1
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
2
|
Kawauchi S, Kono A, Muramatsu Y, Hennes G, Seki S, Tominaga S, Haruyama Y, Komuta Y, Nishidate I, Matsukuma S, Wang Y, Sato S. Meningeal Damage and Interface Astroglial Scarring in the Rat Brain Exposed to a Laser-Induced Shock Wave(s). J Neurotrauma 2024; 41:e2039-e2053. [PMID: 38534205 DOI: 10.1089/neu.2023.0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
In the past decade, signature clinical neuropathology of blast-induced traumatic brain injury has been under intense debate, but interface astroglial scarring (IAS) seems to be convincing. In this study, we examined whether IAS could be replicated in the rat brain exposed to a laser-induced shock wave(s) (LISW[s]), a tool that can produce a pure shock wave (primary mechanism) without dynamic pressure (tertiary mechanism). Under certain conditions, we observed astroglial scarring in the subpial glial plate (SGP), gray-white matter junctions (GM-WM), ventricular wall (VW), and regions surrounding cortical blood vessels, accurately reproducing clinical IAS. We also observed shock wave impulse-dependent meningeal damage (dural microhemorrhage) in vivo by transcranial near-infrared (NIR) reflectance imaging. Importantly, there were significant correlations between the degree of dural microhemorrhage and the extent of astroglial scarring more than 7 days post-exposure, suggesting an association of meningeal damage with astroglial scarring. The results demonstrated that the primary mechanism alone caused the IAS and meningeal damage, both of which are attributable to acoustic impedance mismatching at multi-layered tissue boundaries. The time course of glial fibrillary acidic protein (GFAP) immunoreactivity depended not only on the LISW conditions but also on the regions. In the SGP, significant increases in GFAP immunoreactivity were observed at 3 days post-exposure, whereas in the GM-WM and VW, GFAP immunoreactivity was not significantly increased before 28 days post-exposure, suggesting different pathological mechanisms. With the high-impulse single exposure or the multiple exposure (low impulse), fibrotic reaction or fibrotic scar formation was observed, in addition to astroglial scarring, in the cortical surface region. Although there are some limitations, this seems to be the first report on the shock-wave-induced IAS rodent model. The model may be useful to explore potential therapeutic approaches for IAS.
Collapse
Affiliation(s)
- Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Akemi Kono
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Yuriko Muramatsu
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Grant Hennes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta, Canada
| | - Shuta Seki
- Pharmacy Selection, Medical Material Department, Japan Self Defense Force Central Hospital, Setagaya, Tokyo, Japan
| | - Susumu Tominaga
- Department of Pathology and Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasue Haruyama
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Yukari Komuta
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Izumi Nishidate
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Susumu Matsukuma
- Department of Pathology and Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yushan Wang
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta, Canada
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
He B, Niu L, Li S, Li H, Hou Y, Li A, Zhang X, Hao H, Song H, Cai R, Zhou Y, Wang Y, Wang Y. Sustainable inflammatory activation following spinal cord injury is driven by thrombin-mediated dynamic expression of astrocytic chemokines. Brain Behav Immun 2024; 116:85-100. [PMID: 38042209 DOI: 10.1016/j.bbi.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023] Open
Abstract
Acute spinal cord injury (SCI) always results in sustainable recruitment of inflammatory cells driven by sequentially generated chemokines, thereby eliciting excessive neuroinflammation. However, the underlying mechanism of temporally produced chemokines remains elusive. Reactive astrocytes are known to be the main sources of chemokines at the lesion site, which can be immediately activated by thrombin following SCI. In the present study, SCI was shown to induce a sequential production of chemokines CCL2 and CCL5 from astrocytes, which were associated with a persistent infiltration of macrophages/microglia. The rapidly induced CCL2 and later induced CCL5 from astrocytes were regulated by thrombin at the damaged tissues. Investigation of the regulatory mechanism revealed that thrombin facilitated astrocytic CCL2 production through activation of ERK/JNK/NFκB pathway, whereas promoted CCL5 production through PLCβ3/NFκB and ERK/JNK/NFκB signal pathway. Inhibition of thrombin activity significantly decreased production of astrocytic CCL2 and CCL5, and reduced the accumulation of macrophages/microglia at the lesion site. Accordingly, the locomotor function of rats was remarkably improved. The present study has provided a new regulatory mechanism on thrombin-mediated sequential production of astrocytic chemokines, which might be beneficial for clinical therapy of CNS neuroinflammation.
Collapse
Affiliation(s)
- Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Li Niu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yue Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
5
|
Xu Q, Zou Y, Miao Z, Jiang L, Zhao X. Transient receptor potential ion channels and cerebral stroke. Brain Behav 2023; 13:e2843. [PMID: 36527242 PMCID: PMC9847613 DOI: 10.1002/brb3.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
METHODS The databases Pubmed, and the National Library of Medicine were searched for literature. All papers on celebral stroke and transient receptor potential ion channels were considered. RESULTS Stroke is the second leading cause of death and disability, with an increasing incidence in developing countries. About 75 per cent of strokes are caused by occlusion of cerebral arteries, and substantial advances have been made in elucidating mechanisms how stroke affects the brain. Transient receptor potential (TRP) ion channels are calcium-permeable channels highly expressed in brain that drives Ca2+ entry into multiple cellular compartments. TRPC1/3/4/6, TRPV1/2/4, and TRPM2/4/7 channels have been implicated in stroke pathophysiology. CONCLUSIONS Although the precise mechanism of transient receptor potential ion channels in cerebral stroke is still unclear, it has the potential to be a therapeutic target for patients with stroke if developed appropriately. Hence, more research is needed to prove its efficacy in this context.
