1
|
Pardridge WM. Treatment of Parkinson's disease with biologics that penetrate the blood-brain barrier via receptor-mediated transport. Front Aging Neurosci 2023; 15:1276376. [PMID: 38035276 PMCID: PMC10682952 DOI: 10.3389/fnagi.2023.1276376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Parkinson's disease (PD) is characterized by neurodegeneration of nigral-striatal neurons in parallel with the formation of intra-neuronal α-synuclein aggregates, and these processes are exacerbated by neuro-inflammation. All 3 components of PD pathology are potentially treatable with biologics. Neurotrophins, such as glial derived neurotrophic factor or erythropoietin, can promote neural repair. Therapeutic antibodies can lead to disaggregation of α-synuclein neuronal inclusions. Decoy receptors can block the activity of pro-inflammatory cytokines in brain. However, these biologic drugs do not cross the blood-brain barrier (BBB). Biologics can be made transportable through the BBB following the re-engineering of the biologic as an IgG fusion protein, where the IgG domain targets an endogenous receptor-mediated transcytosis (RMT) system within the BBB, such as the insulin receptor or transferrin receptor. The receptor-specific antibody domain of the fusion protein acts as a molecular Trojan horse to ferry the biologic into brain via the BBB RMT pathway. This review describes the re-engineering of all 3 classes of biologics (neurotrophins, decoy receptor, therapeutic antibodies) for BBB delivery and treatment of PD. Targeting the RMT pathway at the BBB also enables non-viral gene therapy of PD using lipid nanoparticles (LNP) encapsulated with plasmid DNA encoding therapeutic genes. The surface of the lipid nanoparticle is conjugated with a receptor-specific IgG that triggers RMT of the LNP across the BBB in vivo.
Collapse
|
2
|
Jacotte-Simancas A, Middleton JW, Stielper ZF, Edwards S, Molina PE, Gilpin NW. Brain Injury Effects on Neuronal Activation and Synaptic Transmission in the Basolateral Amygdala of Adult Male and Female Wistar Rats. J Neurotrauma 2022; 39:544-559. [PMID: 35081744 PMCID: PMC8978566 DOI: 10.1089/neu.2021.0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) is defined as brain damage produced by an external mechanical force that leads to behavioral, cognitive, and psychiatric sequelae. The basolateral amygdala (BLA) is involved in emotional regulation, and its function and morphology are altered following TBI. Little is known about potential sex-specific effects of TBI on BLA neuronal function, but it is critical for the field to identify potential sex differences in TBI effects on brain and behavior. Here, we hypothesized that TBI would produce sex-specific acute (1 h) effects on BLA neuronal activation, excitability, and synaptic transmission in adult male and female rats. Forty-nine Wistar rats (n = 23 males and 26 females) were randomized to TBI (using lateral fluid percussion) or Sham groups in two separate studies. Study 1 used in situ hybridization (i.e., RNAscope) to measure BLA expression of c-fos (a marker of cell activation), vGlut, and vGat (markers of glutamatergic and GABAergic neurons, respectively) messenger RNA (mRNA). Study 2 used slice electrophysiology to measure intrinsic excitability and excitatory/inhibitory synaptic transmission in putative pyramidal neurons in the BLA. Physiological measures of injury severity were collected from all animals. Our results show that females exhibit increased apnea duration and reduced respiratory rate post-TBI relative to males. In male and female rats, TBI increased c-fos expression in BLA glutamatergic cells but not in BLA GABAergic cells, and TBI increased firing rate in BLA pyramidal neurons. Further, TBI increased spontaneous excitatory and inhibitory postsynaptic current (sEPSC and sIPSC) amplitude in BLA neurons of females relative to all other groups. TBI increased sEPSC frequency in BLA neurons of females relative to males but did not alter sIPSC frequency. In summary, lateral fluid percussion produced different physiological responses in male and female rats, as well as sex-specific alterations in BLA neuronal activation, excitability, and synaptic transmission 1 h after injury.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jason W. Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zachary F. Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Pitkänen A, Paananen T, Kyyriäinen J, Das Gupta S, Heiskanen M, Vuokila N, Bañuelos-Cabrera I, Lapinlampi N, Kajevu N, Andrade P, Ciszek R, Lara-Valderrábano L, Ekolle Ndode-Ekane X, Puhakka N. Biomarkers for posttraumatic epilepsy. Epilepsy Behav 2021; 121:107080. [PMID: 32317161 DOI: 10.1016/j.yebeh.2020.107080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools). The seven BEST biomarker categories include the following: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. We hypothesize some potential overlap between the reported biomarkers of traumatic brain injury (TBI), epilepsy, and posttraumatic epilepsy (PTE). Here, we tested this hypothesis by reviewing studies focusing on biomarker discovery for posttraumatic epileptogenesis and epilepsy. The biomarker modalities reviewed here include plasma/serum and cerebrospinal fluid molecular biomarkers, imaging biomarkers, and electrophysiologic biomarkers. Most of the reported biomarkers have an area under the receiver operating characteristic curve greater than 0.800, suggesting both high sensitivity and high specificity. Our results revealed little overlap in the biomarker candidates between TBI, epilepsy, and PTE. In addition to using single parameters as biomarkers, machine learning approaches have highlighted the potential for utilizing patterns of markers as biomarkers. Although published data suggest the possibility of identifying biomarkers for PTE, we are still in the early phase of the development curve. Many of the seven biomarker categories lack PTE-related biomarkers. Thus, further exploration using proper, statistically powered, and standardized study designs with validation cohorts, and by developing and applying novel analytical methods, is needed for PTE biomarker discovery.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jenni Kyyriäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Ivette Bañuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Natallie Kajevu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Leonardo Lara-Valderrábano
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
4
|
Kawoos U, Abutarboush R, Gu M, Chen Y, Statz JK, Goodrich SY, Ahlers ST. Blast-induced temporal alterations in blood-brain barrier properties in a rodent model. Sci Rep 2021; 11:5906. [PMID: 33723300 PMCID: PMC7971015 DOI: 10.1038/s41598-021-84730-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
The consequences of blast-induced traumatic brain injury (bTBI) on the blood–brain barrier (BBB) and components of the neurovascular unit are an area of active research. In this study we assessed the time course of BBB integrity in anesthetized rats exposed to a single blast overpressure of 130 kPa (18.9 PSI). BBB permeability was measured in vivo via intravital microscopy by imaging extravasation of fluorescently labeled tracers (40 kDa and 70 kDa molecular weight) through the pial microvasculature into brain parenchyma at 2–3 h, 1, 3, 14, or 28 days after the blast exposure. BBB structural changes were assessed by immunostaining and molecular assays. At 2–3 h and 1 day after blast exposure, significant increases in the extravasation of the 40 kDa but not the 70 kDa tracers were observed, along with differential reductions in the expression of tight junction proteins (occludin, claudin-5, zona occluden-1) and increase in the levels of the astrocytic water channel protein, AQP-4, and matrix metalloprotease, MMP-9. Nearly all of these measures were normalized by day 3 and maintained up to 28 days post exposure. These data demonstrate that blast-induced changes in BBB permeability are closely coupled to structural and functional components of the BBB.
Collapse
Affiliation(s)
- Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA.
| | - Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| |
Collapse
|
5
|
Kulkarni P, Bhosle MR, Lu SF, Simon NS, Iriah S, Brownstein MJ, Ferris CF. Evidence of early vasogenic edema following minor head impact that can be reduced with a vasopressin V1a receptor antagonist. Brain Res Bull 2020; 165:218-227. [PMID: 33053434 DOI: 10.1016/j.brainresbull.2020.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Does minor head impact without signs of structural brain damage cause short-term changes in vasogenic edema as measured by an increase apparent diffusion coefficient (ADC) using diffusion weighted imaging? If so, could the increase in vasogenic edema be treated with a vasopressin V1a receptor antagonist? We hypothesized that SRX251, a highly selective V1a antagonist, would reduce vasogenic edema in response to a single minor head impact. METHODS Lightly anesthetized male rats were subjected to a sham procedure or a single hit to the forehead using a closed skull, momentum exchange model. Animals recovered in five min and were injected with saline vehicle (n = 8) or SRX251 (n = 8) at 15 min post head impact and again 7-8 hrs later. At 2 h, 6 h, and 24 h post injury, rats were anesthetized and scanned for increases in ADC, a neurological measure of vasogenic edema. Sham rats (n = 6) were exposed to anesthesia and scanned at all time points but were not hit or treated. Images were registered to and analyzed using a 3D MRI rat atlas providing site-specific data on 150 different brain areas. These brain areas were parsed into 11 major brain regions. RESULTS Untreated rats with brain injury showed a significant increase in global brain vasogenic edema as compared to sham and SRX251 treated rats. Edema peaked at 6 h in injured, untreated rats in three brain regions where changes in ADC were observed, but returned to sham levels by 24 h. There were regional variations in the time course of vasogenic edema and drug efficacy. Edema was significantly reduced in cerebellum and thalamus with SRX251 treatment while the basal ganglia did not show a response to treatment. CONCLUSION A single minor impact to the forehead causes regional increases in vasogenic edema that peak at 6 h but return to baseline within a day in a subset of brain regions. Treatment with a selective V1a receptor antagonist can reduce much of the edema.
