1
|
Gholami M, Ghelichkhani Z, Aghakhani R, Klionsky DJ, Motaghinejad O, Motaghinejad M, Koohi MK, Hassan J. Minocycline Acts as a Neuroprotective Agent Against Tramadol-Induced Neurodegeneration: Behavioral and Molecular Evidence. Int J Prev Med 2024; 15:47. [PMID: 39539580 PMCID: PMC11559692 DOI: 10.4103/ijpvm.ijpvm_10_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative events and minocycline (MIN) has neuroprotective properties. Aim of the Study The current research evaluated the neuroprotective effects of MIN for TRA-promoted neurodegeneration. Methods Sixty adult male rats were placed into the following groups: 1 (received 0.7 ml/rat of normal saline, IP), 2 (received 50 mg/kg of TRA, i.p.), 3, 4, 5 (administered TRA as 50 mg/kg simultaneously with MIN at 20, 40, and 60 mg/kg, IP, respectively), and 6 (received MIN alone as 60 mg/kg, IP). The treatment procedure was 21 days. An open field test (OFT) was used to measure motor activity and anxiety-related behavior. Furthermore, oxidative stress; hippocampal inflammation; apoptotic parameters as well as activity of mitochondrial complexes I, II, III, and IV; ATP levels; and mitochondrial membrane potential (MMP) were evaluated. In addition, histomorphological alteration was assessed in two regions of the hippocampus: Cornu Ammonis (CA1) and dentate gyrus (DG). Results MIN treatment could inhibit TRA-induced anxiety and motor activity disturbances (P < 0.05). In addition, MIN could attenuate reactive oxygen species (ROS), H2O2, oxidized glutathione (GSSG), and malondialdehyde (MDA) level (P < 0.05), while there was increased reduced glutathione (GSH), total antioxidant capacity (TAC), ATP, MMP, and BCL2 levels (P < 0.05) and also elevation of SOD, GPX, GSR (P < 0.05), and mitochondrial complexes I, II, III, and IV activity (P < 0.05) in TRA-treated rats. In consistence with these findings, MIN could reduce TNF/TNF-α, IL1B/IL1-β, BAX, and CASP3 levels (P < 0.05) in TRA-treated rats. MIN also restored the quantitative (P < 0.05) and qualitative histomorphological sequels of TRA in both CA1 and DG areas of the hippocampus. Conclusions MIN probably has repositioning capability for inhibition of TRA-induced neurodegeneration via modulation of inflammation, oxidative stress, apoptosis, and mitochondrial disorders.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Aghakhani
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | | - Ozra Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Seitz-Holland J, Alemán-Gómez Y, Cho KIK, Pasternak O, Cleusix M, Jenni R, Baumann PS, Klauser P, Conus P, Hagmann P, Do KQ, Kubicki M, Dwir D. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024; 49:1140-1150. [PMID: 38431757 PMCID: PMC11109110 DOI: 10.1038/s41386-024-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
4
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
The protective effect of low-dose minocycline on brain microvascular ultrastructure in a rodent model of subarachnoid hemorrhage. Histochem Cell Biol 2023; 159:91-114. [PMID: 36153470 PMCID: PMC9899762 DOI: 10.1007/s00418-022-02150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.
Collapse
|
6
|
Chen F, Cai J, Dai L, Lin Y, Yu L, Lin Z, Kang Y, Yu T, Wang D, Kang D. Altered hippocampal functional connectivity after the rupture of anterior communicating artery aneurysm. Front Aging Neurosci 2022; 14:997231. [PMID: 36420312 PMCID: PMC9677126 DOI: 10.3389/fnagi.2022.997231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 09/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Aneurysmal subarachnoid hemorrhage (SAH) predisposes hippocampal injury, a major cause of follow-up cognitive impairment. Our previous study has revealed an abnormal resting-state brain network in patients after the rupture of anterior communicating artery (ACoA) aneurysm. However, the functional connectivity (FC) characteristics of the hippocampus and its relationship with cognitive performance in these patients remain unknown. METHODS This study ultimately included 26 patients and 19 age- and sex-matched controls who completed quality control for resting-state functional magnetic resonance imaging (fMRI). The mean time series for each side of the hippocampus was extracted from individuals and then a seed-to-voxel analysis was performed. We compared the difference in FC strength between the two groups and subsequently analyzed the correlations between abnormal FC and their cognitive performance. RESULTS The results of bilateral hippocampus-based FC analysis were largely consistent. Compared with the healthy controls, patients after the rupture of ACoA aneurysm exhibited significantly decreased FC between the hippocampus and other brain structures within the Papez circuit, including bilateral anterior and middle cingulate cortex (MCC), bilateral medial superior frontal gyrus, and left inferior temporal gyrus (ITG). Instead, increased FC between the hippocampus and bilateral insula was observed. Correlation analyses showed that more subjective memory complaints or lower total cognitive scores were associated with decreased connectivity in the hippocampus and several brain regions such as left anterior cingulate cortex (ACC) and frontotemporal cortex. CONCLUSION These results extend our previous findings and suggest that patients with ruptured ACoA aneurysm exist hypoconnectivity between the hippocampus and multiple brain regions within the Papez circuit. Deactivation of the Papez circuit may be a crucial neural mechanism related to cognitive deficits in patients after the rupture of ACoA aneurysm.
Collapse
Affiliation(s)
- Fuxiang Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiawei Cai
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Linsun Dai
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lianghong Yu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhangya Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yaqing Kang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting Yu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dengliang Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Gao X, Li R, Luo L, Zhang D, Liu Q, Zhang J, Mao S. Alpha-asarone ameliorates neurological deterioration of intracerebral hemorrhagic rats by alleviating secondary brain injury via anti-excitotoxicity pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154363. [PMID: 35926378 DOI: 10.1016/j.phymed.2022.154363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Secondary brain injury (SBI) has been confirmed as a leading cause for the poor prognosis of patients suffering from intracerebral hemorrhage (ICH). SBI co-exists in ischemia and hemorrhagic stroke. Neuro-excitotoxicity is considered the initiating factor of ICH-induced SBI. Our previous research has revealed alpha-asarone (ASA)'s efficacy against cerebral ischemia-reperfusion stroke by mitigating neuro-excitotoxicity. It is not yet known if ASA exhibit neuroprotection against ICH. PURPOSE This work aimed to investigate ASA's therapeutic effects and potential mechanisms of action against ICH in a classic rat model induced by collagenase Ⅶ injection. METHODS An in vivo ICH model of Sprague-Dawley rats was established by collagenase Ⅶ injection. We administrated different ASA doses (10, 20, or 40 mg/kg, i.p.) at 2 h post-ICH. Then, rats' short- and long-term neurobehavioral function, bodyweight change, and learning and memory ability were blindly evaluated. Histological, Nissl, and flow cytometry were applied to assess the neuronal damage post-ICH. The wet/dry method and Evans blue extravasation estimated brain edema and blood-brain barrier function. Pathway-related proteins were investigated by immunofluorescence staining, enzyme-linked immunosorbent assay, and Western-blot analysis. RESULTS The results demonstrated that ASA ameliorated neurological deterioration, bodyweight loss, and learning and memory ability of ICH rats. Histological, Nissl, and flow cytometry analyses showed that ASA reduced neuronal damage and apoptosis post-ICH. Besides, ASA probably mitigated brain edema and blood-brain barrier dysfunction via inhibiting astrocyte activation and consequent pro-inflammatory response. The mechanism investigation attributed ASA's efficacy to the following aspects: 1) promoting sodium ion excretion, thus blocking excitatory signal transduction along the axon; 2) preventing glutamate-involved pathways, i.e., decrease of N-methyl-d-aspartic acid receptor subunit 2B, increase of glutamate transporter-1, and alleviation of calcium-related cascades, mitochondrion-associated apoptosis, and neuronal autophagy; 3) enhancing the expression of GABAARs, thus abating neuronal excitotoxicity. CONCLUSION Our study first confirmed the effect of ASA on ameliorating the neurobehavioral deterioration of ICH rats, possibly via alleviation of glutamate-involved neuro-excitotoxicity, i.e., calcium cascades, mitochondrion-involved apoptosis, neuronal autophagy, and astrocyte-related inflammation. These findings not only provided a promising drug candidate for clinical treatment of ICH but also shed light on the future drug discovery against ICH.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Minocycline Attenuates Microglia/Macrophage Phagocytic Activity and Inhibits SAH-Induced Neuronal Cell Death and Inflammation. Neurocrit Care 2022; 37:410-423. [PMID: 35585424 PMCID: PMC9519684 DOI: 10.1007/s12028-022-01511-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/05/2022] [Indexed: 01/28/2023]
Abstract
Background Neuroprotective treatment strategies aiming at interfering with either inflammation or cell death indicate the importance of these mechanisms in the development of brain injury after subarachnoid hemorrhage (SAH). This study was undertaken to evaluate the influence of minocycline on microglia/macrophage cell activity and its neuroprotective and anti-inflammatory impact 14 days after aneurismal SAH in mice. Methods Endovascular filament perforation was used to induce SAH in mice. SAH + vehicle-operated mice were used as controls for SAH vehicle-treated mice and SAH + minocycline-treated mice. The drug administration started 4 h after SAH induction and was daily repeated until day 7 post SAH and continued until day 14 every second day. Brain cryosections were immunolabeled for Iba1 to detect microglia/macrophages and NeuN to visualize neurons. Phagocytosis assay was performed to determine the microglia/macrophage activity status. Apoptotic cells were stained using terminal deoxyuridine triphosphate nick end labeling. Real-time quantitative polymerase chain reaction was used to estimate cytokine gene expression. Results We observed a significantly reduced phagocytic activity of microglia/macrophages accompanied by a lowered spatial interaction with neurons and reduced neuronal apoptosis achieved by minocycline administration after SAH. Moreover, the SAH-induced overexpression of pro-inflammatory cytokines and neuronal cell death was markedly attenuated by the compound. Conclusions Minocycline treatment may be implicated as a therapeutic approach with long-term benefits in the management of secondary brain injury after SAH in a clinically relevant time window. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-022-01511-5.