Collapse
Affiliation(s)
- Qin'yi Xu
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Zou
- Department of Neurosurgery, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zeng'li Miao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Lei Jiang
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Xu'dong Zhao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
6
|
Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023; 176:105948. [PMID: 36481437 PMCID: PMC10013956 DOI: 10.1016/j.nbd.2022.105948] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for about 10% of all strokes in the United States of America causing a high degree of disability and mortality. There is initial (primary) brain injury due to the mechanical disruption caused by the hematoma. There is then secondary injury, triggered by the initial injury but also the release of various clot-derived factors (e.g., thrombin and hemoglobin). ICH alters brain fluid homeostasis. Apart from the initial hematoma mass, ICH causes blood-brain barrier disruption and parenchymal cell swelling, which result in brain edema and intracranial hypertension affecting patient prognosis. Reducing brain edema is a critical part of post-ICH care. However, there are limited effective treatment methods for reducing perihematomal cerebral edema and intracranial pressure in ICH. This review discusses the mechanisms underlying perihematomal brain edema formation, the effects of sex and age, as well as how edema is resolved. It examines progress in pharmacotherapy, particularly focusing on drugs which have been or are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
8
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
9
|
Li P, Luo C, Chen X, Huang C. An off-on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. RSC Adv 2022; 12:35763-35769. [PMID: 36545096 PMCID: PMC9749934 DOI: 10.1039/d2ra06891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
An off-on fluorescence aptasensor was developed for trace thrombin detection based on fluorescence resonance energy transfer (FRET) between CdS QDs and gold nanoparticles (AuNPs). Using DNA pairwise hybridization of the aptamer to the complementary DNA (cDNA), the CdS QDs (energy donor) were tightly coupled to the AuNPs (energy acceptor), resulting in the occurrence of FRET and there was a dramatic fluorescence quenching of CdS QDs (turn off). When the thrombin was added to the fluorescence aptasensor, the specific binding of the aptamer to the target formed a G-quadruplex that caused the AuNPs receptor to detach and the DNA duplex to be disassembled. The process would inhibit the FRET which contribute to the recovery of fluorescence (turn on) and an "off-on" fluorescence aptasensor for thrombin detection was constructed accordingly. Under optimal conditions, the fluorescence recovery showed good linearity with the concentration of thrombin in the range of 1.35-54.0 nmol L-1, and the detection limit was 0.38 nmol L-1 (S/N = 3, n = 9). Importantly, the fluorescence aptasensor presented excellent specificity for thrombin, and was successfully applied to the quantitative determination of thrombin in real serum with satisfactory recoveries of 98.60-102.2%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University Lanxi 321100 China
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
10
|
Yang T, Jiang H, Luo X, Hou Y, Li A, He B, Zhang X, Hao H, Song H, Cai R, Wang X, Wang Y, Yao C, Qi L, Wang Y. Thrombin acts as inducer of proinflammatory macrophage migration inhibitory factor in astrocytes following rat spinal cord injury. J Neuroinflammation 2022; 19:120. [PMID: 35624475 PMCID: PMC9137112 DOI: 10.1186/s12974-022-02488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The danger-associated molecular patterns (DAMPs) are critical contributors to the progressive neuropathology and thereafter affect the functional outcomes following spinal cord injury (SCI). Up to now, the regulatory mechanisms on their inducible production from the living cells remain elusive, aside from their passive release from the necrotic cells. Thrombin is immediately activated by the damaged or stressed central nervous system (CNS), which potently mediates inflammatory astrocytic responses through proteolytic cleavage of protease-activated receptors (PARs). Therefore, SCI-activated thrombin is conceived to induce the production of DAMPs from astrocytes at lesion site. METHODS Rat SCI model was established by the cord contusion at T8-T10. The expression of thrombin and macrophage migration inhibitory factor (MIF) was determined by ELISA and Western blot. The PAR1, PAR3, and PAR4 receptors of thrombin were examined by PCR and immunohistochemistry. Primary astrocytes were isolated and purified from the spinal cord, followed by stimulation with different concentrations of thrombin either for transcriptome sequencing or for analysis of thrombin-mediated expression of MIF and related signal pathways in the presence or absence of various inhibitors. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS MIF protein levels were significantly elevated in parallel with those of thrombin induced by SCI. Immunostaining demonstrated that PAR1 receptor, together with MIF, was abundantly expressed in astrocytes. By transcriptome sequencing and bioinformatical analysis of thrombin-stimulated primary astrocytes, MIF was identified to be dynamically regulated by the serine protease. Investigation of the underlying mechanism using various inhibitors revealed that thrombin-activated PAR1 was responsible for the MIF production of astrocytes through modulation of JNK/NFκB pathway. Administration of PAR1 inhibitor at lesion sites following SCI significantly reduced the protein levels of MIF and ameliorated functional deficits of rat locomotion. CONCLUSION SCI-activated thrombin is a robust inducer of MIF production from astrocytes. Exploring the roles of thrombin in promoting the production of DAMPs from astrocytes at lesion site will provide an alternative strategy for the clinical therapy of CNS inflammation.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Haiyan Jiang
- Health Management Center, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Xinye Luo
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
11
|
Cordeiro JL, Neves JD, Nicola F, Vizuete AF, Sanches EF, Gonçalves CA, Netto CA. Arundic Acid (ONO-2506) Attenuates Neuroinflammation and Prevents Motor Impairment in Rats with Intracerebral Hemorrhage. Cell Mol Neurobiol 2022; 42:739-751. [PMID: 32918255 PMCID: PMC11441233 DOI: 10.1007/s10571-020-00964-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype caused by the rupture of blood vessels within the brain. Increased levels of S100B protein may contribute to neuroinflammation after ICH through activation of astrocytes and resident microglia, with the consequent production of proinflammatory cytokines and reactive oxygen species (ROS). Inhibition of astrocytic synthesis of S100B by arundic acid (AA) has shown beneficial effects in experimental central nervous system disorders. In present study, we administered AA in a collagenase-induced ICH rodent model in order to evaluate its effects on neurological deficits, S100B levels, astrocytic activation, inflammatory, and oxidative parameters. Rats underwent stereotactic surgery for injection of collagenase in the left striatum and AA (2 μg/μl; weight × 0.005) or vehicle in the left lateral ventricle. Neurological deficits were evaluated by the Ladder rung walking and Grip strength tests. Striatal S100B, astrogliosis, and microglial activation were assessed by immunofluorescence analysis. Striatal levels of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were measured by ELISA, and the ROS production was analyzed by dichlorofluorescein (DCF) oxidation. AA treatment prevented motor dysfunction, reduced S100B levels, astrogliosis, and microglial activation in the damaged striatum, thus decreasing the release of proinflammatory cytokines IL-1β and TNF-α, as well as ROS production. Taken together, present results suggest that AA could be a pharmacological tool to prevent the harmful effects of increased S100B, attenuating neuroinflammation and secondary brain damage after ICH.
Collapse
Affiliation(s)
- J L Cordeiro
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
- Post-Graduation Program of Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-190, Brazil.
| | - J D Neves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - F Nicola
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - A F Vizuete
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - E F Sanches
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Post-Graduation Program of Phisiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-190, Brazil
| | - C A Gonçalves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
12
|
Angiogenesis is critical for the exercise-mediated enhancement of axon regeneration following peripheral nerve injury. Exp Neurol 2022; 353:114029. [DOI: 10.1016/j.expneurol.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
|
13
|
Vittal Rao H, Bihaqi SW, Iannucci J, Sen A, Grammas P. Thrombin Signaling Contributes to High Glucose-Induced Injury of Human Brain Microvascular Endothelial Cells. J Alzheimers Dis 2021; 79:211-224. [PMID: 33252072 DOI: 10.3233/jad-200658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes is one of the strongest disease-related risk factors for Alzheimer's disease (AD). In diabetics, hyperglycemia-induced microvascular complications are the major cause of end-organ injury, contributing to morbidity and mortality. Microvascular pathology is also an important and early feature of AD. The cerebral microvasculature may be a point of convergence of both diseases. Several lines of evidence also implicate thrombin in AD as well as in diabetes. OBJECTIVE Our objective was to investigate the role of thrombin in glucose-induced brain microvascular endothelial injury. METHODS Cultured Human brain microvascular endothelial cells (HBMVECs) were treated with 30 mM glucose±100 nM thrombin and±250 nM Dabigatran or inhibitors of PAR1, p38MAPK, MMP2, or MMP9. Cytotoxicity and thrombin activity assays on supernatants and western blotting for protein expression in lysates were performed. RESULTS reatment of HBMVECs with 30 mM glucose increased thrombin activity and expression of inflammatory proteins TNFα, IL-6, and MMPs 2 and 9; this elevation was reduced by the thrombin inhibitor dabigatran. Direct treatment of brain endothelial cells with thrombin upregulated p38MAPK and CREB, and induced TNFα, IL6, MMP2, and MMP9 as well as oxidative stress proteins NOX4 and iNOS. Inhibition of thrombin, thrombin receptor PAR1 or p38MAPK decrease expression of inflammatory and oxidative stress proteins, implying that thrombin may play a central role in glucose-induced endothelial injury. CONCLUSION Since preventing brain endothelial injury would preserve blood-brain barrier integrity, prevent neuroinflammation, and retain intact functioning of the neurovascular unit, inhibiting thrombin, or its downstream signaling effectors, could be a therapeutic strategy for mitigating diabetes-induced dementia.