Collapse
Affiliation(s)
- Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States
| | - Mansi R Bhosle
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States
| | - Shi-Fang Lu
- Azevan Pharmaceuticals, Bethlehem, PA, United States; Dept.of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Neal S Simon
- Azevan Pharmaceuticals, Bethlehem, PA, United States; Dept.of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Sade Iriah
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States
| | | | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States; Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.
| |
Collapse
|
6
|
van Vliet EA, Ndode-Ekane XE, Lehto LJ, Gorter JA, Andrade P, Aronica E, Gröhn O, Pitkänen A. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis 2020; 145:105080. [PMID: 32919030 DOI: 10.1016/j.nbd.2020.105080] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/16/2020] [Accepted: 09/05/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes 10-20% of acquired epilepsy, which typically develops within 2 years post-injury with poorly understood mechanisms. We investigated the location, severity, evolution and persistence of blood-brain barrier (BBB) dysfunction and associated neuroinflammation after TBI, and their contribution to post-traumatic seizure susceptibility. METHODS TBI was induced with lateral fluid-percussion in adult male Sprague-Dawley rats (6 sham, 12 TBI). Permeability of the BBB was assessed using T1-weighted magnetic resonance imaging (MRI) with gadobutrol (Gd) contrast enhancement at 4 days, 2 weeks, 2 months, and 10 months post-injury and with intravenously administered fluorescein at 11 months post-TBI. Continuous (24/7) video-EEG monitoring was performed for 3 weeks at 11 months post-injury followed by the pentylenetetrazol (PTZ) seizure-susceptibility test. In the end, rats were perfused for histology to assess albumin extravasation, iron deposits, calcifications, reactive astrocytes, microglia and monocytes. To investigate the translational value of the data obtained, BBB dysfunction and neuroinflammation were investigated immunohistochemically in autopsy brain tissue from patients with TBI and PTE. RESULTS MRI indicated persistent Gd leakage in the impacted cortex and thalamus of variable severity in all rats with TBI which correlated with fluorescein extravasation. In the impacted cortex BBB dysfunction was evident from 4 days post-injury onwards to the end of the 10-months follow-up. In the ipsilateral thalamus, leakage was evident at 2 and 10 months post-injury. The greater the BBB leakage in the perilesional cortex at 10 months after the injury, the greater the expression of the endothelial cell antigen RECA-1 (r = 0.734, p < 0.01) and the activated macrophages/monocytes/microglia marker CD68 (r = 0.699, p < 0.05) at 11 months post-injury. Seven of the 12 rats with TBI showed increased seizure susceptibility in the PTZ-test. Unlike expected, we did not find any association between increased Gd-leakage or neuroinflammation with seizure susceptibility at 11 months post-TBI. Analysis of human autopsy tissue indicated that similar to the animal model, chronic BBB dysfunction was also evident in the perilesional cortex and thalamus of patients with PTE, characterized by presence of albumin, iron deposits and calcifications as well as markers of neuroinflammation, including reactive astrocytes, microglia and monocytes. CONCLUSIONS Rats and humans with TBI have long-lasting cortical BBB dysfunction and neuroinflammation. Focal Gd-enhancement matched with loci of neuroinflammation, particularly in the thalamus. Although BBB leakage did not associate with increased seizure susceptibility after TBI, our data suggest that for treatments aimed to mitigate BBB damage and its secondary pathologies like chronic neuroinflammation, there is a region-specific, long-lasting therapeutic time window.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Amsterdam Neuroscience, the Netherlands.
| | | | - Lauri J Lehto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Amsterdam Neuroscience, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Witcher KG, Dziabis JE, Bray CE, Gordillo AJ, Kumar JE, Eiferman DS, Godbout JP, Kokiko-Cochran ON. Comparison between midline and lateral fluid percussion injury in mice reveals prolonged but divergent cortical neuroinflammation. Brain Res 2020; 1746:146987. [PMID: 32592739 DOI: 10.1016/j.brainres.2020.146987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/13/2020] [Indexed: 01/19/2023]
Abstract
Animal models are critical for determining the mechanisms mediating traumatic brain injury-induced (TBI) neuropathology. Fluid percussion injury (FPI) is a widely used model of brain injury typically applied either midline or parasagittally (lateral). Midline FPI induces a diffuse TBI, while lateral FPI induces both focal cortical injury (ipsilateral hemisphere) and diffuse injury (contralateral hemisphere). Nonetheless, discrete differences in neuroinflammation and neuropathology between these two versions of FPI remain unclear. The purpose of this study was to compare acute (4-72 h) and subacute (7 days) neuroinflammatory responses between midline and lateral FPI. Midline FPI resulted in longer righting reflex times than lateral FPI. At acute time points, the inflammatory responses to the two different injuries were similar. For instance, there was evidence of monocytes and cytokine mRNA expression in the brain with both injuries acutely. Midline FPI had the highest proportion of brain monocytes and highest IL-1β/TNFα mRNA expression 24 h later. NanoString nCounter analysis 7 days post-injury revealed robust and prolonged expression of inflammatory-related genes in the cortex after midline FPI compared to lateral FPI; however, Iba-1 cortical immunoreactivity was increased with lateral FPI. Thus, midline and lateral FPI caused similar cortical neuroinflammatory responses acutely and mRNA expression of inflammatory genes was detectable in the brain 7 days later. The primary divergence was that inflammatory gene expression was greater and more diverse subacutely after midline FPI. These results provide novel insight to variations between midline and lateral FPI, which may recapitulate unique temporal pathogenesis.
Collapse
Affiliation(s)
- Kristina G Witcher
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Julia E Dziabis
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Alan J Gordillo
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Julia E Kumar
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Daniel S Eiferman
- Department of Surgery, The Ohio State University, 395 W 12(th) Ave, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W 12(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W 12(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
9
|
Trivedi A, Noble-Haeusslein LJ, Levine JM, Santucci AD, Reeves TM, Phillips LL. Matrix metalloproteinase signals following neurotrauma are right on cue. Cell Mol Life Sci 2019; 76:3141-3156. [PMID: 31168660 PMCID: PMC11105352 DOI: 10.1007/s00018-019-03176-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Neurotrauma, a term referencing both traumatic brain and spinal cord injuries, is unique to neurodegeneration in that onset is clearly defined. From the perspective of matrix metalloproteinases (MMPs), there is opportunity to define their temporal participation in injury and recovery beginning at the level of the synapse. Here we examine the diverse roles of MMPs in the context of targeted insults (optic nerve lesion and hippocampal and olfactory bulb deafferentation), and clinically relevant focal models of traumatic brain and spinal cord injuries. Time-specific MMP postinjury signaling is critical to synaptic recovery after focal axonal injuries; members of the MMP family exhibit a signature temporal profile corresponding to axonal degeneration and regrowth, where they direct postinjury reorganization and synaptic stabilization. In both traumatic brain and spinal cord injuries, MMPs mediate early secondary pathogenesis including disruption of the blood-brain barrier, creating an environment that may be hostile to recovery. They are also critical players in wound healing including angiogenesis and the formation of an inhibitory glial scar. Experimental strategies to reduce their activity in the acute phase result in long-term neurological recovery after neurotrauma and have led to the first clinical trial in spinal cord injured pet dogs.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Psychology, College of Liberal Arts, and Neurology, the Dell Medical School, University of Texas, Austin, TX, 78712, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alison D Santucci
- Department of Neuroscience, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
10
|
Bolton-Hall AN, Hubbard WB, Saatman KE. Experimental Designs for Repeated Mild Traumatic Brain Injury: Challenges and Considerations. J Neurotrauma 2019; 36:1203-1221. [PMID: 30351225 PMCID: PMC6479246 DOI: 10.1089/neu.2018.6096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mild traumatic brain injury (mild TBI) is a growing public concern, as evidence mounts that even brain injuries classified as "mild" can result in persistent neurological dysfunction. Multiple brain injuries heighten the likelihood of worsened or more prolonged symptomatology and may trigger long-term neurodegeneration. Animal models provide a logical platform to identify key parameters, such as loading forces, duration between injuries, and number of injuries, which contribute to additive or synergistic damage after repeated mild TBI. Despite the tremendous increase in research productivity in the field of repeated mild TBI, relatively few studies have been designed in such a way as to provide experimental-based insights into the dependence of cellular and functional outcomes on the prescribed parameters of mild TBI. In this review, we summarize how standard models of TBI have been adapted to produce mild TBI and highlight commonly observed aspects of neuropathology replicated in rodent models of mild TBI. The complexity of designing studies of repeated TBI is discussed, including challenges of incorporating appropriate control groups, informative experimental design, and relevant outcome measures. We then feature studies that provide a well-controlled, within-study design varying either the number of injuries or the interinjury interval. Harnessing the power of experimental models of TBI to elucidate which injury parameters are critical contributors to acute and chronic damage after repeated injury can further efforts at prevention and provide improved models for testing mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Amanda N. Bolton-Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
11
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
12
|
Abstract
Mild traumatic brain injury (mTBI) represents a significant public healthcare concern, accounting for the majority of all head injuries. While symptoms are generally transient, some patients go on to experience long-term cognitive impairments and additional mild impacts can result in exacerbated and persisting negative outcomes. To date, studies using a range of experimental models have reported chronic behavioral deficits in the presence of axonal injury and inflammation following repeated mTBI; assessments of oxidative stress and myelin pathology have thus far been limited. However, some models employed induced acute focal damage more suggestive of moderate–severe brain injury and are therefore not relevant to repeated mTBI. Given that the nature of mechanical loading in TBI is implicated in downstream pathophysiological changes, the mechanisms of damage and chronic consequences of single and repeated closed-head mTBI remain to be fully elucidated. This review covers literature on potential mechanisms of damage following repeated mTBI, integrating known mechanisms of pathology underlying moderate–severe TBIs, with recent studies on adult rodent models relevant to direct impact injuries rather than blast-induced damage. Pathology associated with excitotoxicity and cerebral blood flow-metabolism uncoupling, oxidative stress, cell death, blood-brain barrier dysfunction, astrocyte reactivity, microglial activation, diffuse axonal injury, and dysmyelination is discussed, followed by a summary of functional deficits and preclinical assessments of therapeutic strategies. Comprehensive characterization of the pathology underlying delayed and persisting deficits following repeated mTBI is likely to facilitate further development of therapeutic strategies to limit long-term sequelae.
