1
|
Obenaus A, Noarbe BP, Lee JB, Panchenko PE, Noarbe SD, Lee YC, Badaut J. Progressive lifespan modifications in the corpus callosum following a single juvenile concussion in male mice monitored by diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572925. [PMID: 38187748 PMCID: PMC10769374 DOI: 10.1101/2023.12.21.572925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction The sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi. For the first time, we assess corpus callosum (CC) integrity across the lifespan after a single juvenile concussion utilizing diffusion MRI (dMRI). Methods C57Bl/6 mice were exposed to sham or two severities of closed-head concussion (Grade 1, G1, speed 2 m/sec, depth 1mm; Grade 2, G2, 3m/sec, 3mm) using an electromagnetic impactor at postnatal day 17. In vivo diffusion tensor imaging was conducted at 1, 3, 6, 12 and 18 mpi (21 directions, b=2000 mm2/sec) and processed for dMRI parametric maps: fractional anisotropy (FA), axial (AxD), radial (RD) and mean diffusivity (MD). Whole CC and regional CC data were extracted. To identify the biological basis of altered dMRI metrics, astrocyte and microglia in the CC were characterized at 1 and 12 mpi by immunohistochemistry. Results Whole CC analysis revealed altered FA and RD trajectories following juvenile concussion. Shams exhibited a temporally linear increase in FA with age while G1/G2 mice had plateaued FA values. G2 concussed mice exhibited high variance of dMRI metrics at 12mpi, which was attributed to the heterogeneity of TBI on the anterior CC. Regional analysis of dMRI metrics at the impact site unveiled significant differences between G2 and sham mice. The dMRI findings appear to be driven, in part, by loss of astrocyte process lengths and increased circularity and decreased cell span ratios in microglia. Conclusion For the first time, we demonstrate progressive perturbations to WM of male mice after a single juvenile concussion across the mouse lifespan. The CC alterations were dependent on concussion severity with elevated sensitivity in the anterior CC that was related to astrocyte and microglial morphology. Our findings suggest that long-term monitoring of children with juvenile concussive episodes using dMRI is warranted, focusing on vulnerable WM tracts.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jeong Bin Lee
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, US
| | | | - Sean D. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yu Chiao Lee
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
James S, Sanggaard S, Akif A, Mishra SK, Sanganahalli BG, Blumenfeld H, Verhagen JV, Hyder F, Herman P. Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb. J Cereb Blood Flow Metab 2023; 43:1891-1904. [PMID: 37340791 PMCID: PMC10676132 DOI: 10.1177/0271678x231183887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
Carbon dioxide (CO2) is traditionally considered as metabolic waste, yet its regulation is critical for brain function. It is well accepted that hypercapnia initiates vasodilation, but its effect on neuronal activity is less clear. Distinguishing how stimulus- and CO2-induced vasodilatory responses are (dis)associated with neuronal activity has profound clinical and experimental relevance. We used an optical method in mice to simultaneously image fluorescent calcium (Ca2+) transients from neurons and reflectometric hemodynamic signals during brief sensory stimuli (i.e., hindpaw, odor) and CO2 exposure (i.e., 5%). Stimuli-induced neuronal and hemodynamic responses swiftly increased within locally activated regions exhibiting robust neurovascular coupling. However, hypercapnia produced slower global vasodilation which was temporally uncoupled to neuronal deactivation. With trends consistent across cerebral cortex and olfactory bulb as well as data from GCaMP6f/jRGECO1a mice (i.e., green/red Ca2+ fluorescence), these results unequivocally reveal that stimuli and CO2 generate comparable vasodilatory responses but contrasting neuronal responses. In summary, observations of stimuli-induced regional neurovascular coupling and CO2-induced global neurovascular uncoupling call for careful appraisal when using CO2 in gas mixtures to affect vascular tone and/or neuronal excitability, because CO2 is both a potent vasomodulator and a neuromodulator.
