1
|
Băetu AE, Mirea LE, Cobilinschi C, Grințescu IC, Grințescu IM. Hemogram-Based Phenotypes of the Immune Response and Coagulopathy in Blunt Thoracic Trauma. J Pers Med 2024; 14:1168. [PMID: 39728080 DOI: 10.3390/jpm14121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Blunt thoracic trauma possesses unique physiopathological traits due to the complex interaction of immune and coagulation systems in the lung tissue. Hemogram-based ratios such as neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), neutrophil-to-lymphocyte × platelet (NLPR) ratios have been studied as proxies for immune dysregulation and survival in trauma. We hypothesized that blunt thoracic trauma patients exhibit distinct patterns of coagulation and inflammation abnormalities identifiable by the use of readily available hemogram-derived markers. Methods: The present study represents a retrospective observational analysis that included 86 patients with blunt thoracic trauma from a single high-volume level one trauma center. The primary outcome was mortality prediction in blunt thoracic trauma patients using these derived biomarkers. Secondary outcomes included phenotypes of the immune response and coagulopathy and the prediction of non-fatal adverse events. Results: A U-shaped distribution of mortality was found, with high rates of early deaths in patients with an NLPR value of <3.1 and high rates of late deaths in patients with NLPR > 9.5. A subgroup of blunt thoracic trauma patients expressing moderate inflammation and inflammation-induced hypercoagulation objectified as NLPR between 3.1 and 9.5 may have a survival benefit (p < 0.0001). The NLPR cut-off for predicting early deaths and the need for massive transfusion was 3.1 (sensitivity = 80.00% and specificity = 71.05%). Conclusions: These findings suggest that blunt thoracic trauma patients exhibit distinct phenotypes of the immune response and coagulopathy from the early stages. A controlled, balanced interaction of immune, coagulation, and fibrinolytic systems might effectively achieve tissue repair and increase survival in thoracic trauma patients and should be subject to further research.
Collapse
Affiliation(s)
- Alexandru Emil Băetu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Grigore Alexandrescu Clinical Emergency Hospital for Children, 011743 Bucharest, Romania
| | - Liliana Elena Mirea
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | | | - Ioana Marina Grințescu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
2
|
Zhang G, Diamante G, Ahn IS, Palafox-Sanchez V, Cheng J, Cheng M, Ying Z, Wang SSM, Abuhanna KD, Phi N, Arneson D, Cely I, Arellano K, Wang N, Zhang S, Peng C, Gomez-Pinilla F, Yang X. Thyroid hormone T4 mitigates traumatic brain injury in mice by dynamically remodeling cell type specific genes, pathways, and networks in hippocampus and frontal cortex. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167344. [PMID: 39004380 DOI: 10.1016/j.bbadis.2024.167344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Susanna Sue-Ming Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Daniel Abuhanna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nguyen Phi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kayla Arellano
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shujing Zhang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mary S. Easton Center for Alzheimer's Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Al-Khateeb ZF, Henson SM, Tremoleda JL, Michael-Titus AT. The Immune Response in Two Models of Traumatic Injury of the Immature Brain. Cells 2024; 13:1612. [PMID: 39404376 PMCID: PMC11475908 DOI: 10.3390/cells13191612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain-where injury may interfere with neurodevelopment. We carried out two injury types in juvenile mice: invasive TBI with a controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury and analysed the response at 5- and 35-days post-injury. In the two models, we detected the brain infiltration of immune cells (e.g., neutrophils, monocytes, dendritic cells, CD4+ T cells, and NK cells). There were increases in macrophages, neutrophils, and dendritic cells in the spleen, increases in dendritic cells in blood, and increases in CD8+ T cells and B cells in lymph nodes. These results indicate a complex peripheral immune response post-TBI in the immature brain, with differences between an invasive injury and a repetitive mild injury.
Collapse
Affiliation(s)
- Zahra F. Al-Khateeb
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jordi L. Tremoleda
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
4
|
Jha RM, Rajasundaram D, Sneiderman C, Schlegel BT, O'Brien C, Xiong Z, Janesko-Feldman K, Trivedi R, Vagni V, Zusman BE, Catapano JS, Eberle A, Desai SM, Jadhav AP, Mihaljevic S, Miller M, Raikwar S, Rani A, Rulney J, Shahjouie S, Raphael I, Kumar A, Phuah CL, Winkler EA, Simon DW, Kochanek PM, Kohanbash G. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets. Neuron 2024; 112:3069-3088.e4. [PMID: 39019041 DOI: 10.1016/j.neuron.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ria Trivedi
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vincent Vagni
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Benjamin E Zusman
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Adam Eberle
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Margaux Miller
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jarrod Rulney
- University of Arizona School of Medicine, Tucson, AZ 85724, USA
| | - Shima Shahjouie
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditya Kumar
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Chia-Ling Phuah
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis W Simon
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, Wang T, Chang P. Traumatic inflammatory response: pathophysiological role and clinical value of cytokines. Eur J Trauma Emerg Surg 2024; 50:1313-1330. [PMID: 38151578 PMCID: PMC11458723 DOI: 10.1007/s00068-023-02388-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
Severe trauma is an intractable problem in healthcare. Patients have a widespread immune system response that is complex and vital to survival. Excessive inflammatory response is the main cause of poor prognosis and poor therapeutic effect of medications in trauma patients. Cytokines are signaling proteins that play critical roles in the body's response to injuries, which could amplify or suppress immune responses. Studies have demonstrated that cytokines are closely related to the severity of injuries and prognosis of trauma patients and help present cytokine-based diagnosis and treatment plans for trauma patients. In this review, we introduce the pathophysiological mechanisms of a traumatic inflammatory response and the role of cytokines in trauma patients. Furthermore, we discuss the potential of cytokine-based diagnosis and therapy for post-traumatic inflammatory response, although further clarification to elucidate the underlying mechanisms of cytokines following trauma is warranted.
Collapse
Affiliation(s)
- Rui Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Jing Jing Ye
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Diya Sun
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People's Republic of China.
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| | - Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| |
Collapse
|
6
|
Negrin LL, Ristl R, Wollner G, Hajdu S. Differences in Eotaxin Serum Levels between Polytraumatized Patients with and without Concomitant Traumatic Brain Injury-A Matched Pair Analysis. J Clin Med 2024; 13:4218. [PMID: 39064258 PMCID: PMC11277900 DOI: 10.3390/jcm13144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Early detection of traumatic brain injury (TBI) is crucial for minimizing secondary neurological damage. Our study aimed to assess the potential of IL-4, IL-6, IL-7, IL-8, IL-10, TNF, and eotaxin serum levels-as a single clinical tool or combined into a panel-for diagnosing TBI in multiple injured patients. Methods: Out of 110 prospectively enrolled polytrauma victims (median age, 39 years; median ISS, 33; 70.9% male) admitted to our level I trauma center over four years, we matched 41 individuals with concomitant TBI (TBI cohort) to 41 individuals without TBI (non-TBI cohort) based on age, gender, Injury Severity Score (ISS), and mortality. Patients' protein levels were measured upon admission (day 0) and on days 1, 3, 5, 7, and 10 during routine blood withdrawal using one separation gel tube each time. Results: The median serum levels of IL-4, IL-6, IL-7, IL-8, IL-10, and TNF exhibited non-similar time courses in the two cohorts and showed no significant differences on days 0, 1, 3, 5, and 7. However, the median eotaxin levels had similar trend lines in both cohorts, with consistently higher levels in the TBI cohort, reaching significance on days 0, 3, and 5. In both cohorts, the median eotaxin level significantly decreased from day 0 to day 1, then significantly increased until day 10. We also found a significant positive association between day 0 eotaxin serum levels and the presence of TBI, indicating that for every 20 pg/mL increase in eotaxin level, the odds of a prevalent TBI rose by 10.5%. ROC analysis provided a cutoff value of 154 pg/mL for the diagnostic test (sensitivity, 0.707; specificity, 0.683; AUC = 0.718). Conclusions: Our findings identified the brain as a significant source, solely of eotaxin release in humans who have suffered a TBI. Nevertheless, the eotaxin serum level assessed upon admission has limited diagnostic value. IL-4, IL-6, IL-7, IL-8, IL-10, and TNF do not indicate TBI in polytraumatized patients.
