1
|
Lei Z, Ritzel RM, Li Y, Li H, Faden AI, Wu J. Old age alters inflammation and autophagy signaling in the brain, leading to exacerbated neurological outcomes after spinal cord injury in male mice. Brain Behav Immun 2024; 120:439-451. [PMID: 38925420 PMCID: PMC11269014 DOI: 10.1016/j.bbi.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Older patients with spinal cord injury (SCI) have different features with regard to neurological characteristics after injury. Recent large-scale longitudinal population-based studies showed that individuals with SCI are at a higher risk of developing dementia than non-SCI patients, indicating that SCI is a potential risk factor for dementia. Aging is known to potentiate inflammation and neurodegeneration at the injured site leading to impaired recovery from SCI. However, no research has been aimed at studying the mechanisms of SCI-mediated cognitive impairment in the elderly. The present study examined neurobehavioral and molecular changes in the brain and the underlying mechanisms associated with brain dysfunction in aged C57BL/6 male mice using a contusion SCI model. At 2 months post-injury, aged mice displayed worse performance in locomotor, cognitive and depressive-like behavioral tests compared to young adult animals. Histopathology in injured spinal cord tissue was exacerbated in aged SCI mice. In the brain, transcriptomic analysis with NanoString neuropathology panel identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. These findings were further validated by flow cytometry, which demonstrated increased myeloid and lymphocytes infiltration at both the injured site and brain of aged mice. Moreover, SCI in aged mice altered microglial function and dysregulated autophagy in microglia, resulting in worsened neurodegeneration. Taken together, our data indicate that old age exacerbates neuropathological changes in both the injured spinal cord and remote brain regions leading to poorer functional outcomes, at least in part, through altered inflammation and autophagy function.
Collapse
Affiliation(s)
- Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Wu Z, Feng K, Huang J, Ye X, Yang R, Huang Q, Jiang Q. Brain region changes following a spinal cord injury. Neurochem Int 2024; 174:105696. [PMID: 38354751 DOI: 10.1016/j.neuint.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Brain-related complications are common in clinical practice after spinal cord injury (SCI); however, the molecular mechanisms of these complications are still unclear. Here, we reviewed the changes in the brain regions caused by SCI from three perspectives: imaging, molecular analysis, and electrophysiology. Imaging studies revealed abnormal functional connectivity, gray matter volume atrophy, and metabolic abnormalities in brain regions after SCI, leading to changes in the structure and function of brain regions. At the molecular level, chemokines, inflammatory factors, and damage-associated molecular patterns produced in the injured area were retrogradely transmitted through the corticospinal tract, cerebrospinal fluid, or blood circulation to the specific brain area to cause pathologic changes. Electrophysiologic recordings also suggested abnormal changes in brain electrical activity after SCI. Transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation alleviated pain and improved motor function in patients with SCI; therefore, transcranial therapy may be a new strategy for the treatment of patients with SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Kaiming Feng
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Jinqing Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Xinyun Ye
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Ruijin Yang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Fang S, Tang H, Li HL, Han TC, Li ZJ, Yin ZS, Chu JJ. CCL2 Knockdown Attenuates Inflammatory Response After Spinal Cord Injury Through the PI3K/Akt Signaling Pathway: Bioinformatics Analysis and Experimental Validation. Mol Neurobiol 2024; 61:1433-1447. [PMID: 37721689 DOI: 10.1007/s12035-023-03641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Spinal cord injury (SCI) is a common clinical problem in orthopedics with a lack of effective treatments and drug targets. In the present study, we performed bioinformatic analysis of SCI datasets GSE464 and GSE45006 in the Gene Expression Omnibus (GEO) public database and experimentally validated CCL2 expression in an animal model of SCI. This was followed by stimulation of PC-12 cells using hydrogen peroxide to construct a cellular model of SCI. CCL2 expression was knocked down using small interfering RNA (si-CCL2), and PI3K signaling pathway inhibitors and activators were used to validate and observe the changes in downstream inflammation. Through data mining, we found that the inflammatory chemokine CCL2 and PI3K/Akt signaling pathways after SCI expression were significantly increased, and after peroxide stimulation of PC-12 cells with CCL2 knockdown, their downstream cellular inflammatory factor levels were decreased. The PI3K/Akt signaling pathway was blocked by PI3K inhibitors, and the downstream inflammatory response was suppressed. In contrast, when PI3K activators were used, the inflammatory response was enhanced, indicating that the CCL2-PI3K/Akt signaling pathway plays a key role in the regulation of the inflammatory response. This study revealed that the inflammatory chemokine CCL2 can regulate the inflammatory response of PC-12 cells through the PI3K/Akt signaling pathway, and blocking the expression of the inflammatory chemokine CCL2 may be a promising strategy for the treatment of secondary injury after SCI.
Collapse
Affiliation(s)
- Sheng Fang
- School of Medicine, Lishui University, Lishui, 323000, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Hai-Long Li
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Ti-Chao Han
- Department of Orthopedics, The Linquan County People's Hospital, 109 Tong Yang Road, Fuyang, Anhui Province, 236400, People's Republic of China
| | - Zi-Jie Li
- Department of Anesthesiology, The Linquan County People's Hospital, 109 Tong Yang Road, Fuyang, Anhui Province, 236400, People's Republic of China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China.
| |
Collapse
|
4
|
Li J, Tian C, Yuan S, Yin Z, Wei L, Chen F, Dong X, Liu A, Wang Z, Wu T, Tian C, Niu L, Wang L, Wang P, Xie W, Cao F, Shen H. Neuropathic pain following spinal cord hemisection induced by the reorganization in primary somatosensory cortex and regulated by neuronal activity of lateral parabrachial nucleus. CNS Neurosci Ther 2023; 29:3269-3289. [PMID: 37170721 PMCID: PMC10580357 DOI: 10.1111/cns.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
AIMS Neuropathic pain after spinal cord injury (SCI) remains a common and thorny problem, influencing the life quality severely. This study aimed to elucidate the reorganization of the primary sensory cortex (S1) and the regulatory mechanism of the lateral parabrachial nucleus (lPBN) in the presence of allodynia or hyperalgesia after left spinal cord hemisection injury (LHS). METHODS Through behavioral tests, we first identified mechanical allodynia and thermal hyperalgesia following LHS. We then applied two-photon microscopy to observe calcium activity in S1 during mechanical or thermal stimulation and long-term spontaneous calcium activity after LHS. By slice patch clamp recording, the electrophysiological characteristics of neurons in lPBN were explored. Finally, exploiting chemogenetic activation or inhibition of the neurons in lPBN, allodynia or hyperalgesia was regulated. RESULTS The calcium activity in left S1 was increased during mechanical stimulation of right hind limb and thermal stimulation of tail, whereas in right S1 it was increased only with thermal stimulation of tail. The spontaneous calcium activity in right S1 changed more dramatically than that in left S1 after LHS. The lPBN was also activated after LHS, and exploiting chemogenetic activation or inhibition of the neurons in lPBN could induce or alleviate allodynia and hyperalgesia in central neuropathic pain. CONCLUSION The neuronal activity changes in S1 are closely related to limb pain, which has accurate anatomical correspondence. After LHS, the spontaneously increased functional connectivity of calcium transient in left S1 is likely causing the mechanical allodynia in right hind limb and increased neuronal activity in bilateral S1 may induce thermal hyperalgesia in tail. This state of allodynia and hyperalgesia can be regulated by lPBN.
