1
|
Zhang L, Wu C, Liu T, Tian Y, Wang D, Wang B, Yin Y. Propofol Protects the Blood-Brain Barrier After Traumatic Brain Injury by Stabilizing the Extracellular Matrix via Prrx1: From Neuroglioma to Neurotrauma. Neurochem Res 2024; 49:2743-2762. [PMID: 38951281 DOI: 10.1007/s11064-024-04202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The purpose of this study is to explore the shared molecular pathogenesis of traumatic brain injury (TBI) and high-grade glioma and investigate the mechanism of propofol (PF) as a potential protective agent. By analyzing the Chinese glioma genome atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, we compared the transcriptomic data of high-grade glioma and TBI patients to identify common pathological mechanisms. Through bioinformatics analysis, in vitro experiments and in vivo TBI model, we investigated the regulatory effect of PF on extracellular matrix (ECM)-related genes through Prrx1 under oxidative stress. The impact of PF on BBB integrity under oxidative stress was investigated using a dual-layer BBB model, and we explored the protective effect of PF on tight junction proteins and ECM-related genes in mice after TBI. The study found that high-grade glioma and TBI share ECM instability as an important molecular pathological mechanism. PF stabilizes the ECM and protects the BBB by directly binding to Prrx1 or indirectly regulating Prrx1 through miRNAs. In addition, PF reduces intracellular calcium ions and ROS levels under oxidative stress, thereby preserving BBB integrity. In a TBI mouse model, PF protected BBB integrity through up-regulated tight junction proteins and stabilized the expression of ECM-related genes. Our study reveals the shared molecular pathogenesis between TBI and glioblastoma and demonstrate the potential of PF as a protective agent of BBB. This provides new targets and approaches for the development of novel neurotrauma therapeutic drugs.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
2
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
3
|
Custers ML, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022; 14:pharmaceutics14051051. [PMID: 35631637 PMCID: PMC9146401 DOI: 10.3390/pharmaceutics14051051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space. This review concerns the applicability of microdialysis and other approaches, such as cerebral open flow microperfusion and electrochemical biosensors, to monitor macromolecules (neuropeptides, proteins, …) in the brain. Microdialysis and cerebral open flow microperfusion can also be used to locally apply molecules at the same time at the site of sampling. Innovations in the field are discussed, together with the pitfalls. Moreover, the ‘nuts and bolts’ of the techniques and the current research gaps are addressed. The implementation of these techniques could help to improve drug development of brain-targeted drugs.
Collapse
|
4
|
Metabolomics and Inflammatory Mediator Profiling for the Differentiation of Life-Threatening and Non-Severe Appendicitis in the Pediatric Population. Metabolites 2021; 11:metabo11100664. [PMID: 34677379 PMCID: PMC8539521 DOI: 10.3390/metabo11100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
While children with appendicitis often have excellent clinical outcomes, some develop life-threatening complications including sepsis and organ dysfunction requiring pediatric intensive care unit (PICU) support. Our study applied a metabolomics and inflammatory protein mediator (IPM) profiling approach to determine the bio-profiles of children who developed severe appendicitis compared with those that did not. We performed a prospective case-control study of children aged 0-17 years with a diagnosis of appendicitis. Cases had severe disease resulting in PICU admission. Primary controls had moderate appendicitis (perforation without PICU); secondary controls had mild appendicitis (non-perforated). Serum samples were analyzed using Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS); IPM analysis was performed using plasma bead-based multiplex profiling. Comparisons were made using multivariate data statistical analysis. Fifty-three children were included (15 severe, 38 non-severe). Separation between severe and moderate appendicitis demonstrated excellent sensitivity and specificity (100%, 88%; 14 compounds), separation between severe and mild appendicitis also showed excellent sensitivity and specificity (91%, 90%; 16 compounds). Biomarker patterns derived from metabolomics and IPM profiling are capable of distinguishing children with severe appendicitis from those with less severe disease. These findings provide an important first step towards developing non-invasive diagnostic tools for clinicians in early identification of children who are at a high risk of developing severe appendicitis.