Collapse
Affiliation(s)
- Lukas L. Negrin
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gregor Wollner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Stefan Hajdu
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| |
Collapse
|
7
|
Treble-Barna A, Petersen BA, Stec Z, Conley YP, Fink EL, Kochanek PM. Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules 2024; 14:191. [PMID: 38397427 PMCID: PMC10886547 DOI: 10.3390/biom14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
We review emerging preclinical and clinical evidence regarding brain-derived neurotrophic factor (BDNF) protein, genotype, and DNA methylation (DNAm) as biomarkers of outcomes in three important etiologies of pediatric acquired brain injury (ABI), traumatic brain injury, global cerebral ischemia, and stroke. We also summarize evidence suggesting that BDNF is (1) involved in the biological embedding of the psychosocial environment, (2) responsive to rehabilitative therapies, and (3) potentially modifiable. BDNF's unique potential as a biomarker of neuroplasticity and neural repair that is reflective of and responsive to both pre- and post-injury environmental influences separates it from traditional protein biomarkers of structural brain injury with exciting potential to advance pediatric ABI management by increasing the accuracy of prognostic tools and informing clinical decision making through the monitoring of therapeutic effects.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Bailey A. Petersen
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
| | - Yvette P. Conley
- Department of Health Promotion & Development, University of Pittsburgh School of Nursing, Pittsburgh, PA 15213, USA;
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Cai J, Yang Y, Han J, Gao Y, Li X, Ge X. KDM4A, involved in the inflammatory and oxidative stress caused by traumatic brain injury-hemorrhagic shock, partly through the regulation of the microglia M1 polarization. BMC Neurosci 2023; 24:17. [PMID: 36869312 PMCID: PMC9983262 DOI: 10.1186/s12868-023-00784-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Microglial polarization and the subsequent neuroinflammatory response and oxidative stress are contributing factors for traumatic brain injury (TBI) plus hemorrhagic shock (HS) induced brain injury. In the present work, we have explored whether Lysine (K)-specific demethylase 4 A (KDM4A) modulates microglia M1 polarization in the TBI and HS mice. RESULTS Male C57BL/6J mice were used to investigate the microglia polarization in the TBI + HS model in vivo. Lipopolysaccharide (LPS)-induced BV2 cells were used to examine the mechanism of KDM4A in regulating microglia polarization in vitro. We found that TBI + HS resulted in neuronal loss and microglia M1 polarization in vivo, reflected by the increased level of Iba1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, malondialdehyde (MDA) and the decreased level of reduced glutathione (GSH). Additionally, KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. Similar to the results in vivo, KDM4A also highly expressed in LPS-induced BV2 cells. LPS-induced BV2 cells exhibited enhanced microglia M1 polarization, and enhanced level of pro-inflammatory cytokines, oxidative stress and reactive oxygen species (ROS), while this enhancement was abolished by the suppression of KDM4A. CONCLUSION Accordingly, our findings indicated that KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. The important role of KDM4A in TBI + HS-induced inflammatory response and oxidative stress was at least partially realized through regulating microglia M1 polarization.
Collapse
Affiliation(s)
- Jimin Cai
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, 214000, Wuxi, Jiangsu, P.R. China
| | - Yang Yang
- Department of Neurosurgery, Central Hospital of Jinzhou, 121001, Jinzhou, Liaoning, P.R. China
| | - Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, 214000, Wuxi, Jiangsu, P.R. China
| | - Yu Gao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, 214000, Wuxi, Jiangsu, P.R. China
| | - Xin Li
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, 214000, Wuxi, Jiangsu, P.R. China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, 214000, Wuxi, Jiangsu, P.R. China. .,Orthopedic Institution of Wuxi City, 214000, Wuxi, Jiangsu, P.R. China.
| |
Collapse
|
9
|
Yuan M, Jin X, Qin F, Zhang X, Wang X, Yuan E, Shi Y, Xu F. The association of γδT lymphocytes with cystic leukomalacia in premature infants. Front Neurol 2022; 13:1043142. [PMID: 36530609 PMCID: PMC9755680 DOI: 10.3389/fneur.2022.1043142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
Background Periventricular leukomalacia (PVL) is an essential cause of cerebral palsy in preterm infants, and cystic PVL (cPVL) is the most severe form of the disease. The pathogenesis of cPVL is complex, and immune imbalances and inflammatory responses may play an essential role in it. Objective This study aimed to investigate the correlation between peripheral blood lymphocyte subsets, especially γδT cells with the pathogenesis of cPVL in preterm infants. Methods Peripheral blood from preterm infants with GA < 32 weeks and BW < 1,500 g was used in this study and was collected at 34 weeks corrected gestational age and within 24 h after the diagnosis with cranial MRI or cranial ultrasound. The infants were divided into cPVL groups and control groups. Flow cytometry was used to detect peripheral blood γδT, CD3+, CD4+, CD8+, and the proportion of total lymphocytes. Multiplex cell assays were used to detect the concentration of extracellular serum cytokines IL-6, IL-2, IL-8, IL-17A, IL-10, IL-1RA, eotaxin (CCL11), MCP-1 (CCL2), CXCL1, G-CSF, and IFNγ. A follow-up visit was carried out when the patient was 3 years old. Results After correcting for confounding factors, the proportion of peripheral blood γδT in the cPVL group was significantly lower than that in the control group (β: 0.216; 95% CI: 0.058-0.800, P < 0.022). Peripheral blood γδT (AUC: 0.722, P=0.006) and multivariate binary regression model (AUC: 0.865, P < 0.000) have good diagnostic values for cPVL. Peripheral blood γδT has some predictive power for neurodevelopmental outcomes in preterm infants (AUC: 0.743, P = 0.002). Conclusion It seems that peripheral blood γδT cells are inversely correlated with cPVL, which is not only a risk factor for cPVL disease but also neurodevelopmental outcomes in preterm infants. However, the causality of cPVL and various lymphocytes is unclear and needs further study.
Collapse
Affiliation(s)
- Mengjie Yuan
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xinyun Jin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Fanyue Qin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Ferguson S, McCartan R, Browning M, Hahn-Townsend C, Gratkowski A, Morin A, Abdullah L, Ait-Ghezala G, Ojo J, Sullivan K, Mullan M, Crawford F, Mouzon B. Impact of gulf war toxic exposures after mild traumatic brain injury. Acta Neuropathol Commun 2022; 10:147. [PMID: 36258255 PMCID: PMC9580120 DOI: 10.1186/s40478-022-01449-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.
Collapse
Affiliation(s)
- Scott Ferguson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Robyn McCartan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | | | | | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | | | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimberly Sullivan
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St. T4W, Boston, MA, 02118, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
11
|
Sribnick EA, Popovich PG, Hall MW. Central nervous system injury-induced immune suppression. Neurosurg Focus 2022; 52:E10. [PMID: 35104790 DOI: 10.3171/2021.11.focus21586] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022]
Abstract
Central nervous system trauma is a common cause of morbidity and mortality. Additionally, these injuries frequently occur in younger individuals, leading to lifetime expenses for patients and caregivers and the loss of opportunity for society. Despite this prevalence and multiple attempts to design a neuroprotectant, clinical trials for a pharmacological agent for the treatment of traumatic brain injury (TBI) or spinal cord injury (SCI) have provided disappointing results. Improvements in outcome from these disease processes in the past decades have been largely due to improvements in supportive care. Among the many challenges facing patients and caregivers following neurotrauma, posttraumatic nosocomial infection is a significant and potentially reversible risk factor. Multiple animal and clinical studies have provided evidence of posttraumatic systemic immune suppression, and injuries involving the CNS may be even more prone, leading to a higher risk for in-hospital infections following neurotrauma. Patients who have experienced neurotrauma with nosocomial infection have poorer recovery and higher risks of long-term morbidity and in-hospital mortality than patients without infection. As such, the etiology and reversal of postneurotrauma immune suppression is an important topic. There are multiple possible etiologies for these posttraumatic changes including the release of damage-associated molecular patterns, the activation of immunosuppressive myeloid-derived suppressor cells, and sympathetic nervous system activation. Postinjury systemic immunosuppression, particularly following neurotrauma, provides a challenge for clinicians but also an opportunity for improvement in outcome. In this review, the authors sought to outline the evidence of postinjury systemic immune suppression in both animal models and clinical research of TBI, TBI polytrauma, and SCI.
