular Vesicles as Optimal Drug Delivery Vehicles in Oncology. Mol Pharm 2023; 20:3829-3842. [PMID: 37410017 DOI: 10.1021/acs.molpharmaceut.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Small extracellular vesicles (sEVs) are produced by most cells and play an important role in cell-to-cell communication and maintaining cellular homeostasis. Their ability to transfer biological cargo to target cells makes them a promising tool for cancer drug delivery. Advances in sEV engineering, EV mimetics, and ligand-directed targeting have improved the efficacy of anticancer drug delivery and functionality. EV-based RNA interference and hybrid miRNA transfer have also been extensively used in various preclinical cancer models. Despite these developments, gaps still exist in our understanding of using sEVs to treat solid tumor malignancies effectively. This article provides an overview of the last five years of sEV research and its current status for the efficient and targeted elimination of cancer cells, which could advance cancer research and bring sEV formulations into clinical use.
Collapse
Affiliation(s)
- Sarwareddy Kartik Kumar
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Jubilee Hills, Hyderabad 500033, India
| | - Manda Venkata Sasidhar
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Jubilee Hills, Hyderabad 500033, India
- Urvogelbio Private Limited, AHERF, Jubilee Hills, Hyderabad 500033, India
| |
Collapse
|
21
|
Tang Y, Liu X, Sun M, Xiong S, Xiao N, Li J, He X, Xie J. Recent Progress in Extracellular Vesicle-Based Carriers for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2023; 15:1902. [PMID: 37514088 PMCID: PMC10384044 DOI: 10.3390/pharmaceutics15071902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-based vesicles released by cells that play a critical role in various physiological and pathological processes. They act as vehicles for transporting a variety of endogenous cargo molecules, enabling intercellular communication. Due to their natural properties, EVs have emerged as a promising "cell-free therapy" strategy for treating various diseases, including cancer. They serve as excellent carriers for different therapeutics, including nucleic acids, proteins, small molecules, and other nanomaterials. Modifying or engineering EVs can improve the efficacy, targeting, specificity, and biocompatibility of EV-based therapeutics for cancer therapy. In this review, we comprehensively outline the biogenesis, isolation, and methodologies of EVs, as well as their biological functions. We then focus on specific applications of EVs as drug carriers in cancer therapy by citing prominent recent studies. Additionally, we discuss the opportunities and challenges for using EVs as pharmaceutical drug delivery vehicles. Ultimately, we aim to provide theoretical and technical support for the development of EV-based carriers for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xingyou Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Meng Sun
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jianchao Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
22
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
23
|
Ellipilli S, Wang H, Binzel DW, Shu D, Guo P. Ligand-displaying-exosomes using RNA nanotechnology for targeted delivery of multi-specific drugs for liver cancer regression. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102667. [PMID: 36948369 PMCID: PMC10413411 DOI: 10.1016/j.nano.2023.102667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
Liver cancer such as hepatocellular carcinoma (HCC) poorly responds to chemotherapeutics as there are no effective means to deliver the drugs to liver cancer. Here we report GalNAc decorated exosomes as cargo for targeted delivery of Paclitaxel (PTX) and miR122 to liver tumors as an effective means to inhibit the HCC. Exosomes (Exos) are nanosized extracellular vesicles that deliver a payload to cancer cells effectively. GalNAc provides Exos targeting ability by binding to the asialoglycoprotein-receptor (ASGP-R) overexpressed on the liver cancer cell surface. A 4-way junction (4WJ) RNA nanoparticle was constructed to harbor 24 copies of hydrophobic PTX and 1 copy of miR122. The 4WJ RNA-PTX complex was loaded into the Exos, and its surface was decorated with GalNAc using RNA nanotechnology to obtain specific targeting. The multi-specific Exos selectively bind and efficiently delivered the payload into the liver cancer cells and exhibited the highest cancer cell inhibition due to the multi-specific effect of miR122, PTX, GalNAc, and Exos. The same was reflected in mice xenograft studies, the liver cancer was efficiently inhibited after systemic injection of the multi-specific Exos. The required effective dose of chemical drugs carried by Exos was significantly reduced, indicating high efficiency and low toxicity. The multi-specific strategy demonstrates that Exos can serve as a natural cargo vehicle for the targeted delivery of anticancer therapeutics to treat difficult-to-treat cancers.
