1
|
Allen AR, Jones A'V, LoBianco FV, Krager KJ, Aykin-Burns N. Effect of Sirt3 on hippocampal MnSOD activity, mitochondrial function, physiology, and cognition in an aged murine model. Behav Brain Res 2023; 444:114335. [PMID: 36804441 PMCID: PMC10081808 DOI: 10.1016/j.bbr.2023.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
The NAD(+)-dependent deacetylase SIRT3 is a proven mitochondrial metabolic stress sensor. It has been linked to the regulation of the mitochondrial acetylome and activation of several metabolic enzymes (e.g., manganese superoxide dismutase [MnSOD]) to protect mitochondrial function and redox homeostasis, which are vital for survival, excitability, and synaptic signaling of neurons mediating short- and long-term memory formation as well as retention. Eighteen-month-old male and female wild-type (WT) and Sirt3-/- mice were behaviorally tested for hippocampus-dependent cognitive performance in a Morris water maze paradigm. Cognitive impairment was displayed during the probe trial by female and male Sirt3-/- mice but not WT mice. Upon sacrifice, brains were fixed, and morphological assessments were conducted on hippocampal tissues. Both female and male Sirt3-/- mice demonstrated impaired spatial memory retention implying that SIRT3 plays a role in long-term memory function. Golgi-staining studies revealed decreased dendritic arborization and dendritic length in the hippocampi of male Sirt3-/- compared to WT animals. Sirt3 deletion significantly increased NR1, NR2A, and NR2B expression in the hippocampus of female mice only. Enzymatic activity of MnSOD, a major mitochondrial deacetylation target of SIRT3, was significantly decreased in both female and male Sirt3-/- mice. Similarly, both female and male Sirt3-/- mice demonstrated a significant decrease in their respiratory control ratio during Complex I-driven respiration, which was apparent only in female Sirt3-/- mice during Complex II-driven respiration.
Collapse
Affiliation(s)
- Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - A 'Vonte Jones
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Francesca V LoBianco
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kimberly J Krager
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
2
|
Shi Y, Cui W, Wang Q, Zhou J, Wu X, Wang J, Zhang S, Hu Q, Han L, Du Y, Ge S, Liu H, Qu Y. MicroRNA-124/Death-Associated Protein Kinase 1 Signaling Regulates Neuronal Apoptosis in Traumatic Brain Injury via Phosphorylating NR2B. Front Cell Neurosci 2022; 16:892197. [PMID: 35783103 PMCID: PMC9240278 DOI: 10.3389/fncel.2022.892197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine-protein kinase, promotes neurons apoptosis in ischemic stroke and Alzheimer’s disease (AD). We hypothesized that knockdown DAPK1 may play a protective role in traumatic brain injury (TBI) and explore underlying molecular mechanisms. ELISA, Western blotting, immunofluorescence, dual-luciferase assay, and Reverse Transcription and quantitative Polymerase Chain Reaction (RT-qPCR) were used to determine the mechanism for the role of DAPK1 in TBI. Open field and novel objective recognition tests examined motor and memory functions. The morphology and number of synapses were observed by transmission electron microscopy and Golgi staining. DAPK1 was mainly found in neurons and significantly increased in TBI patients and TBI mice. The dual-luciferase assay showed that DAPK1 was upregulated by miR-124 loss. The number of TUNEL+ cells, expression levels of cleaved caspase3 and p-NR2B/NR2B were significantly reduced after knocking-down DAPK1 or overexpressing miR-124 in TBI mice; and motor and memory dysfunction was recovered. After Tat-NR2B were injected in TBI mice, pathological and behavioral changes were mitigated while the morphology while the number of synapses were not affected. Overall, DAPK1 is a downstream target gene of miR-124 that regulates neuronal apoptosis in TBI mice via NR2B. What’s more, DAPK1 restores motor and memory dysfunctions without affecting the number and morphology of synapses.
Collapse
|
3
|
Hoffe B, Holahan MR. Hyperacute Excitotoxic Mechanisms and Synaptic Dysfunction Involved in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:831825. [PMID: 35283730 PMCID: PMC8907921 DOI: 10.3389/fnmol.2022.831825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The biological response of brain tissue to biomechanical strain are of fundamental importance in understanding sequela of a brain injury. The time after impact can be broken into four main phases: hyperacute, acute, subacute and chronic. It is crucial to understand the hyperacute neural outcomes from the biomechanical responses that produce traumatic brain injury (TBI) as these often result in the brain becoming sensitized and vulnerable to subsequent TBIs. While the precise physical mechanisms responsible for TBI are still a matter of debate, strain-induced shearing and stretching of neural elements are considered a primary factor in pathology; however, the injury-strain thresholds as well as the earliest onset of identifiable pathologies remain unclear. Dendritic spines are sites along the dendrite where the communication between neurons occurs. These spines are dynamic in their morphology, constantly changing between stubby, thin, filopodia and mushroom depending on the environment and signaling that takes place. Dendritic spines have been shown to react to the excitotoxic conditions that take place after an impact has occurred, with a shift to the excitatory, mushroom phenotype. Glutamate released into the synaptic cleft binds to NMDA and AMPA receptors leading to increased Ca2+ entry resulting in an excitotoxic cascade. If not properly cleared, elevated levels of glutamate within the synaptic cleft will have detrimental consequences on cellular signaling and survival of the pre- and post-synaptic elements. This review will focus on the synaptic changes during the hyperacute phase that occur after a TBI. With repetitive head trauma being linked to devastating medium – and long-term maladaptive neurobehavioral outcomes, including chronic traumatic encephalopathy (CTE), understanding the hyperacute cellular mechanisms can help understand the course of the pathology and the development of effective therapeutics.
Collapse
|
4
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
5
|
Zheng P, Bai Q, Feng J, Zhao B, Duan J, Zhao L, Liu N, Ren D, Zou S, Chen W. Neonatal microglia and proteinase inhibitors-treated adult microglia improve traumatic brain injury in rats by resolving the neuroinflammation. Bioeng Transl Med 2022; 7:e10249. [PMID: 35079627 PMCID: PMC8780040 DOI: 10.1002/btm2.10249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
Microglia participate in the regulation of neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the repair effects of intracranial injection of neonatal microglia or protease-treated adult microglia on TBI in rat model. Lateral fluid percussion injury was used to establish rat brain injury model. E64 and serpinA3N were employed for the treatment of adult microglia. Cleaved caspase-3 level was analyzed through immunoblotting assay. Enzyme-linked immunosorbent assay was employed to analyze cytokine and chemokine levels. Astrocytosis and microgliosis were shown by immunofluorescence. The cognitive function of rats was analyzed by water maze. The injection of neonatal microglia inhibited cell apoptosis, reduced astrocytosis and microgliosis, decreased the level of chemokines and cytokines in cortex and ipsilateral hippocampus, and improved cognitive function of TBI rat model. The transplantation of peptidase inhibitors-treated adult microglia also inhibited cell apoptosis, reduced astrocytosis and microgliosis, and improved cognitive function of rats with TBI. The transplantation of either neonatal microglia or peptidase inhibitors-treated adult microglia significantly inhibited the pathogenesis of TBI in rat model, while untreated adult microglia showed no significant effect.
Collapse
Affiliation(s)
- Ping Zheng
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qingke Bai
- Department of NeurologyThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Jiugeng Feng
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bing Zhao
- Department of NeurosurgeryThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Jian Duan
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Lin Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ning Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dabin Ren
- Department of NeurosurgeryThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Shufeng Zou
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wei Chen
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of NeurosurgeryThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| |
Collapse
|
6
|
Cerrah Gunes M, Gunes MS, Vural A, Aybuga F, Bayram A, Bayram KK, Sahin MI, Dogan ME, Ozdemir SY, Ozkul Y. Change in gene expression levels of GABA, glutamate and neurosteroid pathways due to acoustic trauma in the cochlea. J Neurogenet 2021; 35:45-57. [PMID: 33825593 DOI: 10.1080/01677063.2021.1904922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The characteristic feature of noise-induced hearing loss (NIHL) is the loss or malfunction of the outer hair cells (OHC) and the inner hair cells (IHC) of the cochlea. 90-95% of the spiral ganglion neurons, forming the cell bodies of cochlear nerve, synapse with the IHCs. Glutamate is the most potent excitatory neurotransmitter for IHC-auditory nerve synapses. Excessive release of glutamate in response to acoustic trauma (AT), may cause excitotoxicity by causing damage to the spiral ganglion neurons (SGN) or loss of the spiral ganglion dendrites, post-synaptic to the IHCs. Another neurotransmitter, GABA, plays an important role in the processing of acoustic stimuli and central regulation after peripheral injury, so it is potentially related to the regulation of hearing function and sensitivity after noise. The aim of this study is to evaluate the effect of AT on the expressions of glutamate excitotoxicity, GABA inhibition and neurosteroid synthesis genes.We exposed 24 BALB/c mice to AT. Controls were sacrificed without exposure to noise, Post-AT(1) and Post-AT(15) were sacrificed on the 1st and 15th day, respectively, after noise exposure. The expressions of various genes playing roles in glutamate, GABA and neurosteroid pathways were compared between groups by real-time PCR.Expressions of Cyp11a1, Gls, Gabra1, Grin2b, Sult1a1, Gad1, and Slc1a2 genes in Post-AT(15) mice were significantly decreased in comparison to control and Post-AT(1) mice. No significant differences in the expression of Slc6a1 and Slc17a8 genes was detected.These findings support the possible role of balance between glutamate excitotoxicity and GABA inhibition is disturbed during the post AT days and also the synthesis of some neurosteroids such as pregnenolone sulfate may be important in this balance.