Collapse
|
5
|
Bodnar CN, Watson JB, Higgins EK, Quan N, Bachstetter AD. Inflammatory Regulation of CNS Barriers After Traumatic Brain Injury: A Tale Directed by Interleukin-1. Front Immunol 2021; 12:688254. [PMID: 34093593 PMCID: PMC8176952 DOI: 10.3389/fimmu.2021.688254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain's health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers' functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - James B. Watson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Huang C, Zhang Y, Deng S, Ren Y, Lu W. Trauma-Related Guillain-Barré Syndrome: Systematic Review of an Emerging Concept. Front Neurol 2020; 11:588290. [PMID: 33240210 PMCID: PMC7681248 DOI: 10.3389/fneur.2020.588290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is mainly associated with preceding exposure to an infectious agent, although the precise pathogenic mechanisms and causes remain unknown. Increasing evidence indicates an association between trauma-related factors and GBS. Here, we performed a systematic review, summarized the current scientific literature related to the onset of GBS associated with trauma, and explored the possible pathogenesis. A literature search of various electronic databases was performed up to May 2020 to identify studies reporting diverse trauma-related triggers of GBS. Data were extracted, summarized descriptively, and evaluated with respect to possible mechanisms. In total, 100 publications, including 136 cases and 6 case series involving GBS triggered by injury, surgery, intracranial hemorrhage, and heatstroke, met our eligibility criteria. The median age of the patients was 53 [interquartile range (IQR) 45-63] years, and 72.1% of the patients were male. The median number of days between the trigger to onset of GBS symptoms was 9 (IQR 6.5-13). Overall, 121 patients (89.0%) developed post-injury/surgical GBS, whereas 13 (9.6%) and 2 (1.5%) patients had preexisting spontaneous intracranial hemorrhage and heatstroke, respectively. The main locations of injury or surgeries preceding GBS were the spine and brain. Based on available evidence, we highlight possible mechanisms of GBS induced by these triggers. Moreover, we propose the concept of "trauma-related GBS" as a new research direction, which may help uncover more pathogenic mechanisms than previously considered for typical GBS triggered by infection or vaccination.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiliu Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Slavoaca D, Muresanu D, Birle C, Rosu OV, Chirila I, Dobra I, Jemna N, Strilciuc S, Vos P. Biomarkers in traumatic brain injury: new concepts. Neurol Sci 2020; 41:2033-2044. [PMID: 32157587 DOI: 10.1007/s10072-019-04238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury is a multifaceted condition that encompasses a spectrum of injuries: contusions, axonal injuries in specific brain regions, edema, and hemorrhage. Brain injury determines a broad clinical and disability spectrum due to the implication of various cellular pathways, genetic phenotypes, and environmental factors. It is challenging to predict patient outcomes, to appropriately evaluate the patients, to determine a suitable treatment strategy and rehabilitation program, and to communicate with patient relatives. Biomarkers detected from body fluids are potential evaluation tools for traumatic brain injury patients. These may serve as internal indicators of cerebral damage, delivering valuable information about the dynamic cellular, biochemical, and molecular environments. The diagnostic and prognostic value of biomarkers tested both in animal models of traumatic brain injury is still under question, despite a considerable scientific literature. Recent publications emphasize that a more realistic approach involves combining multiple types of biomarkers with other investigative tools (imaging, outcome scales, and genetic polymorphisms). Additionally, there is increasing interest in the use of biomarkers as tools for treatment monitoring and as surrogate outcome variables to facilitate the design of distinct randomized controlled trials. This review highlights the latest available evidence regarding biomarkers in adults after traumatic brain injury and discusses new approaches in the evaluation of this patient group.
Collapse
Affiliation(s)
- Dana Slavoaca
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Dafin Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.
| | - Codruta Birle
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Olivia Verisezan Rosu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Ioana Chirila
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Iulia Dobra
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Nicoleta Jemna
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, The Netherlands
| |
Collapse
|
8
|
Zeiler FA, Ercole A, Czosnyka M, Smielewski P, Hawryluk G, Hutchinson PJA, Menon DK, Aries M. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Br J Anaesth 2020; 124:440-453. [PMID: 31983411 DOI: 10.1016/j.bja.2019.11.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Impaired cerebrovascular reactivity in adult moderate and severe traumatic brain injury (TBI) is known to be associated with worse global outcome at 6-12 months. As technology has improved over the past decades, monitoring of cerebrovascular reactivity has shifted from intermittent measures, to experimentally validated continuously updating indices at the bedside. Such advances have led to the exploration of individualised physiologic targets in adult TBI management, such as optimal cerebral perfusion pressure (CPP) values, or CPP limits in which vascular reactivity is relatively intact. These targets have been shown to have a stronger association with outcome compared with existing consensus-based guideline thresholds in severe TBI care. This has sparked ongoing prospective trials of such personalised medicine approaches in adult TBI. In this narrative review paper, we focus on the concept of cerebral autoregulation, proposed mechanisms of control and methods of continuous monitoring used in TBI. We highlight multimodal cranial monitoring approaches for continuous cerebrovascular reactivity assessment, physiologic and neuroimaging correlates, and associations with outcome. Finally, we explore the recent 'state-of-the-art' advances in personalised physiologic targets based on continuous cerebrovascular reactivity monitoring, their benefits, and implications for future avenues of research in TBI.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada; Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK; Biomedical Engineering, Faculty of Engineering, Winnipeg, Canada; Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Gregory Hawryluk
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, the Netherlands
| |
Collapse
|
9
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damage. J Neuroinflammation 2019; 16:210. [PMID: 31711546 PMCID: PMC6844068 DOI: 10.1186/s12974-019-1605-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.