Collapse
Affiliation(s)
- Brooke Fehily
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia.,2 Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,3 Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
13
|
Pinchi E, Frati A, Cipolloni L, Aromatario M, Gatto V, La Russa R, Pesce A, Santurro A, Fraschetti F, Frati P, Fineschi V. Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis. Sci Rep 2018; 8:2387. [PMID: 29402984 PMCID: PMC5799407 DOI: 10.1038/s41598-018-20699-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most important death and disability cause, involving substantial costs, also in economic terms, when considering the young age of the involved subject. Aim of this paper is to report a series of patients treated at our institutions, to verify neurological results at six months or survival; in fatal cases we searched for βAPP, GFAP, IL-1β, NFL, Spectrin II, TUNEL and miR-21, miR-16, and miR-92 expressions in brain samples, to verify DAI diagnosis and grade as strong predictor of survival and inflammatory response. Concentrations of 8OHdG as measurement of oxidative stress was performed. Immunoreaction of β-APP, IL-1β, GFAP, NFL, Spectrin II and 8OHdG were significantly increased in the TBI group with respect to control group subjects. Cell apoptosis, measured by TUNEL assay, were significantly higher in the study group than control cases. Results indicated that miR-21, miR-92 and miR-16 have a high predictive power in discriminating trauma brain cases from controls and could represent promising biomarkers as strong predictor of survival, and for the diagnosis of postmortem traumatic brain injury.
Collapse
Affiliation(s)
- Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy
| | - Alessandro Frati
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
| | - Luigi Cipolloni
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy
| | - Mariarosaria Aromatario
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy
| | - Vittorio Gatto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy
| | - Raffaele La Russa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
| | - Alessandro Pesce
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy
| | - Flavia Fraschetti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences (SAIMLAL), Sapienza University of Rome, Viale Regina Elena 336, 00185, Rome, Italy. .,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, Italy.
| |
Collapse
|
14
|
Fu BM. Transport Across the Blood-Brain Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:235-259. [PMID: 30315549 DOI: 10.1007/978-3-319-96445-4_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the microenvironment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-borne neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This chapter summarized the unique structures of the BBB; described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB and the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents, and drug carriers; and presented recently developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Recent findings for modulation of the BBB permeability by chemical and physical stimuli were described. Finally, drug delivery strategies through specific trans-BBB routes were discussed.
Collapse
Affiliation(s)
- Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| |
Collapse
|
15
|
Wilson NM, Gurney ME, Dietrich WD, Atkins CM. Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury. PLoS One 2017; 12:e0178013. [PMID: 28542295 PMCID: PMC5438188 DOI: 10.1371/journal.pone.0178013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) initiates a deleterious inflammatory response that exacerbates pathology and worsens outcome. This inflammatory response is partially mediated by a reduction in cAMP and a concomitant upregulation of cAMP-hydrolyzing phosphodiesterases (PDEs) acutely after TBI. The PDE4B subfamily, specifically PDE4B2, has been found to regulate cAMP in inflammatory cells, such as neutrophils, macrophages and microglia. To determine if PDE4B regulates inflammation and subsequent pathology after TBI, adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury (2 ± 0.2 atm) and were then treated with a PDE4B - selective inhibitor, A33, or vehicle for up to 3 days post-surgery. Treatment with A33 reduced markers of microglial activation and neutrophil infiltration at 3 and 24 hrs after TBI, respectively. A33 treatment also reduced cortical contusion volume at 3 days post-injury. To determine whether this treatment paradigm attenuated TBI-induced behavioral deficits, animals were evaluated over a period of 6 weeks after surgery for forelimb placement asymmetry, contextual fear conditioning, water maze performance and spatial working memory. A33 treatment significantly improved contextual fear conditioning and water maze retention at 24 hrs post-training. However, this treatment did not rescue sensorimotor or working memory deficits. At 2 months after surgery, atrophy and neuronal loss were measured. A33 treatment significantly reduced neuronal loss in the pericontusional cortex and hippocampal CA3 region. This treatment paradigm also reduced cortical, but not hippocampal, atrophy. Overall, these results suggest that acute PDE4B inhibition may be a viable treatment to reduce inflammation, pathology and memory deficits after TBI.
Collapse
Affiliation(s)
- Nicole M. Wilson
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mark E. Gurney
- Tetra Discovery Partners, Grand Rapids, Michigan, United States of America
| | - W. Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Coleen M. Atkins
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
16
|
Lehto LJ, Sierra A, Gröhn O. Magnetization transfer SWIFT MRI consistently detects histologically verified myelin loss in the thalamocortical pathway after a traumatic brain injury in rat. NMR IN BIOMEDICINE 2017; 30:e3678. [PMID: 27982487 DOI: 10.1002/nbm.3678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Traumatic brain injury (TBI) is associated with various neurocognitive deficits, and rapid assessment of the damage is potentially important for the prevention and treatment of these deficits. Imaging assessment of mild or moderate damage outside the primary lesion area after TBI, however, remains challenging. Magnetization transfer (MT) has clearly been underutilized in imaging the damage caused by TBI. Here, we applied the MT ratio (MTR) using sweep imaging with Fourier transformation (SWIFT) to study microstructural tissue damage in the thalamocortical pathway outside the primary lesion in a lateral fluid percussion injury rat model of TBI, 5 months after injury. MTR was decreased in layers VIb-IV of the barrel cortex and related subcortical areas, mainly indicating demyelination, which was verified by histology. The largest MTR change in the cortex was in layer VIb (-8.2%, pFDR = 0.01), and the largest MTR change in the subcortical areas was in the caudal-most portion of the internal capsule (-11.0%, pFDR < 0.005). These areas exhibited the greatest demyelination and substantial cellularity attributed to gliosis. Correlation analysis of group-averaged results from the subcortical areas revealed an excellent correlation of MTR with myelin (r2 = 0.94, p < 0.001), but no correlation with increased cellularity as detected by Nissl staining. Thus, MTR using SWIFT can be a valuable tool for the assessment of subtle changes after TBI in both cortical and subcortical areas.
Collapse
Affiliation(s)
- Lauri Juhani Lehto
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Lorente L. New Prognostic Biomarkers in Patients With Traumatic Brain Injury. ARCHIVES OF TRAUMA RESEARCH 2015; 4:e30165. [PMID: 26848476 PMCID: PMC4733516 DOI: 10.5812/atr.30165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/15/2015] [Indexed: 01/02/2023]
Abstract
CONTEXT Traumatic brain injury (TBI) is a leading cause of death, disability, and resource consumption per year. There are two kinds of brain injury in TBI, primary and secondary injuries. Primary injury refers to the initial physical forces applied to the brain at the moment of impact. Secondary injury occurs over a period of hours or days following the initial trauma and results from the activation of different pathways such as inflammation, coagulation, oxidation, and apoptosis. EVIDENCE ACQUISITION This review focuses on new prognostic biomarkers of mortality in TBI patients related to inflammation, coagulation, oxidation, and apoptosis. RESULTS Recently circulating levels of substance P (SP), soluble CD40 ligand (sCD40L), tissue inhibitor of matrix metalloproteinases (TIMP)-1, malondialdehyde (MDA), and cytokeratin (CK)-18 fragmented have been found to be associated with mortality in TBI patients. Substance P is a neuropeptide of the tachykinin family, mainly synthesized in the central and peripheral nervous system, with proinflammatory effects when binding to their neurokinin-1 receptor (NK1R). Soluble CD40 ligand, a member of the tumor necrosis factor (TNF) family that is released into circulation from activated platelets, exhibit proinflamatory, and procoagulant properties on binding to their cell surface receptor CD40. Matrix metalloproteinases (MMPs) are a family of zinc-containing endoproteinases involved neuroinflammation and TIMP-1 is the inhibitor of some of them. Malondialdehyde is an end-product formed during lipid peroxidation due to degradation of cellular membrane phospholipids, that is released into extracellular space and finally into the blood. Cytokeratin -18 is cleaved by the action of caspases during apoptosis, and CK-18 fragmented is released into the blood. CONCLUSIONS Circulating levels of some biomarkers, such as SP, sCD40L, TIMP-1, MDA, and CK-18 fragmented, related to inflammation, coagulation, oxidation, and apoptosis have been recently associated with mortality in patients with TBI. These biomarkers could help in the prognostic classification of the patients and open new research lines in the treatment of patients with TBI.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
18
|
Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 2015; 16:9949-75. [PMID: 25941935 PMCID: PMC4463627 DOI: 10.3390/ijms16059949] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/15/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.