Collapse
|
9
|
Glaser N, Chu S, Weiner J, Zdepski L, Wulff H, Tancredi D, ODonnell ME. Effects of TRAM-34 and minocycline on neuroinflammation caused by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res Care 2022; 10:10/3/e002777. [PMID: 35584854 PMCID: PMC9119135 DOI: 10.1136/bmjdrc-2022-002777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Diabetic ketoacidosis (DKA) causes acute and chronic neuroinflammation that may contribute to cognitive decline in patients with type 1 diabetes. We evaluated the effects of agents that reduce neuroinflammation (triarylmethane-34 (TRAM-34) and minocycline) during and after DKA in a rat model. RESEARCH DESIGN AND METHODS Juvenile rats with DKA were treated with insulin and saline, either alone or in combination with TRAM-34 (40 mg/kg intraperitoneally twice daily for 3 days, then daily for 4 days) or minocycline (45 mg/kg intraperitoneally daily for 7 days). We compared cytokine and chemokine concentrations in brain tissue lysates during DKA among the three treatment groups and in normal controls and diabetic controls (n=9-15/group). We also compared brain inflammatory mediator levels in these same groups in adult diabetic rats that were treated for DKA as juveniles. RESULTS Brain tissue concentrations of chemokine (C-C) motif ligand (CCL)3, CCL5 and interferon (IFNγ) were increased during acute DKA, as were brain cytokine composite scores. Both treatments reduced brain inflammatory mediator levels during acute DKA. TRAM-34 predominantly reduced chemokine concentrations (chemokine (C-X-C) motif ligand (CXCL-1), CCL5) whereas minocycline had broader effects, (reducing CXCL-1, tumor necrosis factor (TNFα), IFNγ, interleukin (IL) 2, IL-10 and IL-17A). Brain inflammatory mediator levels were elevated in adult rats that had DKA as juveniles, compared with adult diabetic rats without previous DKA, however, neither TRAM-34 nor minocycline treatment reduced these levels. CONCLUSIONS These data demonstrate that both TRAM-34 and minocycline reduce acute neuroinflammation during DKA, however, treatment with these agents for 1 week after DKA does not reduce long-term neuroinflammation.
Collapse
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Steven Chu
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Justin Weiner
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Linnea Zdepski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Heike Wulff
- Department of Pharmacology, UC Davis, Davis, California, USA
| | - Daniel Tancredi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Martha E ODonnell
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| |
Collapse
|
10
|
Okada T, Suzuki H, Travis ZD, Altay O, Tang J, Zhang JH. SPARC Aggravates Blood-Brain Barrier Disruption via Integrin αV β3/MAPKs/MMP-9 Signaling Pathway after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9739977. [PMID: 34804372 PMCID: PMC8601826 DOI: 10.1155/2021/9739977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023]
Abstract
Blood-brain barrier (BBB) disruption is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the BBB disruption property of secreted protein acidic and rich in cysteine (SPARC) after SAH. A total of 197 rats underwent endovascular perforation to induce SAH or sham operation. Small interfering ribonucleic acid (siRNA) for SPARC or scrambled siRNA was administered intracerebroventricularly to rats 48 h before SAH. Anti-SPARC monoclonal antibody (mAb) 236 for functional blocking or normal mouse immunoglobulin G (IgG) was administered intracerebroventricularly 1 h after SAH. Selective integrin αVβ3 inhibitor cyclo(-RGDfK) or phosphate-buffered saline was administered intranasally 1 h before SAH, along with recombinant SPARC treatment. Neurobehavior, SAH severity, brain edema, immunohistochemical staining, and Western blot were evaluated. The expression of SPARC and integrin αVβ3 was upregulated after SAH in the endothelial cells. SPARC siRNA and anti-SPARC mAb 236 prevented neuroimpairments and brain edema through protection of BBB as measured by IgG extravasation 24 and 72 h after SAH. Recombinant SPARC aggravated neuroimpairments and cyclo(-RGDfK) suppressed the harmful neurological effects via inhibition of activated c-Jun N-terminal kinase, p38, and matrix metalloproteinase-9 followed by retention of endothelial junction proteins. SPARC may induce post-SAH BBB disruption via integrin αVβ3 signaling pathway.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Kuwana City Medical Center, 3-11 Kotobuki-cho, Kuwana, Mie 511-0061, Japan
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D. Travis
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Earth and Biological Sciences, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Orhan Altay
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Anesthesiology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Neurosurgery, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| |
Collapse
|
11
|
Miyaoka R, Yamamoto J, Miyachi H, Suzuki K, Saito T, Nakano Y. Intra-arterial Contrast-enhanced Micro-computed Tomography Can Evaluate Intracranial Status in the Ultra-early Phase of Experimental Subarachnoid Hemorrhage in Rats. Neurol Med Chir (Tokyo) 2021; 61:721-730. [PMID: 34615810 PMCID: PMC8666300 DOI: 10.2176/nmc.oa.2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endovascular perforation (EP) model is a common technique for experimental subarachnoid hemorrhage (SAH) in rats, simulating the pathophysiological features observed in the acute phase of SAH. Due to the drawbacks of large variations in the amount of bleeding, the results obtained from this model require severity evaluation. However, no less-invasive procedure could confirm the precise intracranial conditions immediately after establishing the rat EP model. We created a novel method for evaluating SAH immediately after establishing the rat EP model using intra-arterial contrast-enhanced micro-computed tomography (CT). We administered contrast agents continuously via the carotid artery during surgery and performed CT examination immediately after SAH induction. First, bleeding severity was classified by establishing a scoring system based on the CT findings (cSAH scoring system). Subsequently, we determined the actual SAH distribution macroscopically and histologically and compared it with the cSAH scores. Second, we investigated the contrast agent’s neurotoxicity in rats. Finally, we confirmed the correlation between cSAH scores and SAH severity, including neurological status, cerebral vasospasm, and hematoma volume 24 hr after SAH. Intra-arterial contrast-enhanced micro-CT could visualize the distribution of SAH proportionally to the bleeding severity immediately after establishing the EP model. Moreover, the contrast agent administration was determined not to be neurotoxic to rats. The cSAH scoring revealed a significant correlation with the SAH severity in the rat EP model (P <0.01). Thus, our minimally invasive method provided precise information on intracranial status in the ultra-early phase of SAH in rats EP model.
Collapse
Affiliation(s)
- Ryo Miyaoka
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Junkoh Yamamoto
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Hiroshi Miyachi
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Kohei Suzuki
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Takeshi Saito
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Yoshiteru Nakano
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| |
Collapse
|
12
|
Peterson C, Umoye AO, Puglisi CH, Waldau B. Mechanisms of memory impairment in animal models of nontraumatic intracranial hemorrhage: A systematic review of the literature. BRAIN HEMORRHAGES 2021; 3:77-93. [DOI: 10.1016/j.hest.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
13
|
T0901317, an Agonist of Liver X Receptors, Attenuates Neuronal Apoptosis in Early Brain Injury after Subarachnoid Hemorrhage in Rats via Liver X Receptors/Interferon Regulatory Factor/P53 Upregulated Modulator of Apoptosis/Dynamin-1-Like Protein Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8849131. [PMID: 34194609 PMCID: PMC8181056 DOI: 10.1155/2021/8849131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 05/12/2021] [Indexed: 12/28/2022]
Abstract
Methods Subarachnoid hemorrhage (SAH) models of Sprague-Dawley rats were established with perforation method. T0901317 was injected intraperitoneally 1-hour post-SAH. GSK2033, an inhibitor of LXRs, and interferon regulatory factor (IRF-1) CRISPR activation were injected intracerebroventricularly to evaluate potential signaling pathway. The severity of SAH, neurobehavior test in both short- and long-term and apoptosis was measured with Western blot and immunofluorescence staining. Results Expression of LXR-α and IRF-1 increased and peaked at 24 h post-SAH, while LXR-β remained unaffected in SAH+vehicle group compared with Sham group. Post-SAH T0901317 treatment attenuated neuronal impairments in both short- and long-term and decreased neuronal apoptosis, the expression of IRF-1, P53 upregulated modulator of apoptosis (PUMA), dynamin-1-like protein (Drp1), Bcl-2-associated X protein (Bax) and cleaved caspase-3, and increasing B-cell lymphoma 2 (Bcl-2) at 24 h from modeling. GSK2033 inhibited LXRs and reversed T0901317's neuroprotective effects. IRF-1 CRISPR activation upregulated the expression of IRF-1 and abolished the treatment effects of T0901317. Conclusion T0901317 attenuated neuronal apoptosis via LXRs/IRF-1/PUMA/Drp1 pathway in SAH rats.
Collapse
|
14
|
Fujiki M, Kuga K, Ozaki H, Kawasaki Y, Fudaba H. Blockade of Motor Cortical Long-Term Potentiation Induction by Glutamatergic Dysfunction Causes Abnormal Neurobehavior in an Experimental Subarachnoid Hemorrhage Model. Front Neural Circuits 2021; 15:670189. [PMID: 33897380 PMCID: PMC8063030 DOI: 10.3389/fncir.2021.670189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening condition that can also lead to permanent paralysis. However, the mechanisms that underlying neurobehavioral deficits after SAH have not been fully elucidated. As theta burst stimulation (TBS) can induce long-term potentiation (LTP) in the motor cortex, we tested its potential as a functional evaluation tool after experimentally induced SAH. Motor cortical inter-neuronal excitability was evaluated in anesthetized rats after 200 Hz-quadripulse TBS (QTS5), 200 Hz-quadripulse stimulation (QPS5), and 400 Hz-octapulse stimulation (OPS2.5). Furthermore, correlation between motor cortical LTP and N-methyl-D-aspartate-receptor activation was evaluated using MK-801, a NMDA-receptor antagonist. We evaluated inhibition-facilitation configurations [interstimulus interval: 3 ms; short-latency intracortical inhibition (SICI) and 11 ms; intracortical facilitation (ICF)] with paired electrical stimulation protocols and the effect of TBS paradigm on continuous recording of motor-evoked potentials (MEPs) for quantitative parameters. SAH and MK-801 completely blocked ICF, while SICI was preserved. QTS5, QPS5, and OPS2.5 facilitated continuous MEPs, persisting for 180 min. Both SAH and MK-801 completely blocked MEP facilitations after QPS5 and OPS2.5, while MEP facilitations after QTS5 were preserved. Significant correlations were found among neurological scores and 3 ms-SICI rates, 11 ms-ICF rates, and MEP facilitation rates after 200 Hz-QTS5, 7 days after SAH (R2 = 0.6236; r = −0.79, R2 = 0.6053; r = −0.77 and R2 = 0.9071; r = 0.95, p < 0.05, respectively). Although these findings need to be verified in humans, our study demonstrates that the neurophysiological parameters 3 ms-SICI, 11 ms-ICF, and 200 Hz-QTS5-MEPs may be useful surrogate quantitative biomarkers for assessing inter-neuronal function after SAH.