Collapse
|
11
|
Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 2019; 76:3207-3228. [PMID: 31172215 PMCID: PMC6647627 DOI: 10.1007/s00018-019-03180-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of over twenty proteases, operating chiefly extracellularly to cleave components of the extracellular matrix, cell adhesion molecules as well as cytokines and growth factors. By virtue of their expression and activity patterns in animal models and clinical investigations, as well as functional studies with gene knockouts and enzyme inhibitors, MMPs have been demonstrated to play a paramount role in many physiological and pathological processes in the brain. In particular, they have been shown to influence learning and memory processes, as well as major neuropsychiatric disorders such as schizophrenia, various kinds of addiction, epilepsy, fragile X syndrome, and depression. A possible link connecting all those conditions is either physiological or aberrant synaptic plasticity where some MMPs, e.g., MMP-9, have been demonstrated to contribute to the structural and functional reorganization of excitatory synapses that are located on dendritic spines. Another common theme linking the aforementioned pathological conditions is neuroinflammation and MMPs have also been shown to be important mediators of immune responses.
Collapse
Affiliation(s)
- Anna Beroun
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Piotr Michaluk
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | - Barbara Pijet
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
12
|
Dyhrfort P, Shen Q, Clausen F, Thulin M, Enblad P, Kamali-Moghaddam M, Lewén A, Hillered L. Monitoring of Protein Biomarkers of Inflammation in Human Traumatic Brain Injury Using Microdialysis and Proximity Extension Assay Technology in Neurointensive Care. J Neurotrauma 2019; 36:2872-2885. [PMID: 31017044 PMCID: PMC6761596 DOI: 10.1089/neu.2018.6320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is followed by secondary injury mechanisms strongly involving neuroinflammation. To monitor the complex inflammatory cascade in human TBI, we used cerebral microdialysis (MD) and multiplex proximity extension assay (PEA) technology and simultaneously measured levels of 92 protein biomarkers of inflammation in MD samples every three hours for five days in 10 patients with severe TBI under neurointensive care. One μL MD samples were incubated with paired oligonucleotide-conjugated antibodies binding to each protein, allowing quantification by real-time quantitative polymerase chain reaction. Sixty-nine proteins were suitable for statistical analysis. We found five different patterns with either early (<48 h; e.g., CCL20, IL6, LIF, CCL3), mid (48–96 h; e.g., CCL19, CXCL5, CXCL10, MMP1), late (>96 h; e.g., CD40, MCP2, MCP3), biphasic peaks (e.g., CXCL1, CXCL5, IL8) or stable (e.g., CCL4, DNER, VEGFA)/low trends. High protein levels were observed for e.g., CXCL1, CXCL10, MCP1, MCP2, IL8, while e.g., CCL28 and MCP4 were detected at low levels. Several proteins (CCL8, -19, -20, -23, CXCL1, -5, -6, -9, -11, CST5, DNER, Flt3L, and SIRT2) have not been studied previously in human TBI. Cross-correlation analysis revealed that LIF and CXCL5 may play a central role in the inflammatory cascade. This study provides a unique data set with individual temporal trends for potential inflammatory biomarkers in patients with TBI. We conclude that the combination of MD and PEA is a powerful tool to map the complex inflammatory cascade in the injured human brain. The technique offers new possibilities of protein profiling of complex secondary injury pathways.
Collapse
Affiliation(s)
- Philip Dyhrfort
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Måns Thulin
- Department of Statistics Uppsala University, Uppsala, Sweden.,School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, Smith DH. Blood Biomarkers for Traumatic Brain Injury: A Quantitative Assessment of Diagnostic and Prognostic Accuracy. Front Neurol 2019; 10:446. [PMID: 31105646 PMCID: PMC6498532 DOI: 10.3389/fneur.2019.00446] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Blood biomarkers have been explored for their potential to provide objective measures in the assessment of traumatic brain injury (TBI). However, it is not clear which biomarkers are best for diagnosis and prognosis in different severities of TBI. Here, we compare existing studies on the discriminative abilities of serum biomarkers for four commonly studied clinical situations: detecting concussion, predicting intracranial damage after mild TBI (mTBI), predicting delayed recovery after mTBI, and predicting adverse outcome after severe TBI (sTBI). We conducted a literature search of publications on biomarkers in TBI published up until July 2018. Operating characteristics were pooled for each biomarker for comparison. For detecting concussion, 4 biomarker panels and creatine kinase B type had excellent discriminative ability. For detecting intracranial injury and the need for a head CT scan after mTBI, 2 biomarker panels, and hyperphosphorylated tau had excellent operating characteristics. For predicting delayed recovery after mTBI, top candidates included calpain-derived αII-spectrin N-terminal fragment, tau A, neurofilament light, and ghrelin. For predicting adverse outcome following sTBI, no biomarker had excellent performance, but several had good performance, including markers of coagulation and inflammation, structural proteins in the brain, and proteins involved in homeostasis. The highest-performing biomarkers in each of these categories may provide insight into the pathophysiologies underlying mild and severe TBI. With further study, these biomarkers have the potential to be used alongside clinical and radiological data to improve TBI diagnostics, prognostics, and evidence-based medical management.