Collapse
Affiliation(s)
- Jing Li
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Chao Tian
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Shiyang Yuan
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Zhenyu Yin
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Liangpeng Wei
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Feng Chen
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Xi Dong
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Aili Liu
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
| | - Zhenhuan Wang
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Tongrui Wu
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Chunxiao Tian
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Lin Niu
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
| | - Lei Wang
- Department of PhysiologyZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Pu Wang
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Wanyu Xie
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Fujiang Cao
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Hui Shen
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
- Innovation Research Institute of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
5
|
Li Y, Khan N, Ritzel RM, Lei Z, Allen S, Faden AI, Wu J. Sexually dimorphic extracellular vesicle responses after chronic spinal cord injury are associated with neuroinflammation and neurodegeneration in the aged brain. J Neuroinflammation 2023; 20:197. [PMID: 37653491 PMCID: PMC10469550 DOI: 10.1186/s12974-023-02881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Medical advances have made it increasingly possible for spinal cord injury (SCI) survivors to survive decades after the insult. But how SCI affects aging changes and aging impacts the injury process have received limited attention. Extracellular vesicles (EVs) are recognized as critical mediators of neuroinflammation after CNS injury, including at a distance from the lesion site. We have previously shown that SCI in young male mice leads to robust changes in plasma EV count and microRNA (miR) content. Here, our goal was to investigate the impact of biological sex and aging on EVs and brain after SCI. METHODS Young adult age-matched male and female C57BL/6 mice were subjected to SCI. At 19 months post-injury, total plasma EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA). EVs miR cargo was examined using the Fireplex® assay. The transcriptional changes in the brain were assessed by a NanoString nCounter Neuropathology panel and validated by Western blot (WB) and flow cytometry (FC). A battery of behavioral tests was performed for assessment of neurological function. RESULTS Transcriptomic changes showed a high number of changes between sham and those with SCI. Sex-specific changes were found in transcription networks related to disease association, activated microglia, and vesicle trafficking. FC showed higher microglia and myeloid counts in the injured tissue of SCI/Female compared to their male counterparts, along with higher microglial production of ROS in both injured site and the brain. In the latter, increased levels of TNF and mitochondrial membrane potential were seen in microglia from SCI/Female. WB and NTA revealed that EV markers are elevated in the plasma of SCI/Male. Particle concentration in the cortex increased after injury, with SCI/Female showing higher counts than SCI/Male. EVs cargo analysis revealed changes in miR content related to injury and sex. Behavioral testing confirmed impairment of cognition and depression at chronic time points after SCI in both sexes, without significant differences between males and females. CONCLUSIONS Our study is the first to show sexually dimorphic changes in brain after very long-term SCI and supports a potential sex-dependent EV-mediated mechanism that contributes to SCI-induced brain changes.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Niaz Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Samantha Allen
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Wu Z, Zhu R, Yu Y, Wang J, Hu X, Xu W, Ren Y, Li C, Zeng Z, Ma B, Xie N, Lin G, Ma B, Zhu R, Ye K, Cheng L. Spinal cord injury-activated C/EBPβ-AEP axis mediates cognitive impairment through APP C586/Tau N368 fragments spreading. Prog Neurobiol 2023; 227:102467. [PMID: 37257680 DOI: 10.1016/j.pneurobio.2023.102467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Spinal cord injury (SCI) leads to mental abnormalities such as dementia and depression; however, the molecular mechanism of SCI-induced dementia remains a matter of debate. Asparagine endopeptidase (AEP) mediated dementia by enhancing amyloid plaque and Tau hyperphosphorylation, indicating that it played an important role in neurodegeneration. Here we revealed that SCI stimulated AEP activation in mice with T9 contusion injury. Activated-AEP cleaved APP and Tau, resulting in APP C586 and Tau N368 formations, and consequentially accelerated Aβ deposit and Tau hyperphosphorylation, respectively. At 9 months following injury, mice demonstrated a severe deterioration in cognitive-behavioral function, which was corroborated by the presence of accumulated AD-specific pathologies. Surprisingly, activated AEP was found in the brains of mice with spinal cord injury. In contrast, AEP knockout reduced SCI-induced neuronal death and neuroinflammation, resulting in cognitive-behavioral restoration. Interestingly, compared to the full-length proteins, truncated Tau N368 and APP C586 were easier to bind to each other. These AEP-processed fragments can not only be induced to pre-formed fibrils, but also amplified their abilities of spreading and neurotoxicity in vitro. Furthermore, as a critical transcription factor of AEP, C/EBPβ was activated in injured spinal cord. Elevated C/EBPβ level, as well as microglia population and inflammatory cytokines were also noticed in the cortex and hippocampus of SCI mice. These neuroinflammation pathologies were close related to the amount of Tau N368 and APP C586 in brain. Moreover, administration with the AEP-specific inhibitor, compound #11, was shown to decelerate Aβ accumulation, tauopathy and C/EBPβ level in both spinal cord and brain of SCI mice. Thus, this study highlights the fact that spinal cord injury is a potential risk factor for dementia, as well as the possibility that C/EBPβ-AEP axis may play a role in SCI-induced cognitive impairment.
Collapse
Affiliation(s)
- Zhourui Wu
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Ran Zhu
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Yan Yu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Jianjie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Yilong Ren
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhili Zeng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Bin Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Ning Xie
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Keqiang Ye
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
7
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Management, Phenotypes, and Biomarkers. Drugs 2023:10.1007/s40265-023-01903-7. [PMID: 37326804 DOI: 10.1007/s40265-023-01903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Chronic neuropathic pain after a spinal cord injury (SCI) continues to be a complex condition that is difficult to manage due to multiple underlying pathophysiological mechanisms and the association with psychosocial factors. Determining the individual contribution of each of these factors is currently not a realistic goal; however, focusing on the primary mechanisms may be more feasible. One approach used to uncover underlying mechanisms includes phenotyping using pain symptoms and somatosensory function. However, this approach does not consider cognitive and psychosocial mechanisms that may also significantly contribute to the pain experience and impact treatment outcomes. Indeed, clinical experience supports that a combination of self-management, non-pharmacological, and pharmacological approaches is needed to optimally manage pain in this population. This article will provide a broad updated summary integrating the clinical aspects of SCI-related neuropathic pain, potential pain mechanisms, evidence-based treatment recommendations, neuropathic pain phenotypes and brain biomarkers, psychosocial factors, and progress regarding how defining neuropathic pain phenotypes and other surrogate measures in the neuropathic pain field may lead to targeted treatments for neuropathic pain after SCI.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1611 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
Liu S, Lan XB, Tian MM, Zhu CH, Ma L, Yang JM, Du J, Zheng P, Yu JQ, Liu N. Targeting the chemokine ligand 2-chemokine receptor 2 axis provides the possibility of immunotherapy in chronic pain. Eur J Pharmacol 2023; 947:175646. [PMID: 36907261 DOI: 10.1016/j.ejphar.2023.175646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Chronic pain affects patients' physical and psychological health and quality of life, entailing a tremendous public health challenge. Currently, drugs for chronic pain are usually associated with a large number of side effects and poor efficacy. Chemokines in the neuroimmune interface combine with their receptors to regulate inflammation or mediate neuroinflammation in the peripheral and central nervous system. Targeting chemokines and their receptor-mediated neuroinflammation is an effective means to treat chronic pain. In recent years, growing evidence has shown that the expression of chemokine ligand 2 (CCL2) and its main chemokine receptor 2 (CCR2) is involved in its occurrence, development and maintenance of chronic pain. This paper summarises the relationship between the chemokine system, CCL2/CCR2 axis, and chronic pain, and the CCL2/CCR2 axis changes under different chronic pain conditions. Targeting chemokine CCL2 and its chemokine receptor CCR2 through siRNA, blocking antibodies, or small molecule antagonists may provide new therapeutic possibilities for managing chronic pain.
Collapse
Affiliation(s)
- Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Combined non-psychoactive Cannabis components cannabidiol and β-caryophyllene reduce chronic pain via CB1 interaction in a rat spinal cord injury model. PLoS One 2023; 18:e0282920. [PMID: 36913400 PMCID: PMC10010563 DOI: 10.1371/journal.pone.0282920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
The most frequently reported use of medical marijuana is for pain relief. However, its psychoactive component Δ9-tetrahydrocannabinol (THC) causes significant side effects. Cannabidiol (CBD) and β-caryophyllene (BCP), two other cannabis constituents, possess more benign side effect profiles and are also reported to reduce neuropathic and inflammatory pain. We evaluated the analgesic potential of CBD and BCP individually and in combination in a rat spinal cord injury (SCI) clip compression chronic pain model. Individually, both phytocannabinoids produced dose-dependent reduction in tactile and cold hypersensitivity in male and female rats with SCI. When co-administered at fixed ratios based on individual A50s, CBD and BCP produced enhanced dose-dependent reduction in allodynic responses with synergistic effects observed for cold hypersensitivity in both sexes and additive effects for tactile hypersensitivity in males. Antinociceptive effects of both individual and combined treatment were generally less robust in females than males. CBD:BCP co-administration also partially reduced morphine-seeking behavior in a conditioned place preference (CPP) test. Minimal cannabinoidergic side effects were observed with high doses of the combination. The antinociceptive effects of the CBD:BCP co-administration were not altered by either CB2 or μ-opioid receptor antagonist pretreatment but, were nearly completely blocked by CB1 antagonist AM251. Since neither CBD or BCP are thought to mediate antinociception via CB1 activity, these findings suggest a novel CB1 interactive mechanism between these two phytocannabinoids in the SCI pain state. Together, these findings suggest that CBD:BCP co-administration may provide a safe and effective treatment option for the management of chronic SCI pain.