Collapse
Affiliation(s)
- Haripriya Vittal Rao
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Jaclyn Iannucci
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Paula Grammas
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
14
|
Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer's diseases. Psychopharmacology (Berl) 2021; 238:1645-1656. [PMID: 33624157 DOI: 10.1007/s00213-021-05798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aβ) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer's disease. METHODS For the induction of Alzheimer's disease, amyloid beta (Aβ) 1-42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer's disease (AD); group III (SCH) (25 μg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area. RESULTS Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.
Collapse
|
15
|
Triplet EM, Kim HN, Yoon H, Radulovic M, Kleppe L, Simon WL, Choi CI, Walsh PJ, Dutton JR, Scarisbrick IA. The thrombin receptor links brain derived neurotrophic factor to neuron cholesterol production, resiliency and repair after spinal cord injury. Neurobiol Dis 2021; 152:105294. [PMID: 33549720 PMCID: PMC8021459 DOI: 10.1016/j.nbd.2021.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.
Collapse
Affiliation(s)
- Erin M Triplet
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America
| | - Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Whitney L Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Chan-Il Choi
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Patrick J Walsh
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - James R Dutton
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Isobel A Scarisbrick
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America; Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America; Department of Physiology and Biomedical Engineering, Rochester, MN 55905, United States of America.
| |
Collapse
|
16
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Zhang Q, Li W, Zhao F, Xu C, Fan G, Liu Q, Zhang X, Zhang X. Electrochemical sandwich-type thrombin aptasensor based on silver nanowires& particles decorated electrode and the signal amplifier of Pt loaded hollow zinc ferrite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Cui H, Wu W, Xu H, Cao H, Hong N, Cheng L, Liao F, Jiang Y, Ma G, Fan H. A homogeneous strategy of target-triggered catalytic hairpin assembly for thrombin signal amplification. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW, Xue M. Intracerebral haemorrhage: from clinical settings to animal models. Stroke Vasc Neurol 2020; 5:388-395. [PMID: 33376200 PMCID: PMC7804065 DOI: 10.1136/svn-2020-000334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Spontaneous intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity and for which no effective treatments are available to date. Much experimental and clinical research have been performed to explore its mechanisms regard the subsequent inflammatory cascade and to seek the potential therapeutic strategies. The aim of this review is to discuss insights from clinical settings that have led to the development of numerous animal models of ICH. Some of the current and future challenges for clinicians to understand ICH are also surveyed.
Collapse
Affiliation(s)
- Qian Bai
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaofu Sheng
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Visible light driven photoelectrochemical thrombin aptasensor based on uniform TiO2 nanotube arrays modified with CuOx and perylene-3,4,9,10-tetracarboxylic acid. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Romantsik O, Bruschettini M, Ley D. Intraventricular Hemorrhage and White Matter Injury in Preclinical and Clinical Studies. Neoreviews 2020; 20:e636-e652. [PMID: 31676738 DOI: 10.1542/neo.20-11-e636] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Germinal matrix-intraventricular hemorrhage (IVH) occurs in nearly half of infants born at less than 26 weeks' gestation. Up to 50% of survivors with IVH develop cerebral palsy, cognitive deficits, behavioral disorders, posthemorrhagic ventricular dilatation, or a combination of these sequelae. After the initial bleeding and the primary brain injury, inflammation and secondary brain injury might lead to periventricular leukomalacia or diffuse white matter injury. Potential factors that are involved include microglia and astrocyte activation, degradation of blood components with release of "toxic" products, infiltration of the brain by systemic immune cells, death of neuronal and glial cells, and arrest of preoligodendrocyte maturation. In addition, impairment of the blood-brain barrier may play a major role in the pathophysiology. A wide range of animal models has been used to explore causes and mechanisms leading to IVH-induced brain injury. Preclinical studies have identified potential targets for enhancing brain repair. However, little has been elucidated about the effectiveness of potential interventions in clinical studies. A systematic review of available preclinical and clinical studies might help identify research gaps and which types of interventions may be prioritized. Future trials should report clinically robust and long-term outcomes after IVH.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
22
|
Cordeiro JL, Neves JD, Vizuete AF, Aristimunha D, Pedroso TA, Sanches EF, Gonçalves CA, Netto CA. Arundic Acid (ONO-2506), an Inhibitor of S100B Protein Synthesis, Prevents Neurological Deficits and Brain Tissue Damage Following Intracerebral Hemorrhage in Male Wistar Rats. Neuroscience 2020; 440:97-112. [PMID: 32474054 DOI: 10.1016/j.neuroscience.2020.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
Stroke is one of the leading causes of mortality and neurological morbidity. Intracerebral hemorrhage (ICH) has the poorest prognosis among all stroke subtypes and no treatment has been effective in improving outcomes. Following ICH, the observed high levels of S100B protein have been associated with worsening of injury and neurological deficits. Arundic acid (AA) exerts neuroprotective effects through inhibition of astrocytic synthesis of S100B in some models of experimental brain injury; however, it has not been studied in ICH. The aim of this study was to evaluate the effects of intracerebroventricular (ICV) administration of AA in male Wistar rats submitted to ICH model assessing the following variables: reactive astrogliosis, S100B levels, antioxidant defenses, cell death, lesion extension and neurological function. Firstly, AA was injected at different doses (0.02, 0.2, 2 and 20 μg/μl) in the left lateral ventricle in order to observe which dose would decrease GFAP and S100B striatal levels in non-injured rats. Following determination of the effective dose, ICH damage was induced by IV-S collagenase intrastrial injection and 2 μg/μl AA was injected through ICV route immediately before injury. AA treatment prevented ICH-induced neurological deficits and tissue damage, inhibited excessive astrocytic activation and cellular apoptosis, reduced peripheral and central S100B levels (in striatum, serum and cerebrospinal fluid), improved neuronal survival and enhanced the antioxidant defences after injury. Altogether, these results suggest that S100B is a viable target for treating ICH and highlight AA as an interesting strategy for improving neurological outcome after experimental brain hemorrhage.