Collapse
Affiliation(s)
- Eric A Sribnick
- 1Department of Neurosurgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus.,2The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Phillip G Popovich
- 3Department of Neuroscience.,4Center for Brain and Spinal Cord Repair.,5Belford Center for Spinal Cord Injury, and.,6Medical Scientist Training Program, The Ohio State University, College of Medicine, Columbus; and
| | - Mark W Hall
- 2The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,7Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
12
|
Wallen TE, Singer KE, Morris MC, Blakeman T, Stevens-Topie SM, Strilka R, Pritts TA, Goodman MD. Blood product resuscitation mitigates the effects of aeromedical evacuation after polytrauma. J Trauma Acute Care Surg 2022; 92:12-20. [PMID: 34932039 DOI: 10.1097/ta.0000000000003433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The combined injury of traumatic brain injury and hemorrhagic shock has been shown to worsen coagulopathy and systemic inflammation, thereby increasing posttraumatic morbidity and mortality. Aeromedical evacuation to definitive care may exacerbate postinjury morbidity because of the inherent hypobaric hypoxic environment. We hypothesized that blood product resuscitation may mitigate the adverse physiologic effects of postinjury flight. METHODS An established porcine model of controlled cortical injury was used to induce traumatic brain injury. Intracerebral monitors were placed to record intracranial pressure, brain tissue oxygenation, and cerebral perfusion. Each of the 42 pigs was hemorrhaged to a goal mean arterial pressure of 40 ± 5 mm Hg for 1 hour. Pigs were grouped according to resuscitation strategy used-Lactated Ringer's (LR) or shed whole blood (WB)-then placed in an altitude chamber for 2 hours at ground, 8,000 ft, or 22,000 ft, and then observed for 4 hours. Hourly blood samples were analyzed for proinflammatory cytokines and lactate. Internal jugular vein blood flow was monitored continuously for microbubble formation with altitude changes. RESULTS Cerebral perfusion, tissue oxygenation, and intracranial pressure were unchanged among the six study groups. Venous microbubbles were not observed even with differing altitude or resuscitation strategy. Serum lactate levels from hour 2 of flight to the end of observation were significantly elevated in 22,000 + LR compared with 8,000 + LR and 22,000 + WB. Serum IL-6 levels were significantly elevated in 22,000 + LR compared with 22,000 + WB, 8,000 + LR and ground+LR at hour 1 of observation. Serum tumor necrosis factor-α was significantly elevated at hour 2 of flight in 8,000 + LR versus ground+LR, and in 22,000 + LR vs. 22,000 + WB at hour 1 of observation. Serum IL-1β was significantly elevated hour 1 of flight between 8,000 + LR and ground+LR. CONCLUSION Crystalloid resuscitation during aeromedical transport may cause a prolonged lactic acidosis and proinflammatory response that can predispose multiple-injury patients to secondary cellular injury. This physiologic insult may be prevented by using blood product resuscitation strategies.
Collapse
Affiliation(s)
- Taylor E Wallen
- From the Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Traumatic brain injury and hemorrhage in a juvenile rat model of polytrauma leads to immunosuppression and splenic alterations. J Neuroimmunol 2021; 361:577723. [PMID: 34619426 DOI: 10.1016/j.jneuroim.2021.577723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common cause of morbidity and mortality. We have previously shown that TBI with a concurrent extra-cranial injury reliably leads to post-injury suppression of the innate immune system, but the impact of this injury on the adaptive immune system is unknown. We present data showing that combined injury reduced immune response as assayed in both blood and spleen samples and that these changes parallel apoptosis in the spleen. To assess the clinical relevance of these changes, we examined lungs for spontaneous bacterial colonization. METHODS For these studies, prepubescent (28 day old) rats were injured using a controlled cortical impact model and then 25% blood volume removal by arteriotomy, and injured animals were compared with sham injured animals. Blood and spleen samples at post-injury day 1 were incubated with or without immunostimulant and examined for IFN-γ production using an Eli-Spot assay. Spleen samples were also examined for apoptosis using Annexin V staining, and lungs were harvested and plated on blood agar to examine for spontaneous bacterial colonization. RESULTS Stimulations of whole blood and spleen samples with phorbol 12-myristate 13-acetate/ionomycin (PMA/I) at post-injury day 1 were associated with significant decreases in IFN-γ-positive cells/million in injured animals. Stimulation of whole blood with either PMA/I or pokeweed mitogen led to reduced tumor necrosis factor alpha production. Spleen from injured animals showed a marked increase in apoptosis. Lung samples showed a 300% increase in colonies per plate in injured animals. CONCLUSIONS These data suggest that the combined injury can lead to adaptive immunosuppression, and our findings further suggest a potential role for the spleen in altering leukocyte function following injury.
Collapse
|
14
|
Zusman BE, Dixon CE, Jha RM, Vagni VA, Henchir JJ, Carlson SW, Janesko-Feldman KL, Bailey ZS, Shear DA, Gilsdorf JS, Kochanek PM. Choice of Whole Blood versus Lactated Ringer's Resuscitation Modifies the Relationship between Blood Pressure Target and Functional Outcome after Traumatic Brain Injury plus Hemorrhagic Shock in Mice. J Neurotrauma 2021; 38:2907-2917. [PMID: 34269621 PMCID: PMC8672104 DOI: 10.1089/neu.2021.0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Civilian traumatic brain injury (TBI) guidelines recommend resuscitation of patients with hypotensive TBI with crystalloids. Increasing evidence, however, suggests that whole blood (WB) resuscitation may improve physiological and survival outcomes at lower resuscitation volumes, and potentially at a lower mean arterial blood pressure (MAP), than crystalloid after TBI and hemorrhagic shock (HS). The objective of this study was to assess whether WB resuscitation with two different MAP targets improved behavioral and histological outcomes compared with lactated Ringer's (LR) in a mouse model of TBI+HS. Anesthetized mice (n = 40) underwent controlled cortical impact (CCI) followed by HS (MAP = 25-27 mm Hg; 25 min) and were randomized to five groups for a 90 min resuscitation: LR with MAP target of 70 mm Hg (LR70), LR60, WB70, WB60, and monitored sham. Mice received a 20 mL/kg bolus of LR or autologous WB followed by LR boluses (10 mL/kg) every 5 min for MAP below target. Shed blood was reinfused after 90 min. Morris Water Maze testing was performed on days 14-20 post-injury. Mice were euthanized (21 d) to assess contusion and total brain volumes. Latency to find the hidden platform was greater versus sham for LR60 (p < 0.002) and WB70 (p < 0.007) but not LR70 or WB60. The WB resuscitation did not reduce contusion volume or brain tissue loss. The WB targeting a MAP of 60 mm Hg did not compromise function versus a 70 mm Hg target after CCI+HS, but further reduced fluid requirements (p < 0.03). Using LR, higher achieved MAP was associated with better behavioral performance (rho = -0.67, p = 0.028). Use of WB may allow lower MAP targets without compromising functional outcome, which could facilitate pre-hospital TBI resuscitation.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurobiology, and Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Vincent A. Vagni
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeremy J. Henchir
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Keri L. Janesko-Feldman
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary S. Bailey
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Deborah A. Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Janice S. Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Tse K, Beamer E, Simpson D, Beynon RJ, Sills GJ, Thippeswamy T. The Impacts of Surgery and Intracerebral Electrodes in C57BL/6J Mouse Kainate Model of Epileptogenesis: Seizure Threshold, Proteomics, and Cytokine Profiles. Front Neurol 2021; 12:625017. [PMID: 34322075 PMCID: PMC8312573 DOI: 10.3389/fneur.2021.625017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Intracranial electroencephalography (EEG) is commonly used to study epileptogenesis and epilepsy in experimental models. Chronic gliosis and neurodegeneration at the injury site are known to be associated with surgically implanted electrodes in both humans and experimental models. Currently, however, there are no reports on the impact of intracerebral electrodes on proteins in the hippocampus and proinflammatory cytokines in the cerebral cortex and plasma in experimental models. We used an unbiased, label-free proteomics approach to identify the altered proteins in the hippocampus, and multiplex assay for cytokines in the cerebral cortex and plasma of C57BL/6J mice following bilateral surgical implantation of electrodes into the cerebral hemispheres. Seven days following surgery, a repeated low dose kainate (KA) regimen was followed to induce status epilepticus (SE). Surgical implantation of electrodes reduced the amount of KA necessary to induce SE by 50%, compared with mice without surgery. Tissues were harvested 7 days post-SE (i.e., 14 days post-surgery) and compared with vehicle-treated mice. Proteomic profiling showed more proteins (103, 6.8% of all proteins identified) with significantly changed expression (p < 0.01) driven by surgery than by KA treatment itself without surgery (27, 1.8% of all proteins identified). Further, electrode implantation approximately doubled the number of KA-induced changes in protein expression (55, 3.6% of all identified proteins). Further analysis revealed that intracerebral electrodes and KA altered the expression of proteins associated with epileptogenesis such as inflammation (C1q system), neurodegeneration (cystatin-C, galectin-1, cathepsin B, heat-shock protein 25), blood–brain barrier dysfunction (fibrinogen-α, serum albumin, α2 macroglobulin), and gliosis (vimentin, GFAP, filamin-A). The multiplex assay revealed a significant increase in key cytokines such as TNFα, IL-1β, IL-4, IL-5, IL-6, IL-10, IL12p70, IFN-γ, and KC/GRO in the cerebral cortex and some in the plasma in the surgery group. Overall, these findings demonstrate that surgical implantation of depth electrodes alters some of the molecules that may have a role in epileptogenesis in experimental models.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Edward Beamer
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Zhao QH, Xie F, Guo DZ, Ju FD, He J, Yao TT, Zhao PX, Pan SY, Ma XM. Hydrogen inhalation inhibits microglia activation and neuroinflammation in a rat model of traumatic brain injury. Brain Res 2020; 1748:147053. [PMID: 32814064 DOI: 10.1016/j.brainres.2020.147053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. To date, therapies to treat any forms of TBI are still limited. Recent studies have demonstrated the potential neuroprotective effects of molecular hydrogen on TBI. Although it has been demonstrated that hydrogen inhalation (HI) for about 5 hrs immediately after TBI has a beneficial effect on brain injury, the most effective intervention procedure in the treatment of TBI remains unknown. The mechanism underlying the neuroprotective effects of HI on TBI also needs to be further investigated. Our results showed that inhalation of 4% hydrogen during the first day after TBI was the most effective hydrogen intervention procedure in the treatment of TBI. Pathological examination showed that HI could attenuate TBI-induced reactive astrocytosis and microglial activation. Nissl staining demonstrated a significant decrease in the number of nissl-stained dark neurons (N-DNs) in HI group compared to TBI group at 2 h post-TBI, and the TBI-induced neuronal loss was attenuated by HI at day 3 post-TBI. IHC staining showed that HI resulted a decrease in CD16-positive cells and a further increase in CD206-positive cells as compared to TBI group. Multiplex cytokine assay demonstrated the most profound regulatory effects induced by HI on the levels of IL-12, IFN-γ, and GM-CSF at 24 h post-TBI, which confirmed the inhibitory effect of hydrogen on microglia activation. We concluded that inhalation of 4% hydrogen during the first day after TBI was the most effective intervention procedure in the treatment of TBI. Our results also showed that hydrogen may exert its protective effects on TBI via inhibition of microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Qing-Hui Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| | - Fei Xie
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| | - Da-Zhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China
| | - Fang-di Ju
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jin He
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ting-Ting Yao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Peng-Xiang Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Shu-Yi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China.