Collapse
|
10
|
Bagó-Mas A, Korimová A, Deulofeu M, Verdú E, Fiol N, Svobodová V, Dubový P, Boadas-Vaello P. Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice. Sci Rep 2022; 12:14980. [PMID: 36056079 PMCID: PMC9440260 DOI: 10.1038/s41598-022-19109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
More than half of spinal cord injury (SCI) patients develop central neuropathic pain (CNP), which is largely refractory to current treatments. Considering the preclinical evidence showing that polyphenolic compounds may exert antinociceptive effects, the present work aimed to study preventive effects on SCI-induced CNP development by repeated administration of two vegetal polyphenolic extracts: grape stalk extract (GSE) and coffee extract (CE). Thermal hyperalgesia and mechanical allodynia were evaluated at 7, 14 and 21 days postinjury. Then, gliosis, ERK phosphorylation and the expression of CCL2 and CX3CL1 chemokines and their receptors, CCR2 and CX3CR1, were analyzed in the spinal cord. Gliosis and CX3CL1/CX3CR1 expression were also analyzed in the anterior cingulate cortex (ACC) and periaqueductal gray matter (PAG) since they are supraspinal structures involved in pain perception and modulation. GSE and CE treatments modulated pain behaviors accompanied by reduced gliosis in the spinal cord and both treatments modulated neuron-glia crosstalk-related biomolecules expression. Moreover, both extracts attenuated astrogliosis in the ACC and PAG as well as microgliosis in the ACC with an increased M2 subpopulation of microglial cells in the PAG. Finally, GSE and CE prevented CX3CL1/CX3CR1 upregulation in the PAG, and modulated their expression in ACC. These findings suggest that repeated administrations of either GSE or CE after SCI may be suitable pharmacologic strategies to attenuate SCI-induced CNP development by means of spinal and supraspinal neuroinflammation modulation.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Andrea Korimová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, Girona, Spain
| | - Viktorie Svobodová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.
| |
Collapse
|
11
|
Musleh-Vega S, Ojeda J, Vidal PM. Gut Microbiota–Brain Axis as a Potential Modulator of Psychological Stress after Spinal Cord Injury. Biomedicines 2022; 10:biomedicines10040847. [PMID: 35453597 PMCID: PMC9024710 DOI: 10.3390/biomedicines10040847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
A growing body of evidence from preclinical and clinical studies has associated alterations of the gut microbiota–brain axis with the progression and development of a number of pathological conditions that also affect cognitive functions. Spinal cord injuries (SCIs) can be produced from traumatic and non-traumatic causes. It has been reported that SCIs are commonly associated with anxiety and depression-like symptoms, showing an incidence range between 11 and 30% after the injury. These psychological stress-related symptoms are associated with worse prognoses in SCIs and have been attributed to psychosocial stressors and losses of independence. Nevertheless, emotional and mental modifications after SCI could be related to changes in the volume of specific brain areas associated with information processing and emotions. Additionally, physiological modifications have been recognized as a predisposing factor for mental health depletion, including the development of gut dysbiosis. This condition of imbalance in microbiota composition has been shown to be associated with depression in clinical and pre-clinical models. Therefore, the understanding of the mechanisms underlying the relationship between SCIs, gut dysbiosis and psychological stress could contribute to the development of novel therapeutic strategies to improve SCI patients’ quality of life.
Collapse
|
12
|
Sun S, Sun S, Meng Y, Shi B, Chen Y. Elevated Serum Neuropeptide FF Levels Are Associated with Cognitive Decline in Patients with Spinal Cord Injury. DISEASE MARKERS 2021; 2021:4549049. [PMID: 34804262 PMCID: PMC8601828 DOI: 10.1155/2021/4549049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) has high incidence globally and is frequently accompanied by subsequent cognitive decline. Accurate early risk-categorization of SCI patients for cognitive decline using biomarkers can enable the timely application of appropriate neuroprotective measures and the development of new agents for the management of SCI-associated cognitive decline. Neuropeptide FF is an endogenous neuropeptide with a multitude of functions and is associated with neuroinflammatory processes. This prospective study investigated the predictive value of serum neuropeptide FF levels measured after acute SCI for subsequent cognitive decline. METHODS 88 patients presenting with acute SCI without preexisting neurological injury, brain trauma, or severe systemic illness and 60 healthy controls were recruited. Serum neuropeptide FF levels, clinical, and routine laboratory variables including low-density lipoprotein, high-density lipoprotein, fasting blood glucose, total triiodothyronine (TT3), total thyroxine (TT4), and thyroid-stimulating hormone (TSH) levels collected from all subjects were assessed. Montreal cognitive assessment (MoCA) was performed 3 months after enrollment. SCI patients were grouped according to quartile of serum neuropeptide FF level and MoCA scores were compared using ANOVA. Additionally, multivariate linear regression with clinical and laboratory variables was performed to predict MoCA scores. RESULTS SCI patients displayed significantly higher baseline serum neuropeptide FF levels than healthy controls (38.5 ± 4.1 versus 23.4 ± 2.0 pg/ml, p < 0.001∗∗). SCI patients in higher quartiles of baseline serum neuropeptide FF displayed significantly lower MoCA scores at 3 months. Linear regression analysis indicated serum neuropeptide FF levels as a significant independent predictor of worse MoCA scores after SCI (r = 0.331, p = 0.034∗). CONCLUSION Early serum neuropeptide FF levels significantly and independently predicted cognitive decline after acute SCI among patients without preexisting neurological disorders.
Collapse
Affiliation(s)
- Shifei Sun
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Meng
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Bin Shi
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yuanzhen Chen
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| |
Collapse
|
13
|
Spinal Cord Stimulation and Treatment of Peripheral or Central Neuropathic Pain: Mechanisms and Clinical Application. Neural Plast 2021; 2021:5607898. [PMID: 34721569 PMCID: PMC8553441 DOI: 10.1155/2021/5607898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord stimulation (SCS) as an evidence-based interventional treatment has been used and approved for clinical use in a variety of pathological states including peripheral neuropathic pain; however, until now, it has not been used for the treatment of spinal cord injury- (SCI-) induced central neuropathic pain. This paper reviews the underlying mechanisms of SCS-induced analgesia and its clinical application in the management of peripheral and central neuropathic pain. Evidence from recent research publications indicates that nociceptive processing at peripheral and central sensory systems is thought to be modulated by SCS through (i) inhibition of the ascending nociceptive transmission by the release of analgesic neurotransmitters such as GABA and endocannabinoids at the spinal dorsal horn; (ii) facilitation of the descending inhibition by release of noradrenalin, dopamine, and serotonin acting on their receptors in the spinal cord; and (iii) activation of a variety of supraspinal brain areas related to pain perception and emotion. These insights into the mechanisms have resulted in the clinically approved use of SCS in peripheral neuropathic pain states like Complex Regional Pain Syndrome (CRPS) and Failed Back Surgery Syndrome (FBSS). However, the mechanisms underlying SCS-induced pain relief in central neuropathic pain are only partly understood, and more research is needed before this therapy can be implemented in SCI patients with central neuropathic pain.
Collapse
|
14
|
Ram A, Edwards T, McCarty A, Afrose L, McDermott MV, Bobeck EN. GPR171 Agonist Reduces Chronic Neuropathic and Inflammatory Pain in Male, But Not Female Mice. FRONTIERS IN PAIN RESEARCH 2021; 2:695396. [PMID: 35295419 PMCID: PMC8915562 DOI: 10.3389/fpain.2021.695396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic pain is a growing public health crisis that requires exigent and efficacious therapeutics. GPR171 is a promising therapeutic target that is widely expressed through the brain, including within the descending pain modulatory regions. Here, we explore the therapeutic potential of the GPR171 agonist, MS15203, in its ability to alleviate chronic pain in male and female mice using a once-daily systemic dose (10 mg/kg, i.p.) of MS15203 over the course of 5 days. We found that in our models of Complete Freund's Adjuvant (CFA)-induced inflammatory pain and chemotherapy-induced peripheral neuropathy (CIPN), MS15203 did not alleviate thermal hypersensitivity and allodynia, respectively, in female mice. On the other hand, MS15203 treatment decreased the duration of thermal hypersensitivity in CFA-treated male mice following 3 days of once-daily administration. MS15203 treatment also produced an improvement in allodynia in male mice, but not female mice, in neuropathic pain after 5 days of treatment. Gene expression of GPR171 and that of its endogenous ligand BigLEN, encoded by the gene PCSK1N, were unaltered within the periaqueductal gray (PAG) in both male and female mice following inflammatory and neuropathic pain. However, following neuropathic pain in male mice, the protein levels of GPR171 were decreased in the PAG. Treatment with MS15203 then rescued the protein levels of GPR171 in the PAG of these mice. Taken together, our results identify GPR171 as a GPCR that displays sexual dimorphism in alleviation of chronic pain. Further, our results suggest that GPR171 and MS15203 have demonstrable therapeutic potential in the treatment of chronic pain.