Collapse
Affiliation(s)
- Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Mohammadi AH, Ghazvinian Z, Bagheri F, Harada M, Baghaei K. Modification of Extracellular Vesicle Surfaces: An Approach for Targeted Drug Delivery. BioDrugs 2023; 37:353-374. [PMID: 37093521 DOI: 10.1007/s40259-023-00595-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are a promising drug delivery vehicle candidate because of their natural origin and intrinsic function of transporting various molecules between different cells. Several advantages of the EV delivery platform include enhanced permeability and retention effect, efficient interaction with recipient cells, the ability to traverse biological barriers, high biocompatibility, high biodegradability, and low immunogenicity. Furthermore, EV membranes share approximately similar structures and contents to the cell membrane, which allows surface modification of EVs, an approach to enable specific targeting. Enhanced drug accumulation in intended sites and reduced adverse effects of chemotherapeutic drugs are the most prominent effects of targeted drug delivery. In order to improve the targeting ability of EVs, chemical modification and genetic engineering are the most adopted methods to date. Diverse chemical methods are employed to decorate EV surfaces with various ligands such as aptamers, carbohydrates, peptides, vitamins, and antibodies. In this review, we introduce the biogenesis, content, and cellular pathway of natural EVs and further discuss the genetic modification of EVs, and its challenges. Furthermore, we provide a comprehensive deliberation on the various chemical modification methods for improved drug delivery, which are directly related to increasing the therapeutic index.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Ghazvinian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is the primary challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signalings incorporated in resistance mechanisms or develop active targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Further, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways and thoroughly discussed using aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Raguraman R, Bhavsar D, Kim D, Ren X, Sikavitsas V, Munshi A, Ramesh R. Tumor-targeted exosomes for delivery of anticancer drugs. Cancer Lett 2023; 558:216093. [PMID: 36822543 PMCID: PMC10025995 DOI: 10.1016/j.canlet.2023.216093] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Exosomes are small phospholipid bilayer vesicles that are naturally produced by all living cells, both prokaryotes and eukaryotes. The exosomes due to their unique size, reduced immunogenicity, and their ability to mimic synthetic liposomes in carrying various anticancer drugs have been tested as drug delivery vehicles for cancer treatment. An added advantage of developing exosomes as a drug carrier is the ease of manipulating their intraluminal content and their surface modification to achieve tumor-targeted drug delivery. In the past ten-years, there has been an exponential increase in the number of exosome-related studies in cancer. Preclinical studies demonstrate exosomes-mediated delivery of chemotherapeutics, biologicals and natural products produce potent anticancer activity both, in vitro and in vivo. In contrast, the number of exosome-based clinical trials are few due to challenges in the manufacturing and scalability related to large-scale production of exosomes and their storage and stability. Herein, we discuss recent advances in exosome-based drug delivery for cancer treatment in preclinical and clinical studies and conclude with challenges to be overcome for translating a larger number of exosome-based therapies into the clinic.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dhaval Bhavsar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- School of Chemical, Biological and Material Engineering, The University of Oklahoma, Norman, Oklahoma, 73019, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
27
|
Uddin N, Binzel DW, Shu D, Fu TM, Guo P. Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta Pharm Sin B 2023; 13:1383-1399. [PMID: 37139430 PMCID: PMC10149909 DOI: 10.1016/j.apsb.2022.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exosome is an excellent vesicle for in vivo delivery of therapeutics, including RNAi and chemical drugs. The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping. However, being composed of a lipid-bilayer membrane without specific recognition capacity for aimed-cells, the entry into nonspecific cells can lead to potential side-effects and toxicity. Applying engineering approaches for targeting-capacity to deliver therapeutics to specific cells is desirable. Techniques with chemical modification in vitro and genetic engineering in cells have been reported to decorate exosomes with targeting ligands. RNA nanoparticles have been used to harbor tumor-specific ligands displayed on exosome surface. The negative charge reduces nonspecific binding to vital cells with negatively charged lipid-membrane due to the electrostatic repulsion, thus lowering the side-effect and toxicity. In this review, we focus on the uniqueness of RNA nanoparticles for exosome surface display of chemical ligands, small peptides or RNA aptamers, for specific cancer targeting to deliver anticancer therapeutics, highlighting recent advances in targeted delivery of siRNA and miRNA that overcomes the previous RNAi delivery roadblocks. Proper understanding of exosome engineering with RNA nanotechnology promises efficient therapies for a wide range of cancer subtypes.