Collapse
|
19
|
MAEGELE M, BRAUN M, WAFAISADE A, SCHÄFER N, LIPPERT-GRUENER M, KREIPKE C, RAFOLS J, SCHÄFER U, ANGELOV DN, STUERMER E. Long-Term Effects of Enriched Environment on Neurofunctional Outcome and CNS Lesion Volume After Traumatic Brain Injury in Rats. Physiol Res 2015; 64:129-45. [DOI: 10.33549/physiolres.932664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine whether the exposure to long term enriched environment (EE) would result in a continuous improvement of neurological recovery and ameliorate the loss of brain tissue after traumatic brain injury (TBI) vs. standard housing (SH). Male Sprague-Dawley rats (300-350 g, n=28) underwent lateral fluid percussion brain injury or SHAM operation. One TBI group was held under complex EE for 90 days, the other under SH. Neuromotor and sensorimotor dysfunction and recovery were assessed after injury and at days 7, 15, and 90 via Composite Neuroscore (NS), RotaRod test, and Barnes Circular Maze (BCM). Cortical tissue loss was assessed using serial brain sections. After day 7 EE animals showed similar latencies and errors as SHAM in the BCM. SH animals performed notably worse with differences still significant on day 90 (p<0.001). RotaRod test and NS revealed superior results for EE animals after day 7. The mean cortical volume was significantly higher in EE vs. SH animals (p=0.003). In summary, EE animals after lateral fluid percussion (LFP) brain injury performed significantly better than SH animals after 90 days of recovery. The window of opportunity may be wide and also lends further credibility to the importance of long term interventions in patients suffering from TBI.
Collapse
Affiliation(s)
- M. MAEGELE
- Department for Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten-Herdecke (Campus Cologne-Merheim), Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McGinn MJ, Povlishock JT. Cellular and molecular mechanisms of injury and spontaneous recovery. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:67-87. [PMID: 25702210 DOI: 10.1016/b978-0-444-52892-6.00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Until recently, most have assumed that traumatic brain injury (TBI) was singularly associated with the overt destruction of brain tissue resulting in subsequent morbidity or death. More recently, experimental and clinical studies have shown that the pathobiology of TBI is more complex, involving a host of cellular and subcellular changes that impact on neuronal function and viability while also affecting vascular reactivity and the activation of multiple biological response pathways. Here we review the brain's response to injury, examining both focal and diffuse changes and their implications for post-traumatic brain dysfunction and recovery. TBI-induced neuronal dysfunction and death as well as the diffuse involvement of multiple fiber projections are discussed together with considerations of how local axonal membrane changes or channelopathy translate into local ionic dysregulation and axonal disconnection. Concomitant changes in the cerebral microcirculation are also discussed and their relationship with the parallel changes in the brain's metabolism is considered. These cellular and subcellular events occurring within neurons and their blood supply are correlated with multiple biological response modifiers evoked by generalized post-traumatic inflammation and the parallel activation of oxidative stress processes. The chapter closes with considerations of recovery following focal or diffuse injury. Evidence for dynamic brain reorganization/repair is presented, with considerations of traumatically induced circuit disruption and their progression to either adaptive or in some cases, maladaptive reorganization.
Collapse
Affiliation(s)
- Melissa J McGinn
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
21
|
Saw MM, Chamberlain J, Barr M, Morgan MPG, Burnett JR, Ho KM. Differential disruption of blood-brain barrier in severe traumatic brain injury. Neurocrit Care 2014; 20:209-16. [PMID: 24233818 DOI: 10.1007/s12028-013-9933-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant cause of death and disability in young adults, but not much is known about the incidence and characteristics of blood-brain barrier (BBB) dysfunction in this group. In this proof of concept study, we sought to quantify the incidence of BBB dysfunction (defined as a cerebrospinal fluid (CSF)-plasma albumin quotient of ≥0.007) and examine the relationship between plasma and CSF levels of proteins and electrolytes, in patients with severe TBI. METHODS We recruited 30 patients, all of whom were receiving hypertonic 20 % saline infusion for intracranial hypertension and had external ventricular drains in situ. Simultaneous CSF and blood samples were obtained. Biochemical testing was performed for sodium, osmolality, potassium, glucose, albumin, immunoglobulin-G, and total protein. RESULTS Eleven patients (37 %) showed evidence of impairment of passive BBB function, with a CSF-plasma albumin quotient of ≥0.007. There were strong positive correlations seen among CSF-plasma albumin quotient and CSF-plasma immunoglobulin-G quotient and CSF-plasma total protein quotient (r = 0.967, P < 0.001 and r = 0.995, P < 0.001, respectively). We also found a higher maximum intracranial pressure (24 vs. 21 mmHg, P = 0.029) and a trend toward increased mortality (27 vs. 11 %, P = 0.33) in patients with BBB disruption. CONCLUSIONS In summary, passive BBB dysfunction is common in patients with severe TBI, and may have important implications for effectiveness of osmotherapy and long-term outcomes. Also, our results suggest that the CSF-plasma total protein quotient, a measurement which is readily available, can be used instead of the CSF-plasma albumin quotient for evaluating BBB dysfunction.
Collapse
Affiliation(s)
- Melanie M Saw
- Intensive Care Unit, Fremantle Hospital, PO Box 480, Fremantle, WA, 6959, Australia,
| | | | | | | | | | | |
Collapse
|
22
|
Lorente L, Martín MM, López P, Ramos L, Blanquer J, Cáceres JJ, Solé-Violán J, Solera J, Cabrera J, Argueso M, Ortiz R, Mora ML, Lubillo S, Jiménez A, Borreguero-León JM, González A, Orbe J, Rodríguez JA, Páramo JA. Association between serum tissue inhibitor of matrix metalloproteinase-1 levels and mortality in patients with severe brain trauma injury. PLoS One 2014; 9:e94370. [PMID: 24728097 PMCID: PMC3984169 DOI: 10.1371/journal.pone.0094370] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/15/2014] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. METHODS This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. RESULTS Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001-1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624-0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. CONCLUSIONS The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality in TBI patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
- * E-mail:
| | - María M. Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Patricia López
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - José Blanquer
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Fundación INCLIVA, Valencia, Spain
| | - Juan J. Cáceres
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jorge Solera
- Deparment of Anesthesiology and Reanimation, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Judith Cabrera
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Fundación INCLIVA, Valencia, Spain
| | - Raquel Ortiz
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - María L. Mora
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Santiago Lubillo
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Agustín González
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - José A. Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - José A. Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| |
Collapse
|
23
|
Phipps HW, Longo LM, Blaber SI, Blaber M, VanLandingham JW. Kallikrein-related peptidase 6: A biomarker for traumatic brain injury in the rat. Brain Inj 2013; 27:1698-706. [DOI: 10.3109/02699052.2013.823563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Hue CD, Cao S, Haider SF, Vo KV, Effgen GB, Vogel E, Panzer MB, Bass CR“D, Meaney DF, Morrison B. Blood-Brain Barrier Dysfunction after Primary Blast Injury in vitro. J Neurotrauma 2013; 30:1652-63. [DOI: 10.1089/neu.2012.2773] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christopher D. Hue
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Siqi Cao
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Syed F. Haider
- Department of Biology, The City College of New York, New York, New York
| | - Kiet V. Vo
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Gwen B. Effgen
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Edward Vogel
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Matthew B. Panzer
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
25
|
Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res 2013. [DOI: 10.1016/j.brainres.2012.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Patterson ZR, Holahan MR. Understanding the neuroinflammatory response following concussion to develop treatment strategies. Front Cell Neurosci 2012; 6:58. [PMID: 23248582 PMCID: PMC3520152 DOI: 10.3389/fncel.2012.00058] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/27/2012] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injuries (mTBI) have been associated with long-term cognitive deficits relating to trauma-induced neurodegeneration. These long-term deficits include impaired memory and attention, changes in executive function, emotional instability, and sensorimotor deficits. Furthermore, individuals with concussions show a high co-morbidity with a host of psychiatric illnesses (e.g., depression, anxiety, addiction) and dementia. The neurological damage seen in mTBI patients is the result of the impact forces and mechanical injury, followed by a delayed neuroimmune response that can last hours, days, and even months after the injury. As part of the neuroimmune response, a cascade of pro- and anti-inflammatory cytokines are released and can be detected at the site of injury as well as subcortical, and often contralateral, regions. It has been suggested that the delayed neuroinflammatory response to concussions is more damaging then the initial impact itself. However, evidence exists for favorable consequences of cytokine production following traumatic brain injuries as well. In some cases, treatments that reduce the inflammatory response will also hinder the brain's intrinsic repair mechanisms. At present, there is no evidence-based pharmacological treatment for concussions in humans. The ability to treat concussions with drug therapy requires an in-depth understanding of the pathophysiological and neuroinflammatory changes that accompany concussive injuries. The use of neurotrophic factors [e.g., nerve growth factor (NGF)] and anti-inflammatory agents as an adjunct for the management of post-concussion symptomology will be explored in this review.