Collapse
Affiliation(s)
- Akila Ram
- Department of Biology, Utah State University, Logan, UT, United States
| | - Taylor Edwards
- Department of Biology, Utah State University, Logan, UT, United States
| | - Ashley McCarty
- Department of Biology, Utah State University, Logan, UT, United States
| | - Leela Afrose
- Department of Biology, Utah State University, Logan, UT, United States
| | - Max V. McDermott
- Department of Biology, Utah State University, Logan, UT, United States
- Interdisciplinary Neuroscience Program, Utah State University, Logan, UT, United States
| | - Erin N. Bobeck
- Department of Biology, Utah State University, Logan, UT, United States
- Interdisciplinary Neuroscience Program, Utah State University, Logan, UT, United States
| |
Collapse
|
15
|
Li F, Huo S, Song W. Multidimensional review of cognitive impairment after spinal cord injury. Acta Neurol Belg 2021; 121:37-46. [PMID: 32989706 DOI: 10.1007/s13760-020-01507-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022]
Abstract
Cognitive impairment is highly prevalent in the population with spinal cord injury (SCI) and exerts a significant impact on functional independence and quality of life in this population. A number of neuroscientists have conducted preliminary investigations of cognitive deficits after SCI, but achieved marginally contradictory results due to some limitations such as the heterogeneity in the sample population, sample size, types of tests utilized, study design, and time since SCI. Therefore, this review mainly focuses on the characteristics, assessments, potential causality and treatment of cognitive impairment for better understanding such deficits in the SCI population.
Collapse
Affiliation(s)
- Fang Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, People's Republic of China
| | - Su Huo
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, People's Republic of China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, People's Republic of China.
| |
Collapse
|
16
|
Pelisch N, Rosas Almanza J, Stehlik KE, Aperi BV, Kroner A. CCL3 contributes to secondary damage after spinal cord injury. J Neuroinflammation 2020; 17:362. [PMID: 33246483 PMCID: PMC7694914 DOI: 10.1186/s12974-020-02037-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Secondary damage after spinal cord injury (SCI) is characterized by a cascade of events including hemorrhage, apoptosis, oxidative stress, and inflammation which increase the lesion size which can influence the functional impairment. Thus, identifying specific mechanisms attributed to secondary injury is critical in minimizing tissue damage and improving neurological outcome. In this work, we are investigating the role of CCL3 (macrophage inflammatory protein 1-α, MIP-1α), a chemokine involved in the recruitment of inflammatory cells, which plays an important role in inflammatory conditions of the central and peripheral nervous system. Methods A mouse model of lower thoracic (T11) spinal cord contusion injury was used. We assessed expression levels of CCL3 and its receptors on the mRNA and protein level and analyzed changes in locomotor recovery and the inflammatory response in the injured spinal cord of wild-type and CCL3−/− mice. Results The expression of CCL3 and its receptors was increased after thoracic contusion SCI in mice. We then examined the role of CCL3 after SCI and its direct influence on the inflammatory response, locomotor recovery and lesion size using CCL3−/− mice. CCL3−/− mice showed mild but significant improvement of locomotor recovery, a smaller lesion size and reduced neuronal damage compared to wild-type controls. In addition, neutrophil numbers as well as the pro-inflammatory cytokines and chemokines, known to play a deleterious role after SCI, were markedly reduced in the absence of CCL3. Conclusion We have identified CCL3 as a potential target to modulate the inflammatory response and secondary damage after SCI. Collectively, this study shows that CCL3 contributes to progressive tissue damage and functional impairment during secondary injury after SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02037-3.
Collapse
Affiliation(s)
- Nicolas Pelisch
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA. .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
17
|
Guha S, Calarco S, Gachet MS, Gertsch J. Juniperonic Acid Biosynthesis is Essential in Caenorhabditis Elegans Lacking Δ6 Desaturase ( fat-3) and Generates New ω-3 Endocannabinoids. Cells 2020; 9:cells9092127. [PMID: 32961767 PMCID: PMC7564282 DOI: 10.3390/cells9092127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, the C20:4 polyunsaturated fatty acid arachidonic acid (AA) plays important roles as a phospholipid component, signaling molecule and precursor of the endocannabinoid-prostanoid axis. Accordingly, the absence of AA causes detrimental effects. Here, compensatory mechanisms involved in AA deficiency in Caenorhabditis elegans were investigated. We show that the ω-3 C20:4 polyunsaturated fatty acid juniperonic acid (JuA) is generated in the C. elegansfat-3(wa22) mutant, which lacks Δ6 desaturase activity and cannot generate AA and ω-3 AA. JuA partially rescued the loss of function of AA in growth and development. Additionally, we observed that supplementation of AA and ω-3 AA modulates lifespan of fat-3(wa22) mutants. We described a feasible biosynthetic pathway that leads to the generation of JuA from α-linoleic acid (ALA) via elongases ELO-1/2 and Δ5 desaturase which is rate-limiting. Employing liquid chromatography mass spectrometry (LC-MS/MS), we identified endocannabinoid-like ethanolamine and glycerol derivatives of JuA and ω-3 AA. Like classical endocannabinoids, these lipids exhibited binding interactions with NPR-32, a G protein coupled receptor (GPCR) shown to act as endocannabinoid receptor in C. elegans. Our study suggests that the eicosatetraenoic acids AA, ω-3 AA and JuA share similar biological functions. This biosynthetic plasticity of eicosatetraenoic acids observed in C. elegans uncovers a possible biological role of JuA and associated ω-3 endocannabinoids in Δ6 desaturase deficiencies, highlighting the importance of ALA.
Collapse
|
18
|
Nakhjiri E, Vafaee MS, Hojjati SMM, Shahabi P, Shahpasand K. Tau Pathology Triggered by Spinal Cord Injury Can Play a Critical Role in the Neurotrauma Development. Mol Neurobiol 2020; 57:4845-4855. [PMID: 32808121 DOI: 10.1007/s12035-020-02061-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Traumatic spinal cord injury (SCI) can result in substantial neurological impairment along with significant emotional and psychological distress. It is clear that there is profound neurodegeneration upon SCI, gradually spread to other spinal cord regions and brain areas. Despite extensive considerations, it remains uncertain how pathogenicity diffuses in the cord. It has been reported that tau protein abnormal hyperphosphorylation plays a central role in neurodegeneration triggered by traumatic brain injury (TBI). Tau is a microtubule-associated protein, heavily implicated in neurodegenerative diseases. Importantly, tau pathology spreads in a traumatic brain in a timely manner. In particular, we have recently demonstrated that phosphorylated tau at Thr231 exists in two distinct cis and trans conformations, in which that cis P-tau is extremely neurotoxic, has a prion nature, and spreads to various brain areas and cerebrospinal fluid (CSF) upon trauma. On the other hand, tau pathology, in particular hyperphosphorylation at Thr231, has been observed upon SCI. Taken these together, we conclude that cis pT231-tau may accumulate and spread in the spinal cord as well as CSF and diffuse tau pathology in the central nervous system (CNS). Moreover, antibody against cis P-tau can target intracellular cis P-tau and protect pathology spreading. Thus, considering cis P-tau as a driver of tau pathology and neurodegeneration upon SCI would open new windows toward understanding the disease development and early biomarkers. Furthermore, it would help us develop effective therapies for SCI patients.
Collapse
Affiliation(s)
- Elnaz Nakhjiri
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manuchehr S Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Li Y, Cao T, Ritzel RM, He J, Faden AI, Wu J. Dementia, Depression, and Associated Brain Inflammatory Mechanisms after Spinal Cord Injury. Cells 2020; 9:cells9061420. [PMID: 32521597 PMCID: PMC7349379 DOI: 10.3390/cells9061420] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Evaluation of the chronic effects of spinal cord injury (SCI) has long focused on sensorimotor deficits, neuropathic pain, bladder/bowel dysfunction, loss of sexual function, and emotional distress. Although not well appreciated clinically, SCI can cause cognitive impairment including deficits in learning and memory, executive function, attention, and processing speed; it also commonly leads to depression. Recent large-scale longitudinal population-based studies indicate that patients with isolated SCI (without concurrent brain injury) are at a high risk of dementia associated with substantial cognitive impairments. Yet, little basic research has addressed potential mechanisms for cognitive impairment and depression after injury. In addition to contributing to disability in their own right, these changes can adversely affect rehabilitation and recovery and reduce quality of life. Here, we review clinical and experimental work on the complex and varied responses in the brain following SCI. We also discuss potential mechanisms responsible for these less well-examined, important SCI consequences. In addition, we outline the existing and developing therapeutic options aimed at reducing SCI-induced brain neuroinflammation and post-injury cognitive and emotional impairments.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
- University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.L.); (T.C.); (R.M.R.); (J.H.); (A.I.F.)