Collapse
Affiliation(s)
- Meltem Cerrah Gunes
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Salih Gunes
- Department of Otolaryngology, Izmit Seka State Hospital, Kocaeli, Turkey
| | - Alperen Vural
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Arslan Bayram
- Etlik Zübeyde Hanım Women's Diseases Education and Research Hospital, Health Sciences University, T.R. Ministry of Health, Ankara, Turkey
| | - Keziban Korkmaz Bayram
- Department of Medical Genetics, School of Medicine, Yıldirim Beyazit University, Ankara, Turkey
| | - Mehmet Ilhan Sahin
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sevda Yesim Ozdemir
- Department of Medical Genetics, School of Medicine, Uskudar University, Istanbul, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey.,Center of Genome and Stem Cell, Kayseri, Turkey
| |
Collapse
|
7
|
Poddar R. Hyperhomocysteinemia is an emerging comorbidity in ischemic stroke. Exp Neurol 2021; 336:113541. [PMID: 33278453 PMCID: PMC7856041 DOI: 10.1016/j.expneurol.2020.113541] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of the amino acid homocysteine is a common metabolic disorder that is considered to be a risk factor for ischemic stroke. However, it is still unclear whether predisposition to hyperhomocysteinemia could contribute to the severity of stroke outcome. This review highlights the advantages and limitations of the current rodent models of hyperhomocysteinemia, describes the consequence of mild hyperhomocysteinemia on the severity of ischemic brain damage in preclinical studies and summarizes the mechanisms involved in homocysteine induced neurotoxicity. The findings provide the premise for establishing hyperhomocysteinemia as a comorbidity for ischemic stroke and should be taken into consideration while developing potential therapeutic agents for stroke treatment.
Collapse
Affiliation(s)
- Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
8
|
Nguyen T, Al-Juboori MH, Walerstein J, Xiong W, Jin X. Impaired Glutamate Receptor Function Underlies Early Activity Loss of Ipsilesional Motor Cortex after Closed-Head Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2018-2029. [PMID: 33238833 DOI: 10.1089/neu.2020.7225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although mild traumatic brain injury (mTBI) accounts for the majority of TBI patients, the effects and cellular and molecular mechanisms of mTBI on cortical neural circuits are still not well understood. Given the transient and non-specific functional deficits after mTBI, it is important to understand whether mTBI causes functional deficits of the brain and the underlying mechanism, particularly during the early stage after injury. Here, we used in vivo optogenetic motor mapping to determine longitudinal changes in cortical motor map and in vitro calcium imaging to study how changes in cortical excitability and calcium signals may contribute to the motor deficits in a closed-head mTBI model. In channelrhodopsin 2 (ChR2)-expressing transgenic mice, we recorded electromyograms (EMGs) from bicep muscles induced by scanning blue laser on the motor cortex. There were significant decreases in the size and response amplitude of motor maps of the injured cortex at 2 h post-mTBI, but an increase in motor map size of the contralateral cortex in 12 h post-mTBI, both of which recovered to baseline level in 24 h. Calcium imaging of cortical slices prepared from green fluorescent calmodulin proteins-expressing transgenic mice showed a lower amplitude, but longer duration, of calcium transients of the injured cortex in 2 h post-mTBI. Blockade of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or N-methyl-d-aspartate receptors resulted in smaller amplitude of calcium transients, suggesting impaired function of both receptor types. Imaging of calcium transients evoked by glutamate uncaging revealed reduced response amplitudes and longer duration in 2, 12, and 24 h after mTBI. Higher percentages of neurons of the injured cortex had a longer latency period after uncaging than that of the uninjured neurons. The results suggest that impaired glutamate neurotransmission contributes to functional deficits of the motor cortex in vivo, which supports enhancing glutamate neurotransmission as a potential therapeutic approach for the treatment of mTBI.
Collapse
Affiliation(s)
- Tyler Nguyen
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Medical Neuroscience Program, Stark Neuroscience Research Institute, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mohammed Haider Al-Juboori
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jakub Walerstein
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wenhui Xiong
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoming Jin
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Chen G, Han W, Li A, Wang J, Xiao J, Huang X, Nazir KA, Shang Q, Qian H, Qiao C, Liu X, Li T. Phosphorylation of GluN2B subunits of N-methyl-d-aspartate receptors in the frontal association cortex involved in morphine-induced conditioned place preference in mice. Neurosci Lett 2021; 741:135470. [PMID: 33157174 DOI: 10.1016/j.neulet.2020.135470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Morphine is one of the most abused drugs in the world, which has resulted in serious social problems. The frontal association cortex (FrA) has been shown to play a key role in memory formation and drug addiction. N-Methyl-d-aspartate receptors (NMDARs) are abundant in the prefrontal cortex (PFc) and much evidence indicates that GluN2B-containing NMDARs are involved in morphine-induced conditioned place preference (CPP). However, the function of GluN2B in the FrA during morphine-induced CPP has yet to be fully investigated. In the present work, a CPP animal model was employed to measure the expression of phosphorylated (p-) GluN2B (Serine; Ser 1303) in the FrA and NAc in different phases of morphine-induced CPP. We found that p-GluN2B (Ser 1303) was increased in the FrA during the development and reinstatement phases but unchanged in the extinction phase. The use of ifenprodil, a GluN2B-specific antagonist, to block the activity of GluN2B in the two phases attenuated morphine-induced CPP and reinstatement. Furthermore, ifenprodil also blocked morphine-induced upregulation of p-GluN2B (Ser 1303) in the FrA in both phases. These results indicate that GluN2B-containing NMDARs in the FrA may be involved in the regulation of morphine-induced CPP and reinstatement.
Collapse
Affiliation(s)
- Gang Chen
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Wei Han
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Axiang Li
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Wang
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Xiao
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xin Huang
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Khosa Asif Nazir
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Qing Shang
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Hongyan Qian
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Chuchu Qiao
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xinshe Liu
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Tao Li
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
10
|
Wang Y, Shi Z, Zhang Y, Yan J, Yu W, Chen L. Oligomer β-amyloid Induces Hyperactivation of Ras to Impede NMDA Receptor-Dependent Long-Term Potentiation in Hippocampal CA1 of Mice. Front Pharmacol 2020; 11:595360. [PMID: 33536910 PMCID: PMC7848859 DOI: 10.3389/fphar.2020.595360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
The activity of Ras, a small GTPase protein, is increased in brains with Alzheimer’s disease. The objective of this study was to determine the influence of oligomeric Aβ1-42 on the activation of Ras, and the involvement of the Ras hyperactivity in Aβ1-42-induced deficits in spatial cognition and hippocampal synaptic plasticity. Herein, we show that intracerebroventricular injection of Aβ1-42 in mice (Aβ-mice) enhanced hippocampal Ras activation and expression, while 60 min incubation of hippocampal slices in Aβ1-42 (Aβ-slices) only elevated Ras activity. Aβ-mice showed deficits in spatial cognition and NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) in hippocampal CA1, but basal synaptic transmission was enhanced. The above effects of Aβ1-42 were corrected by the Ras inhibitor farnesylthiosalicylic acid (FTS). ERK2 phosphorylation increased, and Src phosphorylation decreased in Aβ-mice and Aβ1-42-slices. Both were corrected by FTS. In CA1 pyramidal cells of Aβ1-42-slices, the response of AMPA receptor and phosphorylation of GluR1 were enhanced with dependence on Ras activation rather than ERK signaling. In contrast, NMDA receptor (NMDAR) function and GluN2A/2B phosphorylation were downregulated in Aβ1-42-slices, which was recovered by application of FTS or the Src activator ouabain, and mimicked in control slices treated with the Src inhibitor PP2. The administration of PP2 impaired the spatial cognition and LTP induction in control mice and FTS-treated Aβ-mice. The treatment of Aβ-mice with ouabain rescued Aβ-impaired spatial cognition and LTP. Overall, the results indicate that the oligomeric Aβ1-42 hyperactivates Ras and thereby causes the downregulation of Src which impedes NMDAR-dependent LTP induction resulting in cognitive deficits.