| | - Xue-Mei Ma
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| |
Collapse
|
17
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
18
|
Abstract
OBJECTIVES Nosocomial infection is a common source of morbidity in critically injured children including those with traumatic brain injury. Risk factors for nosocomial infection in this population, however, are poorly understood. We hypothesized that critically ill pediatric trauma patients with traumatic brain injury would demonstrate higher rates of nosocomial infection than those without traumatic brain injury. DESIGN Retrospective case-control study. SETTING PICU, single institution. PATIENTS Patients under 18 years old who were admitted to the PICU for at least 48 hours following a traumatic injury were included. Patients were admitted between September 2008 and December 2015. Patients with the following injury types were excluded: thermal injury, drowning, hanging/strangulation, acute hypoxic ischemic encephalopathy, or nonaccidental trauma. Data collected included demographics, injury information, hospital and PICU length of stay, vital signs, laboratory data, insertion and removal dates for invasive devices, surgeries performed, transfusions of blood products, and microbiology culture results. Initial Pediatric Risk of Mortality III and Pediatric Logistic Organ Dysfunction-2 scores were determined. Patients were classified as having: 1) an isolated traumatic brain injury, 2) a traumatic injury without traumatic brain injury, or 3) polytrauma with traumatic brain injury. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Two hundred three patients were included in the analyses, and 27 patients developed a nosocomial infection. Patients with polytrauma with traumatic brain injury demonstrated a significantly higher infection rate (30%) than patients with isolated traumatic brain injury (6%) or traumatic injury without traumatic brain injury (9%) (p < 0.001). This increased rate of nosocomial infection was noted on univariate analysis, on multivariable analysis, and after adjusting for other risk factors. CONCLUSIONS In this single-center, retrospective analysis of critically ill pediatric trauma patients, nosocomial infections were more frequently observed in patients admitted following polytrauma with traumatic brain injury than in patients with isolated traumatic brain injury or trauma without traumatic brain injury.
Collapse
|
19
|
Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation 2020; 17:14. [PMID: 31924221 PMCID: PMC6953314 DOI: 10.1186/s12974-020-1701-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is commonly complicated by septic conditions, and is responsible for increased mortality and poor outcomes in septic patients. Uncontrolled neuroinflammation and ischemic injury are major contributors to brain dysfunction, which arises from intractable immune malfunction and the collapse of neuroendocrine immune networks, such as the cholinergic anti-inflammatory pathway, hypothalamic-pituitary-adrenal axis, and sympathetic nervous system. Dysfunction in these neuromodulatory mechanisms compromised by SAE jeopardizes systemic immune responses, including those of neutrophils, macrophages/monocytes, dendritic cells, and T lymphocytes, which ultimately results in a vicious cycle between brain injury and a progressively aberrant immune response. Deep insight into the crosstalk between SAE and peripheral immunity is of great importance in extending the knowledge of the pathogenesis and development of sepsis-induced immunosuppression, as well as in exploring its effective remedies.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ren-Qi Yao
- Department of Burn Surgery, Changhai Hospital, The Navy Medical University, Shanghai, 200433, People's Republic of China
| | - Hui Zhang
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yong-Wen Feng
- Department of Critical Care Medicine, The Second People's Hospital of Shenzhen, Shenzhen, 518035, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.
| |
Collapse
|
20
|
Sribnick EA, Weber MD, Hall MW. Innate immune suppression after traumatic brain injury and hemorrhage in a juvenile rat model of polytrauma. J Neuroimmunol 2019; 337:577073. [PMID: 31670063 DOI: 10.1016/j.jneuroim.2019.577073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
Abstract
Traumatic injury in children is known to cause immune suppression. Polytrauma involving a traumatic brain injury (TBI) may increase this degree of immune suppression, which increases the risk of developing nosocomial infections, potentially causing secondary brain injury and worsening patient outcomes. Despite the high prevalence of polytrauma with TBI in children, mechanisms of immune suppression following such injuries remain poorly understood. Here, we used a combined animal injury model of TBI and hemorrhage to assess immune function after polytrauma. Pre-pubescent rats were injured using a prefrontal controlled cortical impact method and a controlled hemorrhage by femoral arteriotomy. Immune function was measured by whole blood ex-vivo tumor necrosis factor alpha production capacity following incubation with lipopolysaccharide, measuring the percentage of monocytes by flow cytometry, and by examining concentrations of plasma cytokines. The degree of brain injury was sufficient to produce deficits in spatial memory testing (Barnes maze). Both hemorrhage and TBI with hemorrhage (combined injury) reduced several of the measured plasma cytokines, as compared with TBI alone. The combined injury correlated with reduced concentration of monocytes and reduced tumor necrosis factor alpha production capacity at post-injury day 1. These results demonstrate that this animal model can be used to study post-injury immune suppression.
Collapse
Affiliation(s)
- Eric A Sribnick
- Department of Surgery, Division of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA; Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Michael D Weber
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Mark W Hall
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, Division of Critical Care, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
21
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
22
|
Abstract
Multiple trauma (MT) associated with hemorrhagic shock (HS) might lead to cerebral hypoperfusion and brain damage. We investigated cerebral alterations using a new porcine MT/HS model without traumatic brain injury (TBI) and assessed the neuroprotective properties of mild therapeutic hypothermia. Male pigs underwent standardized MT with HS (45% or 50% loss of blood volume) and resuscitation after 90/120 min (T90/T120). In additional groups (TH90/TH120) mild hypothermia (33°C) was induced following resuscitation. Normothermic or hypothermic sham animals served as controls. Intracranial pressure, cerebral perfusion pressure (CPP), and cerebral oxygenation (PtiO2) were recorded up to 48.5 h. Serum protein S-100B and neuron-specific enolase (NSE) were measured by ELISA. Cerebral inflammation was quantified on hematoxylin and eosin -stained brain slices; Iba1, S100, and inducible nitric oxide synthase (iNOS) expression was assessed using immunohistochemistry. Directly after MT/HS, CPP and PtiO2 were significantly lower in T90/T120 groups compared with sham. After resuscitation both parameters showed a gradual recovery. Serum protein S-100B and NSE increased temporarily as a result of MT/HS in T90 and T90/T120 groups, respectively. Cerebral inflammation was found in all groups. Iba1-staining showed significant microgliosis in T90 and T120 animals. iNOS-staining indicated a M1 polarization. Mild hypothermia reduced cerebral inflammation in the TH90 group, but resulted in increased iNOS activation. In this porcine long-term model, we did not find evidence of gross cerebral damage when resuscitation was initiated within 120 min after MT/HS without TBI. However, trauma-related microglia activation and M1 microglia polarization might be a consequence of temporary hypoxia/ischemia and further research is warranted to detail underlying mechanisms. Interestingly, mild hypothermia did not exhibit neuroprotective properties when initiated in a delayed fashion.