Collapse
Affiliation(s)
- Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Kuga
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Harushige Ozaki
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yukari Kawasaki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | - Hirotaka Fudaba
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| |
Collapse
|
15
|
Tso MK, Turgeon P, Bosche B, Lee CK, Nie T, D'Abbondanza J, Ai J, Marsden PA, Macdonald RL. Gene expression profiling of brain endothelial cells after experimental subarachnoid haemorrhage. Sci Rep 2021; 11:7818. [PMID: 33837224 PMCID: PMC8035152 DOI: 10.1038/s41598-021-87301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a type of hemorrhagic stroke that is associated with high morbidity and mortality. New effective treatments are needed to improve outcomes. The pathophysiology of SAH is complex and includes early brain injury and delayed cerebral ischemia, both of which are characterized by blood–brain barrier (BBB) impairment. We isolated brain endothelial cells (BECs) from mice subjected to SAH by injection of blood into the prechiasmatic cistern. We used gene expression profiling to identify 707 unique genes (2.8% of transcripts, 403 upregulated, 304 downregulated, 24,865 interrogated probe sets) that were significantly differentially expressed in mouse BECs after SAH. The pathway involving prostaglandin synthesis and regulation was significantly upregulated after SAH, including increased expression of the Ptgs2 gene and its corresponding COX-2 protein. Celecoxib, a selective COX-2 inhibitor, limited upregulation of Ptgs2 in BECs. In this study, we have defined the gene expression profiling of BECs after experimental SAH and provide further insight into BBB pathophysiology, which may be relevant to other neurological diseases such as traumatic brain injury, brain tumours, ischaemic stroke, multiple sclerosis, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael K Tso
- Division of Neurosurgery, University of Calgary, Calgary, AB, Canada.,Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Paul Turgeon
- Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - Bert Bosche
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Clinic Reichshof, Reichshof-Eckenhagen, Germany.,Institute of Neurophysiology, University of Cologne, Cologne, Germany.,Department of Neurology, University of Duisburg-Essen, Essen, Germany.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Charles K Lee
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Tian Nie
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Josephine D'Abbondanza
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Jinglu Ai
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA
| | - Philip A Marsden
- Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. .,Department of Neurological Surgery, UCSF Fresno Campus, Fresno, USA.
| |
Collapse
|
16
|
Strickland BA, Bakhsheshian J, Emmanuel B, Amar A, Giannotta SL, Russin JJ, Mack W. Neuroprotective effect of minocycline against acute brain injury in clinical practice: A systematic review. J Clin Neurosci 2021; 86:50-57. [PMID: 33775346 DOI: 10.1016/j.jocn.2021.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023]
Abstract
Acute brain injury is a leading cause of morbidity and mortality worldwide. The term is inclusive of traumatic brain injury, cerebral ischemia, subarachnoid hemorrhage, and intracerebral hemorrhage. Current pharmacologic treatments have had minimal effect on improving neurological outcomes leading to a significant interest in the development neuroprotective agents. Minocycline is a second-generation tetracycline with high blood brain barrier penetrance due to its lipophilic properties. It functions across multiple molecular pathways involved in secondary-injury cascades following acute brain injury. Animal model studies suggest that minocycline might lead to improved neurologic outcomes, but few such trials exist in humans. Clinical investigations have been limited to small randomized trials in ischemic stroke patients which have not demonstrated a clear advantage in neurologic outcomes, but also have not been sufficiently powered to draw definitive conclusions. The potential neuroprotective effect of minocycline in the setting of traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage have all been limited to pilot studies with phase II/III investigations pending. The authors aim to synthesize what is currently known about minocycline as a neuroprotective agent against acute brain injury in humans.
Collapse
Affiliation(s)
- Ben A Strickland
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA.
| | - Joshua Bakhsheshian
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben Emmanuel
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Arun Amar
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Steven L Giannotta
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan J Russin
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - William Mack
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Zhang Y, Rui T, Luo C, Li Q. Mdivi-1 alleviates brain damage and synaptic dysfunction after intracerebral hemorrhage in mice. Exp Brain Res 2021; 239:1581-1593. [PMID: 33754161 DOI: 10.1007/s00221-021-06089-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
As a selective inhibitor of mitochondrial fission protein dynamin-related protein-1 (Drp1), mitochondrial division inhibitor 1 (mdivi-1) can cross the blood-brain barrier (BBB) and exert neuroprotection. However, it remains unclear whether mdivi-1 can attenuate intracerebral hemorrhage (ICH)-induced secondary brain injury. This study was undertaken to characterize the roles of mdivi-1 in short-term and long-term behavioral outcomes, along with synaptic plasticity changes in mice after ICH. The results indicated mdivi-1 reversed Drp1 translocation and the morphologic changes of mitochondria, as well as ameliorated short-term neurobehavioral deficits, the BBB disruption and brain edema remarkably. In addition, mdivi-1 could rescue ICH-induced motor and memory dysfunctions. Mdivi-1 could also prevent ICH-induced reductions in synaptic proteins (synapsin I, PSD95) and phosphorylated cAMP-response element binding (p-CREB). In vitro, mdivi-1 inhibited hemin-induced hippocampal neuron death and improved neurite outgrowth. In conclusion, we found that mdivi-1 can alleviate short-term and long-term neurological deficits, synaptic dysfunction. These findings demonstrate that mdivi-1 may be beneficial in the treatment of secondary brain injury, synaptic dysfunction and neurological outcomes caused by ICH.
Collapse
Affiliation(s)
- Yunge Zhang
- Institute of Forensic Science, Changzhou De'an Hospital, Changzhou, 213003, Jiangsu, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
18
|
Mai N, Knowlden SA, Miller-Rhodes K, Prifti V, Sims M, Grier M, Nelson M, Halterman MW. Effects of 9-t-butyl doxycycline on the innate immune response to CNS ischemia-reperfusion injury. Exp Mol Pathol 2020; 118:104601. [PMID: 33385413 DOI: 10.1016/j.yexmp.2020.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 11/26/2022]
Abstract
Cerebral ischemia triggers a cascade of neuroinflammatory and peripheral immune responses that contribute to post-ischemic reperfusion injury. Prior work conducted in CNS ischemia models underscore the potential to harness non-antibiotic properties of tetracycline antibiotics for therapeutic benefit. In the present study, we explored the immunomodulatory effects of the tetracycline derivative 9-tert-butyl doxycycline (9-TB) in a mouse model of transient global ischemia that mimics immunologic aspects of the post-cardiac arrest syndrome. Pharmacokinetic studies performed in C57BL/6 mice demonstrate that within four hours after delivery, levels of 9-TB in the brain were 1.6 and 9.5-fold higher than those obtained using minocycline and doxycycline, respectively. Minocycline and 9-TB also dampened inflammation, measured by reduced TNFα-inducible, NF-κβ-dependent luciferase activity in a microglial reporter line. Notably, daily 9-TB treatment following ischemia-reperfusion injury in vivo induced the retention of polymorphonuclear neutrophils (PMNs) within the spleen while simultaneously biasing CNS PMNs towards an anti-inflammatory (CD11bLowYm1+) phenotype. These studies indicate that aside from exhibiting enhanced CNS delivery, 9-TB alters both the trafficking and polarization of PMNs in the context of CNS ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Nguyen Mai
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara A Knowlden
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kathleen Miller-Rhodes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Viollandi Prifti
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Max Sims
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; The Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mark Grier
- Echelon Biosciences, Salt Lake City, UT 84108, USA
| | - Mark Nelson
- Echelon Biosciences, Salt Lake City, UT 84108, USA
| | - Marc W Halterman
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, USA.
| |
Collapse
|
19
|
Abstract
Rodents are the most widely used experimental animals in stroke research due to their similar vascular anatomy, high reproductive rates, and availability of transgenic models. However, the difficulties in assessing higher brain functions, such as cognition and memory, in rodents decrease the translational potential of these studies. In this review, we summarize commonly used motor/sensorimotor and cognition tests in rodent models of stroke. Specifically, we first briefly introduce the objective and procedure of each behavioral test. Next, we summarize the application of each test in both ischemic stroke and hemorrhagic stroke. Last, the advantages and disadvantages of these tests in assessing stroke outcome are discussed. This review summarizes commonly used behavioral tests in stroke studies and compares their applications in different stroke types.
Collapse
Affiliation(s)
- Jingsong Ruan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, USA
| |
Collapse
|
20
|
Turan N, Heider RA, Nadeem M, Miller BA, Wali B, Yousuf S, Sayeed I, Stein DG, Pradilla G. Neurocognitive Outcomes in a Cisternal Blood Injection Murine Model of Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2020; 29:105249. [PMID: 33066928 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) results in neurocognitive dysfunction and anxiety in humans and in animal models. Neurobehavioral tests such as the Morris Water Maze (MWM) and Elevated Plus Maze (EPM) tests are validated in several models of SAH but have not been tested in the murine cisternal blood injection SAH model. METHODS Adult C57BL/6 mice (n=16) were randomized into two groups. Group 1 (n=8) received sham surgery. Group 2 (n=8) underwent SAH with 60 µL of autologous blood injected into the cisterna magna. Mice were then tested using the Modified Garcia Score on post-operative day 2 (POD2), EPM on POD5 & POD16, and MWM on POD6-16.Brain tissues harvested on POD16 were stained with Fluoro-Jade C to identify neurodegeneration in the hippocampus and cortex and Iba-1 immunofluorescence staining for microglial activation in the dentate gyrus and CA1 region of the hippocampus. RESULTS SAH mice showed increased escape latency on POD10. Swim distance was significantly increased on POD9-10 and swim speed was significantly decreased on POD6&POD10 in SAH mice. SAH mice exhibited a trend for lowered proportion of covered arm entries in EPM on POD16. Modified Garcia Score was not significantly different between the groups on POD2. The area of microglial activation in the dentate gyrus and CA1 region of the hippocampus was mildly increased but not significantly different at day 16 after SAH. Similarly, no significant differences were noted in the number of Fluoro-Jade C (+) cells in cortex or hippocampus. CONCLUSIONS Cisternal single blood injection in mice produces mild neurocognitive deficits most pronounced in spatial learning and most evident 10 days after SAH.