Collapse
Affiliation(s)
- J L Cordeiro
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil; Post-graduation Program of Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-190, Brazil.
| | - J D Neves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - A F Vizuete
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - D Aristimunha
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - T A Pedroso
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - E F Sanches
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil; Post-graduation Program of Phisiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-190, Brazil
| | - C A Gonçalves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
23
|
Lee J, Zhao T, Peeler DJ, Lee DC, Pichon TJ, Li D, Weigandt KM, Horner PJ, Pozzo LD, Sellers DL, Pun SH. Formulation of thrombin-inhibiting hydrogels via self-assembly of ionic peptides with peptide-modified polymers. SOFT MATTER 2020; 16:3762-3768. [PMID: 32239011 PMCID: PMC7204513 DOI: 10.1039/d0sm00209g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell therapy for spinal cord injuries offers the possibility of replacing lost cells after trauma to the central nervous system (CNS). In preclinical studies, synthetic hydrogels are often co-delivered to the injury site to support survival and integration of the transplanted cells. These hydrogels ideally mimic the mechanical and biochemical features of a healthy CNS extracellular matrix while also providing the possibility of localized drug delivery to promote healing. In this work, we synthesize peptide-functionalized polymers that contain both a peptide sequence for incorporation into self-assembled peptide hydrogels along with bioactive peptides that inhibit scar formation. We demonstrate that peptide hydrogels formulated with the peptide-functionalized polymers possess similar mechanical properties (soft and shear-thinning) as peptide-only hydrogels. Small angle neutron scattering analysis reveals that polymer-containing hydrogels possess larger inhomogeneous domains but small-scale features such as mesh size remain the same as peptide-only hydrogels. We further confirm that the integrated hydrogels containing bioactive peptides exhibit thrombin inhibition activity, which has previously shown to reduce scar formation in vivo. Finally, while the survival of encapsulated cells was poor, cells cultured on the hydrogels exhibited good viability. Overall, the described composite hydrogels formed from self-assembling peptides and peptide-modified polymers are promising, user-friendly materials for CNS applications in regeneration.
Collapse
Affiliation(s)
- Jason Lee
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Tianyu Zhao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - David J Peeler
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Daniel C Lee
- Molecular Engineering and Sciences, University of Washington, Seattle, WA 98195, USA
| | - Trey J Pichon
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - David Li
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Kathleen M Weigandt
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Philip J Horner
- Center for Neuroregeneration and Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA. and Molecular Engineering and Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Xu H, Zhang T, Gu Y, Yan X, Lu N, Liu H, Xu Z, Xing Y, Song Y, Zhang Z, Yang M. An electrochemical thrombin aptasensor based on the use of graphite-like C3N4 modified with silver nanoparticles. Mikrochim Acta 2020; 187:163. [DOI: 10.1007/s00604-020-4111-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/01/2020] [Indexed: 02/02/2023]
|
25
|
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 2020; 143:1297-1314. [PMID: 31919518 DOI: 10.1093/brain/awz393] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 01/24/2023] Open
Abstract
Abstract
The prognosis of intracerebral haemorrhage continues to be devastating despite much research into this condition. A prominent feature of intracerebral haemorrhage is neuroinflammation, particularly the excessive representation of pro-inflammatory CNS-intrinsic microglia and monocyte-derived macrophages that infiltrate from the circulation. The pro-inflammatory microglia/macrophages produce injury-enhancing factors, including inflammatory cytokines, matrix metalloproteinases and reactive oxygen species. Conversely, the regulatory microglia/macrophages with potential reparative and anti-inflammatory roles are outcompeted in the early stages after intracerebral haemorrhage, and their beneficial roles appear to be overwhelmed by pro-inflammatory microglia/macrophages. In this review, we describe the activation of microglia/macrophages following intracerebral haemorrhage in animal models and clinical subjects, and consider their multiple mechanisms of cellular injury after haemorrhage. We review strategies and medications aimed at suppressing the pro-inflammatory activities of microglia/macrophages, and those directed at elevating the regulatory properties of these myeloid cells after intracerebral haemorrhage. We consider the translational potential of these medications from preclinical models to clinical use after intracerebral haemorrhage injury, and suggest that several approaches still lack the experimental support necessary for use in humans. Nonetheless, the preclinical data support the use of deactivator or inhibitor of pro-inflammatory microglia/macrophages, whilst enhancing the regulatory phenotype, as part of the therapeutic approach to improve the prognosis of intracerebral haemorrhage.
Collapse
Affiliation(s)
- Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Zhang T, Song Y, Xing Y, Gu Y, Yan X, Liu H, Lu N, Xu H, Xu Z, Zhang Z, Yang M. The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for biomarker detection. NANOSCALE 2019; 11:20221-20227. [PMID: 31621739 DOI: 10.1039/c9nr07190c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here, a new type of signal amplification strategy is proposed employing Au nanoparticle (AuNP)-functionalized covalent organic framework (Au-COF) nanosheets and AuNP functionalized ZIF-8(NiPd) (Au@ZIF-8(NiPd)) rhombic dodecahedra nanocomposites for sandwich electrochemical sensor construction. The peroxidase mimics Au@ZIF-8(NiPd) took the place of natural enzymes in enzyme-assisted amplification strategies, both acting as catalysts for H2O2 reduction for signal amplification, and serving as ideal nanocarriers for signal probe anchoring. The cancer biomarker thrombin (TB) was selected as the target. Thrombin binding aptamers (TBA 2) were fixed on Au@ZIF-8(NiPd), and the obtained TBA 2-Au@ZIF-8(NiPd) bioconjugates were employed as tracer labels, and TB was sandwiched between the tracer labels and capture probe TBA 1 which were immobilized on the Au-COF nanosheet modified electrode. Au-COFs with a high specific area, super electroconductivity, and uniformly distributed AuNPs were utilized as the electrode substrate to fix TBA 1. Exploiting the sandwich method, the proposed TB aptasensor exhibited a wide linear range of 0.1 pM to 20 nM with a low detection limit of 15 fM (S/N = 3). The ingenious sensing strategy enriched the application diversity of the artificial enzyme and showed promise in research and development of point-of-care diagnostics.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yu Song
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yue Xing
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yue Gu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoyi Yan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - He Liu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Haixin Xu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiqian Xu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- Department of Breast Surgery, First Hospital, Jilin University, Changchun 130012, China
| |
Collapse
|
27
|
Daaboul Y, Korjian S, Plotnikov AN, Burton P, Braunwald E, Wiviott SD, Gibson CM. Rivaroxaban and Post-Stroke Neurological Outcomes in Patients With Acute Coronary Syndrome. J Am Coll Cardiol 2019; 71:1048-1049. [PMID: 29495985 DOI: 10.1016/j.jacc.2017.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 10/17/2022]
|
28
|
Choi S, Saxena N, Dhammu T, Khan M, Singh AK, Singh I, Won J. Regulation of endothelial barrier integrity by redox-dependent nitric oxide signaling: Implication in traumatic and inflammatory brain injuries. Nitric Oxide 2018; 83:51-64. [PMID: 30590116 DOI: 10.1016/j.niox.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/15/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.