Collapse
|
23
|
Scrimgeour AG, Carrigan CT, Condlin ML, Urso ML, van den Berg RM, van Helden HP, Montain SJ, Joosen MJ. Dietary Zinc Modulates Matrix Metalloproteinases in Traumatic Brain Injury. J Neurotrauma 2018; 35:2495-2506. [DOI: 10.1089/neu.2017.5614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Angus G. Scrimgeour
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Christopher T. Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Michelle L. Condlin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Maria L. Urso
- Military Performance Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | | | | | - Scott J. Montain
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | | |
Collapse
|
24
|
Leung LY, Cardiff K, Yang X, Srambical Wilfred B, Gilsdorf J, Shear D. Selective Brain Cooling Reduces Motor Deficits Induced by Combined Traumatic Brain Injury, Hypoxemia and Hemorrhagic Shock. Front Neurol 2018; 9:612. [PMID: 30123177 PMCID: PMC6085442 DOI: 10.3389/fneur.2018.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Selective brain cooling (SBC) can potentially maximize the neuroprotective benefits of hypothermia for traumatic brain injury (TBI) patients without the complications of whole body cooling. We have previously developed a method that involved extraluminal cooling of common carotid arteries, and demonstrated the feasibility, safety and efficacy for treating isolated TBI in rats. The present study evaluated the neuroprotective effects of 4-h SBC in a rat model of penetrating ballistic-like brain injury (PBBI) combined with hypoxemic and hypotensive insults (polytrauma). Rats were randomly assigned into two groups: PBBI+polytrauma without SBC (PHH) and PBBI+polytrauma with SBC treatment (PHH+SBC). All animals received unilateral PBBI, followed by 30-min hypoxemia (fraction of inspired oxygen = 0.1) and then 30-min hemorrhagic hypotension (mean arterial pressure = 40 mmHg). Fluid resuscitation was given immediately following hypotension. SBC was initiated 15 min after fluid resuscitation and brain temperature was maintained at 32-33°C (core temperature at ~36.5°C) for 4 h under isoflurane anesthesia. The PHH group received the same procedures minus the cooling. At 7, 10, and 21 days post-injury, motor function was assessed using the rotarod task. Cognitive function was assessed using the Morris water maze at 13-17 days post-injury. At 21 days post-injury, blood samples were collected and the animals were transcardially perfused for subsequent histological analyses. SBC transiently augmented cardiovascular function, as indicated by the increase in mean arterial pressure and heart rate during cooling. Significant improvement in motor functions were detected in SBC-treated polytrauma animals at 7, 10, and 21 days post-injury compared to the control group (p < 0.05). However, no significant beneficial effects were detected on cognitive measures following SBC treatment in the polytrauma animals. In addition, the blood serum and plasma levels of cytokines interleukin-1 and -10 were comparable between the two groups. Histological results also did not reveal any between-group differences in subacute neurodegeneration and astrocyte/ microglial activation. In summary, 4-h SBC delivered through extraluminal cooling of the common carotid arteries effectively ameliorated motor deficits induced by PBBI and polytrauma. Improving cognitive function or mitigating subacute neurodegeneration and neuroinflammation might require a different cooling regimen such as extended cooling, a slow rewarming period and a lower temperature.
Collapse
Affiliation(s)
- Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katherine Cardiff
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaofang Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard Srambical Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
25
|
McAlvin JB, Wylie RG, Ramchander K, Nguyen MT, Lok CK, Moroi M, Shomorony A, Vasilyev NV, Armstrong P, Yang J, Lieber AM, Okonkwo OS, Karnik R, Kohane DS. Antibody-modified conduits for highly selective cytokine elimination from blood. JCI Insight 2018; 3:121133. [PMID: 29997301 DOI: 10.1172/jci.insight.121133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Cytokines play an important role in dysregulated immune responses to infection, pancreatitis, ischemia/reperfusion injury, burns, hemorrhage, cardiopulmonary bypass, trauma, and many other diseases. Moreover, the imbalance between inflammatory and antiinflammatory cytokines can have deleterious effects. Here, we demonstrated highly selective blood-filtering devices - antibody-modified conduits (AMCs) - that selectively eliminate multiple specific deleterious cytokines in vitro. AMCs functionalized with antibodies against human vascular endothelial growth factor A or tumor necrosis factor α (TNF-α) selectively eliminated the target cytokines from human blood in vitro and maintained them in reduced states even in the face of ongoing infusion at supraphysiologic rates. We characterized the variables that determine AMC performance, using anti-human TNF-α AMCs to eliminate recombinant human TNF-α. Finally, we demonstrated selective cytokine elimination in vivo by filtering interleukin 1 β from rats with lipopolysaccharide-induced hypercytokinemia.
Collapse
Affiliation(s)
- J Brian McAlvin
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and.,Department of Medicine, Division of Medicine Critical Care, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan G Wylie
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | | | - Minh T Nguyen
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Charles K Lok
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Morgan Moroi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Andre Shomorony
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Armstrong
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Jason Yang
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexander M Lieber
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Obiajulu S Okonkwo
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| |
Collapse
|
26
|
Abstract
Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.
Collapse
|
27
|
Zhang WL, Cao YA, Xia J, Tian L, Yang L, Peng CS. Neuroprotective effect of tanshinone IIA weakens spastic cerebral palsy through inflammation, p38MAPK and VEGF in neonatal rats. Mol Med Rep 2017; 17:2012-2018. [PMID: 29257210 DOI: 10.3892/mmr.2017.8069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
As one of main active ingredients of salvia miltiorrhizae, which is a traditional Chinese medicine, tanshinone IIA is the basis of its pharmacological activities. In the present study, the effect of tanshinone IIA on weakening spastic cerebral palsy (SCP) in neonatal rats was investigated. Radial arm water maze and holding tests were used to measure the alterations of spastic cerebral palsy, inflammation was measured using an ELISA kit, and western blot analysis was used to analyze the protein expression of p‑p38 mitogen‑activated protein kinase (MAPK) and vascular endothelial growth factor (VEGF). The central mechanisms involved in the mediation or modulation of inflammation, p‑p38 MAPK and VEGF were also investigated. Treatment with tanshinone IIA effectively inhibited spastic cerebral palsy, and the activities of interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, monocyte chemoattractant protein 1, cyclooxygenase‑2 and prostaglandin E2 in a neonatal rat model of SCP. Tanshinone IIA effectively suppressed the protein expression of inducible nitric oxide synthase (NOS), phosphorylated (p‑) nuclear factor (NF)‑κB, p‑p38MAPK and VEGF, and activated the phosphorylation of inhibitor of NF‑κB and the protein expression of neuronal NOS in the SCP rat model. These results suggested that the neuroprotective effect of tanshinone IIA weakened SCP through inflammation, p38MAPK and VEGF in the neonatal rats.
Collapse
Affiliation(s)
- Wen-Luo Zhang
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Yue-An Cao
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Jing Xia
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Li Tian
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Lu Yang
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Chao-Sheng Peng
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
28
|
Roy-O'Reilly M, Ritzel RM, Conway SE, Staff I, Fortunato G, McCullough LD. CCL11 (Eotaxin-1) Levels Predict Long-Term Functional Outcomes in Patients Following Ischemic Stroke. Transl Stroke Res 2017. [PMID: 28634890 DOI: 10.1007/s12975-017-0545-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Circulating levels of the pro-inflammatory cytokine C-C motif chemokine 11 (CCL11, also known as eotaxin-1) are increased in several animal models of neuroinflammation, including traumatic brain injury and Alzheimer's disease. Increased levels of CCL11 have also been linked to decreased neurogenesis in mice. We hypothesized that circulating CCL11 levels would increase following ischemic stroke in mice and humans, and that higher CCL11 levels would correlate with poor long-term recovery in patients. As predicted, circulating levels of CCL11 in both young and aged mice increased significantly 24 h after experimental stroke. However, ischemic stroke patients showed decreased CCL11 levels compared to controls 24 h after stroke. Interestingly, lower post-stroke CCL11 levels were predictive of increased stroke severity and independently predictive of poorer functional outcomes in patients 12 months after ischemic stroke. These results illustrate important differences in the peripheral inflammatory response to ischemic stroke between mice and human patients. In addition, it suggests CCL11 as a candidate biomarker for the prediction of acute and long-term functional outcomes in ischemic stroke patients.