- University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-5189
| |
Collapse
|
20
|
Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cell Mol Neurobiol 2020; 40:861-878. [PMID: 31955281 DOI: 10.1007/s10571-020-00785-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) causes maladaptive changes to nociceptive synaptic circuits within the injured spinal cord. Changes also occur at remote regions including the brain stem, limbic system, cortex, and dorsal root ganglia. These maladaptive nociceptive synaptic circuits frequently cause neuronal hyperexcitability in the entire nervous system and enhance nociceptive transmission, resulting in chronic central neuropathic pain following SCI. The underlying mechanism of chronic neuropathic pain depends on the neuroanatomical structures and electrochemical communication between pre- and postsynaptic neuronal membranes, and propagation of synaptic transmission in the ascending pain pathways. In the nervous system, neurons are the only cell type that transmits nociceptive signals from peripheral receptors to supraspinal systems due to their neuroanatomical and electrophysiological properties. However, the entire range of nociceptive signaling is not mediated by any single neuron. Current literature describes regional studies of electrophysiological or neurochemical mechanisms for enhanced nociceptive transmission post-SCI, but few studies report the electrophysiological, neurochemical, and neuroanatomical changes across the entire nervous system following a regional SCI. We, along with others, have continuously described the enhanced nociceptive transmission in the spinal dorsal horn, brain stem, thalamus, and cortex in SCI-induced chronic central neuropathic pain condition, respectively. Thus, this review summarizes the current understanding of SCI-induced neuronal hyperexcitability and maladaptive nociceptive transmission in the entire nervous system that contributes to chronic central neuropathic pain.
Collapse
|
21
|
Binda K, Real C, Ferreira A, Britto L, Chacur M. Antinociceptive effects of treadmill exercise in a rat model of Parkinson's disease: The role of cannabinoid and opioid receptors. Brain Res 2020; 1727:146521. [DOI: 10.1016/j.brainres.2019.146521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
|
22
|
He L, Xu R, Chen Y, Liu X, Pan Y, Cao S, Xu T, Tian H, Zeng J. Intra-CA1 Administration of Minocycline Alters the Expression of Inflammation-Related Genes in Hippocampus of CCI Rats. Front Mol Neurosci 2019; 12:248. [PMID: 31708740 PMCID: PMC6822549 DOI: 10.3389/fnmol.2019.00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/26/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Li He
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Rui Xu
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Yuanshou Chen
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Youfu Pan
- Department of Genetics, Zunyi Medical University, Zunyi, China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical Univerisity, Zunyi, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Hong Tian
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
23
|
Increased CXCL13 and CXCR5 in Anterior Cingulate Cortex Contributes to Neuropathic Pain-Related Conditioned Place Aversion. Neurosci Bull 2019; 35:613-623. [PMID: 31041693 DOI: 10.1007/s12264-019-00377-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/24/2018] [Indexed: 10/26/2022] Open
Abstract
Pain consists of sensory-discriminative and emotional-affective components. The anterior cingulate cortex (ACC) is a critical brain area in mediating the affective pain. However, the molecular mechanisms involved remain largely unknown. Our recent study indicated that C-X-C motif chemokine 13 (CXCL13) and its sole receptor CXCR5 are involved in sensory sensitization in the spinal cord after spinal nerve ligation (SNL). Whether CXCL13/CXCR5 signaling in the ACC contributes to the pathogenesis of pain-related aversion remains unknown. Here, we showed that SNL increased the CXCL13 level and CXCR5 expression in the ACC after SNL. Knockdown of CXCR5 by microinjection of Cxcr5 shRNA into the ACC did not affect SNL-induced mechanical allodynia but effectively alleviated neuropathic pain-related place avoidance behavior. Furthermore, electrophysiological recording from layer II-III neurons in the ACC showed that SNL increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), decreased the EPSC paired-pulse ratio, and increased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor/N-methyl-D-aspartate receptor ratio, indicating enhanced glutamatergic synaptic transmission. Finally, superfusion of CXCL13 onto ACC slices increased the frequency and amplitude of spontaneous EPSCs. Pre-injection of Cxcr5 shRNA into the ACC reduced the increase in glutamatergic synaptic transmission induced by SNL. Collectively, these results suggest that CXCL13/CXCR5 signaling in the ACC is involved in neuropathic pain-related aversion via synaptic potentiation.
Collapse
|
24
|
Cohrs G, Drucks B, Sürie JP, Vokuhl C, Synowitz M, Held-Feindt J, Knerlich-Lukoschus F. Expression profiles of pro-inflammatory and pro-apoptotic mediators in secondary tethered cord syndrome after myelomeningocele repair surgery. Childs Nerv Syst 2019; 35:315-328. [PMID: 30280214 DOI: 10.1007/s00381-018-3984-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/21/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE The literature on histopathological and molecular changes that might underlie secondary tethered cord syndrome (TCS) after myelomeningocele (MMC) repair surgeries remains sparse. To address this problem, we analyzed specimens, which were obtained during untethering surgeries of patients who had a history of MMC repair surgery after birth. METHODS Specimens of 12 patients were analyzed in this study. Clinical characteristics were obtained retrospectively including pre-operative neurological and bowel/bladder-function, contractures and spasticity of lower extremities, leg and back pain, syringomyelia, and conus position on spinal MRI. Cellular marker expression profiles were established. Further, immunoreactivities (IR) of IL-1ß/IL-1R1, TNF-α/TNF-R1, and HIF-1α/-2α were analyzed qualitatively and semi-quantitatively by densitometry. Co-labeling with cellular markers was determined by multi-fluorescence-labeling. Cytokines were further analyzed on mRNA level. Immunostaining for cleaved PARP and TUNEL was performed to detect apoptotic cells. RESULTS Astrocytosis, appearance of monocytes, activated microglia, and apoptotic cells in TCS specimens were one substantial finding of these studies. Besides neurons, these cells co-stained with IL-1ß and TNF-α and their receptors, which were found on significantly elevated IR-level and partially mRNA-level in TCS specimens. Staining for HIF-1α/-2α confirmed induction of hypoxia-related factors in TCS specimens that were co-labeled with IL-1ß. Further, hints for apoptotic cell death became evident by TUNEL and PARP-positive cells in TCS neuroepithelia. CONCLUSIONS Our studies identified pro-inflammatory and pro-apoptotic mediators that, besides mechanical damaging and along with hypoxia, might promote TCS development. Besides optimizing surgical techniques, these factors should also be taken into account when searching for further options to improve TCS treatment.
Collapse
Affiliation(s)
- Gesa Cohrs
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, House 41, 24105, Kiel, Germany
| | - Bea Drucks
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, House 41, 24105, Kiel, Germany
| | - Jan-Philip Sürie
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, House 41, 24105, Kiel, Germany
| | - Christian Vokuhl
- Department of Pathology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, House 14, 24105, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, House 41, 24105, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, House 41, 24105, Kiel, Germany
| | - Friederike Knerlich-Lukoschus
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, House 41, 24105, Kiel, Germany.
- Deparment of Pediatric Neurosurgery, Asklepios klinik Sankt Augstin GmbH, Arnold-Janssen-Str. 29, 53757, Sankt Augustin, Germany.
| |
Collapse
|
25
|
Guerrero-Alba R, Barragán-Iglesias P, González-Hernández A, Valdez-Moráles EE, Granados-Soto V, Condés-Lara M, Rodríguez MG, Marichal-Cancino BA. Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Front Pharmacol 2019; 9:1496. [PMID: 30670965 PMCID: PMC6331465 DOI: 10.3389/fphar.2018.01496] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified. Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors. Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors. According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration. Methods: This article reviews select relevant information about the potential role of GPR18 and GPR55 in the pathophysiology of pain. Results: This work summarized novel data supporting that, besides cannabinoid CB1 and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment. Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Eduardo E Valdez-Moráles
- Cátedras CONACYT, Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Martín G Rodríguez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
26
|
Chemokine receptor CCR2 contributes to neuropathic pain and the associated depression via increasing NR2B-mediated currents in both D1 and D2 dopamine receptor-containing medium spiny neurons in the nucleus accumbens shell. Neuropsychopharmacology 2018; 43:2320-2330. [PMID: 29993042 PMCID: PMC6135748 DOI: 10.1038/s41386-018-0115-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Patients with neuropathic pain are usually accompanied by depression. Chemokine-mediated neuroinflammation is involved in a variety of diseases, including neurodegenerative diseases, depression, and chronic pain. The nucleus accumbens (NAc) is an important area in mediating pain sensation and depression. Here we report that spinal nerve ligation (SNL) induced upregulation of chemokine CCL2 and its major receptor CCR2 in both dopamine D1 and D2 receptor (D1R and D2R)-containing neurons in the NAc. Inhibition of CCR2 by shRNA lentivirus in the NAc shell attenuated SNL-induced pain hypersensitivity and depressive behaviors. Conversely, intra-NAc injection of CCL2-expressing lentivirus-induced nociceptive and depressive behaviors in naïve mice. Whole-cell patch clamp recording of D1R-positive or D2R-positive medium spiny neurons (MSNs) showed that SNL increased NMDA receptor (NMDAR)-mediated currents that are induced by stimulation of prefrontal cortical afferents to MSNs, which was inhibited by a CCR2 antagonist. Furthermore, Ccr2 shRNA also reduced NMDAR-mediated currents, and this reduction was mainly mediated via NR2B subunit. Consistently, NR2B, colocalized with CCR2 in the NAc, was phosphorylated after SNL and was inhibited by intra-NAc injection of Ccr2 shRNA. Furthermore, SNL or CCL2 induced ERK activation in the NAc. Inhibition of ERK by a MEK inhibitor reduced NR2B phosphorylation induced by SNL or CCL2. Finally, intra-NAc injection of NR2B antagonist or MEK inhibitor attenuated SNL-induced pain hypersensitivity and depressive behaviors. Collectively, these results suggest that CCL2/CCR2 signaling in the NAc shell is important in mediating neuropathic pain and depression via regulating NR2B-mediated NMDAR function in D1R- and D2R-containing neurons following peripheral nerve injury.