Collapse
Affiliation(s)
- Nasir Uddin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Tian-Min Fu
- Department of Biological Chemistry & Pharmacology, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Ciccone G, Ibba ML, Coppola G, Catuogno S, Esposito CL. The Small RNA Landscape in NSCLC: Current Therapeutic Applications and Progresses. Int J Mol Sci 2023; 24:ijms24076121. [PMID: 37047090 PMCID: PMC10093969 DOI: 10.3390/ijms24076121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the second most diagnosed type of malignancy and the first cause of cancer death worldwide. Despite recent advances, the treatment of choice for NSCLC patients remains to be chemotherapy, often showing very limited effectiveness with the frequent occurrence of drug-resistant phenotype and the lack of selectivity for tumor cells. Therefore, new effective and targeted therapeutics are needed. In this context, short RNA-based therapeutics, including Antisense Oligonucleotides (ASOs), microRNAs (miRNAs), short interfering (siRNA) and aptamers, represent a promising class of molecules. ASOs, miRNAs and siRNAs act by targeting and inhibiting specific mRNAs, thus showing an improved specificity compared to traditional anti-cancer drugs. Nucleic acid aptamers target and inhibit specific cancer-associated proteins, such as "nucleic acid antibodies". Aptamers are also able of receptor-mediated cell internalization, and therefore, they can be used as carriers of secondary agents giving the possibility of producing very highly specific and effective therapeutics. This review provides an overview of the proposed applications of small RNAs for NSCLC treatment, highlighting their advantageous features and recent advancements in the field.
Collapse
Affiliation(s)
- Giuseppe Ciccone
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Maria Luigia Ibba
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Caserta, Italy
| | - Gabriele Coppola
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Carla Lucia Esposito
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| |
Collapse
|
29
|
Liu X, Hu J, Ning Y, Xu H, Cai H, Yang A, Shi Z, Li Z. Aptamer Technology and Its Applications in Bone Diseases. Cell Transplant 2023; 32:9636897221144949. [PMID: 36591965 PMCID: PMC9811309 DOI: 10.1177/09636897221144949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aptamers are single-stranded nucleic acids (DNA, short RNA, or other artificial molecules) produced by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology, which can be tightly and specifically combined with desired targets. As a comparable alternative to antibodies, aptamers have many advantages over traditional antibodies such as a strong chemical stability and rapid bulk production. In addition, aptamers can bind targets in various ways, and are not limited like the antigen-antibody combination. Studies have shown that aptamers have tremendous potential to diagnose and treat clinical diseases. However, only a few aptamer-based drugs have been used because of limitations of the aptamers and SELEX technology. To promote the development and applications of aptamers, we present a review of the methods optimizing the SELEX technology and modifying aptamers to boost the selection success rate and improve aptamer characteristics. In addition, we review the application of aptamers to treat bone diseases.