Collapse
Affiliation(s)
- Nefize Turan
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, USA; Cerebrovascular Research Laboratory, Department of Neurosurgery, Atlanta, GA, USA
| | - Robert A Heider
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, USA
| | - Maheen Nadeem
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, USA
| | - Brandon A Miller
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, USA; Cerebrovascular Research Laboratory, Department of Neurosurgery, Atlanta, GA, USA
| | - Bushra Wali
- Emory University School of Medicine, Department of Emergency Medicine, Atlanta, GA, USA
| | - Seema Yousuf
- Emory University School of Medicine, Department of Emergency Medicine, Atlanta, GA, USA
| | - Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, Atlanta, GA, USA
| | - Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, Atlanta, GA, USA
| | - Gustavo Pradilla
- Emory University School of Medicine, Department of Neurosurgery, Atlanta, GA, USA; Cerebrovascular Research Laboratory, Department of Neurosurgery, Atlanta, GA, USA.
| |
Collapse
|
21
|
Hydrogen gas inhalation improves delayed brain injury by alleviating early brain injury after experimental subarachnoid hemorrhage. Sci Rep 2020; 10:12319. [PMID: 32704088 PMCID: PMC7378202 DOI: 10.1038/s41598-020-69028-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/03/2020] [Indexed: 01/10/2023] Open
Abstract
Molecular hydrogen (H2) protect neurons against reactive oxygen species and ameliorates early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study investigated the effect of H2 on delayed brain injury (DBI) using the rat SAH + unilateral common carotid artery occlusion (UCCAO) model with the endovascular perforation method. 1.3% H2 gas (1.3% hydrogen premixed with 30% oxygen and balanced nitrogen) inhalation was performed on days 0 and 1, starting from anesthesia induction and continuing for 2 h on day 0, and starting from anesthesia induction and continuing for 30 min on day 1. EBI was assessed on the basis of brain edema, expression of S100 calcium-binding protein B (S100B), and phosphorylation of C-Jun N-terminal kinase on day 2, and neurological deficits on day 3. Reactive astrogliosis and severity of cerebral vasospasm (CV) were assessed on days 3 and 7. DBI was assessed on the basis of neurological deficits and neuronal cell death on day 7. EBI, reactive astrogliosis, and DBI were ameliorated in the H2 group compared with the control group. CV showed no significant improvement between the control and H2 groups. This study demonstrated that H2 gas inhalation ameliorated DBI by reducing EBI without improving CV in the rat SAH + UCCAO model.
Collapse
|
22
|
Zhuang K, Zuo YC, Sherchan P, Wang JK, Yan XX, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci 2020; 13:1441. [PMID: 32038143 PMCID: PMC6985445 DOI: 10.3389/fnins.2019.01441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with poor clinical outcome. Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves a key role in inflammatory response, which may lead to endothelial cell injury and blood-brain barrier (BBB) disruption. Hydrogen (H2) is considered a neuroprotective antioxidant. This study was set out to explore whether hydrogen inhalation protects against SAH induced endothelial cell injury, BBB disruption, microthrombosis and vasospasm in rats. Methods: One hundred eighty-two male SD rats were used for the study. SAH was induced by endovascular perforation. H2 at a concentration of 3.3% was inhaled beginning at 0.5 h after SAH for duration of 30, 60 or 120 min, followed by single administration or once daily administration for 3 days. The temporal expression of NLRP3 and ASC in the brain was determined, with the effect of hydrogen inhalation evaluated. In addition, brain water content, oxidative stress markers, inflammasome, apoptotic markers, microthrombosis, and vasospasm were evaluated at 24 or 72 h after SAH. Results: The expression of NLRP3 and ASC were upregulated after SAH associated with elevated expression of MDA, 8-OHdG, 4-HNE, HO-1, TLR4/NF-κB, inflammatory and apoptotic makers. Hydrogen inhalation reduced the expression of these inflammatory and apoptotic makers in the vessels, brain edema, microthrombi formation, and vasospasm in rats with SAH relative to control. Hydrogen inhalation also improved short-term and long-term neurological recovery after SAH. Conclusion: Hydrogen inhalation can ameliorate oxidative stress related endothelial cells injury in the brain and improve neurobehavioral outcomes in rats following SAH. Mechanistically, the above beneficial effects might be related to, at least in part, the inhibition of activation of ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ji-Kai Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Li J, Chen S, Fan J, Zhang G, Ren R. Minocycline Attenuates Experimental Subarachnoid Hemorrhage in Rats. Open Life Sci 2019; 14:595-602. [PMID: 33817197 PMCID: PMC7874754 DOI: 10.1515/biol-2019-0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Backgroud The aim of this study was to evaluate the therapeutic effect of minocycline on treating experimental subarachnoid hemorrhage (SAH) in rats and to explore its possible molecular mechanism. Methods SAH was induced in male Sprague-Dawley rats by endovascular perforation. The rats were treated with minocycline (25 mg/kg or 50 mg/kg) or saline at 2 hand 12 h post SAH. Neurological function, cerebral hemorrhage, and edema were scored at 48 h post SAH. Cell death and P2X4 receptor (P2X4R) expression were observed in the prefrontal cortex (PFC). Results Treatment with a highdose of minocycline significantly improved the neurological function score, and attenuated cerebral hemorrhage and edema. Low-dose minocycline could reduce hemorrhage, but the effect on neurological deficits and brain edema was not obvious. Minocycline treatment could alleviate neuronal apoptosis in the PFC, which was related to reduced expression of inflammatory cytokines. Immunofluorescence showed that P2X4R on microglia was activated after SAH. Minocycline treatment inhibited P2X4R activation and further suppressed the phosphorylation of downstream p38 MAPK. Conclusions Minocycline plays a neuroprotective role by attenuating early brain injury after experimental SAH. The therapeutic mechanism of minocycline may be mediated by the inhibition of P2X4R on microglia.
Collapse
Affiliation(s)
- Jingbo Li
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Shuda Chen
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Jing Fan
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Gao Zhang
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Reng Ren
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| |
Collapse
|
24
|
The Role of Intracranial Pressure and Subarachnoid Blood Clots in Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. World Neurosurg 2019; 129:e63-e72. [DOI: 10.1016/j.wneu.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
|
25
|
Sun C, Enkhjargal B, Reis C, Zhang T, Zhu Q, Zhou K, Xie Z, Wu L, Tang J, Jiang X, Zhang JH. Osteopontin-Enhanced Autophagy Attenuates Early Brain Injury via FAK-ERK Pathway and Improves Long-Term Outcome after Subarachnoid Hemorrhage in Rats. Cells 2019; 8:cells8090980. [PMID: 31461955 PMCID: PMC6769958 DOI: 10.3390/cells8090980] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 01/31/2023] Open
Abstract
Osteopontin (OPN) enhances autophagy, reduces apoptosis, and attenuates early brain injury (EBI) after a subarachnoid hemorrhage (SAH). A total of 87 Sprague–Dawley rats were subjected to sham or SAH operations to further investigate the signaling pathway involved in osteopontin-enhanced autophagy during EBI, and the potential effect of recombinant OPN (rOPN) administration to improve long-term outcomes after SAH. Rats were randomly divided into five groups: Sham, SAH + Vehicle (PBS, phosphate-buffered saline), SAH + rOPN (5 μg/rat recombinant OPN), SAH + rOPN + Fib-14 (30 mg/kg of focal adhesion kinase (FAK) inhibitor-14), and SAH + rOPN + DMSO (dimethyl sulfoxide). Short-term and long-term neurobehavior tests were performed, followed by a collection of brain samples for assessment of autophagy markers in neurons, pathway proteins expression, and delayed hippocampal injury. Western blot, double immunofluorescence staining, Nissl staining, and Fluoro-Jade C staining assay were used. Results showed that rOPN administration increased autophagy in neurons and improved neurobehavior in a rat model of SAH. With the administration of FAK inhibitor-14 (Fib-14), neurobehavioral improvement and autophagy enhancement induced by rOPN were abolished, and there were consistent changes in the phosphorylation level of ERK1/2. In addition, early administration of rOPN in rat SAH models improved long-term neurobehavior results, possibly by alleviating hippocampal injury. These results suggest that FAK–ERK signaling may be involved in OPN-enhanced autophagy in the EBI phase after SAH. Early administration of rOPN may be a preventive and therapeutic strategy against delayed brain injury after SAH.
Collapse
Affiliation(s)
- Chengmei Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Keren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Zhiyi Xie
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Lingyun Wu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Xiaodan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA.
| |
Collapse
|
26
|
Sun CM, Enkhjargal B, Reis C, Zhou KR, Xie ZY, Wu LY, Zhang TY, Zhu QQ, Tang JP, Jiang XD, Zhang JH. Osteopontin attenuates early brain injury through regulating autophagy-apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neurosci Ther 2019; 25:1162-1172. [PMID: 31436915 PMCID: PMC6776743 DOI: 10.1111/cns.13199] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aim To determine the effect of osteopontin (OPN) on autophagy and autophagy‐apoptosis interactions after SAH. Methods The endovascular perforation model of SAH or sham surgery was performed in a total of 86 Sprague‐Dawley male rats. The temporal expressions of endogenous OPN and autophagy‐related proteins (Beclin 1, ATG5, LC3 II to I ratio) were measured in sham and SAH rats at different time points (3, 6, 12, 24, and 72 hours). Rats were randomly divided into three groups: Sham, SAH + Vehicle (PBS, phosphate‐buffered saline), and SAH + rOPN (5 μg/rat recombinant OPN). Neurobehavioral tests were performed 24 hours after SAH, followed by the collection of brain samples for assessment of autophagy and apoptosis proteins. These tests assessed whether an autophagy‐apoptosis relationship existed on the histological level in the brain. Results Endogenous OPN and autophagy‐related proteins all increased after SAH. rOPN administration improved neurological dysfunction, increased the expression of autophagy‐related proteins (Beclin 1, ATG5, LC3 II to I ratio) and antiapoptotic protein Bcl‐2, while decreasing the expression of proapoptotic proteins (cleaved Caspase‐3 and Bax). rOPN also regulated autophagy‐apoptosis interactions 24 hours after SAH. Conclusion rOPN attenuates early brain injury and inhibits neuronal apoptosis by activating autophagy and regulating autophagy‐apoptosis interactions.
Collapse
Affiliation(s)
- Cheng-Mei Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ke-Ren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Zhi-Yi Xie
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ling-Yun Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Tong-Yu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Qi-Quan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ji-Ping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Dan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
27
|
Vadokas G, Koehler S, Weiland J, Lilla N, Stetter C, Westermaier T. Early Antiinflammatory Therapy Attenuates Brain Damage After Sah in Rats. Transl Neurosci 2019; 10:104-111. [PMID: 31098320 PMCID: PMC6487785 DOI: 10.1515/tnsci-2019-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH. METHODS Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. 30 minutes after SAH, they were randomly assigned to receive an intravenous injection of methylprednisolone (16mg/kg body weight, n=10), minocycline (45mg/kg body weight, n=10) or saline (n=11). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (LCBF) over both hemispheres were recorded continuously for three hours following SAH. Neurological assessment was performed after 24 hours. Hippocampal damage was analyzed by immunohistochemical staining (caspase 3). RESULTS Treatment with methylprednisolone or minocycline did not result in a significant improvement of MABP, ICP or LCBF. Animals of both treatment groups showed a non-significant trend to better neurological recovery compared to animals of the control group. Mortality was reduced and hippocampal damage significantly attenuated in both methylprednisolone and minocycline treated animals. CONCLUSION The results of this study suggest that inflammatory processes may play an important role in the pathophysiology of EBI after SAH. Early treatment with the anti-inflammatory drugs methylprednisolone or minocycline in the acute phase of SAH has the potential to reduce brain damage and exert a neuroprotective effect.