Collapse
Affiliation(s)
- Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhaochun Shi
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Medicine, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of Education Ministry, Guizhou Medical University, Guizhou, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflammation 2020; 17:326. [PMID: 33121516 PMCID: PMC7597018 DOI: 10.1186/s12974-020-01994-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of the largest neurological health concerns in the world. Adolescence is a critical period for brain development where RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural health and function. Microglia, the brain’s resident immune population, play important roles in brain development by regulating neuronal number, and synapse formation and elimination. In response to injury, microglia activate to inflammatory phenotypes that may detract from these normal homeostatic, physiological, and developmental roles. To date, however, little is known regarding the impact of RmTBIs on microglia function during adolescent brain development. This review details key concepts surrounding RmTBI pathophysiology, adolescent brain development, and microglia dynamics in the developing brain and in response to injury, in an effort to formulate a hypothesis on how the intersection of these processes may modify long-term trajectories.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Asher Khan
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada.,Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
12
|
Krishna G, Bromberg C, Connell EC, Mian E, Hu C, Lifshitz J, Adelson PD, Thomas TC. Traumatic Brain Injury-Induced Sex-Dependent Changes in Late-Onset Sensory Hypersensitivity and Glutamate Neurotransmission. Front Neurol 2020; 11:749. [PMID: 32849211 PMCID: PMC7419702 DOI: 10.3389/fneur.2020.00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Women approximate one-third of the annual 2.8 million people in the United States who sustain traumatic brain injury (TBI). Several clinical reports support or refute that menstrual cycle-dependent fluctuations in sex hormones are associated with severity of persisting post-TBI symptoms. Previously, we reported late-onset sensory hypersensitivity to whisker stimulation that corresponded with changes in glutamate neurotransmission at 1-month following diffuse TBI in male rats. Here, we incorporated intact age-matched naturally cycling females into the experimental design while monitoring daily estrous cycle. We hypothesized that sex would not influence late-onset sensory hypersensitivity and associated in vivo amperometric extracellular recordings of glutamate neurotransmission within the behaviorally relevant thalamocortical circuit. At 28 days following midline fluid percussion injury (FPI) or sham surgery, young adult Sprague-Dawley rats were tested for hypersensitivity to whisker stimulation using the whisker nuisance task (WNT). As predicted, both male and female rats showed significantly increased sensory hypersensitivity to whisker stimulation after FPI, with females having an overall decrease in whisker nuisance scores (sex effect), but no injury and sex interaction. In males, FPI increased potassium chloride (KCl)-evoked glutamate overflow in primary somatosensory barrel cortex (S1BF) and ventral posteromedial nucleus of the thalamus (VPM), while in females the FPI effect was discernible only within the VPM. Similar to our previous report, we found the glutamate clearance parameters were not influenced by FPI, while a sex-specific effect was evident with female rats showing a lower uptake rate constant both in S1BF and VPM and longer clearance time (in S1BF) in comparison to male rats. Fluctuations in estrous cycle were evident among brain-injured females with longer diestrus (low circulating hormone) phase of the cycle over 28 days post-TBI. Together, these findings add to growing evidence indicating both similarities and differences between sexes in a chronic response to TBI. A better understanding of the influence of gonadal hormones on behavior, neurotransmission, secondary injury and repair processes after TBI is needed both clinically and translationally, with potential impact on acute treatment, rehabilitation, and symptom management.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Caitlin Bromberg
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Emily Charlotte Connell
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Erum Mian
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P. David Adelson
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
13
|
Förstner P, Knöll B. Interference of neuronal activity-mediated gene expression through serum response factor deletion enhances mortality and hyperactivity after traumatic brain injury. FASEB J 2020; 34:3855-3873. [PMID: 31930559 DOI: 10.1096/fj.201902257rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is one of the most frequent causes of brain injury and mortality in young adults with detrimental sequelae such as cognitive impairments, epilepsy, and attention-deficit hyperactivity disorder. TBI modulates the neuronal excitability resulting in propagation of a neuronal activity-driven gene expression program. However, the impact of such neuronal activity mediated gene expression in TBI has been poorly studied. In this study we analyzed mouse mutants of the prototypical neuronal activity-dependent transcription factor SRF (serum response factor) in a weight-drop TBI model. Neuron-restricted SRF deletion elevated TBI inflicted mortality suggesting a neuroprotective SRF function during TBI. Behavioral inspection uncovered elevated locomotor activity in Srf mutant mice after TBI in contrast to hypoactivity observed in wild-type littermates. This indicates an SRF role in modulation of TBI-associated alterations in locomotor activity. Finally, induction of a neuronal activity induced gene expression program composed of immediate early genes (IEGs) such as Egr1, Egr2, Egr3, Npas4, Atf3, Arc, Ptgs2, and neuronal pentraxins (Nptx2) was compromised upon SRF depletion. Overall, our data show a role of neuronal activity-mediated gene transcription during TBI and suggest a molecular link between TBI and such post-TBI neurological comorbidities involving hyperactivity phenotypes.
Collapse
Affiliation(s)
- Philip Förstner
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
15
|
Sinner B, Steiner J, Malsy M, Graf BM, Bundscherer A. The positive allosteric modulation of GABA A receptors mRNA in immature hippocampal rat neurons by midazolam affects receptor expression and induces apoptosis. Int J Neurosci 2019; 129:986-994. [PMID: 30957600 DOI: 10.1080/00207454.2019.1604524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Numerous experimental studies show that anesthetics are potentially toxic to the immature brain. Even though benzodiazepines are widely used in pediatric anesthesia and intensive care medicine, only a few studies examine the effects of these drugs on immature neurons. Methods: Hippocampal neuronal cell cultures of embryonic Wistar rats (15 days in culture) were incubated with midazolam 100 or 300 nM for either 30 min or 4 h. The time course of the mRNA expression of the glutamate receptors subunits NR1, NR2A and NR2B of the NMDA receptor, the GluA-1 and A-2 subunits of the AMPA receptor as well as the alpha 1 subunit of the GABAA receptor were examined by PCR. Apoptosis was detected using Western blot analysis for BAX, Bcl-2 and Caspase-3. Results: Midazolam at 100 and 300 nM applied for 30 min and 100 nM for 4 h affected glutamate receptor and GABAA receptor subunit expression. However, these effects were reversible within 72 h following washout. When 300 nM midazolam was applied for 4 h a significant increase in the NR 1 and NR 2A mRNA subunit expression could be detected. The increase in NR 2B receptor subunit expression as well as the GluA1 subunit expression was not reversible within 72 h following washout. This increase in mRNA glutamate receptor subunit expression was associated with a significant increase in neuronal apoptosis. Conclusion: In immature neurons midazolam altered GABA and glutamate mRNA receptor subunit expression. Prolonged increase in midazolam-induced glutamate receptor expression was associated with apoptosis.
Collapse
Affiliation(s)
- Barbara Sinner
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Julia Steiner
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Manuela Malsy
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Bernhard M Graf
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Anika Bundscherer
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
16
|
Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol Dis 2019; 127:287-302. [PMID: 30885791 DOI: 10.1016/j.nbd.2019.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Hyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats. Our findings show a 42.3% mortality rate in hyperhomocysteinemic rats as compared to 7.7% in control rats. Magnetic resonance imaging of the brain in the surviving rats shows that mild hyperhomocysteinemia leads to exacerbation of ischemic injury within 24 h, which remains elevated over time. Behavioral studies further demonstrate significant deficit in sensorimotor functions in hyperhomocysteinemic rats compared to control rats. Using pharmacological inhibitors targeting the NMDAR subtypes, the study further demonstrates that inhibition of GluN2A-containing NMDARs significantly reduces ischemic brain damage in hyperhomocysteinemic rats but not in control rats, indicating that hyperhomocysteinemia-mediated exacerbation of ischemic brain injury involves GluN2A-NMDAR signaling. Complementary studies in GluN2A-knockout mice show that in the absence of GluN2A-NMDARs, hyperhomocysteinemia-associated exacerbation of ischemic brain injury is blocked, confirming that GluN2A-NMDAR activation is a critical determinant of the severity of ischemic damage under hyperhomocysteinemic conditions. Furthermore, at the molecular level we observe GluN2A-NMDAR dependent sustained increase in ERK MAPK phosphorylation under hyperhomocysteinemic condition that has been shown to be involved in homocysteine-induced neurotoxicity. Taken together, the findings show that hyperhomocysteinemia triggers a unique signaling pathway that in conjunction with ischemia-induced pathways enhance the pathology of stroke under hyperhomocysteinemic conditions.