Collapse
Affiliation(s)
- Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tajinder Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
29
|
Zhu C, Zhu W, Xu L, Zhou X. A label-free electrochemical aptasensor based on magnetic biocomposites with Pb 2+-dependent DNAzyme for the detection of thrombin. Anal Chim Acta 2018; 1047:21-27. [PMID: 30567652 DOI: 10.1016/j.aca.2018.09.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
Herein, a novel magnetic biocomposite (Fe3O4@Au-S1/S2) was applied to analyze thrombin. The Fe3O4@Au-S1/S2 consisted of Fe3O4@Au nanoparticles (Fe3O4@Au NPs) as carriers for magnetic separation and magnetic field-induced self-assembly, thiolated complementary strand (S1) anchored based on Au-S bond and thrombin binding aptamer (S2) as a recognition element. As a redox indicator, methylene blue (MB) can be adsorbed to DNA anchored on the surface of Fe3O4@Au NPs by electro-static interaction. In the absence of thrombin, MB were adsorbed on double-stranded DNA (S1/S2) which anchored on Fe3O4@Au NPs and a high electrochemical signal of MB was recorded by Differential pulse voltammetry. Conversely, the complementary strand (S1) exposed after thrombin competitively bonded with aptamer. The introduction of Pb2+-dependent DNAzyme (S3) split S1 at specific rA site, resulting in the significantly decreased adsorption capacity of MB. Thus, the thrombin detection could be recorded by monitoring the electrochemical signal reduction of MB through incubation of thrombin with S3. This method exhibited a high sensitivity toward thrombin with a broad linear range from 5 pmol L-1 to 5 nmol L-1 and a limit of detection of 1.8 pmol L-1.
Collapse
Affiliation(s)
- Chunhong Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Lei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
30
|
Kim H, An Z, Jang CH. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Mikrochim Acta 2018; 185:430. [PMID: 30143874 DOI: 10.1007/s00604-018-2942-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
An electrochemiluminescent (ECL) aptamer based method is described for the determination of thrombin. Three-dimensional nitrogen-doped graphene oxide (3D-NGO) was placed on a glassy carbon electrode (GCE) to provide an electrode surface that displays excellent electrical conductivity and acts as a strong emitter of ECL. The modified electrode was further coated with chitosan via electrodeposition. Finally, the amino-modified aptamer was immobilized on the modified GCE. The interaction between thrombin and aptamer results in a decrease in ECL. The assay has a linear response in the 1 fM to 1 nM thrombin concentration range and a 0.25 fM lower detection limit (at an S/N ratio of 3). The method was applied to the determination of thrombin in spiked human plasma samples, and recoveries ranged between 94 and 105% (with RSDs of <3.6%). The calibration plot was recorded at potential and wavelength of fluorescence emission (wavelength: 445 nm; potential: 0 to -2 V). Graphical abstract A bare glassy carbon electrode (GCE) does not display electrochemiluminescence (ECL). If, however, nitrogen-doped graphene quantum dots, chitosan, and three-dimensional nitrogen-doped graphene oxide (NGQD-chitosan/3D-NGO) are electrodeposited on the GCE, strong ECL can be observed. The ECL intensity decreased after aptamer and bovine serum albumin (BSA) were dropped onto the electrode (curve a). However, the ECL further decreases after addition of thrombin (TB; curve b).
Collapse
|
32
|
Choi HJ, Kim NE, Kim J, An S, Yang SH, Ha J, Cho S, Kwon I, Kim YD, Nam HS, Heo JH. Dabigatran reduces endothelial permeability through inhibition of thrombin-induced cytoskeleton reorganization. Thromb Res 2018; 167:S0049-3848(18)30324-4. [PMID: 29735342 DOI: 10.1016/j.thromres.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 11/23/2022]
Abstract
Dabigatran etexilate (DE), a new oral anti-coagulant, is a direct thrombin inhibitor. Clinical trials showed the favorable benefit-to-risk profile of DE compared to warfarin for the prevention of ischemic stroke in patients with atrial fibrillation. Remarkably, patients treated with dabigatran showed reduced rates of intracerebral hemorrhage compared to warfarin. As the breakdown of endothelial barrier integrity is associated with hemorrhagic events and as thrombin increases endothelial permeability, we hypothesized that dabigatran preserves the endothelial barrier by inhibiting thrombin-induced permeability. We assessed leakage of fluorescein isothiocyanate (FITC)-dextran through the endothelial monolayer and measured trans-endothelial electrical resistance of the endothelial monolayer after treatment of thrombin or thrombin pre-incubated with dabigatran. Thrombin increased the permeability of endothelial cells. Dabigatran effectively blocked the ability of thrombin to increase permeability. Dabigatran inhibited the formation of actin stress fibers induced by thrombin and inhibited consequent destabilization of junctional protein complexes and intercellular gap formation. The interaction of thrombin with protease activated receptor-1 activates the Rho A guanosine triphosphate (GTP)ase-myosin light chain (MLC) phosphorylation signaling axis, leading to actin cytoskeleton changes. This signaling pathway was effectively inhibited by dabigatran in endothelial cells. Consistently, the number of phosphorylated MLC-positive cells was significantly decreased in ischemic tissue of rat brains. These results indicate dabigatran blocks the ability of thrombin to induce vascular permeability and the resulting underlying signaling cascade in endothelial cells. Our findings provide evidence that dabigatran may confer a lower risk of intracerebral hemorrhage by preserving endothelial barrier integrity.
Collapse
Affiliation(s)
- Hyun-Jung Choi
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Na-Eun Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jayoung Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunho An
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Hee Yang
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Ha
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunghee Cho
- The Burke-Cornell Medical Research Institute, White Plains, NY 10605, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, United States
| | - Il Kwon
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Dae Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Suk Nam
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoe Heo
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
33
|
Chiu CD, Yao NW, Guo JH, Shen CC, Lee HT, Chiu YP, Ji HR, Chen X, Chen CC, Chang C. Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage. Oncotarget 2017; 8:94850-94861. [PMID: 29212271 PMCID: PMC5706917 DOI: 10.18632/oncotarget.22022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/22/2017] [Indexed: 12/27/2022] Open
Abstract
Neurological deterioration of intracerebral hemorrhage (ICH) mostly occurs within the first 24 hours. Together with the microglia/macrophages (MMΦ), astrocytes are important cell population responsible for many brain injuries but rarely being highlighted in acute stage of ICH. In present study, we induced rats ICH either by collagenase or autologous blood injection. Experimental groups were classified as vehicle or Ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (Pyr3) treatment group (n = 9, each group). MRI assessments after ICH were used to evaluate the hematoma progression and blood-brain barrier (BBB) integrity. The glia cells accumulations were examined by GFAP and Iba1 immunohistochemistry, respectively. Abundant astrocytes but few MMΦ were observed in hyperacute and acute ICH. Upon suppression of astrocyte activity, ICH rats exhibited decreased size of hematoma expansion, less BBB destruction, reduced astrocyte accumulation in perihematomal regions, postponed course of hemoresolution and gain better outcomes. These finding provide evidence that activated astrocytes are crucial cell populations in hyperacute and acute ICH, and their modulation may offer opportunities for novel therapy and patient management.