Collapse
Affiliation(s)
- Shaun James
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Simon Sanggaard
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA
- John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Alberts A, Lucke-Wold B. Updates on Improving Imaging Modalities for Traumatic Brain Injury. J Integr Neurosci 2023; 22:142. [PMID: 38176928 PMCID: PMC10776037 DOI: 10.31083/j.jin2206142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 01/06/2024] Open
Abstract
The Center for Disease Control and Prevention reports that traumatic brain injury (TBI) was related to over 64,000 deaths in the United States in 2020, equating to more than 611 TBI-related hospitalizations and 176 TBI-related deaths per day. There are both long- and short-term sequelae involved with the pathophysiology of TBI that can range from mild to severe. Recently, more effort has been devoted to understanding the long-term consequences of TBI and how early detection of these injuries can prevent late clinical manifestations. Obtaining proper, detailed imaging is key to guiding the direction of intervention, but there is a gap in the understanding of how TBI imaging can be used to predict and prevent the long-term morbidities seen with even mild forms of TBI. There have been significant strides in the advancement of TBI imaging that allows for quicker, more affordable, and more effective imaging of intracranial bleeds, axonal injury, tissue damage, and more. Despite this, there is still room for improved standardization and more data supporting the justification of using certain imaging modalities. This review aims to outline recent advancements in TBI imaging and areas that require further investigation to improve patient outcomes and minimize the acute and chronic comorbidities associated with TBI.
Collapse
Affiliation(s)
- Amelia Alberts
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Gage M, Vasanthi SS, Meyer CM, Rao NS, Thedens DR, Kannurpatti SS, Thippeswamy T. Sex-based structural and functional MRI outcomes in the rat brain after soman (GD) exposure-induced status epilepticus. Epilepsia Open 2023; 8:399-410. [PMID: 36718979 PMCID: PMC10235578 DOI: 10.1002/epi4.12701] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Exposure to the nerve agent, soman (GD), induces status epilepticus (SE), epileptogenesis, and even death. Although rodent models studying the pathophysiological mechanisms show females to be more reactive to soman, no tangible sex differences in brains postexposure have been reported. In this study, we used multimodal imaging using MRI in adult rats to determine potential sex-based biomarkers of soman effects. METHODS Male and female Sprague Dawley rats were challenged with 1.2 × LD50 soman followed by medical countermeasures. Ten weeks later, the brains were analyzed via structural and functional MRI. RESULTS Despite no significant sex differences in the initial SE severity after soman exposure, long-term MRI-based structural and functional differences were evident in the brains of both sexes. While T2 MRI showed lesser soman-induced neurodegeneration, large areas of T1 enhancements occurred in females than in males, indicating a distinct pathophysiology unrelated to neurodegeneration. fMRI-based resting-state functional connectivity (RSFC), indicated greater reductions in soman-exposed females than in males, associating with the T1 enhancements (unrelated to neurodegeneration) rather than T2-hyperintensity or T1-hypointensity (representing neurodegeneration). The wider T1 enhancements associating with the decreased spontaneous neuronal activity in multiple resting-state networks in soman-exposed females than males suggest that neural changes unrelated to cellular atrophy impinge on brain function postexposure. Taken together with lower spontaneous neural activity in soman-exposed females, the results indicate some form of neuroprotective state that was not present in males. SIGNIFICANCE The results indicate that endpoints other than neurodegeneration may need to be considered to translate sex-based nerve agent effects in humans.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Suraj S Vasanthi
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Christina M Meyer
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Nikhil S Rao
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Daniel R Thedens
- Department of RadiologyCarver College of Medicine, The University of IowaIowa CityIowaUSA
| | - Sridhar S. Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health SciencesNew Jersey Medical SchoolNewarkNew JerseyUSA
| | | |
Collapse
|
5
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
6
|
Traumatic brain injury metabolome and mitochondrial impact after early stage Ru360 treatment. Mitochondrion 2021; 57:192-204. [PMID: 33484870 DOI: 10.1016/j.mito.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Ru360, a mitochondrial Ca2+ uptake inhibitor, was tested in a unilateral fluid percussion TBI model in developing rats (P31). Vehicle and Ru360 treated TBI rats underwent sensorimotor behavioral monitoring between 24 and 72 h, thereafter which 185 brain metabolites were analyzed postmortem using LC/MS. Ru360 treatment after TBI improved sensorimotor behavioral recovery, upregulated glycolytic and pentose phosphate pathways, mitigated oxidative stress and prevented NAD+ depletion across both hemispheres. While neural viability improved ipsilaterally, it reduced contralaterally. Ru360 treatment, overall, had a global impact with most benefit near the strongest injury impact areas, while perturbing mitochondrial oxidative energetics in the milder TBI impact areas.