Collapse
|
27
|
Cohrs G, Goerden S, Lucius R, Synowitz M, Mehdorn HM, Held-Feindt J, Knerlich-Lukoschus F. Spatial and Cellular Expression Patterns of Erythropoietin-Receptor and Erythropoietin during a 42-Day Post-Lesional Time Course after Graded Thoracic Spinal Cord Impact Lesions in the Rat. J Neurotrauma 2018; 35:593-607. [PMID: 28895456 DOI: 10.1089/neu.2017.4981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (Epo) exhibits promising neuroregenerative potential for spinal cord injury (SCI), and might be involved in other long-term sequelae, such as neuropathic pain development. The current studies investigated the time courses and spatial and cellular patterns of Epo and erythropoietin receptor (EpoR) expression along the spinal axis after graded SCI. Male Long Evans rats received 100 kdyn, 150 kdyn, and 200 kdyn thoracic (T9) contusions from an Infinite Horizon impactor. Sham controls received laminectomies. Anatomical and quantitative immunohistochemical analyses of the EpoR/Epo expression along the whole spinal axis were performed 7, 15, and 42 postoperative days (DPO) after the lesioning. Cellular expression was investigated by double- and triple-labeling for EpoR/Epo with cellular markers and proliferating cells in subgroups of 5-bromo-2-deoxyuridine pre-treated animals. Prolonged EpoR/Epo-expression was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Quantified EpoR/Epo immunoreactivities in pain-related spinal cord regions and ventrolateral white matter (VLWM) were correlated with the mechanical sensitivity thresholds and locomotor function of the respective animals. EpoR and Epo were constitutively expressed in the ventral horn neurons and vascular and glial cells in the dorsal columns (DC) and the VLWM. After SCI, in addition to expression in the lesion core, EpoR/Epo immunoreactivities exhibited significant time- and lesion grade-dependent induction in the DC and VLWM along the spinal axis. EpoR and Epo immunoreactive cells were co-stained with markers for astroglial, neural precursor cell and vascular markers. In the VLWM, EpoR- and Epo-positive proliferating cells were co-stained with glial fibrillary acidic protein (GFAP) and nestin. The DC EpoR/Epo immunoreactivities exhibited linear relationships with the behavioral correlates of post-lesional chronic pain development at DPO 42. SCI leads to long-lasting multicellular EpoR/Epo induction beyond the lesion core in the spinal cord regions that are involved in central pain development and regenerative processes. Our studies provide a time frame to investigate the effects of Epo application on motor function or pain development, especially in the later time course after lesioning.
Collapse
Affiliation(s)
- Gesa Cohrs
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | - Stephan Goerden
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | - Ralph Lucius
- 2 Anatomical Institute, Christian-Albrechts University Kiel , Kiel, Germany
| | - Michael Synowitz
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | | | - Janka Held-Feindt
- 1 Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel , Kiel, Germany
| | | |
Collapse
|
28
|
Novel analgesic effects of melanin-concentrating hormone on persistent neuropathic and inflammatory pain in mice. Sci Rep 2018; 8:707. [PMID: 29335480 PMCID: PMC5768747 DOI: 10.1038/s41598-018-19145-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons in the lateral hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, indicating the involvements of many physiological functions, but the role in pain has yet to be determined. In this study, we found that pMCH-/- mice showed lower baseline pain thresholds to mechanical and thermal stimuli than did pMCH+/+ mice, and the time to reach the maximum hyperalgesic response was also significantly earlier in both inflammatory and neuropathic pain. To examine its pharmacological properties, MCH was administered intranasally into mice, and results indicated that MCH treatment significantly increased mechanical and thermal pain thresholds in both pain models. Antagonist challenges with naltrexone (opioid receptor antagonist) and AM251 (cannabinoid 1 receptor antagonist) reversed the analgesic effects of MCH in both pain models, suggesting the involvement of opioid and cannabinoid systems. MCH treatment also increased the expression and activation of CB1R in the medial prefrontal cortex and dorsolateral- and ventrolateral periaqueductal grey. The MCH1R antagonist abolished the effects induced by MCH. This is the first study to suggest novel analgesic actions of MCH, which holds great promise for the application of MCH in the therapy of pain-related diseases.
Collapse
|
29
|
The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner. Brain Res 2017; 1671:85-92. [DOI: 10.1016/j.brainres.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/12/2017] [Accepted: 06/17/2017] [Indexed: 01/24/2023]
|
30
|
Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury. NEUROIMAGE-CLINICAL 2017. [PMID: 28649492 PMCID: PMC5470571 DOI: 10.1016/j.nicl.2017.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Brainstem networks are pivotal in sensory and motor function and in recovery following experimental spinal cord injury (SCI). Objective To quantify neurodegeneration and its relation to clinical impairment in major brainstem pathways and nuclei in traumatic SCI. Methods Quantitative MRI data of 30 chronic traumatic SCI patients (15 with tetraplegia and 15 with paraplegia) and 23 controls were acquired. Patients underwent a full neurological examination. We calculated quantitative myelin-sensitive (magnetisation transfer saturation (MT) and longitudinal relaxation rate (R1)) and iron-sensitive (effective transverse relaxation rate (R2*)) maps. We constructed brainstem tissue templates using a multivariate Gaussian mixture model and assessed volume loss, myelin reductions, and iron accumulation across the brainstem pathways (e.g. corticospinal tracts (CSTs) and medial lemniscus), and nuclei (e.g. red nucleus and periaqueductal grey (PAG)). The relationship between structural changes and clinical impairment were assessed using regression analysis. Results Volume loss was detected in the CSTs and in the medial lemniscus. Myelin-sensitive MT and R1 were reduced in the PAG, the CSTs, the dorsal medulla and pons. No iron-sensitive changes in R2* were detected. Lower pinprick score related to more myelin reductions in the PAG, whereas lower functional independence was related to more myelin reductions in the vestibular and pontine nuclei. Conclusion Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment. Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment trials. Quantitative MRI revealed in-vivo brainstem neurodegeneration in SCI patients. Atrophy was evident in major sensorimotor brainstem pathways. The magnitude of myelin reduction in brainstem nuclei related to clinical disability
Collapse
|
31
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. Drugs 2017; 77:967-984. [PMID: 28451808 DOI: 10.1007/s40265-017-0747-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a complicated condition after a spinal cord injury (SCI) that often has a lifelong and significant negative impact on life after the injury; therefore, improved pain management is considered a significant and unmet need. Neuropathic pain mechanisms are heterogeneous and the difficulty in determining their individual contribution to specific pain types may contribute to poor treatment outcomes in this population. Thus, identifying human neuropathic pain phenotypes based on pain symptoms, somatosensory changes, or cognitive and psychosocial factors that reflect specific spinal cord or brain mechanisms of neuropathic pain is an important goal. Once a pain phenotype can be reliably replicated, its relationship with biomarkers and clinical treatment outcomes can be analyzed, and thereby facilitate translational research and further the mechanistic understanding of individual differences in the pain experience and in clinical trial outcomes. The present article will discuss clinical aspects of SCI-related neuropathic pain, neuropathic pain phenotypes, pain mechanisms, potential biomarkers and pharmacological interventions, and progress regarding how defining neuropathic pain phenotypes may lead to more targeted treatments for these difficult pain conditions.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA. .,Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
32
|
Boadas-Vaello P, Homs J, Reina F, Carrera A, Verdú E. Neuroplasticity of Supraspinal Structures Associated with Pathological Pain. Anat Rec (Hoboken) 2017; 300:1481-1501. [PMID: 28263454 DOI: 10.1002/ar.23587] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Peripheral nerve and spinal cord injuries, along with other painful syndromes such as fibromyalgia, diabetic neuropathy, chemotherapeutic neuropathy, trigeminal neuralgia, complex regional pain syndrome, and/or irritable bowel syndrome, cause several neuroplasticity changes in the nervous system along its entire axis affecting the different neuronal nuclei. This paper reviews these changes, focusing on the supraspinal structures that are involved in the modulation and processing of pain, including the periaqueductal gray matter, red nucleus, locus coeruleus, rostral ventromedial medulla, thalamus, hypothalamus, basal ganglia, cerebellum, habenula, primary, and secondary somatosensory cortex, motor cortex, mammillary bodies, hippocampus, septum, amygdala, cingulated, and prefrontal cortex. Hyperexcitability caused by the modification of postsynaptic receptor expression, central sensitization, and potentiation of presynaptic delivery of neurotransmitters, as well as the reduction of inhibitory inputs, changes in dendritic spine, neural circuit remodeling, alteration of gray matter, and upregulation of proinflammatory mediators (e.g., cytokines) by reactivation of astrocytes and microglial cells are the main functional, structural, and molecular neuroplasticity changes observed in the above supraspinal structures, associated with pathological pain. Studying these changes in greater depth may lead to the implementation and improvement of new therapeutic strategies against pathological pain. Anat Rec, 300:1481-1501, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain.,Department of Physical Therapy EUSES-Universitat of Girona, Salt (Girona), Catalonia, 17190, Spain
| | - Francisco Reina
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Ana Carrera
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| |
Collapse
|
33
|