Collapse
Affiliation(s)
- Xiangzhong Liu
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Jing Hu
- Wuhan Children’s Hospital, Tongji
Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yu Ning
- Department of Orthopaedics, Xiangyang
Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese
Medicine, Xiangyang, China
| | - Haijia Xu
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Hantao Cai
- Department of Orthopaedics, Wenling
First People’s Hospital, Taizhou, China
| | - Aofei Yang
- Department of Orthopaedics, Hubei
Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhengshuai Shi
- Department of Orthopaedics, Wuhan
Sports University, Wuhan, China
| | - Zhanghua Li
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China,Zhanghua Li, Department of Orthopaedics,
Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216, Guanshan
Avenue, Hongshan District, Wuhan 430074, Hubei Province, China.
| |
Collapse
|
30
|
Yang Q, Xu J, Gu J, Shi H, Zhang J, Zhang J, Chen Z, Fang X, Zhu T, Zhang X. Extracellular Vesicles in Cancer Drug Resistance: Roles, Mechanisms, and Implications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201609. [PMID: 36253096 PMCID: PMC9731723 DOI: 10.1002/advs.202201609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized vesicles that mediate cell-to-cell communication via transporting bioactive molecules and thus are critically involved in various physiological and pathological conditions. EVs contribute to different aspects of cancer progression, such as cancer growth, angiogenesis, metastasis, immune evasion, and drug resistance. EVs induce the resistance of cancer cells to chemotherapy, radiotherapy, targeted therapy, antiangiogenesis therapy, and immunotherapy by transferring specific cargos that affect drug efflux and regulate signaling pathways associated with epithelial-mesenchymal transition, autophagy, metabolism, and cancer stemness. In addition, EVs modulate the reciprocal interaction between cancer cells and noncancer cells in the tumor microenvironment (TME) to develop therapy resistance. EVs are detectable in many biofluids of cancer patients, and thus are regarded as novel biomarkers for monitoring therapy response and predicting prognosis. Moreover, EVs are suggested as promising targets and engineered as nanovehicles to deliver drugs for overcoming drug resistance in cancer therapy. In this review, the biological roles of EVs and their mechanisms of action in cancer drug resistance are summarized. The preclinical studies on using EVs in monitoring and overcoming cancer drug resistance are also discussed.
Collapse
Affiliation(s)
- Qiurong Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jing Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory MedicineNantong Tumor HospitalNantongJiangsu226361China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical PharmacologySchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Xinjian Fang
- Department of OncologyLianyungang Hospital Affiliated to Jiangsu UniversityLianyungangJiangsu222000China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care MedicineYixing Hospital affiliated to Jiangsu UniversityYixingJiangsu214200China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
31
|
Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular Vesicle (EVs) Associated Non-Coding RNAs in Lung Cancer and Therapeutics. Int J Mol Sci 2022; 23:13637. [PMID: 36362424 PMCID: PMC9655370 DOI: 10.3390/ijms232113637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the most lethal forms of cancer, with a very high mortality rate. The precise pathophysiology of lung cancer is not well understood, and pertinent information regarding the initiation and progression of lung cancer is currently a crucial area of scientific investigation. Enhanced knowledge about the disease will lead to the development of potent therapeutic interventions. Extracellular vesicles (EVs) are membrane-bound heterogeneous populations of cellular entities that are abundantly produced by all cells in the human body, including the tumor cells. A defined class of EVs called small Extracellular Vesicles (sEVs or exosomes) carries key biomolecules such as RNA, DNA, Proteins and Lipids. Exosomes, therefore, mediate physiological activities and intracellular communication between various cells, including constituent cells of the tumor microenvironment, namely stromal cells, immunological cells, and tumor cells. In recent years, a surge in studying tumor-associated non-coding RNAs (ncRNAs) has been observed. Subsequently, studies have also reported that exosomes abundantly carry different species of ncRNAs and these exosomal ncRNAs are functionally involved in cancer initiation and progression. Here, we discuss the function of exosomal ncRNAs, such as miRNAs and long non-coding RNAs, in the pathophysiology of lung tumors. Further, the future application of exosomal-ncRNAs in clinics as biomarkers and therapeutic targets in lung cancer is also discussed due to the multifaceted influence of exosomes on cellular physiology.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Siddharth Das