Collapse
|
27
|
Blood-brain barrier permeability is positively correlated with cerebral microvascular perfusion in the early fluid percussion-injured brain of the rat. J Transl Med 2012; 92:1623-34. [PMID: 22964852 DOI: 10.1038/labinvest.2012.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The blood-brain barrier (BBB) opening following traumatic brain injury (TBI) provides a chance for therapeutic agents to cross the barrier, yet the reduction of the cerebral microvascular perfusion after TBI may limit the intervention. Meanwhile, optimizing the cerebral capillary perfusion by the strategies such as fluid administration may cause brain edema due to the BBB opening post trauma. To guide the TBI therapy, we characterized the relationship between the changes in the cerebral capillary perfusion and BBB permeability after TBI. First, we observed the changes of the cerebral capillary perfusion by the intracardiac perfusion of Evans Blue and the BBB disruption with magnetic resonance imaging (MRI) in the rat subjected to lateral fluid percussion (FP) brain injury. The correlation between two variables was next evaluated with the correlation analysis. Since related to BBB breakdown, matrix metalloproteinase-9 (MMP-9) activity was finally detected by gelatin zymography. We found that the ratios of the perfused microvessel numbers in the lesioned cortices were significantly reduced at 0 and 1 h post trauma compared with that in the normal cortex, which then dramatically recovered at 4 and 24 h after injury, and that the BBB permeability was greatly augmented in the ipsilateral parts at 4, 12, and 24 h, and in the contralateral area at 24 h after injury compared with that in the uninjured brain. The correlation analysis showed that the BBB permeability increase was related to the restoration of the cerebral capillary perfusion over a 24-h period post trauma. Moreover, the gelatin zymography analysis indicated that the MMP-9 activity in the injured brain increased at 4 h and significantly elevated at 12 and 24 h as compared to that at 0 or 1 h after TBI. Our findings demonstrate that the 4 h post trauma is a critical turning point during the development of TBI, and, importantly, the correlation analysis may guide us how to treat TBI.
Collapse
|
28
|
Li G, Yuan W, Fu BM. A model for the blood-brain barrier permeability to water and small solutes. J Biomech 2011; 43:2133-40. [PMID: 20434157 DOI: 10.1016/j.jbiomech.2010.03.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
The blood-brain barrier (BBB) has unique structures in order to protect the central nervous system. In addition to the tight junction of the microvessel endothelium, there is a uniform and narrow matrix-like basement membrane (BM) sandwiched between the vessel wall and the astrocyte foot processes ensheathing the cerebral microvessel. To understand the mechanism by which these structural components modulate permeability of the BBB, we developed a mathematical model for water and solute transport across the BBB. The fluid flow in the cleft regions of the BBB were approximated by the Poiseuille flow while those in the endothelial surface glycocalyx layer (SGL) and BM were approximated by the Darcy and Brinkman flows, respectively. Diffusion equations in each region were solved for the solute transport. The anatomical parameters were obtained from electron microscopy studies in the literature. Our model predicts that compared to the peripheral microvessels with endothelium only, the BM and the wrapping astrocytes can reduce hydraulic conductivity (L(p)) of the BBB and the permeability to sodium fluorescein (P(NaF)) by up to 6-fold when the fiber density in the BM is the same as that in the SGL. Even when the SGL and the tight junctions of the endothelium are compromised, the BM and astrocyte foot processes can still maintain the low L(p) and P(NaF) of the BBB. Our model predictions indicate that the BM and astrocytes of the BBB provide a great protection to the CNS under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, NY, USA
| | | | | |
Collapse
|
29
|
Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ. Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. Neuroscientist 2010; 16:156-70. [PMID: 20400713 DOI: 10.1177/1073858409355830] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in a wide range of proteolytic events in fetal development and normal tissue remodeling as well as wound healing and inflammation. In the CNS, they have been implicated in a variety of neurodegenerative diseases ranging from multiple sclerosis to Alzheimer disease and are integral to stroke-related cell damage. Although studies implicate increased activity of MMPs in pathogenesis in the CNS, there is also a growing literature to support their participation in events that support recovery processes. Here the authors provide a brief overview of MMPs and their regulation, address their complex roles following traumatic injuries to the adult and developing CNS, and consider their time- and context-dependent signatures that influence both injury and reparative processes.
Collapse
Affiliation(s)
- Haoqian Zhang
- Department of Neurosurgery, University of California, San Francisco, CA 94143-0110, USA.
| | | | | | | |
Collapse
|
30
|
Lescot T, Fulla-Oller L, Palmier B, Po C, Beziaud T, Puybasset L, Plotkine M, Gillet B, Meric P, Marchand-Leroux C. Effect of Acute Poly(ADP-Ribose) Polymerase Inhibition by 3-AB on Blood–Brain Barrier Permeability and Edema Formation after Focal Traumatic Brain Injury in Rats. J Neurotrauma 2010; 27:1069-79. [DOI: 10.1089/neu.2009.1188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Lescot
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Laurence Fulla-Oller
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Bruno Palmier
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Christelle Po
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Tiphaine Beziaud
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Louis Puybasset
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Michel Plotkine
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Brigitte Gillet
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Philippe Meric
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Catherine Marchand-Leroux
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| |
Collapse
|
31
|
Jeffcote T, Ho KM. Associations between cerebrospinal fluid protein concentrations, serum albumin concentrations and intracranial pressure in neurotrauma and intracranial haemorrhage. Anaesth Intensive Care 2010; 38:274-9. [PMID: 20369759 DOI: 10.1177/0310057x1003800208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence suggests that using intravenous isotonic albumin solution for haemodynamic resuscitation in neurotrauma is associated with adverse outcomes. This study assessed the correlations between cerebrospinal fluid protein concentrations, serum albumin concentrations and intracranial pressure in a cohort of neurosurgical patients. After obtaining ethics committee approval, correlations between concomitant cerebrospinal fluid protein concentrations, serum albumin concentrations and the mean daily intracranial pressure of 63 consecutive neurosurgical patients, grouped as neurotrauma or intracranial haemorrhage, admitted between 1 January and 31 December 2007, were assessed. The mean daily intracranial pressure was significantly associated with cerebrospinal fluid protein concentrations (Spearman correlation coefficient [SCC] = 0.496, P = 0.001), white cell counts (SCC = 0.359, P = 0.001), red cell counts (SCC = 0.399, P = .0O01) and serum albumin concentrations (SCC = 0.431, P = 0.001) in patients with neurotrauma (n=23). Cerebrospinal fluid protein concentrations were also significantly associated with concomitant serum albumin concentrations (SCC = 0.393, P = 0.001) in these patients. In patients with intracranial haemorrhage (n=40), the mean daily intracranial pressure was only significantly associated with cerebrospinal fluid white cell and red cell counts but not cerebrospinal fluid protein and serum albumin concentrations. In summary, intracranial pressure is correlated with cerebrospinal fluid protein and serum albumin concentrations in patients with severe neurotrauma, and these suggest that blood-brain barrier may not be completely intact after severe neurotrauma.
Collapse
Affiliation(s)
- T Jeffcote
- Department of Intensive Care, Royal Perth Hospital, Perth, Western Australia, Australia
| | | |
Collapse
|
32
|
Kolar M, Pachl J, Tomasova H, Haninec P. Dymanics of matrix-metalloproteinase 9 after brain trauma--results of a pilot study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009; 102:373-6. [PMID: 19388348 DOI: 10.1007/978-3-211-85578-2_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Secondary brain injury contributes to poor outcome for patients sustaining brain trauma. Matrix metalloproteinase-9 (MMP-9) is a potential marker, as well as effector of secondary brain injury. This enzyme degrades components of extracellular matrix, and thus it can contribute to blood-brain barrier disruption. METHODS We studied dynamics of MMP-9 in jugular venous blood of 15 patients sustaining either an isolated head injury or a head injury as a part of major trauma, and requiring intensive care (Glasgow Coma Scale <8 at the time of admission). Blood samples were taken at the 1st, 3rd and 5th day, levels of MMP-9 in plasma were assessed using ELISA. Outcome quality was assessed at the time of discharge from our hospital. FINDINGS Our results show an increase of MMP-9 levels on the 1st day after the brain trauma, followed by a drop on the 3rd day and a rise on day 5. This biphasic time-course was observed in all patients, but no statistically significant differences between each group (major trauma vs. isolated brain trauma, good outcome vs. poor outcome) were found. CONCLUSIONS Initially increased MMP-9 levels in the 1st posttraumatic day is probably related to transient blood-brain barrier dysruption. The decrease of MMP-9 levels observed on the 3rd day can be explained by restoration of blood-brain barrier integrity and its reduced permeability. The second rise of MMP-9 levels observed in the 5th day probably indicates a developing secondary brain injury during which MMP-9 is produced in the brain as a part of an inflammatory response. RESULTS of our study suggest that MMP-9 could play an important role in pathogenesis of secondary brain injury.