Descalzi G, Mitsi V, Purushothaman I, Gaspari S, Avrampou K, Loh YHE, Shen L, Zachariou V. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci Signal 2017; 10:10/471/eaaj1549. [PMID: 28325815 DOI: 10.1126/scisignal.aaj1549] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a complex chronic condition characterized by various sensory, cognitive, and affective symptoms. A large percentage of patients with neuropathic pain are also afflicted with depression and anxiety disorders, a pattern that is also seen in animal models. Furthermore, clinical and preclinical studies indicate that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward. Chronic stress is also a major risk factor for depression. We investigated whether chronic pain and stress affect similar molecular mechanisms and whether chronic pain can affect gene expression patterns that are involved in depression. Using two mouse models of neuropathic pain and depression [spared nerve injury (SNI) and chronic unpredictable stress (CUS)], we performed next-generation RNA sequencing and pathway analysis to monitor changes in gene expression in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductal gray (PAG). In addition to finding unique transcriptome profiles across these regions, we identified a substantial number of signaling pathway-associated genes with similar changes in expression in both SNI and CUS mice. Many of these genes have been implicated in depression, anxiety, and chronic pain in patients. Our study provides a resource of the changes in gene expression induced by long-term neuropathic pain in three distinct brain regions and reveals molecular connections between pain and chronic stress.
Collapse
Affiliation(s)
- Giannina Descalzi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vasiliki Mitsi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevasti Gaspari
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kleopatra Avrampou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong-Hwee Eddie Loh
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Shen
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
34
|
Abstract
Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.,Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation 2016; 13:260. [PMID: 27716334 PMCID: PMC5053065 DOI: 10.1186/s12974-016-0736-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in significant physical disabilities for affected individuals. Apart from local injury within the spinal cord, SCI patients develop a variety of complications characterized by multiple organ dysfunction or failure. These disorders, such as neurogenic pain, depression, lung injury, cardiovascular disease, liver damage, kidney dysfunction, urinary tract infection, and increased susceptibility to pathogen infection, are common in injured patients, hinder functional recovery, and can even be life threatening. Multiple lines of evidence point to pathological connections emanating from the injured spinal cord, post-injury systemic inflammation, and immune suppression as important multifactorial mechanisms underlying post-SCI complications. SCI triggers systemic inflammatory responses marked by increased circulation of immune cells and pro-inflammatory mediators, which result in the infiltration of inflammatory cells into secondary organs and persistence of an inflammatory microenvironment that contributes to organ dysfunction. SCI also induces immune deficiency through immune organ dysfunction, resulting in impaired responsiveness to pathogen infection. In this review, we summarize current evidence demonstrating the relevance of inflammatory conditions and immune suppression in several complications frequently seen following SCI. In addition, we highlight the potential pathways by which inflammatory and immune cues contribute to multiple organ failure and dysfunction and discuss current anti-inflammatory approaches used to alleviate post-SCI complications. A comprehensive review of this literature may provide new insights into therapeutic strategies against complications after SCI by targeting systemic inflammation.
Collapse
|
36
|
Kramer JLK, Minhas NK, Jutzeler CR, Erskine ELKS, Liu LJW, Ramer MS. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J Neurosci Res 2016; 95:1295-1306. [PMID: 27617844 DOI: 10.1002/jnr.23881] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Neuropathic pain following spinal cord injury (SCI) is notoriously difficult to treat and is a high priority for many in the SCI population. Resolving this issue requires animal models fidelic to the clinical situation in terms of injury mechanism and pain phenotype. This Review discusses the means by which neuropathic pain has been induced and measured in experimental SCI and compares these with human outcomes, showing that there is a substantial disconnection between experimental investigations and clinical findings in a number of features. Clinical injury level is predominantly cervical, whereas injury in the laboratory is modeled mainly at the thoracic cord. Neuropathic pain is primarily spontaneous or tonic in people with SCI (with a relatively smaller incidence of allodynia), but measures of evoked responses (to thermal and mechanical stimuli) are almost exclusively used in animals. There is even the question of whether pain per se has been under investigation in most experimental SCI studies rather than simply enhanced reflex activity with no affective component. This Review also summarizes some of the problems related to clinical assessment of neuropathic pain and how advanced imaging techniques may circumvent a lack of patient/clinician objectivity and discusses possible etiologies of neuropathic pain following SCI based on evidence from both clinical studies and animal models, with examples of cellular and molecular changes drawn from the entire neuraxis from primary afferent terminals to cortical sensory and affective centers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John L K Kramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikita K Minhas
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine R Jutzeler
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L K S Erskine
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa J W Liu
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Wu J, Zhao Z, Kumar A, Lipinski MM, Loane DJ, Stoica BA, Faden AI. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J Neurotrauma 2016; 33:1919-1935. [PMID: 27050417 DOI: 10.1089/neu.2015.4348] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clinical and experimental studies show that spinal cord injury (SCI) can cause cognitive impairment and depression that can significantly impact outcomes. Thus, identifying mechanisms responsible for these less well-examined, important SCI consequences may provide targets for more effective therapeutic intervention. To determine whether cognitive and depressive-like changes correlate with injury severity, we exposed mice to sham, mild, moderate, or severe SCI using the Infinite Horizon Spinal Cord Impactor and evaluated performance on a variety of neurobehavioral tests that are less dependent on locomotion. Cognitive impairment in Y-maze, novel objective recognition, and step-down fear conditioning tasks were increased in moderate- and severe-injury mice that also displayed depressive-like behavior as quantified in the sucrose preference, tail suspension, and forced swim tests. Bromo-deoxyuridine incorporation with immunohistochemistry revealed that SCI led to a long-term reduction in the number of newly-generated immature neurons in the hippocampal dentate gyrus, accompanied by evidence of greater neuronal endoplasmic reticulum (ER) stress. Stereological analysis demonstrated that moderate/severe SCI reduced neuronal survival and increased the number of activated microglia chronically in the cerebral cortex and hippocampus. The potent microglial activator cysteine-cysteine chemokine ligand 21 (CCL21) was elevated in the brain sites after SCI in association with increased microglial activation. These findings indicate that SCI causes chronic neuroinflammation that contributes to neuronal loss, impaired hippocampal neurogenesis and increased neuronal ER stress in important brain regions associated with cognitive decline and physiological depression. Accumulation of CCL21 in brain may subserve a pathophysiological role in cognitive changes and depression after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Zaorui Zhao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alok Kumar
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Marta M Lipinski
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
38
|
Faden AI, Wu J, Stoica BA, Loane DJ. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 2016; 173:681-91. [PMID: 25939377 PMCID: PMC4742301 DOI: 10.1111/bph.13179] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been linked to dementia and chronic neurodegeneration. Described initially in boxers and currently recognized across high contact sports, the association between repeated concussion (mild TBI) and progressive neuropsychiatric abnormalities has recently received widespread attention, and has been termed chronic traumatic encephalopathy. Less well appreciated are cognitive changes associated with neurodegeneration in the brain after isolated spinal cord injury. Also under-recognized is the role of sustained neuroinflammation after brain or spinal cord trauma, even though this relationship has been known since the 1950s and is supported by more recent preclinical and clinical studies. These pathological mechanisms, manifested by extensive microglial and astroglial activation and appropriately termed chronic traumatic brain inflammation or chronic traumatic inflammatory encephalopathy, may be among the most important causes of post-traumatic neurodegeneration in terms of prevalence. Importantly, emerging experimental work demonstrates that persistent neuroinflammation can cause progressive neurodegeneration that may be treatable even weeks after traumatic injury.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Boadas-Vaello P, Castany S, Homs J, Álvarez-Pérez B, Deulofeu M, Verdú E. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 2016; 54:330-40. [DOI: 10.1038/sc.2015.225] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
40
|
Siddall PJ, Middleton JW. Spinal cord injury-induced pain: mechanisms and treatments. Pain Manag 2015; 5:493-507. [PMID: 26402151 DOI: 10.2217/pmt.15.47] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pain is a common consequence of a spinal cord injury (SCI) and has a major impact on quality of life through its impact on physical function, mood and participation in work, recreational and social activities. Several types of pain typically present following SCI with central neuropathic pain being a frequent and difficult to manage occurrence. Despite advances in our understanding of the mechanisms contributing to this type of pain and an increasing number of trials examining treatment efficacy, our ability to relieve neuropathic SCI pain is still very limited. Optimal management relies upon an integrated approach that uses a combination of pharmacological and nonpharmacological options.