Collapse
Affiliation(s)
- Meaghan Roy-O'Reilly
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Rodney M Ritzel
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06032, USA
| | - Sarah E Conway
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Hartford Hospital, 80 Seymour Street, Hartford, CT, 06106, USA
| | - Ilene Staff
- Hartford Hospital, 80 Seymour Street, Hartford, CT, 06106, USA
| | | | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA. .,Hartford Hospital, 80 Seymour Street, Hartford, CT, 06106, USA.
| |
Collapse
|
29
|
Li G, Xue H, Fan Z, Bai Y. Impact of heme on specific antibody production in mice: promotive, inhibitive or null outcome is determined by its concentration. Heliyon 2017; 3:e00303. [PMID: 28560357 PMCID: PMC5435615 DOI: 10.1016/j.heliyon.2017.e00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Free heme is an endogenous danger signal that provokes innate immunity. Active innate immunity provides a precondition of an effective adaptive immune response. However, heme catabolites, CO, biliverdin and bilirubin trigger immunosuppression. Furthermore, free heme induces expression of heme oxygenase-1 to increase production of CO, biliverdin and bilirubin. As such, free heme can play a paradoxical role in adaptive immunity. What is the outcome of the animal immune response to an antigen in the presence of free heme? This question remains to be explored. Here, we report the immunization results of rats and mice after intraperitoneal injection of formulations containing BSA and heme. When the heme concentrations were below 1 μM, between 1 μM and 5 μM and above 5 μM, production of anti-BSA IgG and IgM was unaffected, enhanced and suppressed, respectively. The results suggest that heme can influence adaptive immunity by double concentration-thresholds. If the heme concentrations are less than the first threshold, there is no effect on adaptive immunity; if the concentrations are more than the first but less than the second threshold, there is promotion effect; and if the concentrations are more than the second threshold, there is an inhibitory effect. A hypothesis is also presented here to explain the mechanism.
Collapse
Affiliation(s)
- Guofu Li
- Experimental Training Center, Sun Yat-Sen University, Zhuhai, China, 519082
| | - Haiyan Xue
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Zeng Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Yun Bai
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| |
Collapse
|
30
|
Chio CC, Lin HJ, Tian YF, Chen YC, Lin MT, Lin CH, Chang CP, Hsu CC. Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. J Neuroinflammation 2017; 14:90. [PMID: 28438174 PMCID: PMC5404305 DOI: 10.1186/s12974-017-0867-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background Despite previous evidence for a potent inflammatory response after a traumatic brain injury (TBI), it is unknown whether exercise preconditioning (EP) improves outcomes after a TBI by modulating inflammatory responses. Methods We performed quantitative real-time PCR (qPCR) to quantify the genes encoding 84 cytokines and chemokines in the peripheral blood and used ELISA to determine both the cerebral and blood levels of interleukin-6 (IL-6). We also performed the chromatin immunoprecipitation (ChIP) assay to evaluate the extent of nuclear factor kappa-B (NF-κB) binding to the DNA elements in the IL-6 promoter regions. Also, we adopted the Western blotting assay to measure the cerebral levels of heat shock protein (HSP) 70, synapsin I, and β-actin. Finally, we performed both histoimmunological and behavioral assessment to measure brain injury and neurological deficits, respectively. Results We first demonstrated that TBI upregulated nine pro-inflammatory and/or neurodegenerative messenger RNAs (mRNAs) in the peripheral blood such as CXCL10, IL-18, IL-16, Cd-70, Mif, Ppbp, Ltd, Tnfrsf 11b, and Faslg. In addition to causing neurological injuries, TBI also upregulated the following 14 anti-inflammatory and/or neuroregenerative mRNAs in the peripheral blood such as Ccl19, Ccl3, Cxcl19, IL-10, IL-22, IL-6, Bmp6, Ccl22, IL-7, Bmp7, Ccl2, Ccl17, IL-1rn, and Gpi. Second, we observed that EP inhibited both neurological injuries and six pro-inflammatory and/or neurodegenerative genes (Cxcl10, IL-18, IL-16, Cd70, Mif, and Faslg) but potentiated four anti-inflammatory and/or neuroregenerative genes (Bmp6, IL-10, IL-22, and IL-6). Prior depletion of cerebral HSP70 with gene silence significantly reversed the beneficial effects of EP in reducing neurological injuries and altered gene profiles after a TBI. A positive Pearson correlation exists between IL-6 and HSP70 in the peripheral blood or in the cerebral levels. In addition, gene silence of cerebral HSP70 significantly reduced the overexpression of NF-κB, IL-6, and synapsin I in the ipsilateral brain regions after an EP in rats. Conclusions TBI causes neurological deficits associated with stimulating several pro-inflammatory gene profiles but inhibiting several anti-inflammatory gene profiles of cytokines and chemokines. Exercise protects against neurological injuries via stimulating an anti-inflammatory HSP70/NF-κB/IL-6/synapsin I axis in the injured brains.
Collapse
Affiliation(s)
- Chung-Ching Chio
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Yu-Chieh Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | | | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan. .,Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan. .,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan.
| |
Collapse
|
31
|
Boudreau RM, Johnson M, Veile R, Friend LA, Goetzman H, Pritts TA, Caldwell CC, Makley AT, Goodman MD. Impact of tranexamic acid on coagulation and inflammation in murine models of traumatic brain injury and hemorrhage. J Surg Res 2017; 215:47-54. [PMID: 28688660 DOI: 10.1016/j.jss.2017.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/10/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Posttraumatic coagulopathy and inflammation can exacerbate secondary cerebral damage after traumatic brain injury (TBI). Tranexamic acid (TXA) has been shown clinically to reduce mortality in hemorrhaging and head-injured trauma patients and has the potential to mitigate secondary brain injury with its reported antifibrinolytic and antiinflammatory properties. We hypothesized that TXA would improve posttraumatic coagulation and inflammation in a murine model of TBI alone and in a combined injury model of TBI and hemorrhage (TBI/H). METHODS An established murine weight drop model was used to induce a moderate TBI. Mice were administered intraperitoneal injections of 10 mg/kg TXA or equivalent volume of saline 10 min after injury. An additional group of mice was subjected to TBI followed by hemorrhagic shock using a pressure-controlled model. TBI/H mice were given intraperitoneal injections of TXA or saline during resuscitation. Blood was collected at intervals after injury to assess coagulation by rotational thromboelastometry (ROTEM) and inflammation by Multiplex cytokine analysis. Soluble P-selectin, a biomarker of platelet activation, and serum neuron-specific enolase, a biomarker of cerebral injury, were measured at intervals. Brain homogenates were analyzed for inflammatory changes by Multiplex enzyme-linked immunosorbent assay, and splenic tissue was collected for splenic cell population assessment by flow cytometry. RESULTS There were no coagulation, serum or cerebral cytokine, P-selectin, or neuron-specific enolase differences between mice treated with TXA or saline after TBI. After the addition of hemorrhagic shock and resuscitation to TBI, TXA administration still did not affect coagulation parameters, systemic or cerebral inflammation, or platelet activation, as compared with saline alone. At 24 hours after TBI, mice given TXA demonstrated lower splenic total cell counts central memory CD8, effector CD8, B cell, and increased naive CD4 cell populations. By contrast, TXA did not affect splenic leukocyte populations after combined TBI/H. CONCLUSIONS Despite clinical data suggesting a mortality benefit, TXA did not modulate coagulation, inflammation, or biomarker generation in either the TBI or TBI/H murine models. Administration of TXA after TBI altered splenic leukocyte populations, which may contribute to a change in posttraumatic immune status. Future studies should be done to investigate the role of TXA in the development of posttraumatic immunosuppression and risk of nosocomial infections.
Collapse
Affiliation(s)
- Ryan M Boudreau
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Mark Johnson
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Rosalie Veile
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Lou Ann Friend
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Holly Goetzman
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Timothy A Pritts
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Charles C Caldwell
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Amy T Makley
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Michael D Goodman
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
32
|
Simon DW, McGeachy M, Bayır H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 2017; 13:171-191. [PMID: 28186177 PMCID: PMC5675525 DOI: 10.1038/nrneurol.2017.13] [Citation(s) in RCA: 669] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 'silent epidemic' of traumatic brain injury (TBI) has been placed in the spotlight as a result of clinical investigations and popular press coverage of athletes and veterans with single or repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of targeted immunomodulation after TBI for future exploration. Our framework incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structuring our discussion around the dynamics of the immune response to TBI - from initial triggers to chronic neuroinflammation - we consider the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration. We summarize both animal model and human studies, with clinical data explicitly defined throughout this Review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings that could offer novel therapeutic targets for translational and clinical research, assimilate evidence from other brain injury models, and identify outstanding questions in the field.
Collapse
Affiliation(s)
- Dennis W. Simon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mandy McGeachy
- Department of Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
33
|
Kochanek PM, Bramlett HM, Shear DA, Dixon CE, Mondello S, Dietrich WD, Hayes RL, Wang KKW, Poloyac SM, Empey PE, Povlishock JT, Mountney A, Browning M, Deng-Bryant Y, Yan HQ, Jackson TC, Catania M, Glushakova O, Richieri SP, Tortella FC. Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:606-14. [PMID: 26671284 DOI: 10.1089/neu.2015.4133] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.