Collapse
Affiliation(s)
- Cheng-Di Chiu
- School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.,Stroke Center, China Medical University Hospital, Taichung, Taiwan
| | - Nai-Wei Yao
- School of Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan.,Stroke Center, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Hung Guo
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - You-Pen Chiu
- School of Medicine, China Medical University, Taichung, Taiwan.,Stroke Center, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ru Ji
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Stroke Center, China Medical University Hospital, Taichung, Taiwan
| | - Xianxiu Chen
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.,Stroke Center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.,Stroke Center, China Medical University Hospital, Taichung, Taiwan
| | - Chen Chang
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| |
Collapse
|
34
|
Abstract
TRPC channels play important roles in neuronal death/survival in ischemic stroke, vasospasm in hemorrhagic stroke, thrombin-induced astrocyte pathological changes, and also in the initiation of stroke by affecting blood pressure and atherogenesis. TRPCs' unique channel characters and downstream pathways make them possible new targets for stroke therapy. TRPC proteins have different functions in different cell types. Considering TRPCs' extensive distribution in various tissues and cell types, drugs targeting them could induce more complicated effects. More specific agonists/antagonists and antibodies are required for future study of TRPCs as potential targets for stroke therapy.
Collapse
|
35
|
Chen S, Liu P, Su K, Li X, Qin Z, Xu W, Chen J, Li C, Qiu J. Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu 2O-Au nanocomposites for signal amplification. Biosens Bioelectron 2017; 99:338-345. [PMID: 28800505 DOI: 10.1016/j.bios.2017.08.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
In this work, novel octahedral Cu2O-Au nanocomposites were synthesized and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of a DNAzyme for signal amplification. The octahedral Cu2O-Au nanocomposites have not only simultaneously served as signal amplifying molecules but have also been utilized as an ideal loading platform to immobilize a large number of electroactive substances and recognition probes. Gold nanoparticles (AuNPs) were grown directly on the surface of the octahedral Cu2O nanocrystals, and the Cu2O-Au nanocomposites obtained had the advantages of large surface areas and excellent biocompatibilities. The hemin/G-quadruplex, which was formed by intercalating hemin into the amino terminated thrombin binding aptamer (NH2-TBA), and the electroactive toluidine blue (Tb) were immobilized onto the Cu2O-Au nanocomposite surfaces through a stable Au-N bond. AuNPs, Cu2O and hemin/G-quadruplex co-catalyse the H2O2 in the working buffer to promote the electron transfer of Tb as a multiple signal amplification strategy in order to improve the performance of the electrochemical aptasensor. Under optimal conditions, the designed aptasensor exhibited sensitive detection of TB from 100 fM to 20nM with a lower detection limit of 23fM. This proposed aptasensor exhibited good sensitivity, high specificity and acceptable reproducibility and could be widely applied in bioassay analysis.
Collapse
Affiliation(s)
- Shuai Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Pin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Kewen Su
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Qin
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Wei Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Jun Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Chaorui Li
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
36
|
Martorana E, Rocco B, Kaleci S, Pirola GM, Bevilacqua L, Bonetti LR, Puliatti S, Micali S, Bianchi G. Does topical hemostatic agent (Floseal ®) have a long-term adverse effect on erectile function recovery after nerve-sparing robot-assisted radical prostatectomy? Int Urol Nephrol 2017; 49:1519-1526. [PMID: 28677091 DOI: 10.1007/s11255-017-1645-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the long-term effects of Floseal® on erectile function recovery (EFR) after nerve-sparing robot-assisted radical prostatectomy (RALP). METHODS We prospectively collected results of the self-administered International Index Erectile Function Questionnaire 1-5 and 15 (IIEF 1-5 and 15) of 532 consecutive patients who underwent RALP for prostate cancer in our institution between October 2007 and December 2015. Patients were divided into two groups according to Floseal® application after prostatectomy. They were enrolled according to the following criteria: (a) bilateral nerve-sparing procedure; (b) preoperative IIEF ≥ 17; adherence to our erectile rehabilitation protocol; (c) 1-year follow-up. Outcomes were measured as mean IIEF score, EFR (IIEF < 17 or ≥17), grade of ED: severe (IIEF < 17), moderate (17-21), mild (22-25) and no ED (>25). RESULTS A total of 120 patients were enrolled. Group A included 40 consecutive patients who received traditional hemostasis, and Group B included 80 consecutive patients in which Floseal® was additionally used. No differences were observed in terms of preoperative mean IIEF score (p = 0.65). Group B patients showed a trend toward a higher mean IIEF score 3 months after surgery (p = 0.06) but no differences in terms of EFR (p = 1.000). Long-term results (6, 9, 12 months after surgery) showed a significantly and progressively higher mean IIEF score (p = 0.04, 0.003, 0.003) and EFR (p = 0.043, 0.027, 0.004) in Group A patients. Comparison between the groups in terms of severe, moderate, mild and no ED becomes significant at 9 and 12 months (p = 0.002, 0.006). CONCLUSION The results of our study suggest that local use of Floseal® worsens the long-term erectile function recovery in patients selected for nerve-sparing RALP.
Collapse
Affiliation(s)
- Eugenio Martorana
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Bernardo Rocco
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Shaniko Kaleci
- Department of Medical Statistic, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Maria Pirola
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Urology, Policlinico di Modena, Via del Pozzo, 71, 41124, Modena, Italy.
| | - Luigi Bevilacqua
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Stefano Puliatti
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Salvatore Micali
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giampaolo Bianchi
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Smith JR, Winkelstein BA. The role of spinal thrombin through protease-activated receptor 1 in hyperalgesia after neural injury. J Neurosurg Spine 2017; 26:532-541. [PMID: 28059686 DOI: 10.3171/2016.9.spine16501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Painful neuropathic injuries induce blood-spinal cord barrier (BSCB) breakdown, allowing pro-inflammatory serum molecules to cross the BSCB, which contributes to nociception. The goal of these studies was to determine whether the blood-borne serine protease thrombin also crosses a permeable BSCB, contributing to nociception through its activation of protease-activated receptor-1 (PAR1). METHODS A 15-minute C-7 nerve root compression, which induces BSCB breakdown and painful behaviors by Day 1, was administered in the rat (n = 10); sham operation (n = 11) and a 3-minute compression (n = 10) that does not induce sensitivity were administered as controls. At Day 1 after root compression, spinal cord tissue was co-immunolabeled for fibrin/fibrinogen, the enzymatic product of thrombin, and IgG, a serum protein, to determine whether thrombin acts in areas of BSCB breakdown. To determine whether spinal thrombin and PAR1 contribute to hyperalgesia after compression, the thrombin inhibitor hirudin and the PAR1 antagonist SCH79797, were separately administered intrathecally before compression injuries (n = 5-7 per group). Rat thrombin was also administered intrathecally with and without SCH79797 (n = 6 per group) to determine whether spinal thrombin induces hypersensitivity in naïve rats through PAR1. RESULTS Spinal fibrin(ogen) was elevated at Day 1 after root compression in regions localized to BSCB breakdown and decreased in those regions by Day 7. Blocking either spinal thrombin or PAR1 completely prevented compression-induced hyperalgesia for 7 days. Intrathecal thrombin induced transient pain that was prevented by blocking spinal PAR1 before its injection. CONCLUSIONS The findings of this study suggest a potent role for spinal thrombin and its activation of PAR1 in pain onset following neuropathic injury.