Collapse
|
17
|
Hansen KR, DeWalt GJ, Mohammed AI, Tseng HA, Abdulkerim ME, Bensussen S, Saligrama V, Nazer B, Eldred WD, Han X. Mild Blast Injury Produces Acute Changes in Basal Intracellular Calcium Levels and Activity Patterns in Mouse Hippocampal Neurons. J Neurotrauma 2018; 35:1523-1536. [PMID: 29343209 PMCID: PMC5998839 DOI: 10.1089/neu.2017.5029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) represents a serious public health concern. Although much is understood about long-term changes in cell signaling and anatomical pathologies associated with mTBI, little is known about acute changes in neuronal function. Using large scale Ca2+ imaging in vivo, we characterized the intracellular Ca2+ dynamics in thousands of individual hippocampal neurons using a repetitive mild blast injury model in which blasts were directed onto the cranium of unanesthetized mice on two consecutive days. Immediately following each blast event, neurons exhibited two types of changes in Ca2+ dynamics at different time scales. One was a reduction in slow Ca2+ dynamics that corresponded to shifts in basal intracellular Ca2+ levels at a time scale of minutes, suggesting a disruption of biochemical signaling. The second was a reduction in the rates of fast transient Ca2+ fluctuations at the sub-second time scale, which are known to be closely linked to neural activity. Interestingly, the blast-induced changes in basal Ca2+ levels were independent of the changes in the rates of fast Ca2+ transients, suggesting that blasts had heterogeneous effects on different cell populations. Both types of changes recovered after ∼1 h. Together, our results demonstrate that mTBI induced acute, heterogeneous changes in neuronal function, altering intracellular Ca2+ dynamics across different time scales, which may contribute to the initiation of longer-term pathologies.
Collapse
Affiliation(s)
- Kyle R. Hansen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Ali I. Mohammed
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Moona E. Abdulkerim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Venkatesh Saligrama
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Bobak Nazer
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | | | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
18
|
Carr H, Alexander TC, Groves T, Kiffer F, Wang J, Price E, Boerma M, Allen AR. Early effects of 16O radiation on neuronal morphology and cognition in a murine model. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:63-73. [PMID: 29753415 DOI: 10.1016/j.lssr.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.
Collapse
Affiliation(s)
- Hannah Carr
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Tyler C Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Elvin Price
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
19
|
Mei Z, Zheng P, Tan X, Wang Y, Situ B. Huperzine A alleviates neuroinflammation, oxidative stress and improves cognitive function after repetitive traumatic brain injury. Metab Brain Dis 2017; 32:1861-1869. [PMID: 28748496 DOI: 10.1007/s11011-017-0075-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) may trigger secondary injury cascades including endoplasmic reticulum stress, oxidative stress, and neuroinflammation. Unfortunately, there are no effective treatments targeting either primary or secondary injuries that result in long-term detrimental consequences. Huperzine A (HupA) is a potent acetylcholinesterase inhibitor (AChEI) that has been used treatment of Alzheimer's disease (AD). This study aimed to explore the neuroprotective effects of HupA in TBI and its possible mechanisms. Repetitive mild closed head injury (CHI) model was used to mimic concussive TBI. Mice were randomly assigned into three groups including sham, vehicle-treated and HupA-treated injured mice. The HupA was given at dose of 1.0 mg/kg/day and was initiated 30 min after the first injury, then administered daily for a total of 30 days. The neuronal functions including motor functions, emotion-like behaviors, learning and memory were tested. Axonal injury, reactive oxygen species (ROS), and neuroinflammation were examined as well. The results showed that injured mice treated with HupA had significant improvement in Morris water maze performance compared with vehicle-treated injured mice. HupA treatment significantly attenuated markers of neuroinflammation and oxidative stress in the injured mice. Taken together, HupA was effective in reducing neuroinflammation, oxidative stress and behavioral recovery after TBI. HupA is a promising candidate for treatment of TBI.
Collapse
Affiliation(s)
- Zhengrong Mei
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, People's Republic of China
| | - Peiying Zheng
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, People's Republic of China
| | - Xiangping Tan
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, People's Republic of China
| | - Ying Wang
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, People's Republic of China
| | - Bing Situ
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, People's Republic of China.
| |
Collapse
|
20
|
Lu H, Ma K, Jin L, Zhu H, Cao R. 17β-estradiol rescues damages following traumatic brain injury from molecule to behavior in mice. J Cell Physiol 2017; 233:1712-1722. [PMID: 28681915 DOI: 10.1002/jcp.26083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is a public health concern, and causes cognitive dysfunction, emotional disorders, and neurodegeration, as well. The currently available treatments are all symptom-oriented with unsatifying efficacy. It is highly demanded to understand its underlying mechanisms. Controlled cortical impact (CCI) was used to induce TBI in aged female mice subjected to ovariectomy. Brain damages were assessed with neurological severity score, brain infarction and edema. Morris water maze and elevated plus maze were applied to evaluate the levels of anxiety. Apoptosis in the hippocampus was assayed with Fluoro-Jade B staining and TUNEL staining. Western blot was employed to measure the expression of NMDA receptor subunits and phosphorylation of ERK1/2, and biochemical assays were used to estimate oxidative stress. 17beta-Estradiol (E2) was intraperitoneally administered at 10-80 μg/kg once per day for 7 consecutive days before or after CCI. Chronic administration of E2 both before and immediately after CCI conferred neuroprotection, reducing neurological severity score, brain infarction, and edema in TBI mice. Additionally, E2 improved many aspects of deleterious effects of TBI on the hippocampus, including neuronal apoptosis, dysfunction in spatial memory, reduction in NR2B, enhancement of oxidative stress, and activation of ERK1/2 pathway. The present study provides clue for the notion that E2 has therapeutic potential for both prevention and intervention of TBI-induced brain damages.
Collapse
Affiliation(s)
- Huaihai Lu
- Intensive Care Unit of Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Ma
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Liwei Jin
- Department of Geratology, Youfu Hospital of Hebei Province, Shijiazhuang, China
| | - He Zhu
- Department of Anesthesiology, Tianjin Central Hospital of Gyecology and Obstetric, Tianjin, China
| | - Ruiqi Cao
- Intensive Care Unit of Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Liu X, Qiu J, Alcon S, Hashim J, Meehan WP, Mannix R. Environmental Enrichment Mitigates Deficits after Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2017; 34:2445-2455. [PMID: 28376667 DOI: 10.1089/neu.2016.4823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. Seventy-one male C57BL/6 mice were randomized to two different housing conditions, environmental enrichment (EE) or normal condition (NC), then subjected to rmTBI injury (seven injuries in 9 days) or sham injury (anesthesia only). Functional outcomes in all four groups (NC-TBI, EE-TBI, NC-sham, and EE-sham) were assessed by motor, exploratory/anxiety, and mnemonic behavioral tests. At the synaptic level, N-methyl d-aspartate receptor (NMDAR) subunit expression of phosphorylated glutamate receptor 1 (GluR1), phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), and calpain were evaluated by western blot. Compared to injured NC-TBI mice, EE-TBI mice had improved memory and decreased anxiety and exploratory activity post-injury. Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.