Collapse
|
7
|
Parent M, Chitturi J, Santhakumar V, Hyder F, Sanganahalli BG, Kannurpatti SS. Kaempferol Treatment after Traumatic Brain Injury during Early Development Mitigates Brain Parenchymal Microstructure and Neural Functional Connectivity Deterioration at Adolescence. J Neurotrauma 2020; 37:966-974. [PMID: 31830867 PMCID: PMC7175625 DOI: 10.1089/neu.2019.6486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Targeting mitochondrial ion homeostasis using Kaempferol, a mitochondrial Ca2+ uniporter channel activator, improves energy metabolism and behavior soon after a traumatic brain injury (TBI) in developing rats. Because of broad TBI pathophysiology and brain mitochondrial heterogeneity, Kaempferol-mediated early-stage behavioral and brain metabolic benefits may accrue from diverse sources within the brain. We hypothesized that Kaempferol influences TBI outcome by differentially impacting the neural, vascular, and synaptic/axonal compartments. After TBI at early development (P31), functional magnetic resonance imaging and diffusion tensor imaging (DTI) were applied to determine imaging outcomes at adolescence (2 months post-injury). Vehicle and Kaempferol treatments were made at 1, 24, and 48 h post-TBI, and their effects were assessed at adolescence. A significant increase in neural connectivity was observed after Kaempferol treatment as assessed by the spatial extent and strength of the somatosensory cortical and hippocampal resting-state functional connectivity (RSFC) networks. However, no significant RSFC changes were observed in the thalamus. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient, representing synaptic/axonal and microstructural integrity, showed significant improvements after Kaempferol treatment, with highest changes in the frontal and parietal cortices and hippocampus. Kaempferol treatment also increased corpus callosal FA, indicating measurable improvement in the interhemispheric structural connectivity. TBI prognosis was significantly altered at adolescence by early Kaempferol treatment, with improved neural connectivity, neurovascular coupling, and parenchymal microstructure in select brain regions. However, Kaempferol failed to improve vasomotive function across the whole brain, as measured by cerebrovascular reactivity. The differential effects of Kaempferol treatment on various brain functional compartments support diverse cellular-level mitochondrial functional outcomes in vivo.
Collapse
Affiliation(s)
- Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Medical Science Building, Newark, New Jersey
- Department of Molecular, Cell and Systems Neuroscience, University of California at Riverside, Riverside, California
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Basavaraju G. Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Sridhar S. Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
8
|
Chitturi J, Li Y, Santhakumar V, Kannurpatti SS. Consolidated Biochemical Profile of Subacute Stage Traumatic Brain Injury in Early Development. Front Neurosci 2019; 13:431. [PMID: 31130841 PMCID: PMC6509949 DOI: 10.3389/fnins.2019.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/15/2019] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) in general has varied neuropathological consequences depending upon the intensity and biomechanics of the injury. Furthermore, in pediatric TBI, intrinsic developmental changes add further complexity, necessitating a biochemical dimension for improved TBI characterization. In our earlier study investigating the subacute stage TBI metabolome (72 h post-injury) in a developmental rat model, significant ipsilateral brain biochemical changes occurred across 25 metabolite sets as determined by metabolite set enrichment analysis (MSEA). The broad metabolic perturbation was accompanied by behavioral deficits and neuronal loss across the ipsilateral hemisphere containing the injury epicenter. In order to obtain a consolidated biochemical profile of the TBI assessment, a subgrouping of the 190 identified brain metabolites was performed. Metabolites were divided into seven major subgroups: oxidative energy/mitochondrial, glycolysis/pentose phosphate pathway, fatty acid, amino acid, neurotransmitters/neuromodulators, one-carbon/folate and other metabolites. Subgroups were based on the chemical nature and association with critically altered biochemical pathways after TBI as obtained from our earlier untargeted analysis. Each metabolite subgroup extracted from the ipsilateral sham and TBI brains were modeled using multivariate partial least square discriminant analysis (PLS-DA) with the model accuracy used as a measurable index of TBI neurochemical impact. Volcano plots of each subgroup, corrected for multiple comparisons, determined the TBI neurochemical specificity. The results provide a ranked biochemical profile along with specificity of changes after developmental TBI, enabling a consolidated biochemical template for future classification of different TBI intensities and injury types in animal models.