Collapse
Affiliation(s)
- Martin Kolar
- Department of Anesthesiology and Critical Care Medicine, Charles University in Prague, Third Faculty of Medicine, Ruska 87, 100 34 Prague, 10, Czech Republic.
| | | | | | | |
Collapse
|
33
|
Almaguel FG, Liu JW, Pacheco FJ, Casiano CA, De Leon M. Activation and reversal of lipotoxicity in PC12 and rat cortical cells following exposure to palmitic acid. J Neurosci Res 2009; 87:1207-18. [PMID: 18951473 DOI: 10.1002/jnr.21918] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lipotoxicity involves a series of pathological cellular responses after exposure to elevated levels of fatty acids. This process may be detrimental to normal cellular homeostasis and cell viability. The present study shows that nerve growth factor-differentiated PC12 cells (NGFDPC12) and rat cortical cells (RCC) exposed to high levels of palmitic acid (PA) exhibit significant lipotoxicity and death linked to an "augmented state of cellular oxidative stress" (ASCOS). The ASCOS response includes generation of reactive oxygen species (ROS), alterations in the mitochondrial transmembrane potential, and increase in the mRNA levels of key cell death/survival regulatory genes. The observed cell death was apoptotic based on nuclear morphology, caspase-3 activation, and cleavage of lamin B and PARP. Quantitative real-time PCR measurements showed that cells undergoing lipotoxicity exhibited an increase in the expression of the mRNAs encoding the cell death-associated proteins BNIP3 and FAS receptor. Cotreatment of NGFDPC12 and RCC cells undergoing lipotoxicity with docosahexaenoic acid (DHA) and bovine serum albumin (BSA) significantly reduced cell death within the first 2 hr following the initial exposure to PA. The data suggest that lipotoxicity in NGFDPC12 and cortical neurons triggers a strong cell death apoptotic response. Results with NGFDPC12 cells suggest a linkage between induction of ASCOS and the apoptotic process and exhibit a temporal window that is sensitive to DHA and BSA interventions.
Collapse
Affiliation(s)
- Frankis G Almaguel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|
34
|
Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 2007; 25:231-8. [PMID: 17241284 DOI: 10.1111/j.1460-9568.2006.05275.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The entry of therapeutic compounds into the brain and spinal cord is normally restricted by barrier mechanisms in cerebral blood vessels (blood-brain barrier) and choroid plexuses (blood-CSF barrier). In the injured brain, ruptured cerebral blood vessels circumvent these barrier mechanisms by allowing blood contents to escape directly into the brain parenchyma. This process may contribute to the secondary damage that follows the initial primary injury. However, this localized compromise of barrier function in the injured brain may also provide a 'window of opportunity' through which drugs that do not normally cross the blood-brain barriers are able to do so. This paper describes a systematic study of barrier permeability in a mouse model of traumatic brain injury using both small and large inert molecules that can be visualized or quantified. The results show that soon after trauma, both large and small molecules are able to enter the brain in and around the injury site. Barrier restriction to large (protein-sized) molecules is restored by 4-5 h after injury. In contrast, smaller molecules (286-10,000 Da) are still able to enter the brain as long as 4 days postinjury. Thus the period of potential secondary damage from barrier disruption and the period during which therapeutic compounds have direct access to the injured brain may be longer than previously thought.
Collapse
Affiliation(s)
- M D Habgood
- Victorian Neurotrauma Research Group, Department of Pharmacology, Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lippert-Gruener M, Maegele M, Garbe J, Angelov DN. Late effects of enriched environment (EE) plus multimodal early onset stimulation (MEOS) after traumatic brain injury in rats: Ongoing improvement of neuromotor function despite sustained volume of the CNS lesion. Exp Neurol 2006; 203:82-94. [PMID: 16965773 DOI: 10.1016/j.expneurol.2006.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/05/2006] [Accepted: 07/24/2006] [Indexed: 11/30/2022]
Abstract
Recently we showed that the combination between MEOS and EE applied to rats for 7-15 days after traumatic brain injury (TBI) was associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction. In a continuation of this work, we tested whether these effects persisted for longer post-operative periods, e.g. 30 days post-injury (dpi). Rats were subjected to lateral fluid percussion (LFP) or to sham injury. After LFP, one third of the animals (injured and sham) was placed under conditions of standard housing (SH), one third was kept in EE-only, and one third received EE+MEOS. Standardized composite neuroscore (NS) for neurological functions and computerized analysis of the vibrissal motor performance were used to assess post-traumatic neuromotor deficits. These were followed by evaluation of the cortical lesion volume (CLV) after immunostaining for neuron-specific enolase, caspase 3 active, and GFAP. Finally, the volume of cortical lesion containing regeneration-associated proteins (CLV-RAP) was determined in sections stained for GAP-43, MAP2, and neuronal class III beta-tubulin. We found (i) no differences in the vibrissal motor performance; (ii) EE+MEOS rats performed significantly better than SH rats in NS; (iii) EE-only and EE+MEOS animals, but not SH rats, showed better recovery at 30 dpi than at 15 dpi; (iv) no differences among all groups in CLV (larger than that at 15 dpi) and CLV-RAP, despite a clear tendency to reduction in the EE-only and EE+MEOS rats. We conclude that EE+MEOS retards, but cannot prevent the increase of lesion volume. This retardation is sufficient for a continuous restoration of neurological functions.
Collapse
|
36
|
Maegele M, Lippert-Gruener M, Ester-Bode T, Sauerland S, Schäfer U, Molcanyi M, Molcany M, Lefering R, Bouillon B, Neiss WF, Angelov DN, Klug N, McIntosh TK, Neugebauer EAM. Reversal of neuromotor and cognitive dysfunction in an enriched environment combined with multimodal early onset stimulation after traumatic brain injury in rats. J Neurotrauma 2005; 22:772-82. [PMID: 16004580 DOI: 10.1089/neu.2005.22.772] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study was designed to investigate the additional benefits of a multimodal early onset stimulation (MEOS) paradigm when combined with enriched environment (EE) versus EE only and standard housing (SH) on the recovery after experimental traumatic brain injury (TBI). Male Sprague- Dawley rats were subjected to moderate lateral fluid percussion (LFP) brain injury (n = 40) or sham operation (n = 6). Thereafter, the injured and sham/EE + MEOS and EE only groups were placed into a complex EE consisting of tunnel-connected wide-bodied cages with various beddings, inclining platforms, and toys. Along with group living and environmental complexity, injured and sham/EE + MEOS animals were additionally exposed to a standardized paradigm of multimodal stimulation including auditory, visual, olfactory, and motor stimuli. In contrast, injured and sham/SH groups were housed individually without stimulation. A standardized composite neuroscore (NS) test was used to assess acute post-traumatic neuromotor deficits (24 h after injury) and recovery on days 7 and 15; recovery of cognitive function was assessed on days 11-15 using the Barnes maze. Neuromotor impairment was comparable in all injured animals at 24 h post-injury, but braininjured EE + MEOS rats performed significantly better than both brain-injured SH and EE groups when tested on post-injury days 7 and 15 (p = 0.004). Similarly, latencies to locate the hidden box under the Barnes maze platform were significantly shortened in EE + MEOS animals at day 15 (p = 0.003). These results indicate that the reversal of neuromotor and cognitive dysfunction after TBI can be substantially enhanced when MEOS is added to EE.
Collapse
Affiliation(s)
- Marc Maegele
- Biochemische und Experimentelle Abteilung, Medizinische Fakultät der Universität zu Köln, Chirurgische Klinik der Universität Witten-Herdecke, Klinikum Köln-Merheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Maegele M, Lippert-Gruener M, Ester-Bode T, Garbe J, Bouillon B, Neugebauer E, Klug N, Lefering R, Neiss WF, Angelov DN. Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats. Eur J Neurosci 2005; 21:2406-18. [PMID: 15932599 DOI: 10.1111/j.1460-9568.2005.04070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study was designed to determine whether exposure to multimodal early onset stimulation (MEOS) combined with environmental enrichment (EE) after traumatic brain injury (TBI) would improve neurological recovery and to elucidate its morphological correlates. Male Sprague-Dawley rats were subjected to lateral fluid percussion (LFP) brain injury or to sham operation. After LFP, one-third of the animals (injured and sham) were placed under conditions of standard housing (SH), one-third were kept in EE only, and one-third received EE + MEOS. Assessment of neuromotor function 24 h post-injury using a standardized composite neuroscore test revealed an identical pattern of neurological impairment in all animals subjected to LFP. Neuromotor dysfunction in SH animals remained on a similar level throughout the experiment, while improvements were noted in both other groups 7 days post-injury (dpi). On 15 dpi, reversal of neuromotor dysfunction was significantly better in EE + MEOS animals vs. SH- and EE-only groups. In parallel, the comparison of lesion volume in EE + MEOS- vs. EE-only vs. SH rats revealed that animals exposed to EE + MEOS had consistently the lowest values (mm3, mean +/- SD; n = 6 rats in each group) as measured in serial brain sections immunostained for neuron-specific enolase (5.2 +/- 3.4 < or = 5.5 +/- 4.1 < 9.5 +/- 1.9), caspase 3-active/C3A (5.9 +/- 4.0 < or = 6.4 +/- 3.9 < 10.3 +/- 1.8) and glial fibrillary acidic protein (6.0 +/- 3.4 < or = 6.5 +/- 4.3 < 10.7 +/- 1.2). This first report on the effect of EE + MEOS treatment strongly indicates that the combined exposure reduces CNS scar formation and reverses neuromotor deficits after TBI in rats.