Collapse
Affiliation(s)
- Georg Vadokas
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
- Department of Urology, Canisius Wilhelmina Hospital Nijmegen, Weg door Jonkerbos 100, 6532 SZ Nijmegen, Netherlands
| | - Stefan Koehler
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Christian Stetter
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| |
Collapse
|
28
|
Zhang T, Wu P, Budbazar E, Zhu Q, Sun C, Mo J, Peng J, Gospodarev V, Tang J, Shi H, Zhang JH. Mitophagy Reduces Oxidative Stress Via Keap1 (Kelch-Like Epichlorohydrin-Associated Protein 1)/Nrf2 (Nuclear Factor-E2-Related Factor 2)/PHB2 (Prohibitin 2) Pathway After Subarachnoid Hemorrhage in Rats. Stroke 2019; 50:978-988. [PMID: 30890112 PMCID: PMC6433519 DOI: 10.1161/strokeaha.118.021590] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/30/2019] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Mitoquinone has been reported as a mitochondria-targeting antioxidant to promote mitophagy in various chronic diseases. Here, our aim was to study the role of mitoquinone in mitophagy activation and oxidative stress-induced neuronal death reduction after subarachnoid hemorrhage (SAH) in rats. Methods- Endovascular perforation was used for SAH model of male Sprague-Dawley rats. Exogenous mitoquinone was injected intraperitoneally 1 hour after SAH. ML385, an inhibitor of Nrf2 (nuclear factor-E2-related factor 2), was given intracerebroventricularly 24 hours before SAH. Small interfering RNA for PHB2 (prohibitin 2) was injected intracerebroventricularly 48 hours before SAH. Nuclear, mitochondrial, and cytoplasmic fractions were gathered using nucleus and mitochondria isolation kits. SAH grade evaluation, short- and long- term neurological function tests, oxidative stress, and apoptosis measurements were performed. Pathway related proteins were investigated with Western blot and immunofluorescence staining. Results- Expression of Keap1 (Kelch-like epichlorohydrin-associated protein 1, 2.84× at 24 hours), Nrf2 (2.78× at 3 hours), and LC3II (light chain 3-II; 1.94× at 24 hours) increased, whereas PHB2 (0.46× at 24 hours) decreased after SAH compared with sham group. Mitoquinone treatment attenuated oxidative stress and neuronal death, both short-term and long-term. Administration of mitoquinone resulted in a decrease in expression of Keap1 (0.33×), Romo1 (reactive oxygen species modulator 1; 0.24×), Bax (B-cell lymphoma-2 associated X protein; 0.31×), Cleaved Caspase-3 (0.29×) and an increase in Nrf2 (2.13×), Bcl-xl (B-cell lymphoma-extra large; 1.67×), PINK1 (phosphatase and tensin-induced kinase 1; 1.67×), Parkin (1.49×), PHB2 (1.60×), and LC3II (1.67×) proteins compared with SAH+vehicle group. ML385 abolished the treatment effects of mitoquinone on behavior and protein levels. PHB2 small interfering RNA reversed the outcomes of mitoquinone administration through reduction in protein expressions downstream of PHB2. Conclusions- Mitoquinone inhibited oxidative stress-related neuronal death by activating mitophagy via Keap1/Nrf2/PHB2 pathway after SAH. Mitoquinone may serve as a potential treatment to relieve brain injury after SAH.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Enkhjargal Budbazar
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Chengmei Sun
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jianhua Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Vadim Gospodarev
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
29
|
RP001 hydrochloride improves neurological outcome after subarachnoid hemorrhage. J Neurol Sci 2019; 399:6-14. [PMID: 30738334 DOI: 10.1016/j.jns.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) results in neurological damage, acute cardiac damage and has a high mortality rate. Immunoresponse in the acute phase after SAH plays a key role in mediating vasospasm, edema, inflammation and neuronal damage. The S1P/S1PR pathway impacts multiple cellular functions, exerts anti-inflammatory and anti-apoptotic effects, promotes remyelination, and improves outcome in several central nervous system (CNS) diseases. RP001 hydrochloride is a novel S1PR agonist, which sequesters lymphocytes within their secondary tissues and prevents infiltration of immune cells into the CNS thereby reducing immune response. In this study, we investigated whether RP001 attenuates neuronal injury after SAH by reducing inflammation. S1PRs, specifically S1PR1, 3 not only exerts anti-inflammatory effects, but also decreases heart rate and induces atrioventricular conduction abnormalities. Therefore, we also tested whether RP001 treatment of SAH regulates cardiac functional outcome. Male adult C57BL/6 mice were subjected to SAH, and neurological function tests, echocardiography, and immunohistochemical analysis were performed. SAH induces neurological deficits and acute cardiac dysfunction compared to sham control mice. Treatment of SAH with a low-dose of RP001 induces better neurological outcome and cardiac function compared to a high-dose of RP001. Low-dose-RP001 treatment significantly decreases apoptosis, white matter damage, blood brain barrier permeability, microglial/astrocyte activation, macrophage chemokine protein-1, matrix metalloproteinase-9 and NADPH oxidase-2 expression in the brain compared to SAH control mice. Our findings indicate that low-dose of RP001 alleviates neurological damage after SAH, in part by decreasing neuroinflammation.
Collapse
|
30
|
Zuo Y, Wang J, Enkhjargal B, Doycheva D, Yan X, Zhang JH, Liu F. Neurogenesis changes and the fate of progenitor cells after subarachnoid hemorrhage in rats. Exp Neurol 2019; 311:274-284. [PMID: 30359565 DOI: 10.1016/j.expneurol.2018.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease that leads to poor outcomes. Neurogenesis, an essential recovery mechanism after brain injury, has not been fully elucidated after SAH. METHODS A total of 122 SD rats were used in this study. For experiment one, the rats were randomly divided into six groups: sham and SAH with different time points (1,3,5,7,14 days) (n = 12/group). An endovascular perforation method was conducted for SAH model. Rats were injected with 5-Bromo-2'-deoxyuridine (BrdU, 50 mg/kg) 24 h before euthanasia at different time points after SAH. The BrdU labeled cells were detected by immunohistochemistry; Doublecortin (DCX) and glial fibrillary acidic protein (GFAP) were measured by western blot and immunohistochemistry. For experiment two, rats were randomly divided into five groups: sham and SAH with different time points (1, 2, 4, 8 weeks) (n = 6/group). Rats received BrdU (50 mg/kg) once daily for 7 days after the induction of SAH. Double immunofluorescence staining was used to verify proliferation, differentiation and migration of progenitor cells. Rotarod test and water maze used to test the neurobehavioral recovery. RESULTS Our results showed that BrdU positive cells in hippocampus changed overtime after SAH. BrdU positive cells decreased as early as 1 day reaching lowest levels at 3 days after SAH, after which it gradually recovered. Similar change patterns were observed with DCX, which was reversed with GFAP. In addition, BrdU did not co-localize with cleaved caspase-3. The BrdU positive cells mainly differentiated into immature neurons for short-term fate, whereas they differentiated into mature neurons for long-term fate but not astrocytes, which facilitated neurobehavioral recovery after SAH. CONCLUSION Neurogenesis in the hippocampus changes overtime after SAH. The neuronal progenitor cells may play an essential role in the neurobehavioral recovery after brain injury induced by SAH, since short-term progenitors helped with the recovery of immature neurons in the hippocampus, whereas long-term progenitors differentiated into mature neurons.
Collapse
Affiliation(s)
- Yuchun Zuo
- Department of Neurosurgery, The third XiangYa Hospital, Central South University, Changsha 410013, China
| | - Jikai Wang
- Department of Neurosurgery, The third XiangYa Hospital, Central South University, Changsha 410013, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, CA 92354, USA
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, CA 92354, USA
| | - Xiaoxin Yan
- Department of Anatomy, XiangYa Medical School, Central South University, Changsha 410013, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, CA 92354, USA.