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
32
|
Li X, Bhullar AS, Binzel DW, Guo P. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Adv Drug Deliv Rev 2022; 186:114316. [PMID: 35526663 DOI: 10.1016/j.addr.2022.114316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
Besides mRNA, rRNA, and tRNA, cells contain many other noncoding RNA that display critical roles in the regulation of cellular functions. Human genome sequencing revealed that the majority of non-protein-coding DNA actually codes for non-coding RNAs. The dynamic nature of RNA results in its motile and deformative behavior. These conformational transitions such as the change of base-pairing, breathing within complemented strands, and pseudoknot formation at the 2D level as well as the induced-fit and conformational capture at the 3D level are important for their biological functions including regulation, translation, and catalysis. The dynamic, motile and catalytic activity has led to a belief that RNA is the origin of life. We have recently reported that the deformative property of RNA nanoparticles enhances their penetration through the leaky blood vessel of cancers which leads to highly efficient tumor accumulation. This special deformative property also enables RNA nanoparticles to pass the glomerulus, overcoming the filtration size limit, resulting in fast renal excretion and rapid body clearance, thus low or no toxicity. The biodistribution of RNA nanoparticles can be further improved by the incorporation of ligands for cancer targeting. In addition to the favorable biodistribution profiles, RNA nanoparticles possess other properties including self-assembly, negative charge, programmability, and multivalency; making it a great material for pharmaceutical applications. The intrinsic negative charge of RNA nanoparticles decreases the toxicity of drugs by preventing nonspecific binding to the negative charged cell membrane and enhancing the solubility of hydrophobic drugs. The polyvalent property of RNA nanoparticles allows the multi-functionalization which can apply to overcome drug resistance. This review focuses on the summary of these unique properties of RNA nanoparticles, which describes the mechanism of RNA dynamic, motile and deformative properties, and elucidates and prepares to welcome the RNA therapeutics as the third milestone in pharmaceutical drug development.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Abhjeet S Bhullar
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, United States
| | - Daniel W Binzel
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Peixuan Guo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
33
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 284] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
34
|
Mousavi SM, Amin Mahdian SM, Ebrahimi MS, Taghizadieh M, Vosough M, Sadri Nahand J, Hosseindoost S, Vousooghi N, Javar HA, Larijani B, Hadjighassem MR, Rahimian N, Hamblin MR, Mirzaei H. Microfluidics for detection of exosomes and microRNAs in cancer: State of the art. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:758-791. [PMID: 35664698 PMCID: PMC9130092 DOI: 10.1016/j.omtn.2022.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are small extracellular vesicles with sizes ranging from 30-150 nanometers that contain proteins, lipids, mRNAs, microRNAs, and double-stranded DNA derived from the cells of origin. Exosomes can be taken up by target cells, acting as a means of cell-to-cell communication. The discovery of these vesicles in body fluids and their participation in cell communication has led to major breakthroughs in diagnosis, prognosis, and treatment of several conditions (e.g., cancer). However, conventional isolation and evaluation of exosomes and their microRNA content suffers from high cost, lengthy processes, difficult standardization, low purity, and poor yield. The emergence of microfluidics devices with increased efficiency in sieving, trapping, and immunological separation of small volumes could provide improved detection and monitoring of exosomes involved in cancer. Microfluidics techniques hold promise for advances in development of diagnostic and prognostic devices. This review covers ongoing research on microfluidics devices for detection of microRNAs and exosomes as biomarkers and their translation to point-of-care and clinical applications.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
35
|
Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, Xu Z, Li M, Chen X, Liu J, Yang C. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology 2022; 20:279. [PMID: 35701788 PMCID: PMC9194774 DOI: 10.1186/s12951-022-01472-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading public health problem worldwide. Its treatment remains a daunting challenge, although significant progress has been made in existing treatments in recent years. A large concern is the poor therapeutic effect due to lack of specificity and low bioavailability. Gene therapy has recently emerged as a powerful tool for cancer therapy. However, delivery methods limit its therapeutic effects. Exosomes, a subset of extracellular vesicles secreted by most cells, have the characteristics of good biocompatibility, low toxicity and immunogenicity, and great designability. In the past decades, as therapeutic carriers and diagnostic markers, they have caught extensive attention. This review introduced the characteristics of exosomes, and focused on their applications as delivery carriers in DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), circular RNA (circRNA) and other nucleic acids. Meanwhile, their application in cancer therapy and exosome-based clinical trials were presented and discussed. Through systematic summarization and analysis, the recent advances and current challenges of exosome-mediated nucleic acid delivery for cancer therapy are introduced, which will provide a theoretical basis for the development of nucleic acid drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Meirong Li
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jia Liu
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
36
|
George R, Hehlgans S, Fleischmann M, Rödel C, Fokas E, Rödel F. Advances in nanotechnology-based platforms for survivin-targeted drug discovery. Expert Opin Drug Discov 2022; 17:733-754. [PMID: 35593177 DOI: 10.1080/17460441.2022.2077329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Due to its unique functional impact on multiple cancer cell circuits including proliferation, apoptosis, tumor dissemination, DNA damage repair and immune response, the inhibitor of apoptosis protein (IAP) survivin has gained high interest as a molecular target and a multitude of therapeutics were developed to interfere with survivin expression and functionality. First clinical evaluations of these therapeutics, however, were disappointing highlighting the need to develop advanced delivery systems of survivin-targeting molecules to increase stability, bioavailability as well as the selective guidance to tumor tissue. AREAS COVERED : This review focuses on advancements in nanocarriers to molecularly target survivin in human malignancies. A plethora of nanoparticle platforms, including liposomes, polymeric systems, dendrimers, inorganic nanocarriers, RNA/DNA nanotechnology and exosomes are discussed in the background of survivin-tailored RNA interference, small molecule inhibitors, dominant negative mutants or survivin vaccination or combined modality treatment with chemotherapeutic drugs and photo- dynamic/photothermal strategies. EXPERT OPINION Novel therapeutic approaches include the use of biocompatible nanoformulations carrying gene silencing or drug molecules to directly or indirectly target proteins, allow for a more precise and controlled delivery of survivin therapeutics. Moreover, surface modification of these nanocarriers may result in a tumor entity specific delivery. Therefore, nanomedicine exploiting survivin-tailored strategies in a multimodal background is considered the way forwaerd to enhance the development of future personalized medicine.
Collapse
Affiliation(s)
- Rosemol George
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Maximillian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| |
Collapse
|
37
|
Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:524-535. [PMID: 34589275 PMCID: PMC8463318 DOI: 10.1016/j.omtn.2021.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Small interfering RNA (siRNA) for silencing genes and treating disease has been a dream since ranking as a top Breakthrough of the Year in 2002 by Science. With the recent FDA approval of four siRNA-based drugs, the potential of RNA therapeutics to become the third milestone in pharmaceutical drug development has become a reality. However, the field of RNA interference (RNAi) therapeutics still faces challenges such as specificity in targeting, intracellular processing, and endosome trapping after targeted delivery. Dicer-substrate siRNAs included onto RNA nanoparticles may be able to overcome these challenges. Here, we show that pRNA-based nanoparticles can be designed to efficiently harbor the Dicer-substrate siRNAs in vitro and in vivo to the cytosol of tumor cells and release the siRNA. The structure optimization and chemical modification for controlled release of Dicer-substrate siRNAs in tumor cells were also evaluated through molecular beacon analysis. Studies on the length requirement of the overhanging siRNA revealed that at least 23 nucleotides at the dweller's arm were needed for dicer processing. The above sequence parameters and structure optimization were confirmed in recent studies demonstrating the release of functional Survivin siRNA from the pRNA-based nanoparticles for cancer inhibition in non-small-cell lung, breast, and prostate cancer animal models.
Collapse
|