Collapse
Affiliation(s)
- Marc Maegele
- Biochemical and Experimental Division, Faculty of Medicine, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rebel A, Koehler RC, Martin LJ. In situ immunoradiographic method for quantification of specific proteins in normal and ischemic brain regions. J Neurosci Methods 2005; 143:227-35. [PMID: 15814155 DOI: 10.1016/j.jneumeth.2004.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/04/2004] [Accepted: 11/04/2004] [Indexed: 10/26/2022]
Abstract
This study tested the application of an immunoisotopic assay for immunohistochemical localization and quantification of proteins in brain sections from rats without or with transient focal ischemia. We assessed the hypothesis that measurements of protein levels in injured brain determined by an isotopic assay using [(125)I]-protein A have greater reliability than those made by conventional immunoperoxidase labeling using diaminobenzidine. Quantification of immunoreactivities for glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1) and heat shock protein-70 (HSP-70) was determined by optical density signal in the immunoisotopic and immunoperoxidase assays. In ischemic brain, the immunoisotopic assay detected protein increases (cortical penumbra HSP-70, 151+/-6%), protein decreases (cortical ischemic core GLT-1, 61+/-6%) and no changes in GFAP levels compared to controls animals. These results differed from the protein levels found by the immunoperoxidase assay, which showed elevated HSP-70, GLT-1 and GFAP in all ischemic regions. We conclude that nonspecific immunosignal confounds assessments of protein expression in injured brain and that the immunoisotopic method is a valid approach to regionally localize and quantify proteins after brain injury. The disadvantage of the falsely positive overestimation of protein immunoreactivity after stroke with the immunoperoxidase method has to be weighted with the advantage of the cellular resolution.
Collapse
Affiliation(s)
- Annette Rebel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
39
|
N Ghabriel M, J Lu J, Tadros R, Hermanis G. A narrow time-window for access to the brain by exogenous protein after immunological targeting of a blood-brain barrier antigen. J Comp Pathol 2004; 131:52-60. [PMID: 15144799 DOI: 10.1016/j.jcpa.2004.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
The endothelial barrier antigen (EBA) is a membrane protein expressed by endothelial cells of the rat blood-brain barrier (BBB). A previous short-term non-recovery study demonstrated that immunological targeting of EBA by intravenous administration of a monoclonal antibody (anti-EBA) led to acute opening of the BBB to exogenous and endogenous tracers. The aims of the present study were to determine whether opening of the BBB was reversible and compatible with survival, and whether a "therapeutic window" existed. A single intravenous injection of one of three doses (high, medium and low) of anti-EBA was used. Animals were allowed to survive for periods ranging from 17 min to 4 days. The tracer horseradish peroxidase (HRP) was administered intravenously 10 min before perfusion fixation, and its distribution was assessed in Vibratome sections of the brain and spinal cord. Leakage of HRP into the central nervous system was dose- and time-dependent. The medium dose produced incipient HRP leakage at 17 min and widespread pronounced leakage at 30 min. Progressive reduction in HRP permeability occurred from 45 min to 2 h, with barrier restoration by 3 h. At all subsequent time intervals (6 h-4 days) the BBB remained impermeable to HRP. The low and high doses produced less and greater HRP leakage, respectively, but restoration of the barrier still occurred at 3 h. The high dose, however, produced a number of deaths. Animals treated with an isotype control antibody showed no HRP leakage at comparable time intervals. The results indicated that (1) this model was compatible with survival, (2) opening of the BBB was monophasic and transient, occurring during a narrow "time-window", and (3) the barrier, once reconstituted, maintained its integrity.
Collapse
Affiliation(s)
- M N Ghabriel
- Department of Anatomical Sciences, University of Adelaide, The Medical School, Frome Road, Adelaide 5005, Australia
| | | | | | | |
Collapse
|
40
|
|
41
|
Is Hydroxyethyl Starch Safe in Brain Injury?: In Response. Anesth Analg 2004. [DOI: 10.1097/00000539-200408000-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
DeWitt DS, Prough DS. Traumatic Cerebral Vascular Injury: The Effects of Concussive Brain Injury on the Cerebral Vasculature. J Neurotrauma 2003; 20:795-825. [PMID: 14577860 DOI: 10.1089/089771503322385755] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In terms of human suffering, medical expenses, and lost productivity, head injury is one of the major health care problems in the United States, and inadequate cerebral blood flow is an important contributor to mortality and morbidity after traumatic brain injury. Despite the importance of cerebral vascular dysfunction in the pathophysiology of traumatic brain injury, the effects of trauma on the cerebral circulation have been less well studied than the effects of trauma on the brain. Recent research has led to a better understanding of the physiologic, cellular, and molecular components and causes of traumatic cerebral vascular injury. A more thorough understanding of the direct and indirect effects of trauma on the cerebral vasculature will lead to improvements in current treatments of brain trauma as well as to the development of novel and, hopefully, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Douglas S DeWitt
- Charles R. Allen Research Laboratories, Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA.
| | | |
Collapse
|
43
|
Muellner A, Benz M, Kloss CUA, Mautes A, Burggraf D, Hamann GF. Microvascular basal lamina antigen loss after traumatic brain injury in the rat. J Neurotrauma 2003; 20:745-54. [PMID: 12965053 DOI: 10.1089/089771503767869971] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The loss of microvascular basal lamina antigen is known to be a consequence of cerebral ischemia, but little information is available on its role in traumatic brain injury (TBI). The aim of our study was (1) to test the hypothesis that there is damage to the basal lamina of brain microvasculature after TBI, (2) to localize microvascular damage, and (3) to compare this loss with that in ischemia. Rats (n=14) were either sham operated (n=5) or subjected to fluid percussion injury (n=9; TBI=1.5 atm) and killed after 0 (n=5, sham), 12 (n=4), or 24 h (n=5). Collagen-type-IV immunoreactivity and a digital image-processing system were used to localize and quantify the number of stained vascular elements and the total collagen stained area. Western blot was used to compare collagen-type-IV content on the traumatic and nontraumatic brain side. The cortex of animals subjected to TBI and killed after 24 h showed a reduction in the area of stained collagen amounting to 19+/-4% (p<0.009) and a reduction in the total number of microvessels identified by collagen stain (29+/-6%; p<0.02). The Western blot revealed a 31+/-6% (p<0.03) reduction of collagen, compared to the mirror cortical area after 24 h. No significant reduction was found in the group that survived 12 h or in basal ganglia in both groups. TBI causes microvascular basal lamina damage. Whereas TBI affected only cortical areas, cerebral ischemia also induced microvascular basal lamina damage in the basal ganglia. After 24 h, the extent of severe basal lamina damage due to TBI was less severe than in ischemia.
Collapse
Affiliation(s)
- Angela Muellner
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximillians University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Durmaz R, Kanbak G, Akyüz F, Isiksoy S, Yücel F, Inal M, Tel E. Lazaroid attenuates edema by stabilizing ATPase in the traumatized rat brain. Can J Neurol Sci 2003; 30:143-9. [PMID: 12774954 DOI: 10.1017/s0317167100053415] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The aim of the present study was to determine the potential therapeutic value of the lazaroid U-83836E on blood brain barrier (BBB) breakdown and edema with respect to the changes in the synaptosomal Na+/K+ and Mg(2+)/Ca(2+)-adenosinetriphosphatase (ATPase) activities, tissue malondialdehyde levels and the neuronal viability in the rat brain subjected to cerebral trauma. METHODS Traumatic brain injury (TBI) was introduced by applying a 75 gm. cm force to the right parietal cortex using the weight-drop method. The first set of animals was used for determining time course changes of the synaptosomal Na+/K+ and Mg(2+)/Ca(2+)-ATPase and the malondialdehyde levels and were sacrificed 2, 6 and 24h after lesion production. A group of the animals was treated with U-83836E proir to TBI and sacrificed 24h after cerebral injury. A second set of animals was used for evaluating the alterations in BBB disruption and tissue water content and were sacrificed 2, 6 and 24h after lesion production. Two groups of animals were treated with U-83836E and sacrificed after 2 and 24h following TBI. U-83836E was given intraperitoneally thirty minutes before trauma at a dose of 10 mg/kg. Neuronal necrosis was also evaluated in the groups of U-83836E and physiological saline-treated animals. RESULTS Extravasation of Evans blue into the traumatized hemisphere was maximum at 2h (p<0.001) and returned close to the control levels at 24h after TBI (p>0.05). Edema had developed progressively over time and reached the maximum degree of 2.1% (p<0.001) at 24h. U-83836E showed no effect on the BBB breakdown and the tissue water content at 2h and still had no effect on the BBB breakdown after 24h following the trauma (p>0.05), although it reduced edema after 24h (p<0.01). The losses of Na+/K+ and Mg(2+)/Ca(2+)-ATPase activities were found as 39.5% (p<0.001) and 29.4% (p<0.01) of the control value, respectively, and remained at the decreased levels throughout the experiment. Malondialdehyde level continued to increase over time reaching up to 209% (p<0.001) of the control value 24h after TBI. Both ATPase activities were improved to near control values (p>.05) by the effect of U-83836E. U-83836E inhibited the increase of lipid peroxidation (p<0.001) and also salvaged neuronal necrosis (p<0.05). CONCLUSION U-83836E given prophylactically after cerebral trauma appears to reduce edema, possibly by inhibiting increases in lipid peroxidation and by stabilizing ATPase. Further studies are recommended to verify the similar effects of the brain penetrating lazaroids when they are given after trauma.