| | - Fei Liu
- Department of Neurosurgery, The third XiangYa Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
31
|
Zhao L, Chen S, Sherchan P, Ding Y, Zhao W, Guo Z, Yu J, Tang J, Zhang JH. Recombinant CTRP9 administration attenuates neuroinflammation via activating adiponectin receptor 1 after intracerebral hemorrhage in mice. J Neuroinflammation 2018; 15:215. [PMID: 30060752 PMCID: PMC6066941 DOI: 10.1186/s12974-018-1256-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 01/23/2023] Open
Abstract
Background Neuroinflammation is a crucial factor contributing to neurological injuries after intracerebral hemorrhage (ICH). C1q/TNF-related protein 9 (CTRP9), an agonist of adiponectin receptor 1 (AdipoR1), has recently been shown to reduce inflammatory responses in systemic diseases. The objective of this study was to investigate the protective role of CTRP9 against neuroinflammation after ICH in a mouse model and to explore the contribution of adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor kappa B (NFκB) pathway in AdipoR1-mediated protection. Methods Adult male CD1 mice (n = 218) were randomly assigned to different groups for the study. ICH was induced via intrastriatal injection of bacterial collagenase. Recombinant CTRP9 (rCTRP9) was administered intranasally at 1 h after ICH. To elucidate the underlying mechanism, AdipoR1 small interfering ribonucleic acid (siRNA) and selective phosphorylated AMPK inhibitor Dorsomorphin were administered prior to rCTRP9 treatment. Brain edema, short- and long-term neurobehavior evaluation, blood glucose level, western blot, and immunofluorescence staining were performed. Results Endogenous CTRP9 and AdipoR1 expression was increased and peaked at 24 h after ICH. AdipoR1 was expressed by microglia, neurons, and astrocytes. Administration of rCTRP9 reduced brain edema, improved short- and long-term neurological function, enhanced the expression of AdipoR1 and p-AMPK, and decreased the expression of phosphorylated NFκB and inflammatory cytokines after ICH. The protective effects of rCTRP9 were abolished by administration of AdipoR1 siRNA and Dorsomorphin. Conclusions Our findings demonstrated that administration of rCTRP9 attenuated neuroinflammation through AdipoR1/AMPK/NFκB signaling pathway after ICH in mice, thereby reducing brain edema and improving neurological function after experimental ICH in mice. Therefore, CTRP9 may provide a potential therapeutic strategy to alleviate neuroinflammation in ICH patients. Electronic supplementary material The online version of this article (10.1186/s12974-018-1256-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lianhua Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China.,Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Shengpan Chen
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Wei Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Zaiyu Guo
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Jing Yu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
32
|
Shi L, Wang Z, Liu X, Li M, Zhang S, Song X. Bax inhibitor-1 is required for resisting the Early Brain Injury induced by subarachnoid hemorrhage through regulating IRE1-JNK pathway. Neurol Res 2018; 40:189-196. [PMID: 29334839 DOI: 10.1080/01616412.2018.1424699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Zaizong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Xianjin Liu
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Mao Li
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Shangfei Zhang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Xiaobin Song
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical College, Kunming, China
| |
Collapse
|
33
|
Schneider U, Xu R, Vajkoczy P. Inflammatory Events Following Subarachnoid Hemorrhage (SAH). Curr Neuropharmacol 2018; 16:1385-1395. [PMID: 29651951 PMCID: PMC6251050 DOI: 10.2174/1570159x16666180412110919] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Acute SAH from a ruptured intracranial aneurysm contributes for 30% of all hemorrhagic strokes. The bleeding itself occurs in the subarachnoid space. Nevertheless, injury to the brain parenchyma occurs as a consequence of the bleeding, directly, via several well-defined mechanisms and pathways, but also indirectly, or secondarily. This secondary brain injury following SAH has a variety of causes and possible mechanisms. Amongst others, inflammatory events have been shown to occur in parallel to, contribute to, or even to initiate programmed cell death (PCD) within the central nervous system (CNS) in human and animal studies alike. Mechanisms of secondary brain injury are of utmost interest not only to scientists, but also to clinicians, as they often provide possibilities for translational approaches as well as distinct time windows for tailored treatment options. In this article, we review secondary brain injury due to inflammatory changes, that occur on cellular, as well as on molecular level in the various different compartments of the CNS: the brain vessels, the subarachnoid space, and the brain parenchyma itself and hypothesize about possible signaling mechanisms between these compartments.
Collapse
Affiliation(s)
- U.C. Schneider
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - R. Xu
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - P. Vajkoczy
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Duris K, Splichal Z, Jurajda M. The Role of Inflammatory Response in Stroke Associated Programmed Cell Death. Curr Neuropharmacol 2018; 16:1365-1374. [PMID: 29473512 PMCID: PMC6251044 DOI: 10.2174/1570159x16666180222155833] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/17/2017] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
Stroke represents devastating pathology which is associated with a high morbidity and mortality. Initial damage caused directly by the onset of stroke, primary injury, may be eclipsed by secondary injury which may have a much more devastating effect on the brain. Primary injury is predominantly associated with necrotic cell death due to fatal insufficiency of oxygen and glucose. Secondary injury may on the contrary, lead apoptotic cell death due to structural damage which is not compatible with cellular functions or which may even represent the danger of malign transformation. The immune system is responsible for surveillance, defense and healing processes and the immune system plays a major role in triggering programmed cell death. Severe pathologies, such as stroke, are often associated with deregulation of the immune system, resulting in aggravation of secondary brain injury. The goal of this article is to overview the current knowledge about the role of immune system in the pathophysiology of stroke with respect to programmed neuronal cell death as well as to discuss current therapeutic strategies targeting inflammation after stroke.
Collapse
Affiliation(s)
| | | | - M. Jurajda
- Address correspondence to this author at the Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; E-mail:
| |
Collapse
|
35
|
Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, Chen S, Tang J, Zhang J, Zhang JH. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke 2018; 49:175-183. [PMID: 29273596 PMCID: PMC5744882 DOI: 10.1161/strokeaha.117.018593] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE The NLRP3 (nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome is a crucial component of the inflammatory response in early brain injury after subarachnoid hemorrhage (SAH). In this study, we investigated a role of dihydrolipoic acid (DHLA) in lysosomal rupture, NLRP3 activation, and determined the underlying pathway. METHODS SAH was induced by endovascular perforation in male Sprague-Dawley rats. DHLA was administered intraperitoneally 1 hour after SAH. Small interfering RNA for lysosome-associated membrane protein-1 and CaMKIIα (calcium/calmodulin-dependent protein kinase II α) was administered through intracerebroventricular 48 hours before SAH induction. SAH grade evaluation, short- and long-term neurological function testing, Western blot, and immunofluorescence staining experiments were performed. RESULTS DHLA treatment increased the expression of lysosome-associated membrane protein-1 and decreased phosphorylated CaMKIIα and NLRP3 inflammasome, thereby alleviating neurological deficits after SAH. Lysosome-associated membrane protein-1 small interfering RNA abolished the neuroprotective effects of DHLA and increased the level of phosphorylated CaMKIIα, p-TAK1 (phosphorylated transforming growth factor-β-activated kinase), p-JNK (phosphorylated c-Jun-N-terminal kinase), and NLRP3 inflammasome. CaMKIIα small interfering RNA downregulated the expression of p-TAK1, p-JNK, and NLRP3 and improved the neurobehavior after SAH. CONCLUSIONS DHLA treatment improved neurofunction and alleviated inflammation through the lysosome-associated membrane protein-1/CaMKII/TAK1 pathway in early brain injury after SAH. DHLA may provide a promising treatment to alleviate early brain injury after SAH.
Collapse
Affiliation(s)
- Keren Zhou
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Budbazar Enkhjargal
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Zhiyi Xie
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Chengmei Sun
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Lingyun Wu
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jay Malaguit
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Sheng Chen
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jiping Tang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jianmin Zhang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.).
| | - John H Zhang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.).
| |
Collapse
|
36
|
Turan N, Miller BA, Heider RA, Nadeem M, Sayeed I, Stein DG, Pradilla G. Neurobehavioral testing in subarachnoid hemorrhage: A review of methods and current findings in rodents. J Cereb Blood Flow Metab 2017; 37:3461-3474. [PMID: 27677672 PMCID: PMC5669338 DOI: 10.1177/0271678x16665623] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The most important aspect of a preclinical study seeking to develop a novel therapy for neurological diseases is whether the therapy produces any clinically relevant functional recovery. For this purpose, neurobehavioral tests are commonly used to evaluate the neuroprotective efficacy of treatments in a wide array of cerebrovascular diseases and neurotrauma. Their use, however, has been limited in experimental subarachnoid hemorrhage studies. After several randomized, double-blinded, controlled clinical trials repeatedly failed to produce a benefit in functional outcome despite some improvement in angiographic vasospasm, more rigorous methods of neurobehavioral testing became critical to provide a more comprehensive evaluation of the functional efficacy of proposed treatments. While several subarachnoid hemorrhage studies have incorporated an array of neurobehavioral assays, a standardized methodology has not been agreed upon. Here, we review neurobehavioral tests for rodents and their potential application to subarachnoid hemorrhage studies. Developing a standardized neurobehavioral testing regimen in rodent studies of subarachnoid hemorrhage would allow for better comparison of results between laboratories and a better prediction of what interventions would produce functional benefits in humans.
Collapse
Affiliation(s)
- Nefize Turan
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Brandon A Miller
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert A Heider
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Maheen Nadeem
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Iqbal Sayeed
- 2 Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Stein
- 2 Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gustavo Pradilla
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Hayman EG, Wessell A, Gerzanich V, Sheth KN, Simard JM. Mechanisms of Global Cerebral Edema Formation in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2017; 26:301-310. [PMID: 27995510 DOI: 10.1007/s12028-016-0354-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A growing body of clinical literature emphasizes the impact of cerebral edema in early brain injury following aneurysmal subarachnoid hemorrhage (aSAH). Aneurysm rupture itself initiates global cerebral edema in up to two thirds of cases. Although cerebral edema is not a universal feature of aSAH, it portends a poor clinical course, with quantitative analysis revealing a direct correlation between cerebral edema and poor outcome, including mortality and cognitive deficits. Mechanistically, global cerebral edema has been linked to global ischemia at the time of aneurysm rupture, dysfunction of autoregulation, blood breakdown products, neuroinflammation, and hyponatremia/endocrine abnormalities. At a molecular level, several culprits have been identified, including aquaporin-4, matrix metalloproteinase-9, SUR1-TRPM4 cation channels, vascular endothelial growth factor, bradykinin, and others. Here, we review these cellular and molecular mechanisms of global cerebral edema formation in aSAH. Given the importance of edema to the outcome of patients with aSAH and its status as a highly modifiable pathological process, a better understanding of cerebral edema in aSAH promises to hasten the development of medical therapies to improve outcomes in this frequently devastating disease.