Collapse
Affiliation(s)
- Xixia Liu
- 1 People's Hospital of Guangxi Zhuang Autonomous Region , Nanning, People's Republic of China
| | - Jianhua Qiu
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts.,3 Harvard Medical School , Boston, Massachusetts
| | - Sasha Alcon
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Jumana Hashim
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - William P Meehan
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts.,3 Harvard Medical School , Boston, Massachusetts.,4 Sports Concussion Clinic , Division of Sports Medicine, Boston, Massachusetts.,5 The Micheli Center for Sports Injury Prevention , Waltham, Massachusetts
| | - Rebekah Mannix
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts.,3 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
22
|
Antagonistic action on NMDA/GluN2B mediated currents of two peptides that were conantokin-G structure-based designed. BMC Neurosci 2017; 18:44. [PMID: 28511693 PMCID: PMC5433008 DOI: 10.1186/s12868-017-0361-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Background The GluN2B subunit of the N-methyl-d-aspartate receptor (NMDAr) modulates many physiological processes including learning, memory, and pain. Excessive increase in NMDAr/GluN2B activity has been associated with various disorders such neuropathic pain and neuronal death following hypoxia. Thus there is an interest in identifying NMDAr antagonists that interact specifically with the GluN2B subunit. Recently based on structural analysis between the GluN2B subunit and conantokin-G, a toxin that interacts selectively with the GluN2B subunit, we designed various peptides that are predicted to act as NMDAr antagonists by interacting with the GluN2B subunit. In this study we tested this prediction for two of these peptides EAR16 and EAR18. Results The effects of EAR16 and EAR18 in NMDA-evoked currents were measured in cultured rat embryonic hippocampal neurons and in HEK-293 cells expressing recombinant NMDAr comprised of GluN1a–GluN2A or GluN1a–GluN2B subunits. In hippocampal neurons, EAR16 and EAR18 reduced the NMDA-evoked calcium currents in a dose-dependent and reversible manner with comparable IC50 (half maximal inhibitory concentration) values of 241 and 176 µM, respectively. At 500 µM, EAR16 blocked more strongly the NMDA-evoked currents mediated by the GluN1a–GluN2B (84%) than those mediated by the GluN1a–GluN2A (50%) subunits. At 500 µM, EAR18 blocked to a similar extent the NMDA-evoked currents mediated by the GluN1a–GluN2B (62%) and the GluN1a–GluN2A (55%) subunits. Conclusions The newly designed EAR16 and EAR18 peptides were shown to block in reversible manner NMDA-evoked currents, and EAR16 showed a stronger selectivity for GluN2B than for GluN2A.
Collapse
|
23
|
Sta Maria NS, Reger ML, Cai Y, Baquing MAT, Buen F, Ponnaluri A, Hovda DA, Harris NG, Giza CC. D-Cycloserine Restores Experience-Dependent Neuroplasticity after Traumatic Brain Injury in the Developing Rat Brain. J Neurotrauma 2017; 34:1692-1702. [PMID: 27931146 PMCID: PMC5397224 DOI: 10.1089/neu.2016.4747] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) in children can cause persisting cognitive and behavioral dysfunction, and inevitably raises concerns about lost potential in these injured youth. Lateral fluid percussion injury (FPI) in weanling rats pathologically affects hippocampal N-methyl-d-aspartate receptor (NMDAR)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated glutamatergic neurotransmission subacutely within the first post-injury week. FPI to weanling rats has also been shown to impair enriched-environment (EE) induced enhancement of Morris water maze (MWM) learning and memory in adulthood. Recently, improved outcomes can be achieved using agents that enhance NMDAR function. We hypothesized that administering D-cycloserine (DCS), an NMDAR co-agonist, every 12 h (i.p.) would restore subacute glutamatergic neurotransmission and reinstate experience-dependent plasticity. Postnatal day 19 (P19) rats received either a sham or FPI. On post-injury day (PID) 1-3, animals were randomized to saline (Sal) or DCS. Firstly, immunoblotting of hippocampal NMDAR and AMPAR proteins were measured on PID4. Second, PID4 novel object recognition, an NMDAR- and hippocampal- mediated working memory task, was assessed. Third, P19 rats were placed in an EE (17 days), and MWM performance was measured, starting on PID30. On PID4, DCS restored reduced NR2A and increased GluR2 by 54%, and also restored diminished recognition memory in FPI pups. EE significantly improved MWM performance in shams, regardless of treatment. In contrast, FPI-EE-Sal animals only performed to the level of standard housed animals, whereas FPI-EE-DCS animals were comparable with sham-EE counterparts. This study shows that NMDAR agonist use during reduced glutamatergic transmission after developmental TBI can reinstate early molecular and behavioral responses that subsequently manifest in experience-dependent plasticity and rescued potential.
Collapse
Affiliation(s)
- Naomi S. Sta Maria
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Bioengineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - Maxine L. Reger
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Psychology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Yan Cai
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Mary Anne T. Baquing
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Harbor-UCLA Department of Obstetrics and Gynecology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Floyd Buen
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Head and Neck Surgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Aditya Ponnaluri
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Mechanical Engineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - David A. Hovda
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Medical and Molecular Pharmacology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Neil G. Harris
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Christopher C. Giza
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Division of Pediatric Neurology, UCLA Brain Injury Research Center, Los Angeles, California
| |
Collapse
|
24
|
Chen T, Dai SH, Jiang ZQ, Luo P, Jiang XF, Fei Z, Gui SB, Qi YL. The AMPAR Antagonist Perampanel Attenuates Traumatic Brain Injury Through Anti-Oxidative and Anti-Inflammatory Activity. Cell Mol Neurobiol 2017; 37:43-52. [PMID: 26883519 DOI: 10.1007/s10571-016-0341-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 11/25/2022]
Abstract
Perampanel is a novel α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, approved in over 35 countries as an adjunctive therapy for the treatment of seizures. Recently, it was found to exert protective effects against ischemic neuronal injury in vitro. In the present study, we investigated the potential protective effects of perampanel in a traumatic brain injury (TBI) model in rats. Oral administration with perampanel at a dose of 5 mg/kg exerted no major organ-related toxicities. We found that perampanel significantly attenuated TBI-induced brain edema, brain contusion volume, and gross motor dysfunction. The results of Morris water maze test demonstrated that perampanel treatment also improved cognitive function after TBI. These neuroprotective effects were accompanied by reduced neuronal apoptosis, as evidenced by decreased TUNEL-positive cells in brain sections. Moreover, perampanel markedly inhibited lipid peroxidation and obviously preserved the endogenous antioxidant system after TBI. In addition, enzyme-linked immunosorbent assay (ELISA) was performed at 4 and 24 h after TBI to evaluate the expression of inflammatory cytokines. The results showed that perampanel suppressed the expression of pro-inflammatory cytokines TNF-α and IL-1β, whereas increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1. These data show that the orally active AMPAR antagonist perampanel affords protection against TBI-induced neuronal damage and neurological dysfunction through anti-oxidative and anti-inflammatory activity.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, The 123th Hospital of PLA, Bengbu, 233010, Anhui, China
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shu-Hui Dai
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhi-Quan Jiang
- Department of Neurosurgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiao-Fan Jiang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Song-Bai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yi-Long Qi
- Department of Neurosurgery, The 123th Hospital of PLA, Bengbu, 233010, Anhui, China.
| |
Collapse
|
25
|
Perez EJ, Cepero ML, Perez SU, Coyle JT, Sick TJ, Liebl DJ. EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain. Neurobiol Dis 2016; 94:73-84. [PMID: 27317833 PMCID: PMC5662938 DOI: 10.1016/j.nbd.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/25/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by >50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3(-/-) mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI.
Collapse
Affiliation(s)
- Enmanuel J Perez
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria L Cepero
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian U Perez
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joseph T Coyle
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA
| | - Thomas J Sick
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
26
|
Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plast 2016; 2016:2701526. [PMID: 27630777 PMCID: PMC5007376 DOI: 10.1155/2016/2701526] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca(2+) influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca(2+) homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases.
Collapse
|
27
|
Wilson NM, Titus DJ, Oliva AA, Furones C, Atkins CM. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front Syst Neurosci 2016; 10:5. [PMID: 26903822 PMCID: PMC4742790 DOI: 10.3389/fnsys.2016.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3′,5′-cyclic adenosine monophosphate, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE) expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 h and 6 h after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6, and 24 h after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 h after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A, or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 h after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b+ immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b+ immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of long-term potentiation (LTP) into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive function acutely after TBI.
Collapse
Affiliation(s)
- Nicole M Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Anthony A Oliva
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
28
|
Contribution of an SFK-Mediated Signaling Pathway in the Dorsal Hippocampus to Cocaine-Memory Reconsolidation in Rats. Neuropsychopharmacology 2016; 41. [PMID: 26202103 PMCID: PMC4707834 DOI: 10.1038/npp.2015.217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmentally induced relapse to cocaine seeking requires the retrieval of context-response-cocaine associative memories. These memories become labile when retrieved and must undergo reconsolidation into long-term memory storage to be maintained. Identification of the molecular underpinnings of cocaine-memory reconsolidation will likely facilitate the development of treatments that mitigate the impact of cocaine memories on relapse vulnerability. Here, we used the rat extinction-reinstatement procedure to test the hypothesis that the Src family of tyrosine kinases (SFK) in the dorsal hippocampus (DH) critically controls contextual cocaine-memory reconsolidation. To this end, we evaluated the effects of bilateral intra-DH microinfusions of the SFK inhibitor, PP2 (62.5 ng per 0.5 μl per hemisphere), following re-exposure to a cocaine-associated (cocaine-memory reactivation) or an unpaired context (no memory reactivation) on subsequent drug context-induced instrumental cocaine-seeking behavior. We also assessed alterations in the phosphorylation state of SFK targets, including GluN2A and GluN2B N-methyl-D-aspartate (NMDA) and GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits at the putative time of memory restabilization and following PP2 treatment. Finally, we evaluated the effects of intra-DH PEAQX (2.5 μg per 0.5 μl per hemisphere), a GluN2A-subunit-selective NMDAR antagonist, following, or in the absence of, cocaine-memory reactivation on subsequent drug context-induced cocaine-seeking behavior. GluN2A phosphorylation increased in the DH during putative memory restabilization, and intra-DH PP2 treatment inhibited this effect. Furthermore, PP2-as well as PEAQX-attenuated subsequent drug context-induced cocaine-seeking behavior, in a memory reactivation-dependent manner, relative to VEH. These findings suggest that hippocampal SFKs contribute to the long-term stability of cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.