Collapse
Affiliation(s)
- Patrick M Kochanek
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Helen M Bramlett
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,3 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Deborah A Shear
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - C Edward Dixon
- 5 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Stefania Mondello
- 6 Department of Neurosciences, University of Messina , Messina, Italy
| | - W Dalton Dietrich
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - Ronald L Hayes
- 7 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc. , Alachua, Florida
| | - Kevin K W Wang
- 8 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida. Gainesville, Florida
| | - Samuel M Poloyac
- 9 Center for Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - Philip E Empey
- 9 Center for Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - John T Povlishock
- 10 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Andrea Mountney
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Megan Browning
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Ying Deng-Bryant
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Hong Q Yan
- 5 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Travis C Jackson
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | | | | - Frank C Tortella
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
34
|
Wang Y, Wei Y, Oguntayo S, Wilder D, Tong L, Su Y, Gist I, Arun P, Long JB. Cerebrospinal Fluid Chemokine (C-C Motif) Ligand 2 Is an Early-Response Biomarker for Blast-Overpressure-Wave-Induced Neurotrauma in Rats. J Neurotrauma 2016; 34:952-962. [PMID: 27487732 DOI: 10.1089/neu.2016.4465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors are of great interest within the milieu of immune responses elicited in the central nervous system in response to trauma. Chemokine (C-C motif)) ligand 2 (CCL2), which is also known as monocyte chemotactic protein-1, has been implicated in the pathogenesis of traumatic brain injury (TBI), brain ischemia, Alzheimer's disease, and other neurodegenerative diseases. In this study, we investigated the time course of CCL2 accumulation in cerebrospinal fluid (CSF) after exposures to single and repeated blast overpressures of varied intensities along with the neuropathological changes and motor deficits resulting from these blast conditions. Significantly increased concentrations of CCL2 in CSF were evident by 1 h of blast exposure and persisted over 24 h with peak levels measured at 6 h post-injury. The increased levels of CCL2 in CSF corresponded with both the number and intensities of blast overpressure and were also commensurate with the extent of neuromotor impairment and neuropathological abnormalities resulting from these exposures. CCL2 levels in CSF and plasma were tightly correlated with levels of CCL2 messenger RNA in cerebellum, the brain region most consistently neuropathologically disrupted by blast. In view of the roles of CCL2 that have been implicated in multiple neurodegenerative disorders, it is likely that the sustained high levels of CCL2 and the increased expression of its main receptor, CCR2, in the brain after blast may similarly contribute to neurodegenerative processes after blast exposure. In addition, the markedly elevated concentration of CCL2 in CSF might be a candidate early-response biomarker for diagnosis and prognosis of blast-induced TBI.
Collapse
Affiliation(s)
- Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Yanling Wei
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Samuel Oguntayo
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Donna Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Lawrence Tong
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Yan Su
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Irene Gist
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
35
|
Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood-Brain Barrier Permeability following Experimental Traumatic Brain Injury. J Neurosci 2016; 36:2809-18. [PMID: 26937017 DOI: 10.1523/jneurosci.3197-15.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Traumatic brain injury (TBI) is a major human health concern that has the greatest impact on young men and women. The breakdown of the blood-brain barrier (BBB) is an important pathological consequence of TBI that initiates secondary processes, including infiltration of inflammatory cells, which can exacerbate brain inflammation and contribute to poor outcome. While the role of inflammation within the injured brain has been examined in some detail, the contribution of peripheral/systemic inflammation to TBI pathophysiology is largely unknown. Recent studies have implicated vagus nerve regulation of splenic cholinergic nicotinic acetylcholine receptor α7 (nAChRa7) signaling in the regulation of systemic inflammation. However, it is not known whether this mechanism plays a role in TBI-triggered inflammation and BBB breakdown. Following TBI, we observed that plasma TNF-α and IL-1β levels, as well as BBB permeability, were significantly increased in nAChRa7 null mice (Chrna7(-/-)) relative to wild-type mice. The administration of exogenous IL-1β and TNF-α to brain-injured animals worsened Evans Blue dye extravasation, suggesting that systemic inflammation contributes to TBI-triggered BBB permeability. Systemic administration of the nAChRa7 agonist PNU-282987 or the positive allosteric modulator PNU-120596 significantly attenuated TBI-triggered BBB compromise. Supporting a role for splenic nAChRa7 receptors, we demonstrate that splenic injection of the nicotinic receptor blocker α-bungarotoxin increased BBB permeability in brain-injured rats, while PNU-282987 injection decreased such permeability. These effects were not seen when α-bungarotoxin or PNU-282987 were administered to splenectomized, brain-injured rats. Together, these findings support the short-term use of nAChRa7-activating agents as a strategy to reduce TBI-triggered BBB permeability. SIGNIFICANCE STATEMENT Breakdown of the blood-brain barrier (BBB) in response to traumatic brain injury (TBI) allows for the accumulation of circulating fluids and proinflammatory cells in the injured brain. These processes can exacerbate TBI pathology and outcome. While the role of inflammation in the injured tissue has been examined in some detail, the contribution of peripheral inflammation in BBB breakdown and ensuing pathology has not been well defined. We present experimental evidence to indicate that the stimulation of nicotinic acetylcholine α7 receptors (nAChRa7s) can reduce peripheral inflammation and BBB breakdown after TBI. These results suggest that activators of nAChRa7 may have therapeutic utility for the treatment of TBI.
Collapse
|
36
|
Bambakidis T, Dekker SE, Sillesen M, Liu B, Johnson CN, Jin G, de Vries HE, Li Y, Alam HB. Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock. J Neurotrauma 2016; 33:1514-21. [PMID: 26905959 DOI: 10.1089/neu.2015.4163] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis® (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p < 0.001), natural killer cell communication (p < 0.001), and dendritic cell maturation (p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1β. This high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS.
Collapse
Affiliation(s)
- Ted Bambakidis
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Simone E Dekker
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan.,2 Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center , Amsterdam, the Netherlands
| | - Martin Sillesen
- 3 Department of Surgical Gastroenterology, Copenhagen University Hospital , Copenhagen, Denmark
| | - Baoling Liu
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Craig N Johnson
- 4 DNA Sequencing Core, University of Michigan , Ann Arbor, Michigan
| | - Guang Jin
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Helga E de Vries
- 5 Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam, the Netherlands
| | - Yongqing Li
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Hasan B Alam
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| |
Collapse
|
37
|
Huang Z, Epperly M, Watkins SC, Greenberger JS, Kagan VE, Bayır H. Necrostatin-1 rescues mice from lethal irradiation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:850-856. [PMID: 26802452 PMCID: PMC4788560 DOI: 10.1016/j.bbadis.2016.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/30/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
There is an emerging need in new medical products that can mitigate and/or treat the short- and long-term consequences of radiation exposure after a radiological or nuclear terroristic event. The direct effects of ionizing radiation are realized primarily via apoptotic death pathways in rapidly proliferating cells within the initial 1-2days after the exposure. However later in the course of the radiation disease necrotic cell death may ensue via direct and indirect pathways from increased generation of pro-inflammatory cytokines. Here we evaluated radiomitigative potential of necrostatin-1 after total body irradiation (TBI) and the contribution of necroptosis to cell death induced by radiation. Circulating TNFα levels were increased starting on d1 after TBI and associated with increased plasmalemma permeability in ileum of irradiated mice. Necrostatin-1 given iv. 48h after 9.5Gy TBI attenuated radiation-induced receptor interacting protein kinase 3 (RIPK3) serine phosphorylation in ileum and improved survival vs. vehicle. Utilizing apoptosis resistant cytochrome c(-/-) cells, we showed that radiation can induce necroptosis, which is attenuated by RNAi knock down of RIPK1 and RIPK3 or by treatment with necrostatin-1 or -1s whereas 1-methyl-L-tryptophan, an indoleamine-2,3-dioxygenase inhibitor, did not exhibit radiomitigative effect. This suggests that the beneficial effect of necrostatin-1 is likely through inhibition of RIPK1-mediated necroptotic pathway. Overall, our data indicate that necroptosis, a form of programmed necrosis, may play a significant role in cell death contributing to radiation disease and mortality. This study provides a proof of principle that necrostatin-1 and perhaps other RIPK1 inhibitors are promising therapeutic agents for radiomitigation after TBI.
Collapse
Affiliation(s)
- Zhentai Huang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, United States
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh, United States
| | - Simon C Watkins
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, United States
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, United States
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, United States
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, United States; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, United States; Children's Hospital of Pittsburgh, United States.
| |
Collapse
|
38
|
Pinto FCG, Oliveira MFD, Prist R, Silva MRE, Silva LFFD, Capone Neto A. Effect of volume replacement during combined experimental hemorrhagic shock and traumatic brain injury in prostanoids, brain pathology and pupil status. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 73:499-505. [PMID: 26083885 DOI: 10.1590/0004-282x20150039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/03/2015] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) is the main cause of trauma-related deaths. Systemic hypotension and intracranial hypertension causes cerebral ischemia by altering metabolism of prostanoids. We describe prostanoid, pupilar and pathological response during resuscitation with hypertonic saline solution (HSS) in TBI. Method Fifteen dogs were randomized in three groups according to resuscitation after TBI (control group; lactated Ringer's (LR) group and HSS group), with measurement of thromboxane, prostaglandin, macroscopic and microscopic pathological evaluation and pupil evaluation.Result Concentration of prostaglandin is greater in the cerebral venous blood than in plasma and the opposite happens with concentration of thromboxane. Pathology revealed edema in groups with the exception of group treated with HSS.Discussion and conclusion There is a balance between the concentrations of prostaglandin and thromboxane. HSS prevented the formation of cerebral edema macroscopically detectable. Pupillary reversal occurred earlier in HSS group than in LR group.