Collapse
Affiliation(s)
- Zoe S Gan
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Sherman C Stein
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Randel Swanson
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Rehabilitation Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States.,Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States.,Department of Neurosurgery, Perelman School of Medicine, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaobo Guan
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lizette Garcia
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Devanshi Mehta
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Douglas H Smith
- Department of Neurosurgery, Perelman School of Medicine, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
15
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
16
|
Shommu NS, Jenne CN, Blackwood J, Joffe AR, Martin DA, Thompson GC, Vogel HJ. Metabolomic and inflammatory mediator based biomarker profiling as a potential novel method to aid pediatric appendicitis identification. PLoS One 2018; 13:e0193563. [PMID: 29529041 PMCID: PMC5846776 DOI: 10.1371/journal.pone.0193563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
Various limitations hinder the timely and accurate diagnosis of appendicitis in pediatric patients. The present study aims to investigate the potential of metabolomics and cytokine profiling for improving the diagnosis of pediatric appendicitis. Serum and plasma samples were collected from pediatric patients for metabolic and inflammatory mediator analyses respectively. Targeted metabolic profiling was performed using Proton Nuclear Magnetic Resonance Spectroscopy and Flow Injection Analysis Mass Spectrometry/Mass Spectrometry and targeted cytokine/chemokine profiling was completed using a multiplex platform to compare children with and without appendicitis. Twenty-three children with appendicitis and 35 control children without appendicitis from the Alberta Sepsis Network pediatric cohorts were included. Metabolomic profiling revealed clear separation between the two groups with very good sensitivity (80%), specificity (97%), and AUROC (0.93 ± 0.05) values. Inflammatory mediator analysis also distinguished the two groups with high sensitivity (82%), specificity (100%), and AUROC (0.97 ± 0.02) values. A biopattern comprised of 9 metabolites and 7 inflammatory compounds was detected to be significant for the separation between appendicitis and control groups. Integration of these 16 significant compounds resulted in a combined metabolic and cytokine profile that also demonstrated strong separation between the two groups with 81% sensitivity, 100% specificity and AUROC value of 0.96 ± 0.03. The study demonstrated that metabolomics and cytokine mediator profiling is capable of distinguishing children with appendicitis from those without. These results suggest a potential new approach for improving the identification of appendicitis in children.
Collapse
Affiliation(s)
- Nusrat S. Shommu
- Bio-NMR Center, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Craig N. Jenne
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Jaime Blackwood
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Ari R. Joffe
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Dori-Ann Martin
- Department of Pediatrics and Emergency Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham C. Thompson
- Department of Pediatrics and Emergency Medicine, University of Calgary, Calgary, AB, Canada
| | - Hans J. Vogel
- Bio-NMR Center, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017; 95:1246-1265. [PMID: 28910616 DOI: 10.1016/j.neuron.2017.07.010] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with a considerable socioeconomic burden. Heterogeneity of pathoanatomical subtypes and diversity in the pathogenesis and extent of injury contribute to differences in the course and outcome of TBI. Following the primary injury, extensive and lasting damage is sustained through a complex cascade of events referred to as "secondary injury." Neuroinflammation is proposed as an important manipulable aspect of secondary injury in animal and human studies. Because neuroinflammation can be detrimental or beneficial, before developing immunomodulatory therapies, it is necessary to better understand the timing and complexity of the immune responses that follow TBI. With a rapidly increasing body of literature, there is a need for a clear summary of TBI neuroimmunology. This review presents our current understanding of the immune response to TBI in a chronological and compartment-based manner, highlighting early changes in gene expression and initial signaling pathways that lead to activation of innate and adaptive immunity. Based on recent advances in our understanding of innate immune cell activation, we propose a new paradigm to study innate immune cells following TBI that moves away from the existing M1/M2 classification of activation states toward a stimulus- and disease-specific understanding of polarization state based on transcriptomic and proteomic profiling.