Collapse
Affiliation(s)
- Philip J Siddall
- Pain Management Service, HammondCare, Sydney, NSW 2000, Australia.,Pain Medicine, Sydney Medical School-Northern, The University of Sydney, Sydney, Australia.,Greenwich Hospital, Greenwich, NSW 2065, Australia
| | - James W Middleton
- State Spinal Cord Injury Service, NSW Agency for Clinical Innovation, Chatswood, NSW 2057, Australia.,John Walsh Centre for Rehabilitation Research, Sydney Medical School-Northern, The University of Sydney, Sydney, Australia
| |
Collapse
|
41
|
Fitzgibbon M, Finn DP, Roche M. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity. Int J Neuropsychopharmacol 2015; 19:pyv095. [PMID: 26342110 PMCID: PMC4815466 DOI: 10.1093/ijnp/pyv095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.
Collapse
Affiliation(s)
| | | | - Michelle Roche
- Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.
| |
Collapse
|
42
|
Knerlich-Lukoschus F. Chemokines and their receptors: important mediators to be aware of in neuroregenerative approaches for spinal cord injury. Neural Regen Res 2015; 10:562-4. [PMID: 26170814 PMCID: PMC4424746 DOI: 10.4103/1673-5374.155423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 02/01/2023] Open
|
43
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chemokine-ligands/receptors: multiplayers in traumatic spinal cord injury. Mediators Inflamm 2015; 2015:486758. [PMID: 25977600 PMCID: PMC4419224 DOI: 10.1155/2015/486758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc) insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor) in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.
Collapse
|
45
|
Corcoran L, Roche M, Finn DP. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:203-55. [DOI: 10.1016/bs.irn.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci 2014; 19:125-32. [PMID: 25205985 PMCID: PMC4117080 DOI: 10.5214/ans.0972.7531.190309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain (NP) is a significant and disabling clinical problem with very few therapeutic treatment options available. A major priority is to identify the molecular mechanisms responsible for NP. Although many seemingly relevant pathways have been identified, more research is needed before effective clinical interventions can be produced. Initial insults to the nervous system, such as spinal cord injury (SCI), are often compounded by secondary mechanisms such as inflammation, the immune response, and the changing expression of receptors and ion channels. The consequences of these secondary effects myriad and compound those elicited by the primary injury. Chronic NP syndromes following SCI can greatly complicate the clinical treatment of the primary injury and result in high comorbidity. In this review, we will describe physiological outcomes associated with SCI along with some of the mechanisms known to contribute to chronic NP development.
Collapse
|
47
|
Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 2014; 34:10989-1006. [PMID: 25122899 DOI: 10.1523/jneurosci.5110-13.2014] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Experimental spinal cord injury (SCI) causes chronic neuropathic pain associated with inflammatory changes in thalamic pain regulatory sites. Our recent studies examining chronic pain mechanisms after rodent SCI showed chronic inflammatory changes not only in thalamus, but also in other regions including hippocampus and cerebral cortex. Because changes appeared similar to those in our rodent TBI models that are associated with neurodegeneration and neurobehavioral dysfunction, we examined effects of mouse SCI on cognition, depressive-like behavior, and brain inflammation. SCI caused spatial and retention memory impairment and depressive-like behavior, as evidenced by poor performance in the Morris water maze, Y-maze, novel objective recognition, step-down passive avoidance, tail suspension, and sucrose preference tests. SCI caused chronic microglial activation in the hippocampus and cerebral cortex, where microglia with hypertrophic morphologies and M1 phenotype predominated. Stereological analyses showed significant neuronal loss in the hippocampus at 12 weeks but not 8 d after injury. Increased cell-cycle-related gene (cyclins A1, A2, D1, E2F1, and PCNA) and protein (cyclin D1 and CDK4) expression were found chronically in hippocampus and cerebral cortex. Systemic administration of the selective cyclin-dependent kinase inhibitor CR8 after SCI significantly reduced cell cycle gene and protein expression, microglial activation and neurodegeneration in the brain, cognitive decline, and depression. These studies indicate that SCI can initiate a chronic brain neurodegenerative response, likely related to delayed, sustained induction of M1-type microglia and related cell cycle activation, which result in cognitive deficits and physiological depression.
Collapse
|
48
|
Freitag CM, Miller RJ. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines? Front Cell Neurosci 2014; 8:238. [PMID: 25191225 PMCID: PMC4138931 DOI: 10.3389/fncel.2014.00238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022] Open
Abstract
Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.
Collapse
Affiliation(s)
- Caroline M Freitag
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| |
Collapse
|
49
|
Widerström-Noga E. Multidimensional clinical pain phenotypes after spinal cord injury. Pain Manag 2014; 2:467-78. [PMID: 24645863 DOI: 10.2217/pmt.12.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SUMMARY Persistent neuropathic pain after spinal cord injury (SCI) is a serious problem that significantly affects general health and wellbeing over and above what is caused by other medical consequences after SCI. The ideal approach to the management of the neuropathic pain conditions after SCI would be to identify the primary contributing mechanisms of pain in each person and tailor the treatment to these. However, despite significant basic and clinical research progress, this approach remains elusive. One strategy to further this effort is to define neuropathic pain phenotypes based on pain symptoms, sensory function/dysfunction and psychosocial factors, and determine the relationship between these and treatment outcomes and biomarkers including brain imaging. This approach will facilitate the interaction between basic and clinical science and translational research, further the understanding of the mechanisms that contribute to the development and maintenance of neuropathic pain after SCI, and thus the development of effective mechanisms-based pain treatment strategies.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, LPLC (R-48) and Departments of Neurological Surgery & Rehabilitation Medicine, Miller School of Medicine, University of Miami, LPLC (R-48), 1095 NW, 14th Terrace Miami, FL 33136, USA.
| |
Collapse
|
50
|
Schneider P, Hannusch C, Schmahl C, Bohus M, Spanagel R, Schneider M. Adolescent peer-rejection persistently alters pain perception and CB1 receptor expression in female rats. Eur Neuropsychopharmacol 2014; 24:290-301. [PMID: 23669059 DOI: 10.1016/j.euroneuro.2013.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 01/10/2023]
Abstract
Peer-interactions are particularly important during adolescence and teenagers display enhanced sensitivity toward rejection by peers. Social rejection has been shown to induce alterations in pain perception in humans. However, the neurobiological consequences of adolescent social rejection have yet to be extensively characterized, and no appropriate animal model is available. Here, we propose inadequate playful interactions in adolescent rats as a novel animal model for social peer-rejection and examine potential long-term consequences into adulthood. Acute social pairing of female adolescent Wistar rats with an age-matched rat from the less playful Fischer344 strain was found to alter social play and decrease pain reactivity, indicating Fischer rats as inadequate social partners for Wistar animals. Therefore, in a second experiment, adolescent female Wistar rats were either reared with another Wistar rat (adequate social rearing; control) or with a Fischer rat (inadequate social rearing; play-deprived). Beginning on day 50, all Wistar rats were group housed with same-strain partners and tested for behavioral, neurobiological and endocrine differences in adulthood. Playful peer-interactions were decreased during adolescence in play-deprived animals, without affecting social contact behavior. Consequently, adult play-deprived rats showed decreased pain sensitivity and increased startle reactivity compared to controls, but did not differ in activity, anxiety-related behavior or social interaction. Both groups also differed in their endocrine stress-response, and expression levels of the cannabinoid CB1 receptor were increased in the thalamus, whereas FAAH levels were decreased in the amygdala. The present animal model therefore represents a novel approach to assess the long-term consequences of peer-rejection during adolescence.
Collapse
Affiliation(s)
- Peggy Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christin Hannusch
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Bohus
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Miriam Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|