Collapse
Affiliation(s)
- Erik G Hayman
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Aaron Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Kevin N Sheth
- Department of Neurology, Yale New Haven Hospital, New Haven, CT, USA.,Department of Neurosurgery, Yale New Haven Hospital, New Haven, CT, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Vellimana AK, Zhou ML, Singh I, Aum DJ, Nelson JW, Harris GR, Athiraman U, Han BH, Zipfel GJ. Minocycline protects against delayed cerebral ischemia after subarachnoid hemorrhage via matrix metalloproteinase-9 inhibition. Ann Clin Transl Neurol 2017; 4:865-876. [PMID: 29296615 PMCID: PMC5740245 DOI: 10.1002/acn3.492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Delayed cerebral ischemia (DCI) is an independent risk factor for poor outcome after aneurysmal subarachnoid hemorrhage (SAH) and is multifactorial in etiology. While prior studies have suggested a role for matrix metalloproteinase-9 (MMP-9) in early brain injury after SAH, its contribution to the pathophysiology of DCI is unclear. Methods In the first experiment, wild-type (WT) and MMP-9-/- mice were subjected to sham or endovascular perforation SAH surgery. In separate experiments, WT and MMP-9-/-mice were administered vehicle or minocycline either pre- or post-SAH. All mice underwent assessment of multiple components of DCI including vasospasm, neurobehavioral function, and microvessel thrombosis. In another experiment, rabbits were subjected to sham or cisterna magna injection SAH surgery, and administered vehicle or minocycline followed by vasospasm assessment. Results MMP-9 expression and activity was increased after SAH. Genetic (MMP-9-/- mice) and pharmacological (pre-SAH minocycline administration) inhibition of MMP-9 resulted in decreased vasospasm and neurobehavioral deficits. A therapeutically feasible strategy of post-SAH administration of minocycline resulted in attenuation of multiple components of DCI. Minocycline administration to MMP-9-/- mice did not yield additional protection. Consistent with experiments in mice, both pre- and post-SAH administration of minocycline attenuated SAH-induced vasospasm in rabbits. Interpretation MMP-9 is a key player in the pathogenesis of DCI. The consistent attenuation of multiple components of DCI with both pre- and post-SAH administration of minocycline across different species and experimental models of SAH, combined with the excellent safety profile of minocycline in humans suggest that a clinical trial in SAH patients is warranted.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Meng-Liang Zhou
- Department of Neurosurgery Jinling Hospital School of Medicine Nanjing University Nanjing Jiangsu Province China
| | - Itender Singh
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Diane J Aum
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - James W Nelson
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Glenn R Harris
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Umeshkumar Athiraman
- Department of Anesthesiology Washington University School of Medicine St. Louis Missouri
| | - Byung H Han
- Department of Pharmacology A.T. Still University of Health Sciences Kirksville College of Osteopathic Medicine Kirksville Missouri
| | - Gregory J Zipfel
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
39
|
Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology 2017; 128:142-151. [PMID: 28986282 DOI: 10.1016/j.neuropharm.2017.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/05/2023]
Abstract
Neuronal apoptosis is considered to be a crucial therapeutic target against early brain injury (EBI) after subarachnoid hemorrhage (SAH). Emerging evidence indicates that Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, plays a neuroprotective role in cerebrovascular disease. This study was conducted in order to verify the neuroprotective role of EX-4 in EBI after SAH in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats (n = 153). Ex-4 was intraperitoneally injected 1 h after SAH induction in the rats (SAH + Ex-4). To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and a specific inhibitor of PI3K, LY294002, were injected intracerebroventricularly into SAH + Ex-4 rats before induction of SAH (n = 6 per group). SAH grading evaluation, immunohistochemistry, Western blots, neurobehavioral assessment, and Fluoro-Jade C (FJC) staining experiments were performed. Expression of GLP-1R was significantly increased and mainly expressed in neurons at 24 h after SAH induction. Administration of Ex-4 significantly improved both short- and long-term neurobehavior in SAH + Ex-4 group compared to SAH + Vehicle group after SAH. Ex-4 treatment significantly increased the expression of GLP-1R, PI3K, p-Akt, Bcl-xl, and Bcl-2, while at the same time was found to decrease expression of Bax in the brain. Effects of Ex-4 were reversed by the intervention of GLP-1R siRNA and LY294002 in SAH + Ex-4+GLP-1R siRNA and SAH + Ex-4+LY294002 groups, respectively. In conclusion, the neuroprotective effect of Ex-4 in EBI after SAH was mediated by attenuation of neuronal apoptosis via GLP-1R/PI3K/Akt signaling pathway, therefore EX-4 should be further investigated as a potential therapeutic agent in stroke patients.
Collapse
|
40
|
Fanizzi C, Sauerbeck AD, Gangolli M, Zipfel GJ, Brody DL, Kummer TT. Minimal Long-Term Neurobehavioral Impairments after Endovascular Perforation Subarachnoid Hemorrhage in Mice. Sci Rep 2017; 7:7569. [PMID: 28790425 PMCID: PMC5548778 DOI: 10.1038/s41598-017-07701-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Cognitive deficits are among the most severe and pervasive consequences of aneurysmal subarachnoid hemorrhage (SAH). A critical step in developing therapies targeting such outcomes is the characterization of experimentally-tractable pre-clinical models that exhibit multi-domain neurobehavioral deficits similar to those afflicting humans. We therefore searched for neurobehavioral abnormalities following endovascular perforation induction of SAH in mice, a heavily-utilized model. We instituted a functional screen to manage variability in injury severity, then assessed acute functional deficits, as well as activity, anxiety-related behavior, learning and memory, socialization, and depressive-like behavior at sub-acute and chronic time points (up to 1 month post-injury). Animals in which SAH was induced exhibited reduced acute functional capacity and reduced general activity to 1 month post-injury. Tests of anxiety-related behavior including central area time in the elevated plus maze and thigmotaxis in the open field test revealed increased anxiety-like behavior at subacute and chronic time-points, respectively. Effect sizes for subacute and chronic neurobehavioral endpoints in other domains, however, were small. In combination with persistent variability, this led to non-significant effects of injury on all remaining neurobehavioral outcomes. These results suggest that, with the exception of anxiety-related behavior, alternate mouse models are required to effectively analyze cognitive outcomes after SAH.
Collapse
Affiliation(s)
- Claudia Fanizzi
- Department of Neurology, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Mihika Gangolli
- Department of Neurology, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Gregory J Zipfel
- Department of Neurology, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, Missouri, USA
| | - David L Brody
- Department of Neurology, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Terrance T Kummer
- Department of Neurology, Washington University School of Medicine in St. Louis, Missouri, USA.
| |
Collapse
|
41
|
Xu J, Xu Z, Yan A. Prostaglandin E2 EP4 Receptor Activation Attenuates Neuroinflammation and Early Brain Injury Induced by Subarachnoid Hemorrhage in Rats. Neurochem Res 2017; 42:1267-1278. [PMID: 28239768 PMCID: PMC5375972 DOI: 10.1007/s11064-016-2168-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Activation of E prostanoid 4 receptor (EP4) shows neuroprotective effects in multiple central nervous system (CNS) lesions, but the roles of EP4 receptor in subarachnoid hemorrhage (SAH) are not explored. This study was designed to research the effects of EP4 modulation on early brain injury (EBI) after experimental SAH in rats. We found that the administration of EP4 selective agonist AE1-329 significantly improved neurological dysfunction, blood brain barrier (BBB) damage and brain edema at 24 h after SAH. Furthermore, AE1-329 obviously reduced the number of activated microglia and the mRNA and protein levels of pro-inflammatory cytokines, and increased Ser1177 phosphorylated endothelial nitric oxide synthase (Ser1177 p-eNOS). Moreover, AE1-329 significantly reduced the number of TUNEL-positive cells and active caspase-3 in cortex after SAH. The EP4 selective antagonist AE3-208 was also administrated and the opposite effects were achieved. Our results indicate that activation of EP4 protects brain from EBI through downregulating neuroinflammation reaction after SAH.
Collapse
Affiliation(s)
- Jie Xu
- Department of Neurosurgery, Huzhou Central Hospital, 198 Hongqi Lane, Huzhou, 313003, China
| | - Zhen Xu
- Department of Neurosurgery, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Ai Yan
- Department of Neurosurgery, Huzhou Central Hospital, 198 Hongqi Lane, Huzhou, 313003, China.
| |
Collapse
|
42
|
Li T, Liu H, Xue H, Zhang J, Han X, Yan S, Bo S, Liu S, Yuan L, Deng L, Li G, Wang Z. Neuroprotective Effects of Hydrogen Sulfide Against Early Brain Injury and Secondary Cognitive Deficits Following Subarachnoid Hemorrhage. Brain Pathol 2016; 27:51-63. [PMID: 26822402 DOI: 10.1111/bpa.12361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/24/2016] [Indexed: 01/17/2023] Open
Abstract
Although the neuroprotective effects of hydrogen sulfide (H2 S) have been demonstrated in several studies, whether H2 S protects against early brain injury (EBI) and secondary cognitive dysfunction in subarachnoid hemorrhage (SAH) model remains unknown. This study was undertaken to evaluate the influence of H2 S on both acute brain injury and neurobehavioral changes as well as the underlying mechanisms after SAH. The H2 S donor, NaHS, was administered via an intraperitoneal injection at a dose of 5.6 mg/kg at 2 h, 6 h, 24 h, and 46 h after SAH in rat model. The results showed that NaHS treatment significantly improved brain edema and neurobehavioral function, and attenuated neuronal cell death in the prefrontal cortex, associated with a decrease in Bax/Bcl-2 ratio and suppression of caspase-3 activation at 48 h after SAH. NaHS also promoted phospho-Akt and phospho-ERK levels. Furthermore, NaHS treatment significantly enhanced the levels of brain-derived neurotrophic factor (BDNF) and phospho-CREB. Importantly, NaHS administration improved learning and memory performance in the Morris water maze test at 7 days post-SAH in rats. These results demonstrated that NaHS, as an exogenous H2 S donor, could significantly alleviate the development of EBI and cognitive dysfunction induced by SAH via Akt/ERK-related antiapoptosis pathway, and upregulating BDNF-CREB expression.
Collapse
Affiliation(s)
- Tong Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China.,Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Hansen Liu
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China
| | - Jinsen Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China
| | - Shaofeng Yan
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China
| | - Shishi Bo
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Song Liu
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Lin Yuan
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
43
|
Guo Z, Hu Q, Xu L, Guo ZN, Ou Y, He Y, Yin C, Sun X, Tang J, Zhang JH. Lipoxin A4 Reduces Inflammation Through Formyl Peptide Receptor 2/p38 MAPK Signaling Pathway in Subarachnoid Hemorrhage Rats. Stroke 2016; 47:490-7. [PMID: 26732571 DOI: 10.1161/strokeaha.115.011223] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE Lipoxin A4 (LXA4) has been reported to reduce inflammation in several neurological injury models. We studied the effects of LXA4 on neuroinflammation after subarachnoid hemorrhage (SAH) in a rat model. METHODS Two hundred and thirty-eight Sprague-Dawley male rats, weight 280-320 g, were used. Exogenous LXA4 (0.3 and 1.0 nmol) were injected intracerebroventricularly at 1.5 hours after SAH. Neurological scores, brain water content, and blood-brain barrier were evaluated at 24 hours after SAH; Morris water maze and T-maze tests were examined at 21 days after SAH. The expression of endogenous LXA4 and its receptor formyl peptide receptor 2 (FPR2), as well as p38, interleukin-1β, and interleukin-6 were studied either by ELISA or by Western blots. Neutrophil infiltration was observed by myeloperoxidase staining. FPR2 siRNA was used to knock down LXA4 receptor. RESULTS The expression of endogenous LXA4 decreased, and the expression of FPR2 increased after SAH. Exogenous LXA4 decreased brain water content, reduced Evans blue extravasation, and improved neurological functions and improved the learning and memory ability after SAH. LXA4 reduced neutrophil infiltration and phosphorylation of p38, interleukin-1β, and interleukin-6. These effects of LXA4 were abolished by FPR2 siRNA. CONCLUSIONS Exogenous LXA4 inhibited inflammation by activating FPR2 and inhibiting p38 after SAH. LXA4 may serve as an alternative treatment to relieve early brain injury after SAH.