Collapse
|
19
|
Abstract
Traumatic brain injury (TBI) is an injury to the brain caused by an external mechanical force, affecting millions of people worldwide. The disease course and prognosis are often unpredictable, and it can be challenging to determine an early diagnosis in case of mild injury as well as to accurately phenotype the injury. There is currently no cure for TBI-drugs having failed repeatedly in clinical trials-but an intense effort has been put to identify effective neuroprotective treatment. The detection of novel biomarkers, to understand more of the disease mechanism, facilitates early diagnosis, predicts disease progression, and develops molecularly targeted therapies that would be of high clinical interest. Over the last decade, there has been an increasing effort and initiative toward finding TBI-specific biomarker candidates. One promising strategy has been to use state-of-the-art neuroproteomics approaches to assess clinical biofluids and compare the cerebrospinal fluid (CSF) and blood proteome between TBI and control patients or between different subgroups of TBI. In this chapter, we summarize and discuss the status of biofluid proteomics in TBI, with a particular focus on the latest findings.
Collapse
|
20
|
Microdialysis of Large Molecules. J Pharm Sci 2016; 105:3233-3242. [DOI: 10.1016/j.xphs.2016.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
21
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
22
|
Hua C, Zhao G, Feng Y, Yuan H, Song H, Bie L. Role of Matrix Metalloproteinase-2, Matrix Metalloproteinase-9, and Vascular Endothelial Growth Factor in the Development of Chronic Subdural Hematoma. J Neurotrauma 2015; 33:65-70. [PMID: 25646653 DOI: 10.1089/neu.2014.3724] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic subdural hematoma (CSDH) is an inflammatory and angiogenic disease. Vascular endothelial growth factor (VEGF) has an important effect on the pathological progression of CSDH. The matrix metalloproteinases (MMPs) and VEGF also play a significant role in pathological angiogenesis. Our research was to investigate the level of MMPs and VEGF in serum and hematoma fluid. Magnetic Resonance Imaging (MRI) shows the characteristics of different stages of CSDH. We also analyzed the relationship between the level of VEGF in subdural hematoma fluid and the appearances of the patients' MRI. We performed a study comparing serum and hematoma fluid in 37 consecutive patients with primary CSDHs using enzyme-linked immunosorbent assay (ELISA). MMP-2 and MMP-9 activity was assayed by the gelatin zymography method. The patients were divided into five groups according to the appearance of the hematomas on MRI: group 1 (T1-weighted low, T2-weighted low, n=4), group 2 (T1-weighted high, T2-weighted low, n=11), group 3 (T1-weighted mixed, T2-weighted mixed, n=9), group 4 (T1-weighted high, T2-weighted high, n=5), and group 5 (T1-weighted low, T2-weighted high, n=8). Neurological status was assessed by Markwalder score on admission and at follow-up. The mean age, sex, and Markwalder score were not significantly different among groups. The mean concentration of VEGF, MMP-2, and MMP-9 were significantly higher in hematoma fluid than in serum (p<0.01). The level of pro-MMP-2 was higher in hematoma fluid (p<0.01). Measurement of MMP-9 showed both pro and active forms in both groups, but levels were higher in hematoma fluid (p<0.01 and p<0.01, respectively). Mean VEGF concentration was highest in group 1 (21,979.3±1387.3 pg/mL), followed by group 2 (20,060.1±1677.2 pg/mL), group 3 (13,746.5±3529.7 pg/mL), group 4 (7523.2±764.9 pg/mL), and lowest in group 5 (6801.9±618.7 pg/mL). There was a significant correlation between VEGF concentrations and MRI type (r=0.854). The present investigation is the first report showing that the concentrations of MMP-2 and MMP-9 are significantly elevated in hematoma fluid, suggesting that the MMPs/VEGF system may be involved in the angiogenesis of CSDH. We also demonstrate a significant correlation between the concentrations of VEGF and MRI appearance. This finding supports the hypothesis that high VEGF concentration in the hematoma fluid is of major pathophysiological importance in the generation and steady increase of the hematoma volume, as well as the determination of MRI appearance.