Collapse
Affiliation(s)
| | | | - Ricardo Prist
- Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | | | - Antonio Capone Neto
- Unidade de Terapia Intensiva, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil
| |
Collapse
|
39
|
Simon DW, Vagni VM, Kochanek PM, Clark RSB. Combined Neurotrauma Models: Experimental Models Combining Traumatic Brain Injury and Secondary Insults. Methods Mol Biol 2016; 1462:393-411. [PMID: 27604730 DOI: 10.1007/978-1-4939-3816-2_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients with severe traumatic brain injury (TBI) frequently present with concomitant injuries that may cause secondary brain injury and impact outcomes. Animal models have been developed that combine contemporary models of TBI with a secondary neurologic insult such as hypoxia, shock, long bone fracture, and radiation exposure. Combined injury models may be particularly useful when modeling treatment strategies and in efforts to map basic research to a heterogeneous patient population. Here, we review these models and their collective contribution to the literature on TBI. In addition, we provide protocols and notes for two well-characterized models of TBI plus hemorrhagic shock.
Collapse
Affiliation(s)
- Dennis W Simon
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vincent M Vagni
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- The Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
de Oliveira MF, Pinto FCG. Hypertonic saline: a brief overview of hemodynamic response and anti-inflammatory properties in head injury. Neural Regen Res 2015; 10:1938-9. [PMID: 26889177 PMCID: PMC4730813 DOI: 10.4103/1673-5374.169620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Fernando Campos Gomes Pinto
- Division of Functional Neurosurgery of the Institute of Psychiatry, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 2015; 36:471-80. [PMID: 25979813 DOI: 10.1016/j.tips.2015.04.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury (TBI) affects millions of people worldwide every year. The primary impact initiates the secretion of pro- and anti-inflammatory factors, subsequent recruitment of peripheral immune cells, and activation of brain-resident microglia and astrocytes. Chemokines are major mediators of peripheral blood cell recruitment to damaged tissue, including the TBI brain. Here we review the involvement of specific chemokine pathways in TBI pathology and attempts to modulate these pathways for therapeutic purposes. We focus on chemokine (C-C motif) ligand 2/chemokine (C-C motif) receptor 2 (CCL2/CCR2) and chemokine (C-X-C motif) ligand 12/chemokine (C-X-C motif) receptor 4 (CXCL12/CXCR4). Recent microarray and multiplex expression profiling have also implicated CXCL10 and CCL5 in TBI pathology. Chemokine (C-X3-C motif) ligand 1/chemokine (C-X3-C motif) receptor 1 (CX3CL1/CX3CR1) signaling in the context of TBI is also discussed. Current literature suggests that modulating chemokine signaling, especially CCL2/CCR2, may be beneficial in TBI treatment.
Collapse
Affiliation(s)
- Stefka Gyoneva
- Neuro/Immuno Discovery Biology, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
42
|
Kumar RG, Diamond ML, Boles JA, Berger RP, Tisherman SA, Kochanek PM, Wagner AK. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun 2015; 45:253-62. [PMID: 25555531 DOI: 10.1016/j.bbi.2014.12.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in a significant inflammatory burden that perpetuates the production of inflammatory mediators and biomarkers. Interleukin-6 (IL-6) is a pro-inflammatory cytokine known to be elevated after trauma, and a major contributor to the inflammatory response following TBI. Previous studies have investigated associations between IL-6 and outcome following TBI, but to date, studies have been inconsistent in their conclusions. We hypothesized that cohort heterogeneity, temporal inflammatory profiles, and concurrent inflammatory marker associations are critical to characterize when targeting subpopulations for anti-inflammatory therapies. Toward this objective, we used serial cerebrospinal fluid (CSF) samples to generate temporal acute IL-6 trajectory (TRAJ) profiles in a prospective cohort of adults with severe TBI (n=114). We examined the impact of injury type on IL-6 profiles, and how IL-6 profiles impact sub-acute (2weeks-3months) serum inflammatory marker load and long-term global outcome 6-12months post-injury. There were two distinct acute CSF IL-6 profiles, a high and low TRAJ group. Individuals in the high TRAJ had increased odds of unfavorable Glasgow Outcome Scale (GOS) scores at 6months (adjusted OR=3.436, 95% CI: 1.259, 9.380). Individuals in the high TRAJ also had higher mean acute CSF inflammatory load compared to individuals in the low TRAJ (p⩽0.05). The two groups did not differ with respect acute serum profiles; however, individuals in the high CSF IL-6 TRAJ also had higher mean sub-acute serum IL-1β and IL-6 levels compared with the low TRAJ group (p⩽0.05). Lastly, injury type (isolated TBI vs. TBI+polytrauma) was associated with IL-6 TRAJ group (χ(2)=5.31, p=0.02). Specifically, there was 70% concordance between those with TBI+polytrauma and the low TRAJ; in contrast, isolated TBI was similarly distributed between TRAJ groups. These data provide evidence that sustained, elevated levels of CSF IL-6 are associated with an increased inflammatory load, and these increases are associated with increased odds for unfavorable global outcomes in the first year following TBI. Future studies should explore additional factors contributing to IL-6 elevations, and therapies to mitigate its detrimental effects on outcome.
Collapse
Affiliation(s)
- R G Kumar
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - M L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - J A Boles
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - R P Berger
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - S A Tisherman
- Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, United States
| | - P M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - A K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
43
|
Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflammation 2014; 11:191. [PMID: 25416141 PMCID: PMC4248435 DOI: 10.1186/s12974-014-0191-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunomodulatory therapies have been identified as interventions for secondary injury after traumatic brain injury (TBI). The cannabinoid receptor type-2 (CB2R) is proposed to play an important, endogenous role in regulating inflammation. The effects of CB2R stimulation, blockade, and deletion on the neurovascular inflammatory responses to TBI were assessed. METHODS Wild-type C57BL/6 or CB2R knockout mice were randomly assigned to controlled cortical impact (CCI) injury or to craniotomy control groups. The effects of treatment with synthetic, selective CB2R agonists (0-1966 and JWH-133), a selective CB2R antagonist, or vehicle solution administered to CCI groups were assessed at 1-day after injury. Changes in TNF-α, intracellular adhesion molecule (ICAM-1), inducible nitric oxide synthase (iNOS), macrophage/microglial ionized calcium-binding adaptor molecule, and blood-brain-barrier (BBB) permeability were assessed using ELISA, quantitative RT-PCR, immunohistochemistry, and fluorometric analysis of sodium fluorescein uptake. CB2R knockouts and wild-type mice with CCI injury were treated with a CB2R agonist or vehicle treatment. RESULTS TNF-α mRNA increased at 6 hours and 1 to 3 days after CCI; a CB2R antagonist and genetic knockout of the CB2R exacerbated TNF-α mRNA expression. Treatment with a CB2R agonist attenuated TNF-α protein levels indicating post-transcriptional mechanisms. Intracellular adhesion molecule (ICAM-1) mRNA was increased at 6 hours, and at 1 to 2 days after CCI, reduced in mice treated with a CB2R agonist, and increased in CB2R knockout mice with CCI. Sodium fluorescein uptake was increased in CB2R knockouts after CCI, with and without a CB2R agonist. iNOS mRNA expression peaked early (6 hours) and remained increased from 1 to 3 days after injury. Treatment with a CB2R agonist attenuated increases in iNOS mRNA expression, while genetic deletion of the CB2R resulted in substantial increases in iNOS expression. Double label immunohistochemistry confirmed that iNOS was expressed by macrophage/microglia in the injured cortex. CONCLUSION Findings demonstrate that the endogenous cannabinoid system and CB2R play an important role in regulating inflammation and neurovascular responses in the traumatically injured brain. CB2R stimulation with two agonists (0-1966 and JWH-133) dampened post-traumatic inflammation, while blockade or deletion of the CB2R worsened inflammation. Findings support previous evidence that modulating the CB2R alters infiltrating macrophages and activated resident microglia. Further investigation into the role of the CB2R on specific immune cell populations in the injured brain is warranted.
Collapse
Affiliation(s)
- Peter S Amenta
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Jack I Jallo
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ronald F Tuma
- Department of Physiology, Temple University School of Medicine, 3500 N Broad St, Philadelphia, PA, 19140, USA.
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Melanie B Elliott
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|