Collapse
Affiliation(s)
- Ramazan Durmaz
- Department of Neurosurgery, Medical Faculty of Osmangazi University, TR-26480, Eskisehir, Turkey
| | | | | | | | | | | | | |
Collapse
|
45
|
Ter Minassian A. [Treatment of cerebral oedema]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:336-48. [PMID: 12818327 DOI: 10.1016/s0750-7658(03)00056-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progress in brain imaging, monitoring and physiopathology allows the identification of brain oedema from brain swelling, determination of its interstitial or intracellular nature, as well as blood-brain barrier permeability and the evaluation of the impact on cerebral haemodynamic. Common treatment of all types of cerebral oedema is based on prevention of self-sustained disorders due to increased intracranial pressure resulting in ischemic cerebral oedema. The specific treatment of each type of cerebral oedema is reviewed. Optimization of conventional anti-oedematous strategies is based on the precise determination of the nature of the cerebral oedema and of the blood-brain barrier status.
Collapse
Affiliation(s)
- A Ter Minassian
- Département d'anesthésie-réanimation, CHU d'Angers, 4, rue Larrey, 49033 cedex, Angers, France
| |
Collapse
|
46
|
Kinoshita K, Chatzipanteli K, Alonso OF, Howard M, Dietrich WD. The effect of brain temperature on hemoglobin extravasation after traumatic brain injury. J Neurosurg 2002; 97:945-53. [PMID: 12405386 DOI: 10.3171/jns.2002.97.4.0945] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although the benefits of posttraumatic hypothermia have been reported in experimental studies, the potential for therapeutic hypothermia to increase intracerebral hemorrhage remains a clinical concern. The purpose of this study was to quantify the amount of extravasated hemoglobin after traumatic brain injury (TBI) and to assess the changes in intracerebral hemoglobin concentrations under posttraumatic hypothermic and hyperthermic conditions. METHODS Intubated and anesthetized rats were subjected to fluid-percussion injury (FPI). In the first experiment, rats were divided into moderate (1.8-2.2 atm) and severe (2.4-2.7 atm) TBI groups. In the second experiment, the effects of 3 hours of posttraumatic hypothermia (33 or 30 degrees C), hyperthermia (39 degrees C), or normothermia (37 degrees C) on hemoglobin levels following moderate trauma were assessed. The rats were perfused with saline at 24 hours postinjury, and then the traumatized and contralateral hemispheres, including the cerebellum, were dissected from whole brain. The hemoglobin level in each brain was quantified using a spectrophotometric hemoglobin assay. The results of these assays indicate that moderate and severe FPI induce increased levels of hemoglobin in the ipsilateral hemisphere (p < 0.0001). After severe TBI, the hemoglobin concentration was also significantly increased in the contralateral hemisphere (p < 0.05) and cerebellum (p < 0.005). Posttraumatic hypothermia (30 degrees C) attenuated hemoglobin levels (p < 0.005) in the ipsilateral hemisphere, whereas hyperthermia had a marked adverse effect on the hemoglobin concentration in the contralateral hemisphere (p < 0.05) and cerebellum (p < 0.005). CONCLUSIONS Injury severity is an important determinant of the degree of hemoglobin extravasation after TBI. Posttraumatic hypothermia reduced hemoglobin extravasation, whereas hyperthermia increased hemoglobin levels compared with normothermia. These findings are consistent with previous data reporting that posttraumatic temperature manipulations alter the cerebrovascular and inflammatory consequences of TBI.
Collapse
Affiliation(s)
- Kosaku Kinoshita
- Department of Neurological Surgery, The Neurotrauma Research Center and The Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
47
|
Alessandri B, Rice AC, Levasseur J, DeFord M, Hamm RJ, Bullock MR. Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma 2002; 19:829-41. [PMID: 12184853 DOI: 10.1089/08977150260190429] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) triggers a complex pathophysiological cascade, leading to cell death. A major factor in the pathogenesis of TBI is neuronal overloading with calcium, causing the opening of mitochondrial permeability transition pores (MPTP), which consequently inhibit normal mitochondrial function. The immunosuppressant Cyclosporin A (CsA) has been shown to block MPTPs, and to be neuroprotective in ischemia and TBI. However, the translation of these effects on mitochondrial function, into behavioral endpoints has not been investigated thoroughly. Therefore, we tested the effect of a low, clinically evaluated, CsA dose of 0.125 mg/kg (infused for 3 h) and a higher "known" neuroprotective dose of 18.75 mg/kg on brain tissue O(2) consumption, and on motor and cognitive performance following lateral fluid percussion injury (FPI) in rats. CsA at both concentrations abolished the 25% decrease in O(2) consumption (VO(2)), seen in saline-treated animals at 5 h post-FPI. Furthermore, the lower dose of CsA also ameliorated acute motor deficits (days 1-5 post-FPI) and learning and memory impairments in a Morris water maze test on days 11-15 post-FPI. Although, the higher dose of CsA improved cognitive performance, it worsened acute motor functional recovery. These results suggest, that the CsA-induced preservation of mitochondrial function, as assessed by tissue O(2) consumption, directly translated into improvements in motor and cognitive behavior.
Collapse
Affiliation(s)
- Beat Alessandri
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
48
|
Laurer HL, Ritting AN, Russ AB, Bareyre FM, Raghupathi R, Saatman KE. Effects of underwater sound exposure on neurological function and brain histology. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:965-973. [PMID: 12208341 DOI: 10.1016/s0301-5629(02)00526-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To evaluate the safety of sonar exposure from a neurological perspective, the vulnerability of the central nervous system to underwater exposure with high-intensity, low-frequency sound (HI-LFS) was experimentally examined. Physiological, behavioral and histological parameters were measured in anesthetized, ventilated rats exposed to brief (5 min), underwater HI-LFS. Exposure to 180 dB sound pressure level (SPL) re 1 microPa at 150 Hz (n = 9) did not alter acute cardiovascular physiology (arterial blood pH, pO(2), pCO(2), heart rate, or mean arterial blood pressure) from that found in controls (n = 11). Rats exposed to either 180 dB SPL re 1 microPa at 150 Hz (n = 12) or 194 dB SPL re 1 microPa at 250 Hz (n = 12) exhibited normal cognitive function at 8 and 9 days after sound exposure. Evaluation of neurological motor function revealed a minor deficit 7 days after 180 dB SPL/150 Hz exposure that resolved by 14 days, and no deficits after 194 dB SPL/250 Hz exposure. No overt histological damage was detected in any group. These data suggest that underwater HI-LFS exposure may cause transient, mild motor dysfunction.
Collapse
Affiliation(s)
- Helmut L Laurer
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Schneider G, Fries P, Wagner-Jochem D, Thome D, Laurer H, Kramann B, Mautes A, Hagen T. Pathophysiological changes after traumatic brain injury: comparison of two experimental animal models by means of MRI. MAGMA (NEW YORK, N.Y.) 2002; 14:233-41. [PMID: 12098566 DOI: 10.1007/bf02668217] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In an experimental study MRI was used to compare the pathophysiological changes of brain tissue after lateral fluid percussion injury (FPI) versus cold injury (CI) as models of traumatic brain injury (TBI). Two groups of Sprague-Dawley rats (n=23) were subjected to mild FPI, respectively, CI localized over the right parietal cortex. MRI was performed at different time points including T1w, T2w and T1w-CE (Gd-DTPA 0.2 mmol/kg BW) sequences as well as perfusion-weighted imaging with calculation of regional cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF). T2w and T1w-CE images showed hyperintense areas in the traumatised cortex demonstrating brain edema and blood-brain barrier (BBB)-breakdown increasing up to 12 h. Perfusion-weighted imaging demonstrated a significant decrease of rCBV and rCBF in the ipsilateral cortex of CI animals compared with the contralateral hemisphere. In contrast, rats of the FPI group showed only slight differences in rCBF and rCBV comparing the left and right cortex. The results of our study confirm that both mild FPI and CI produced focal brain edema with concomitant breakdown of the BBB as a model of TBI. Since differences regarding perfusion are much more pronounced in CI our results suggest that, this model more likely seems to reflect pathophysiological changes of brain ischemia, whereas FPI seems to be better suited to model the pathophysiological characteristics of TBI.
Collapse
Affiliation(s)
- G Schneider
- Department of Diagnostic Radiology, University Hospital, Gebäude 49, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, Winn HR, Mourad PD. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:389-400. [PMID: 11978420 DOI: 10.1016/s0301-5629(01)00521-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
High-intensity focused ultrasound (HIFU) has been shown to generate lesions that destroy brain tissue while disrupting the blood-brain barrier (BBB) in the periphery of the lesion. BBB opening, however, has not been shown without damage, and the mechanisms by which HIFU induces BBB disruption remain unknown. We show that HIFU is capable of reversible, nondestructive, BBB disruption in a targeted region-of-interest (ROI) (29 of 55 applications; 26 of 55 applications showed no effect); this opening reverses after 72 h. Light microscopy demonstrates that HIFU either entirely preserves brain architecture while opening the BBB (18 of 29 applications), or generates tissue damage in a small volume within the region of BBB opening (11 of 29 applications). Electron microscopy supports these observations and suggests that HIFU disrupts the BBB by opening capillary endothelial cell tight junctions, an isolated ultrastructural effect that is different from the mechanisms through which other (untargeted) modalities, such as hyperosmotic solutions, hyperthermia and percussive injury disrupt the BBB.
Collapse
Affiliation(s)
- Ali H Mesiwala
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | | | | | | | | | | | | |
Collapse
|