Collapse
Affiliation(s)
| | - Beth A. Winkelstein
- Departments of 1Bioengineering and
- 2Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Chu DS, Sellers DL, Bocek MJ, Fischedick AE, Horner PJ, Pun SH. MMP9-sensitive polymers mediate environmentally-responsive bivalirudin release and thrombin inhibition. Biomater Sci 2016; 3:41-5. [PMID: 25589953 DOI: 10.1039/c4bm00259h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MMP9-responsive bivalirudin-HPMA copolymers were synthesized for direct, local administration in rat spinal cord contusion injury models. Polymer-conjugated bivalirudin peptides maintained activity while demonstrating enzyme-mediated release upon MMP9 exposure and prolonged release from hyaluronic acid/methylcellulose (HAMC) hydrogels compared to free bivalirudin peptide. Localized administration of bivalirudin copolymers in vivo at the site of rat spinal cord injury decreased cellular proliferation and astrogliosis, suggesting the bivalirudin copolymer and HAMC hydrogel system are a promising therapeutic intervention for reducing immediate inflammatory responses and long term scarring.
Collapse
Affiliation(s)
- D S Chu
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - D L Sellers
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - M J Bocek
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - A E Fischedick
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - P J Horner
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - S H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Radulovic M, Yoon H, Wu J, Mustafa K, Scarisbrick IA. Targeting the thrombin receptor modulates inflammation and astrogliosis to improve recovery after spinal cord injury. Neurobiol Dis 2016; 93:226-42. [PMID: 27145117 PMCID: PMC4930708 DOI: 10.1016/j.nbd.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
The deregulation of serine protease activity is a common feature of neurological injury, but little is known regarding their mechanisms of action or whether they can be targeted to facilitate repair. In this study we demonstrate that the thrombin receptor (Protease Activated Receptor 1, (PAR1)) serves as a critical translator of the spinal cord injury (SCI) proteolytic microenvironment into a cascade of pro-inflammatory events that contribute to astrogliosis and functional decline. PAR1 knockout mice displayed improved locomotor recovery after SCI and reduced signatures of inflammation and astrogliosis, including expression of glial fibrillary acidic protein (GFAP), vimentin, and STAT3 signaling. SCI-associated elevations in pro-inflammatory cytokines such as IL-1β and IL-6 were also reduced in PAR1-/- mice and co-ordinate improvements in tissue sparing and preservation of NeuN-positive ventral horn neurons, and PKCγ corticospinal axons, were observed. PAR1 and its agonist's thrombin and neurosin were expressed by perilesional astrocytes and each agonist increased the production of IL-6 and STAT3 signaling in primary astrocyte cultures in a PAR1-dependent manner. In turn, IL-6-stimulated astrocytes increased expression of PAR1, thrombin, and neurosin, pointing to a model in which PAR1 activation contributes to increased astrogliosis by feedforward- and feedback-signaling dynamics. Collectively, these findings identify the thrombin receptor as a key mediator of inflammation and astrogliosis in the aftermath of SCI that can be targeted to reduce neurodegeneration and improve neurobehavioral recovery.
Collapse
Affiliation(s)
- Maja Radulovic
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Karim Mustafa
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States.
| |
Collapse
|
40
|
Ebrahimi S, Jaberi N, Avan A, Ryzhikov M, Keramati MR, Parizadeh MR, Hassanian SM. Role of thrombin in the pathogenesis of central nervous system inflammatory diseases. J Cell Physiol 2016; 232:482-485. [PMID: 27458694 DOI: 10.1002/jcp.25501] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Thrombin initiates proinflammatory signaling responses through activation of protease-activated receptors (PARs) in in vitro and in vivo systems. Proinflammatory signaling function of thrombin increases secretion of proinflammatory cytokines and chemokines, triggers vascular permeability, promotes leukocyte migration, and induces adhesion molecule expression. Thrombin as a potent signaling molecule is strongly implicated in a number of proinflammatory disorders including severe sepsis, cancer, cardiovascular disease, and of special interest in this review neurodegenerative disorders. This review summarizes the role of thrombin in the pathogenesis of central nervous system (CNS) inflammatory diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), promoting greater understanding and clinical management of these diseases. J. Cell. Physiol. 232: 482-485, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najme Jaberi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Saint Louis, Missouri
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Saint Louis, Missouri.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Ahour F, Ahsani MK. An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode. Biosens Bioelectron 2016; 86:764-769. [PMID: 27476058 DOI: 10.1016/j.bios.2016.07.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/26/2016] [Accepted: 07/16/2016] [Indexed: 01/10/2023]
Abstract
In this work, we tactfully constructed a novel label-free electrochemical aptasensor for rapid and facile detection of thrombin using graphene oxide (GO) and thrombin binding aptamer (TBA). The strategy relies on the preferential adsorption of single-stranded DNA (ssDNA) to GO over aptamer-target complexes. The TBA-thrombin complex formation was monitored by differential pulse voltammetry (DPV) using the guanine oxidation signal. In the absence of thrombin, the aptamers adsorbed onto the surface of GO leading to a strong background guanine oxidation signal. Conversely, in the presence of thrombin, the conformational transformation of TBA after incubating with the thrombin solution and formation of the aptamer-thrombin complexes which had weak binding ability to GO, leads to the desorption of TBA-thrombin complex from electrode surface and significant oxidation signal decrease. The selectivity of the biosensor was studied using other biological substances. The biosensor's signal was proportional to the thrombin concentration from 0.1 to 10nM with a detection limit of 0.07nM. Particularly, the proposed method could be widely applied to the aptamer-based determination of other target analytes.