Collapse
Affiliation(s)
- Cong Hua
- 1 Department of Neurosurgery, Norman Bethune College of Medicine, Jilin University , Changchun, China
| | - Gang Zhao
- 1 Department of Neurosurgery, Norman Bethune College of Medicine, Jilin University , Changchun, China
| | - Yan Feng
- 2 Department of Radiology of the First Hospital, Norman Bethune College of Medicine, Jilin University , Changchun, China
| | - Hongyan Yuan
- 3 Department of Immunology, Norman Bethune College of Medicine, Jilin University , Changchun, China
| | - Hongmei Song
- 1 Department of Neurosurgery, Norman Bethune College of Medicine, Jilin University , Changchun, China
| | - Li Bie
- 1 Department of Neurosurgery, Norman Bethune College of Medicine, Jilin University , Changchun, China .,4 Department of Pathology and Laboratory Medicine, University of California , Irvine, California
| |
Collapse
|
23
|
Shan R, Szmydynger-Chodobska J, Warren OU, Mohammad F, Zink BJ, Chodobski A. A New Panel of Blood Biomarkers for the Diagnosis of Mild Traumatic Brain Injury/Concussion in Adults. J Neurotrauma 2015; 33:49-57. [PMID: 25794137 DOI: 10.1089/neu.2014.3811] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
No routine tests currently exist to objectively diagnose mild traumatic brain injury (mTBI)/concussion. Previously reported biomarkers for mTBI represented proteins released from damaged neurons or glia. However, low levels of these proteins, and/or the complexity of assays used for their detection, limits implementation of these biomarkers in routine practice. Here, we sought to identify proteins whose synthesis is altered post-mTBI and whose blood levels could be measured using standard immunoassays. Adult patients sustaining a concussion within the past 24 h were enrolled. Controls were uninjured subjects and patients with orthopedic injury (OI). Four candidate biomarkers were identified: copeptin; galectin 3 (LGALS3); matrix metalloproteinase 9 (MMP9); and occludin (OCLN). A 3.4-fold decrease (p<0.0001) in plasma concentration of copeptin was found in mTBI patients within 8 h after accident, compared to uninjured controls. Plasma levels of LGALS3, MMP9, and OCLN increased 3.6- to 4.5-fold (p<0.0001) within the same time frame postinjury. Levels of at least two biomarkers were altered beyond their respective cut-off values in 90% of mTBI patients, whereas in none of uninjured controls were levels of two biomarkers simultaneously changed. A positive correlation (r=0.681; p<0.001) between plasma levels of LGALS3 and OCLN was also found in mTBI patients, whereas in OI patients or uninjured subjects, these variables did not correlate. This panel of biomarkers discerns, with high accuracy, patients with isolated concussion from uninjured individuals within the first 8 h after accident. These biomarkers can also aid in diagnosing concussion in the presence of OI.
Collapse
Affiliation(s)
- Rongzi Shan
- 1 Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Joanna Szmydynger-Chodobska
- 1 Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Otis U Warren
- 2 Department of Emergency Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Farah Mohammad
- 3 Department of Surgery, Henry Ford Hospital , Detroit, Michigan
| | - Brian J Zink
- 2 Department of Emergency Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Adam Chodobski
- 1 Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
24
|
Guilfoyle MR, Carpenter KLH, Helmy A, Pickard JD, Menon DK, Hutchinson PJA. Matrix Metalloproteinase Expression in Contusional Traumatic Brain Injury: A Paired Microdialysis Study. J Neurotrauma 2015; 32:1553-9. [PMID: 25858502 PMCID: PMC4593877 DOI: 10.1089/neu.2014.3764] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular enzymes that have been implicated in the pathophysiology of blood–brain barrier (BBB) breakdown, contusion expansion, and vasogenic edema after traumatic brain injury (TBI). Specifically, in focal injury models, increased MMP-9 expression has been observed in pericontusional brain, and MMP-9 inhibitors reduce brain swelling and final lesion volume. The aim of this study was to examine whether there is a similarly localized increase of MMP concentrations in patients with contusional TBI. Paired microdialysis catheters were inserted into 12 patients with contusional TBI (with or without associated mass lesion) targeting pericontusional and radiologically normal brain defined on admission computed tomography scan. Microdialysate was pooled every 8 h and analyzed for MMP-1, -2, -7, -9, and -10 using a multiplex immunoassay. Concentrations of MMP-1, -2, and -10 were similar at both monitoring sites and did not show discernible temporal trends. Overall, there was a gradual increase in MMP-7 concentrations in both normal and injured brain over the monitoring period, although this was not consistent in every patient. MMP-9 concentrations were elevated in pericontusional, compared to normal, brain, with the maximal difference at the earliest monitoring times (i.e., <24 h postinjury). Repeated-measures analysis of variance showed that MMP-9 concentrations were significantly higher in pericontusional brain (p=0.03) and within the first 72 h of injury, compared with later in the monitoring period (p=0.04). No significant differences were found for the other MMPs assayed. MMP-9 concentrations are increased in pericontusional brain early post-TBI and may represent a potential therapeutic target to reduce hemorrhagic progression and vasogenic edema.