Collapse
|
29
|
Norris CM, Sompol P, Roberts KN, Ansari M, Scheff SW. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury. Exp Neurol 2015; 276:5-12. [PMID: 26607913 DOI: 10.1016/j.expneurol.2015.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague-Dawley rats received an ipsilateral CCI injury followed 15 min later by intravenous injection of saline vehicle or PYC (10 mg/kg). Hippocampal slices from the injured (ipsilateral) and uninjured (contralateral) hemispheres were prepared at seven and fourteen days post-CCI for electrophysiological analyses of CA3-CA1 synaptic function and induction of long-term depression (LTD). Basal synaptic strength was impaired in slices from the ipsilateral, relative to the contralateral, hemisphere at seven days post-CCI and susceptibility to LTD was enhanced in the ipsilateral hemisphere at both post-injury timepoints. No interhemispheric differences in basal synaptic strength or LTD induction were observed in rats treated with PYC. The results show that PYC preserves synaptic function after CCI and provides further rationale for investigating the use of PYC as a therapeutic in humans suffering from neurotrauma.
Collapse
Affiliation(s)
- Christopher M Norris
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Pradoldej Sompol
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Mubeen Ansari
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
30
|
Sha S, Hong J, Qu WJ, Lu ZH, Li L, Yu WF, Chen L. Sex-related neurogenesis decrease in hippocampal dentate gyrus with depressive-like behaviors in sigma-1 receptor knockout mice. Eur Neuropsychopharmacol 2015; 25:1275-86. [PMID: 25983018 DOI: 10.1016/j.euroneuro.2015.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/14/2015] [Accepted: 04/24/2015] [Indexed: 11/17/2022]
Abstract
Male sigma-1 receptor knockout (σ1R(-/-)) mice showed depressive-like phenotype with deficit in the survival of newly generated neuronal cells in the hippocampal dentate gyrus (DG), but female σ1R(-/-) mice did not. The level of serum estradiol (E2) at proestrus or diestrus did not differ between female σ1R(-/-) mice and wild-type (WT) mice. Ovariectomized (OVX) female σ1R(-/-) mice, but not WT mice, presented the same depressive-like behaviors and neurogenesis decrease as male σ1R(-/-) mice. Treatment of male σ1R(-/-) mice with E2 could alleviate the depressive-like behaviors and rescue the neurogenesis decrease. In addition, E2 could correct the decline in the density of NMDA-activated current (INMDA) in granular cells of DG and the phosphorylation of NMDA receptor (NMDAr) subtype 2B (NR2B) in male σ1R(-/-) mice, which was associated with the elevation of Src phosphorylation. The neuroprotection and antidepressant effects of E2 in male σ1R(-/-) mice were blocked by the inhibitor of Src or NR2B. The NMDAr agonist showed also the neuroprotection and antidepressant effects in male σ1R(-/-) mice, which were insensitive to the Src inhibitor. On the other hand, either the deprivation of E2 or the inhibition of Src in female σ1R(-/-) mice rather than WT mice led to a distinct decline in INMDA and NR2B phosphorylation. Similarly, the Src inhibitor could cause neurogenesis decrease and depressive-like behaviors in female σ1R(-/-) mice, but not in WT mice. These results indicate that the σ1R deficiency impairs neurogenesis leading to a depressive-like phenotype, which is alleviated by the neuroprotection of E2.
Collapse
Affiliation(s)
- Sha Sha
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Juan Hong
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Wei-Jun Qu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Zi-Hong Lu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Lin Li
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Wen-Feng Yu
- The Key Lab of Molecular Biology, Guiyang Medical University, Guiyang 550004, Guizhou, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
31
|
Gao X, Wang H, Cai S, Saadatzadeh MR, Hanenberg H, Pollok KE, Cohen-Gadol AA, Chen J. Phosphorylation of NMDA 2B at S1303 in human glioma peritumoral tissue: implications for glioma epileptogenesis. Neurosurg Focus 2015; 37:E17. [PMID: 25434386 DOI: 10.3171/2014.9.focus14485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECT Peritumoral seizures are an early symptom of a glioma. To gain a better understanding of the molecular mechanism underlying tumor-induced epileptogenesis, the authors studied modulation of the N-methyl-d-aspartate (NMDA) receptor in peritumoral tissue. METHODS To study the possible etiology of peritumoral seizures, NMDA receptor expression, posttranslational modification, and function were analyzed in an orthotopic mouse model of human gliomas and primary patient glioma tissue in which the peritumoral border (tumor-brain interface) was preserved in a tissue block during surgery. RESULTS The authors found that the NMDA receptor containing the 2B subunit (NR2B), a predominantly extrasynaptic receptor, is highly phosphorylated at S1013 in the neurons located in the periglioma area of the mouse brain. NR2B is also highly phosphorylated at S1013 in the neurons located in the peritumoral area from human brain tissue containing a glioma. The phosphorylation of the extrasynaptic NMDA receptor increases its permeability for Ca(2+) influx and subsequently mediates neuronal overexcitation and seizure activity. CONCLUSIONS These data suggest that overexcitation of the extrasynaptic NMDA receptors in the peritumoral neurons may contribute to the development of peritumoral seizures and that the phosphorylated NR2B may be a therapeutic target for blocking primary brain tumor-induced peritumoral seizures.