Collapse
Affiliation(s)
- Zongduo Guo
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Qin Hu
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Liang Xu
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Zhen-Ni Guo
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Yibo Ou
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Yue He
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Cheng Yin
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Xiaochuan Sun
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - Jiping Tang
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.)
| | - John H Zhang
- From the Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, CA (Z.G., Q.H., L.X., Z.-N.G., Y.O., Y.H., C.Y., J.T., J.H.Z.); and Department of Neurosurgery, the 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.G., X.S.).
| |
Collapse
|
44
|
Lekic T, Hardy M, Fujii M, McBride DW, Zhang JH. Brain Volume Determination in Subarachnoid Hemorrhage Using Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:99-102. [PMID: 26463930 DOI: 10.1007/978-3-319-18497-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain edema is routinely measured using the wet-dry method. Volume, however, is the sum total of all cerebral tissues, including water. Therefore, volumetric change following injury may not be adequately quantified using percentage of edema. We thus tested the hypothesis that dried brains can be reconstituted with water and then re-measured to determine the actual volume. Subarachnoid hemorrhage (SAH) was induced by endovascular perforation in adult male Sprague-Dawley rats (n = 30). Animals were euthanized at 24 and 72 h after evaluation of neurobehavior for determination of brain water content. Dried brains were thereafter reconstituted with equal parts of water (lost from brain edema) and centrifuged to remove air bubbles. The total volume was quantified using hydrostatic (underwater) physics principles that 1 ml water (mass) = 1 cm(3) (volume). The amount of additional water needed to reach a preset level marked on 2-ml test tubes was added to that lost from brain edema, and from the brain itself, to determine the final volume. SAH significantly increased both brain water and volume while worsening neurological function in affected rats. Volumetric measurements demonstrated significant brain swelling after SAH, in addition to the brain edema approach. This modification of the "wet-dry" method permits brain volume determination using valuable post hoc dried brain tissue.
Collapse
Affiliation(s)
- Tim Lekic
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Maurice Hardy
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Mutsumi Fujii
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Neurosurgery, School of Medicine, Loma Linda, CA, USA. .,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall Rm 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
45
|
Zhang Y, Sun J, Zhu S, Xu T, Lu J, Han H, Zhou C, Yan J. The role of rhynchophylline in alleviating early brain injury following subarachnoid hemorrhage in rats. Brain Res 2015; 1631:92-100. [PMID: 26631843 DOI: 10.1016/j.brainres.2015.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 12/30/2022]
Abstract
Rhynchophylline (Rhy) has been demonstrated protective effects on some neurological diseases. However, the roles of Rhy in the subarachnoid hemorrhage (SAH) are still to be cleared. In the present study, the effects of Rhy on attenuation of early brain injury (EBI) after SAH have been evaluated. The adult male Sprague-Dawley rats (280-300g) were used to establish the SAH models using endovascular perforation method. Rhy was administered by intraperitoneal injection immediately following SAH. Brain edema was assessed by magnetic resonance imaging (MRI) at 24h after SAH. Neurological deficits, brain water content, malondialdehyde (MDA) concentration, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) content in hippocampus were also evaluated. Immunofluorescence and western blot were used to explore the underlying protective mechanism of Rhy. The results showed that, following 10mg/kg Rhy treatment, the brain edema and neurological deficits, and blood-brain barrier (BBB) disruption were significantly attenuated at 24h after SAH. Additionally, in hippocampus, MDA concentration, MPO activity and ROS content were markedly decreased. Meanwhile, the levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase (NQO-1) were increased, while the expressions of p-p53, cleaved-caspase-3 and tumor necrosis factor-α (TNF-α) were significantly decreased. Our results indicated that Rhy could attenuate early brain injury by reducing inflammation and apoptosis in hippocampus after SAH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shijie Zhu
- Department of Anatomy, School of Basic Medical Sciences, GuiYang College of Traditional Chinese Medicine, Guiyang, China
| | - Ting Xu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianfei Lu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing 100191, China
| | - Changman Zhou
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing 100191, China.
| |
Collapse
|
46
|
Li J, Chen J, Mo H, Chen J, Qian C, Yan F, Gu C, Hu Q, Wang L, Chen G. Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage. Mol Neurobiol 2015; 53:2668-78. [DOI: 10.1007/s12035-015-9318-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/24/2015] [Indexed: 12/12/2022]
|
47
|
Toyama K, Koibuchi N, Hasegawa Y, Uekawa K, Yasuda O, Sueta D, Nakagawa T, Ma M, Kusaka H, Lin B, Ogawa H, Ichijo H, Ichijo H, Kim-Mitsuyama S. ASK1 is involved in cognitive impairment caused by long-term high-fat diet feeding in mice. Sci Rep 2015; 5:10844. [PMID: 26044555 PMCID: PMC5377457 DOI: 10.1038/srep10844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
Although high-fat diet intake is known to cause obesity and diabetes, the effect of high-fat diet itself on cognitive function remains to be clarified. We have previously shown that apoptosis signal-regulating kinase 1 (ASK1) is responsible for cognitive impairment caused by chronic cerebral hypoperfusion. The present work, by using ASK1 deficient mice, was undertaken to explore the influence of chronic high-fat diet intake on cognitive function and the role of ASK1. Cognitive function in wild-type mice fed high-fat diet from 2 to 24 months of age was significantly impaired compared to those fed control diet, which was associated with the significant white matter lesions, reduction of hippocampal capillary density, and decrement of hippocampal neuronal cell. However, ASK1 deficiency abolished the development of cognitive impairment and cerebral injury caused by high-fat diet. Our results provided the evidence that high-fat diet itself causes cognitive impairment and ASK1 participates in such cognitive impairment.
Collapse
Affiliation(s)
| | | | | | | | - Osamu Yasuda
- Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Kumamoto
| | | | | | | | | | | | - Hisao Ogawa
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
48
|
Tso MK, Lass E, Ai J, Loch Macdonald R. Valproic Acid treatment after experimental subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:81-5. [PMID: 25366604 DOI: 10.1007/978-3-319-04981-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) can result in significant brain injury. Valproic acid (VPA), a widely-used anti-epileptic drug, was investigated as a possible neuroprotective drug in a prechiasmatic injection model of SAH in mice. METHODS Mice were randomized to the following experimental groups: SAH, SAH + VPA, Sham, and Sham + VPA. VPA (400 mg/kg) or saline was administered within 30 min of SAH induction and every 12 h thereafter for 48 h. Neurobehavioral assessments using the modified Garcia Score were conducted at 24 and 48 h. Brain injury was assessed at 48 h with fluoro-jade b and caspase-3/NeuN histo- and immunohistochemistry. Vasospasm was assessed in the MCA branches using hematoxylin & eosin histology. RESULTS SAH mice treated with VPA appeared to have improved neurobehavioral assessments at both 24 and 48 h compared to untreated SAH mice. VPA treatment in SAH mice also significantly decreased the number of degenerating neurons on fluoro-jade b staining. In VPA-treated SAH mice, there was a trend toward a decrease in the number of apoptotic neurons on caspase-3/NeuN immunohistochemistry. VPA did not significantly affect vasospasm. CONCLUSION This study demonstrated that VPA improves neurological outcome and decreases brain injury in a mouse model of SAH.
Collapse
Affiliation(s)
- Michael K Tso
- Division of Neurosurgery, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li KaShing Shing Knowledge Institute of St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada
| | | | | | | |
Collapse
|
49
|
Helbok R, Schiefecker AJ, Beer R, Dietmann A, Antunes AP, Sohm F, Fischer M, Hackl WO, Rhomberg P, Lackner P, Pfausler B, Thomé C, Humpel C, Schmutzhard E. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:75. [PMID: 25887441 PMCID: PMC4384312 DOI: 10.1186/s13054-015-0809-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/12/2015] [Indexed: 12/01/2022]
Abstract
Introduction There is a substantial amount of evidence from animal models that early brain injury (EBI) may play an important role for secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Cerebral microdialysis (CMD) allows online measurement of brain metabolites, including the pro-inflammatory cytokine interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9), which is indicative for disruption of the blood-brain barrier. Methods Twenty-six consecutive poor-grade aSAH patients with multimodal neuromonitoring were analyzed for brain hemodynamic and metabolic changes, including CMD-IL-6 and CMD-MMP-9 levels. Statistical analysis was performed by using a generalized estimating equation with an autoregressive function. Results The baseline cerebral metabolic profile revealed brain metabolic distress and an excitatory response which improved over the following 5 days (P <0.001). Brain tissue hypoxia (brain tissue oxygen tension of less than 20 mm Hg) was common (more than 60% of patients) in the first 24 hours of neuromonitoring and improved thereafter (P <0.05). Baseline CMD-IL-6 and CMD-MMP-9 levels were elevated in all patients (median = 4,059 pg/mL, interquartile range (IQR) = 1,316 to 12,456 pg/mL and median = 851 pg/mL, IQR = 98 to 25,860 pg/mL) and significantly decreased over days (P <0.05). A higher pro-inflammatory response was associated with the development of delayed cerebral ischemia (P = 0.04), whereas admission disease severity and early brain tissue hypoxia were associated with higher CMD-MMP-9 levels (P <0.03). Brain metabolic distress and increased IL-6 levels were associated with poor functional outcome (modified Rankin Scale of more than 3, P ≤0.01). All models were adjusted for probe location, aneurysm securing procedure, and disease severity as appropriate. Conclusions Multimodal neuromonitoring techniques allow insight into pathophysiologic changes in the early phase after aSAH. The results may be used as endpoints for future interventions targeting EBI in poor-grade aSAH patients.
Collapse
Affiliation(s)
- Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Alois Josef Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Anelia Dietmann
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Ana Patrícia Antunes
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria. .,Department of Neurosciences, Santa Maria Hospital, Hospital de Santa Maria, 1649-028, Lisbon, Portugal.
| | - Florian Sohm
- Department of Neurosurgery, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Marlene Fischer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Werner Oskar Hackl
- Institute of Biomedical Informatics, UMIT-University for Health Sciences, Medical Informatics and Technology, Eduard Wallnöfer-Zentrum I, 6060, Hall in Tirol, Austria.
| | - Paul Rhomberg
- Department of Radiology, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Peter Lackner
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, Medical University Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Erich Schmutzhard
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| |
Collapse
|
50
|
Zhao D, Liu Q, Ji Y, Wang G, He X, Tian W, Xu H, Lei T, Wang Y. Correlation between nitric oxide and early brain injury after subarachnoid hemorrhage. Int J Neurosci 2014; 125:531-9. [DOI: 10.3109/00207454.2014.951442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|