Collapse
Affiliation(s)
- Mathew R Guilfoyle
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Adel Helmy
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - John D Pickard
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 2 Division of Anesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Peter J A Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
25
|
de Lima Oliveira M, Kairalla AC, Fonoff ET, Martinez RCR, Teixeira MJ, Bor-Seng-Shu E. Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art. Neurocrit Care 2015; 21:152-62. [PMID: 24072457 DOI: 10.1007/s12028-013-9884-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cerebral microdialysis (CMD) is a laboratory tool that provides on-line analysis of brain biochemistry via a thin, fenestrated, double-lumen dialysis catheter that is inserted into the interstitium of the brain. A solute is slowly infused into the catheter at a constant velocity. The fenestrated membranes at the tip of the catheter permit free diffusion of molecules between the brain interstitium and the perfusate, which is subsequently collected for laboratory analysis. The major molecules studied using this method are glucose, lactate, pyruvate, glutamate, and glycerol. The collected substances provide insight into the neurochemical features of secondary injury following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) and valuable information about changes in brain metabolism within a short time frame. In this review, the authors detail the CMD technique and its associated markers and then describe pertinent findings from the literature about the clinical application of CMD in TBI and SAH.
Collapse
Affiliation(s)
- Marcelo de Lima Oliveira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of São Paulo, Rua Loefgreen, 1.272 - Vila Clementino, São Paulo, SP, 04040-001, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Semple BD, Trivedi A, Gimlin K, Noble-Haeusslein LJ. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis 2014; 74:263-80. [PMID: 25497734 DOI: 10.1016/j.nbd.2014.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
While neutrophil elastase (NE), released by activated neutrophils, is a key mediator of secondary pathogenesis in adult models of brain ischemia and spinal cord injury, no studies to date have examined this protease in the context of the injured immature brain, where there is notable vulnerability resulting from inadequate antioxidant reserves and prolonged exposure to infiltrating neutrophils. We thus reasoned that NE may be a key determinant of secondary pathogenesis, and as such, adversely influence long-term neurological recovery. To address this hypothesis, wild-type (WT) and NE knockout (KO) mice were subjected to a controlled cortical impact at post-natal day 21, approximating a toddler-aged child. To determine if NE is required for neutrophil infiltration into the injured brain, and whether this protease contributes to vasogenic edema, we quantified neutrophil numbers and measured water content in the brains of each of these genotypes. While leukocyte trafficking was indistinguishable between genotypes, vasogenic edema was markedly attenuated in the NE KO. To determine if early pathogenesis is dependent on NE, indices of cell death (TUNEL and activated caspase-3) were quantified across genotypes. NE KO mice showed a reduction in these markers of cell death in the injured hippocampus, which corresponded to greater preservation of neuronal integrity as well as reduced expression of heme oxygenase-1, a marker of oxidative stress. WT mice, treated with a competitive inhibitor of NE at 2, 6 and 12h post-injury, likewise showed a reduction in cell death and oxidative stress compared to vehicle-treated controls. We next examined the long-term behavioral and structural consequences of NE deficiency. NE KO mice showed an improvement in long-term spatial memory retention and amelioration of injury-induced hyperactivity. However, volumetric and stereological analyses found comparable tissue loss in the injured cortex and hippocampus independent of genotype. Further, WT mice treated acutely with the NE inhibitor showed no long-term behavioral or structural improvements. Together, these findings validate the central role of NE in both acute pathogenesis and chronic functional recovery, and support future exploration of the therapeutic window, taking into account the prolonged period of neutrophil trafficking into the injured immature brain.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC 3000, Australia.
| | - Alpa Trivedi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Physical Therapy and Rehabilitation Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Matrix Metalloproteinase-8 is a Novel Pathogenetic Factor in Focal Cerebral Ischemia. Mol Neurobiol 2014; 53:231-239. [PMID: 25421209 DOI: 10.1007/s12035-014-8996-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/11/2014] [Indexed: 12/20/2022]
Abstract
The neutrophil collagenase matrix metalloproteinase-8 (MMP8) is a recently identified member of MMPs that have important roles in various inflammation-related disorders. Previously, we identified MMP8 as a new neuroinflammatory mediator in activated microglia by regulating TNF-α productivity. Here, we present evidence that MMP8 is a critical factor for brain damage in transient focal cerebral ischemia by modulating neuroinflammation likely microglial activation and TNF-α production. Biochemical analyses showed upregulation of MMP8 expression at mRNA and protein levels in transient middle cerebral artery occlusion/reperfusion (M/R)-challenged brains. Furthermore, double immunolabeling showed that MMP8 expression was upregulated in the activated microglia of M/R-challenged brains. Assessment of infarct volume, neurological score, and survival/death of neural cells revealed that administration of an MMP8 inhibitor (M8I) immediately after reperfusion reduced brain damage. Histological analyses showed that microglial activation and TNF-α expression in ischemic conditions was abrogated by exposure to M8I, as demonstrated in our previous study using cultured microglia. These outcomes from a pharmacological approach were reaffirmed by a genetic approach using a lentiviral system. Intracerebroventricular microinjection of MMP8-specific shRNA lentivirus reduced the extent of ischemia-induced brain damage, as assessed by infarct volume, neurological score, microglial activation, and TNF-α expression. These results suggest a novel pathogenetic role of MMP8 and implicate modulation of its activity as a tractable strategy for therapies against cerebral ischemia.