Collapse
Affiliation(s)
- F Ahour
- Nanotechnology Research Center, Urmia University, Urmia, Iran.
| | - M K Ahsani
- Nanotechnology Research Center, Urmia University, Urmia, Iran
| |
Collapse
|
42
|
Martorana E, Ghaith A, Micali S, Pirola GM, De Carne C, Fidanza F, Bianchi G. A Retrospective Analysis of the Hemostatic Effect of FloSeal in Patients Undergoing Robot-Assisted Laparoscopic Radical Prostatectomy. Urol Int 2016; 96:274-9. [PMID: 26890812 DOI: 10.1159/000444304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Perioperative bleeding is a potential complication of robot-assisted laparoscopic radical prostatectomy (RALP) that may worsen outcomes. The role of local hemostatic materials in RALP has not been adequately assessed. We evaluated the hemostatic impact of FloSeal (Baxter International Inc., Fremont, Calif., USA) in RALP. METHODS A retrospective analysis was performed of 392 consecutive patients with prostate cancer who underwent RALP at our institution between February 2008 and July 2014. The patients were divided into 2 consecutive homogenous groups based on the use of FloSeal. Group A included 200 patients who underwent RALP between February 2008 and May 2011, with hemostasis performed using only traditional techniques. Group B included the remaining 192 patients, who underwent RALP between June 2011 and July 2014 and received FloSeal 5 ml after traditional hemostatic methods. We compared the blood transfusion rate, the differences between immediate postoperative hemoglobin (Hb) and mean postoperative day 1 (POD1) Hb levels, difference between POD1 and least Hb levels and difference between immediate postoperative Hb and least Hb levels. RESULTS The intraoperative use of FloSeal significantly decreased the blood transfusions rate, from 8.5 to 2.1% (p = 0.004). FloSeal was also associated with significant improvements in the difference between the immediate postoperative Hb and POD1 Hb levels (p = 0.03), mean POD1 Hb and least Hb (p = 0.01) and mean immediate postoperative Hb and least Hb levels (p = 0.034). CONCLUSIONS In this study, the use of FloSeal improves hemostatic outcomes in patients undergoing RALP compared with traditional hemostatic techniques, without increase of cost.
Collapse
Affiliation(s)
- Eugenio Martorana
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Chen J, Liu Y, Zhao GC. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection. SENSORS 2016; 16:s16010135. [PMID: 26805846 PMCID: PMC4732168 DOI: 10.3390/s16010135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/19/2022]
Abstract
A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates.
Collapse
Affiliation(s)
- Jiexia Chen
- Anhui Key Laboratory of Chem-Biosensing, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
- Departement of Chemistry, Wannan Medical College, Wuhu 241002, China.
| | - Yifan Liu
- Anhui Key Laboratory of Chem-Biosensing, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Guang-Chao Zhao
- Anhui Key Laboratory of Chem-Biosensing, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
45
|
Trimaille T, Pertici V, Gigmes D. Recent advances in synthetic polymer based hydrogels for spinal cord repair. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Yang CC, Lin CC, Chien PTY, Hsiao LD, Yang CM. Thrombin/Matrix Metalloproteinase-9-Dependent SK-N-SH Cell Migration is Mediated Through a PLC/PKC/MAPKs/NF-κB Cascade. Mol Neurobiol 2015; 53:5833-5846. [PMID: 26497035 DOI: 10.1007/s12035-015-9485-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022]
Abstract
Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH3), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH3, Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Peter Tzu-Yu Chien
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
| |
Collapse
|
47
|
Concentration-Dependent Dual Role of Thrombin in Protection of Cultured Rat Cortical Neurons. Neurochem Res 2015; 40:2220-9. [PMID: 26342829 DOI: 10.1007/s11064-015-1711-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/02/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Thrombin's role in the nervous system is not well understood. Under conditions of blood-brain barrier compromise (e.g., neurosurgery or stroke), thrombin can result in neuroapoptosis and the formation of glial scars. Despite this, preconditioning with thrombin has been found to be neuroprotective in models of cerebral ischemia and intracerebral hemorrhage. We investigated the effects of physiologically relevant concentrations of thrombin on cortical neurons using two culture-based assays. We examined thrombin's effect on neurites by quantitative analysis of fluorescently labeled neurons. To characterize thrombin's effects on neuron survival, we spectrophotometrically measured changes in enzymatic activity. Using receptor agonists and thrombin inhibitors, we separately examined the role of thrombin and its receptor in neuroprotection. We found that low concentrations of thrombin (1 nM) enhances neurite growth and branching, neuron viability, and protects against excitotoxic damage. In contrast, higher concentrations of thrombin (100 nM) are potentially detrimental to neuronal health as evidenced by inhibition of neurite growth. Lower concentrations of thrombin resulted in equivalent neuroprotection as the antifibrinolytic, aprotinin, and the direct thrombin inhibitor, argatroban. Interestingly, exogenous application of the species-specific thrombin inhibitor, antithrombin III, was detrimental to neuronal health; suggesting that some endogenous thrombin is necessary for optimal neuron health in our culture system. Activation of the thrombin receptor, protease-activated receptor-1 (PAR-1), via micromolar concentrations of the thrombin receptor agonist peptide, TRAP, did not adversely affect neuronal viability. An optimal concentration of thrombin exists to enhance neuronal health. Neurotoxic effects of thrombin do not involve activation of PAR receptors and thus separate pharmacologic manipulation of thrombin's receptor in the setting of direct thrombin inhibitors could be a potential neuroprotective strategy.
Collapse
|
48
|
A glassy carbon electrode modified with in-situ generated chromium-loaded CdS nanoprobes and heparin for ultrasensitive electrochemiluminescent determination of thrombin. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Egashira Y, Hua Y, Keep RF, Xi G. Intercellular cross-talk in intracerebral hemorrhage. Brain Res 2015; 1623:97-109. [PMID: 25863131 DOI: 10.1016/j.brainres.2015.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disorder with high mortality and morbidity. Currently, there are few treatment strategies for ICH-induced brain injury. A recent increase in interest in the pathophysiology of ICH has led to elucidation of the pathways underlying ICH-induced brain injury, pathways where intercellular and hematoma to cell signaling play important roles. In this review, we summarize recent advances in ICH research focusing on intercellular and hematoma:cell cross-talk related to brain injury and recovery after ICH. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Yusuke Egashira
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Zhang E, Liao P. Brain transient receptor potential channels and stroke. J Neurosci Res 2014; 93:1165-83. [PMID: 25502473 DOI: 10.1002/jnr.23529] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been increasingly implicated in the pathological mechanisms of CNS disorders. TRP expression has been detected in neurons, astrocytes, oligodendrocytes, microglia, and ependymal cells as well as in the cerebral vascular endothelium and smooth muscle. In stroke, TRPC3/4/6, TRPM2/4/7, and TRPV1/3/4 channels have been found to participate in ischemia-induced cell death, whereas other TRP channels, in particular those expressed in nonneuronal cells, have been less well studied. This review summarizes the current knowledge on the expression and functions of the TRP channels in various cell types in the brain and our current understanding of TRP channels in stroke pathophysiology. In an aging society, the occurrence of stroke is expected to increase steadily, and there is an urgent requirement to improve the current stroke management strategy. Therefore, elucidating the roles of TRP channels in stroke could shed light on the development of novel therapeutic strategies and ultimately improve stroke outcome.
Collapse
Affiliation(s)
- Eric Zhang
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|