Collapse
Affiliation(s)
- Xiang Gao
- Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gao X, Wang H, Pollok KE, Chen J, Cohen-Gadol AA. Activation of death-associated protein kinase in human peritumoral tissue: A potential therapeutic target. J Clin Neurosci 2015; 22:1655-60. [PMID: 26165472 DOI: 10.1016/j.jocn.2015.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/02/2015] [Indexed: 11/15/2022]
Abstract
To further understand the molecular mechanisms of N-methyl-D-aspartate receptor 2B (NR2B) phosphorylation and its contribution to glioma-related seizures, we investigated the expression of death-associated protein kinase-1 (DAPK1), which is a kinase known to phosphorylate NR2B at S1303 in glioma and peritumoral tissue. The molecular mechanisms leading to glioma-associated seizures are poorly understood. We recently discovered that NR2B is phosphorylated at S1303 in glioma peritumoral tissue. NR2B is an excitatory glutamate receptor, suggesting that glutamate released from glioma tumor cells may excite the neurons in the peritumoral tissue and contribute to glioma-associated epileptogenesis. DAPK1 levels were assessed in an intracranial mouse model of human glioma and in primary patient peritumoral and glioma tissues using immunohistochemistry. DAPK1 is highly expressed in the peritumoral region, but is poorly expressed in glioma tissues in both a mouse model of human glioma and in the primary patient glioma. In our previous report, we found that NR2B is also highly phosphorylated in the same region. Upregulation of DAPK1 in the peritumoral tissues suggests that DAPK1 can phosphorylate NR2B, increase its excitability, lead to glioma-induced seizures, and could potentially be an important therapeutic target. Furthermore, the xenograft model offers an opportunity to develop and test therapeutic approaches that can block DAPK1 activity in vivo.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Neurological Surgery, Indiana University, 355 West 16th Street, Suite 5100, Indianapolis, IN 46202, USA; Stark Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Haiyan Wang
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Karen E Pollok
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jinhui Chen
- Department of Neurological Surgery, Indiana University, 355 West 16th Street, Suite 5100, Indianapolis, IN 46202, USA; Stark Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, 355 West 16th Street, Suite 5100, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Rosas OR, Torrado AI, Santiago JM, Rodriguez AE, Salgado IK, Miranda JD. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue. Neural Regen Res 2015; 9:2164-73. [PMID: 25657738 PMCID: PMC4316450 DOI: 10.4103/1673-5374.147949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jose M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, PR, USA
| | - Ana E Rodriguez
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
34
|
Kochanek PM, Jackson TC, Ferguson NM, Carlson SW, Simon DW, Brockman EC, Ji J, Bayir H, Poloyac SM, Wagner AK, Kline AE, Empey PE, Clark RS, Jackson EK, Dixon CE. Emerging therapies in traumatic brain injury. Semin Neurol 2015; 35:83-100. [PMID: 25714870 PMCID: PMC4356170 DOI: 10.1055/s-0035-1544237] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discussTBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nikki Miller Ferguson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erik C. Brockman
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Ji
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hülya Bayir
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philip E. Empey
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res 2014; 5:454-71. [PMID: 24493632 DOI: 10.1007/s12975-014-0327-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/09/2013] [Accepted: 01/05/2014] [Indexed: 12/14/2022]
Abstract
The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA,
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
37
|
Park Y, Luo T, Zhang F, Liu C, Bramlett HM, Dietrich WD, Hu B. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33:1642-9. [PMID: 23838828 PMCID: PMC3790935 DOI: 10.1038/jcbfm.2013.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/15/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
Abstract
Phosphorylation of N-methyl-D-aspartate (NMDA) receptors is a major regulatory mechanism underlying synaptic plasticity. However, changes in NMDA receptors and phosphorylation after traumatic brain injury (TBI) remain incompletely understood. Using an animal TBI model, we observed that the protein level of NMDA receptor subunit NR2B was downregulated in synaptosomal fractions obtained from the ipsilateral neocortical injury region, whereas the levels of NR2A, NR1, and PSD93 were not significantly altered at 4 and 24 hours after TBI. Further investigation showed that tyrosine phosphorylations of NR2B Y1472 and PSD93 Y340 in synaptosomal fractions were significantly decreased relative to their total protein level after TBI. Correspondingly, phosphorylation of the Src-kinase-inhibitory site Y527 was increased, whereas phosphorylation of the activation site Y416 was decreased, indicating that the activity of Src kinase is significantly inhibited after TBI. In comparison, other Src family kinase substrates of NMDA receptor, NR2A Y1246, NR2A Y1325, and NR2B Y1070 were not obviously affected after TBI. The results suggest that TBI downregulates the Src-kinase-mediated phosphorylation of NR2 and PSD93 to destabilize the synaptic localization of NMDA receptors. Therefore, post-TBI loss of NMDA receptors may contribute to the depression of synaptic activity after TBI.
Collapse
Affiliation(s)
- Yujung Park
- Neurochemistry Laboratory of Brain Injury, Department of Anesthesiology, and Shock Trauma & Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Mitochondrial respiratory chain and creatine kinase activities following trauma brain injury in brain of mice preconditioned with N-methyl-d-aspartate. Mol Cell Biochem 2013; 384:129-37. [DOI: 10.1007/s11010-013-1790-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|
39
|
Yang G, Zhou X, Zhu J, Liu R, Zhang S, Coquinco A, Chen Y, Wen Y, Kojic L, Jia W, Cynader MS. JNK3 Couples the Neuronal Stress Response to Inhibition of Secretory Trafficking. Sci Signal 2013; 6:ra57. [DOI: 10.1126/scisignal.2003727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Ferrario CR, Ndukwe BO, Ren J, Satin LS, Goforth PB. Stretch injury selectively enhances extrasynaptic, GluN2B-containing NMDA receptor function in cortical neurons. J Neurophysiol 2013; 110:131-40. [PMID: 23576693 DOI: 10.1152/jn.01011.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alterations in the function and expression of NMDA receptors are observed after in vivo and in vitro traumatic brain injury. We recently reported that mechanical stretch injury in cortical neurons transiently increases the contribution of NMDA receptors to network activity and results in an increase in calcium-permeable AMPA (CP-AMPA) receptor-mediated transmission 4 h postinjury (Goforth et al. 2011). Here, we evaluated changes in the function of synaptic vs. extrasynaptic GluN2B-containing NMDA receptors after injury. We also determined whether postinjury treatment with the GluN2B-selective antagonist Ro 25-6981 or memantine prevents injury-induced increases in CP-AMPA receptor activity. We found that injury increased extrasynaptic, GluN2B-containing NMDA receptor-mediated whole cell currents. In contrast, we found no differences in synaptic NMDA receptor-mediated transmission after injury. Furthermore, treatment with Ro 25-6981 or memantine after injury prevented injury-induced increases in CP-AMPA receptor-mediated activity. Together, our data suggest that increased NMDA receptor activity after injury is predominantly due to alterations in extrasynaptic, GluN2B-containing NMDA receptors and that activation of these receptors may contribute to the appearance of CP-AMPA receptors after injury.
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | |
Collapse
|
41
|
Siddiq I, Park E, Liu E, Spratt SK, Surosky R, Lee G, Ando D, Giedlin M, Hare GMT, Fehlings MG, Baker AJ. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 2012; 29:2647-59. [PMID: 23016562 DOI: 10.1089/neu.2012.2444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a role in angiogenesis and has been shown to be neuroprotective following central nervous system trauma. In the present study we evaluated the pro-angiogenic and neuroprotective effects of an engineered zinc-finger protein transcription factor transactivator targeting the vascular endothelial growth factor A (VEGF-ZFP). We used two virus delivery systems, adeno-virus and adeno-associated virus, to examine the effects of early and delayed VEGF-A upregulation after brain trauma, respectively. Male Sprague-Dawley rats were subject to a unilateral fluid percussion injury (FPI) of moderate severity (2.2-2.5 atm) followed by intracerebral microinjection of either adenovirus vector (Adv) or an adeno-associated vector (AAV) carrying the VEGF-ZFP construct. Adv-VEGF-ZFP-treated animals had significantly fewer TUNEL positive cells in the injured penumbra of the cortex (p<0.001) and hippocampus (p=0.001) relative to untreated rats at 72 h post-injury. Adv-VEGF-ZFP treatment significantly improved fEPSP values (p=0.007) in the CA1 region relative to injury alone. Treatment with AAV2-VEGF-ZFP resulted in improved post-injury microvascular diameter and improved functional recovery on the balance beam and rotarod task at 30 days post-injury. Collectively, the results provide supportive evidence for the concept of acute and delayed treatment following TBI using VEGF-ZFP to induce angiogenesis, reduce cell death, and enhance functional recovery.
Collapse
Affiliation(s)
- Ishita Siddiq
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mesfin MN, von Reyn CR, Mott RE, Putt ME, Meaney DF. In vitro stretch injury induces time- and severity-dependent alterations of STEP phosphorylation and proteolysis in neurons. J Neurotrauma 2012; 29:1982-98. [PMID: 22435660 DOI: 10.1089/neu.2011.2253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP(61) expression progressively increases after sublethal stretch with no change in calpain-mediated STEP(33) formation, while lethal stretch injury results in STEP(33) formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP(33) formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP(33) formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP(33) should be further examined as an early marker of neuronal fate after stretch injury.