Collapse
|
28
|
Lee EJ, Han JE, Woo MS, Shin JA, Park EM, Kang JL, Moon PG, Baek MC, Son WS, Ko YT, Choi JW, Kim HS. Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-α activation. THE JOURNAL OF IMMUNOLOGY 2014; 193:2384-93. [PMID: 25049354 DOI: 10.4049/jimmunol.1303240] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Matrix metalloproteinases (MMPs) play important roles in normal brain development and synaptic plasticity, although aberrant expression of MMPs leads to brain damage, including blood-brain barrier disruption, inflammation, demyelination, and neuronal cell death. In this article, we report that MMP-8 is upregulated in LPS-stimulated BV2 microglial cells and primary cultured microglia, and treatment of MMP-8 inhibitor (M8I) or MMP-8 short hairpin RNA suppresses proinflammatory molecules, particularly TNF-α secretion. Subsequent experiments showed that MMP-8 exhibits TNF-α-converting enzyme (TACE) activity by cleaving the prodomain of TNF-α (A(74)/Q(75), A(76)/V(77) residues) and, furthermore, that M8I inhibits TACE activity more efficiently than TAPI-0, a general TACE inhibitor. Biochemical analysis of the underlying anti-inflammatory mechanisms of M8I revealed that it inhibits MAPK phosphorylation, NF-κB/AP-1 activity, and reactive oxygen species production. Further support for the proinflammatory role of microglial MMP-8 was obtained from an in vivo animal model of neuroinflammatory disorder. MMP-8 is upregulated in septic conditions, particularly in microglia. Administration of M8I or MMP-8 short hairpin RNA significantly inhibits microglial activation and expression/secretion of TNF-α in brain tissue, serum, and cerebrospinal fluid of LPS-induced septic mice. These results demonstrate that MMP-8 critically mediates microglial activation by modulating TNF-α activity, which may explain neuroinflammation in septic mouse brain.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Molecular Medicine and Global Top 5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Jeong Eun Han
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Moon-Sook Woo
- Department of Molecular Medicine and Global Top 5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Jin A Shin
- Department of Pharmacology, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea
| | - Pyong Gon Moon
- Department of Molecular Medicine, Kyongbuk National University, Daegu 700-842, Republic of Korea; and
| | - Moon-Chang Baek
- Department of Molecular Medicine, Kyongbuk National University, Daegu 700-842, Republic of Korea; and
| | - Woo-Sung Son
- College of Pharmacy, CHA University, Pocheon-si 487-010, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea;
| | - Hee-Sun Kim
- Department of Molecular Medicine and Global Top 5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710, Republic of Korea;
| |
Collapse
|
29
|
Badaut J, Bix GJ. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae. Transl Stroke Res 2013; 5:394-406. [PMID: 24323723 DOI: 10.1007/s12975-013-0304-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/11/2023]
Abstract
The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes, and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up- and downstream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders (Zhang et al., Nat Rev Neurol 8(12):711-716, 2012). This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood flow, smooth muscle cells, matrix, blood-brain barrier structures and function, and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN, as this may yield meaningful therapeutic targets to resolve posttraumatic dysfunction.
Collapse
Affiliation(s)
- J Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Coleman Pavilion, Room A1120, 11175 Campus Street, Loma Linda, CA, 92354, USA,
| | | |
Collapse
|
30
|
Roberts DJ, Jenne CN, Léger C, Kramer AH, Gallagher CN, Todd S, Parney IF, Doig CJ, Yong VW, Kubes P, Zygun DA. Association between the Cerebral Inflammatory and Matrix Metalloproteinase Responses after Severe Traumatic Brain Injury in Humans. J Neurotrauma 2013; 30:1727-36. [DOI: 10.1089/neu.2012.2842] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Derek J. Roberts
- Department of Surgery, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Craig N. Jenne
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Caroline Léger
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Andreas H. Kramer
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Clare N. Gallagher
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Stephanie Todd
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ian F. Parney
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher J. Doig
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - David A. Zygun
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Division of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|