Collapse
Affiliation(s)
- Mahlet N Mesfin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
43
|
NR2B-Containing NMDA Receptors Expression and Their Relationship to Apoptosis in Hippocampus of Alzheimer’s Disease-Like Rats. Neurochem Res 2012; 37:1420-7. [DOI: 10.1007/s11064-012-0726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 01/30/2012] [Accepted: 02/10/2012] [Indexed: 11/26/2022]
|
44
|
Chen T, Zhang L, Qu Y, Huo K, Jiang X, Fei Z. The selective mGluR5 agonist CHPG protects against traumatic brain injury in vitro and in vivo via ERK and Akt pathway. Int J Mol Med 2011; 29:630-6. [PMID: 22211238 PMCID: PMC3577346 DOI: 10.3892/ijmm.2011.870] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/27/2011] [Indexed: 12/31/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) have been implicated in the pathophysiology of central nervous system injury, but the role of mGluR5 in traumatic brain injury (TBI) remains unclear. In the present study, we investigated the neuroprotective potency of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), a selective mGluR5 agonist, for protecting against TBI in both in vitro and in vivo models. Primary cortical neurons were treated with 1 mM CHPG in an in vitro preparation 30 min before TBI, and 250 nM CHPG was injected into the right lateral ventricle of rats 30 min before TBI was induced in in vivo studies. The results showed that CHPG significantly attenuated lactate dehydrogenase (LDH) release and neuronal apoptosis and reduced lesion volume. Compared to the control or vehicle group, the phosphorylation levels of extracellular signal-regulated kinase (ERK) and Akt were increased in the presence of CHPG, even following the induction of TBI. Furthermore, treatment with either the ERK inhibitor PD98059 or Akt inhibitor LY294002 partially reversed the CHPG's neuroprotective effects. These data suggest that CHPG minimizes brain damage after induction of TBI both in vitro and in vivo, and that these protective effects were possibly mediated by activation of the ERK and Akt signaling pathways. Thus, potentiating mGluR5 activity with selective agonists such as CHPG may be useful for the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Jiménez-Díaz L, Nava-Mesa MO, Heredia M, Riolobos AS, Gómez-Álvarez M, Criado JM, de la Fuente A, Yajeya J, Navarro-López JD. Embryonic amygdalar transplants in adult rats with motor cortex lesions: a molecular and electrophysiological analysis. Front Neurol 2011; 2:59. [PMID: 21954393 PMCID: PMC3173738 DOI: 10.3389/fneur.2011.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 08/29/2011] [Indexed: 12/16/2022] Open
Abstract
Transplants of embryonic nervous tissue ameliorate motor deficits induced by motor cortex lesions in adult animals. Restoration of lost brain functions has been recently shown in grafts of homotopic cortical origin, to be associated with a functional integration of the transplant after development of reciprocal host–graft connections. Nevertheless little is known about physiological properties or gene expression profiles of cortical implants with functional restorative capacity but no cortical origin. In this study, we show molecular and electrophysiological evidence supporting the functional development and integration of heterotopic transplants of embryonic amygdalar tissue placed into pre-lesioned motor cortex of adult rats. Grafts were analyzed 3 months post-transplantation. Using reverse transcriptase quantitative polymerase chain reaction, we found that key glutamatergic, GABAergic, and muscarinic receptors transcripts were expressed at different quantitative levels both in grafted and host tissues, but were all continuously present in the graft. Parallel sharp electrode recordings of grafted neurons in brain slices showed a regular firing pattern of transplanted neurons similar to host amygdalar pyramidal neurons. Synaptic connections from the adjacent host cortex on grafted neurons were electrophysiologically investigated and confirmed our molecular results. Taken together, our findings indicate that grafted neurons from a non-cortical, non-motor-related, but ontogenetical similar source, not only received functionally effective contacts from the adjacent motor cortex, but also developed electrophysiological and gene expression patterns comparable to host pyramidal neurons; suggesting an interesting tool for the field of neural repair and donor tissue in adults.
Collapse
Affiliation(s)
- Lydia Jiménez-Díaz
- Laboratorio de Neurofisiología, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha Castilla-La Mancha, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kane MJ, Angoa-Pérez M, Briggs DI, Viano DC, Kreipke CW, Kuhn DM. A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods 2011; 203:41-9. [PMID: 21930157 DOI: 10.1016/j.jneumeth.2011.09.003] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 11/15/2022]
Abstract
A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 min. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel.
Collapse
Affiliation(s)
- Michael J Kane
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201-1916, USA
| | | | | | | | | | | |
Collapse
|
47
|
Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci 2011; 89:570-6. [PMID: 21683718 DOI: 10.1016/j.lfs.2011.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/16/2011] [Accepted: 05/19/2011] [Indexed: 12/20/2022]
Abstract
The search for novel, less invasive therapeutic strategies to treat neurodegenerative diseases has stimulated scientists to investigate the mechanisms involved in preconditioning. Preconditioning has been report to occur in many organs and tissues. In the brain, the modulation of glutamatergic transmission is an important and promising target to the use of effective neuroprotective agents. The glutamatergic excitotoxicity is a factor common to neurodegenerative diseases and acute events such as cerebral ischemia, traumatic brain injury and epilepsy. In this review we focus on the neuroprotection and preconditioning by chemical agents. Specially, chemical preconditioning models using N-methyl-d-aspartate (NMDA) pre-treatment, which has demonstrated to lead to neuroprotection against seizures and damage to neuronal tissue induced by quinolinic acid (QA). Here we attempted to gather important results obtained in the study of cellular and molecular mechanisms involved in NMDA preconditioning and neuroprotection.
Collapse
|
48
|
Luo P, Fei F, Zhang L, Qu Y, Fei Z. The role of glutamate receptors in traumatic brain injury: implications for postsynaptic density in pathophysiology. Brain Res Bull 2011; 85:313-20. [PMID: 21605633 DOI: 10.1016/j.brainresbull.2011.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/27/2011] [Accepted: 05/08/2011] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is the major cause of death and disability, and the incidence of TBI continues to increase rapidly. In recent years, increasing attention has been paid to an important structure at the postsynaptic membrane: the postsynaptic density (PSD). Glutamate receptors, as major components of the PSD, are highly responsive to alterations in the glutamate concentration at excitatory synapses and activate intracellular signal transduction via calcium and other second messengers following TBI. PSD scaffold proteins (PSD-95, Homer, and Shank), which anchor glutamate receptors and form a network structure, also have potential effects on these downstream signaling pathways. The changes in the function and structure of these major PSD proteins are also induced by TBI, indicating that there is a more complicated mechanism associated with PSD proteins in the pathophysiological process of TBI.
Collapse
Affiliation(s)
- Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 15 Changle Xi Road, Xi'an 710032, PR China
| | | | | | | | | |
Collapse
|
49
|
Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, Kelly KM, Mtchedlishvili Z. Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 2011; 95:20-34. [PMID: 21439793 DOI: 10.1016/j.eplepsyres.2011.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 02/18/2011] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) can result in the development of posttraumatic epilepsy (PTE). Recently, we reported differential alterations in tonic and phasic GABA(A) receptor (GABA(A)R) currents in hippocampal dentate granule cells 90 days after controlled cortical impact (CCI) (Mtchedlishvili et al., 2010). In the present study, we investigated long-term changes in the protein expression of GABA(A)R α1, α4, γ2, and δ subunits, NMDA (NR2B) and AMPA (GluR1) receptor subunits, and heat shock proteins (HSP70 and HSP90) in the hippocampus of Sprague-Dawley rats evaluated by Western blotting in controls, CCI-injured animals without PTE (CCI group), and CCI-injured animals with PTE (PTE group). No differences were found among all three groups for α1 and α4 subunits. Significant reduction of γ2 protein was observed in the PTE group compared to control. CCI caused a 194% and 127% increase of δ protein in the CCI group compared to control (p<0.0001), and PTE (p<0.0001) groups, respectively. NR2B protein was increased in CCI and PTE groups compared to control (p=0.0001, and p=0.011, respectively). GluR1 protein was significantly decreased in CCI and PTE groups compared to control (p=0.003, and p=0.001, respectively), and in the PTE group compared to the CCI group (p=0.036). HSP70 was increased in CCI and PTE groups compared to control (p=0.014, and p=0.005, respectively); no changes were found in HSP90 expression. These results provide for the first time evidence of long-term alterations of GABA(A) and glutamate receptor subunits and a HSP following CCI.
Collapse
Affiliation(s)
- Elena A Kharlamov
- Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA 15212-4772, United States.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Goforth PB, Ren J, Schwartz BS, Satin LS. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol 2011; 105:2350-63. [PMID: 21346214 DOI: 10.1152/jn.00467.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro and in vivo traumatic brain injury (TBI) alter the function and expression of glutamate receptors, yet the combined effect of these alterations on cortical excitatory synaptic transmission is unclear. We examined the effect of in vitro mechanical injury on excitatory synaptic function in cultured cortical neurons by assaying synaptically driven intracellular free calcium ([Ca(2+)](i)) oscillations in small neuronal networks as well as spontaneous and miniature excitatory postsynaptic currents (mEPSCs). We show that injury decreased the incidence and frequency of spontaneous neuronal [Ca(2+)](i) oscillations for at least 2 days post-injury. The amplitude of the oscillations was reduced immediately and 2 days post-injury, although a transient rebound at 4 h post-injury was observed due to increased activity of N-methyl-d-aspartate (NMDARs) and calcium-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (CP-AMPARs). Increased CP-AMPAR function was abolished by the inhibition of protein synthesis. In parallel, mEPSC amplitude decreased immediately, 4 h, and 2 days post-injury, with a transient increase in the contribution of synaptic CP-AMPARs observed at 4 h post-injury. Decreased mEPSC amplitude was evident after injury, even if NMDARs and CP-AMPARs were blocked pharmacologically, suggesting the decrease reflected alterations in synaptic Glur2-containing, calcium-impermeable AMPARs. Despite the transient increase in CP-AMPAR activity that we observed, the overriding effect of mechanical injury was long-term depression of excitatory neurotransmission that would be expected to contribute to the cognitive deficits of TBI.
Collapse
Affiliation(s)
- Paulette B Goforth
- University of Michigan Medical School, Department of Pharmacology, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|