Collapse
Affiliation(s)
- Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Ying Li
- Department of Pharmacology, Physiology & Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States.,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Sridhar S Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
9
|
Chitturi J, Santhakumar V, Kannurpatti SS. Beneficial Effects of Kaempferol after Developmental Traumatic Brain Injury Is through Protection of Mitochondrial Function, Oxidative Metabolism, and Neural Viability. J Neurotrauma 2019; 36:1264-1278. [PMID: 30430900 PMCID: PMC6479259 DOI: 10.1089/neu.2018.6100] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidative energy metabolism is depressed after mild/moderate traumatic brain injury (TBI) during early development, accompanied by behavioral debilitation and secondary neuronal death. A TBI metabolome analysis revealed broad effects with a striking impact on energy metabolism. Our studies on mitochondrial modulators and their effects on brain function have shown that kaempferol, a stimulator of the mitochondrial Ca2+ uniporter channel (mCU), enhanced neural and neurovascular activity in the normal brain and improved stimulus-induced brain activation and behavior after TBI during early development. Because kaempferol enhances mitochondrial Ca2+ uptake and cycling, with protective effects after TBI, we tested the hypothesis that kaempferol treatment during the acute/subacute stage after TBI (0-72 h) acted on mitochondria in improving TBI outcome. Developmental age rats (P31) underwent TBI and were treated with vehicle or kaempferol (1 mg/kg intraperitoneally) in three doses at 1, 24, and 48 h after TBI. Brains were harvested at 72 h and subjected to liquid chromatography mass spectrometric measurements. Decrease in pyruvate and tricarboxylic acid (TCA) cycle flux were observed in the untreated and vehicle-treated group, consistent with previously established energy metabolic decline after TBI. Kaempferol improved TCA cycle flux, maintained mitochondrial functional integrity as observed by decreased acyl carnitines, improved neural viability as evidenced by higher N-acetyl aspartate levels. The positive outcomes of kaempferol on metabolic profile corresponded with improved sensorimotor behavior.
Collapse
Affiliation(s)
- Jyothsna Chitturi
- Department of Radiology, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey
- Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California
| | | |
Collapse
|
10
|
Chitturi J, Li Y, Santhakumar V, Kannurpatti SS. Early behavioral and metabolomic change after mild to moderate traumatic brain injury in the developing brain. Neurochem Int 2018; 120:75-86. [PMID: 30098378 DOI: 10.1016/j.neuint.2018.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023]
Abstract
Pathophysiology of developmental traumatic brain injury (TBI) is unique due to intrinsic differences in the developing brain. Energy metabolic studies of the brain during early development (P13 to P30) have indicated acute oxidative energy metabolic decreases below 24 h after TBI, which generally recovered by 48 h. However, marked neurodegeneration and altered neural functional connectivity have been observed at later stages into adolescence. As secondary neurodegeneration is most prominent during the first week after TBI in the rat model, we hypothesized that the subacute TBI-metabolome may contain predictive markers of neurodegeneration. Sham and TBI metabolomes were examined at 72 h after a mild to moderate intensity TBI in male Sprague-Dawley rats aged P31. Sensorimotor behavior was assessed at 24, 48 and 72 h after injury, followed by 72-hour postmortem brain removal for metabolomics using Liquid Chromatography/Mass Spectrometry (LC-MS) measurement. Broad TBI-induced metabolomic shifts occurred with relatively higher intensity in the injury-lateralized (ipsilateral) hemisphere. Intensity of metabolomic perturbation correlated with the extent of sensorimotor behavioral deficit. N-acetyl-aspartate (NAA) levels at 72 h after TBI, predicted the extent of neurodegeneration assessed histochemically 7-days post TBI. Results from the multivariate untargeted approach clearly distinguished metabolomic shifts induced by TBI. Several pathways including amino acid, fatty acid and energy metabolism continued to be affected at 72 h after TBI, whose collective effects may determine the overall pathological response after TBI in early development including neurodegeneration.
Collapse
Affiliation(s)
- Jyothsna Chitturi
- Department of Radiology, Rutgers New Jersey Medical School, Administrative Complex Building 5 (ADMC5), 30 Bergen Street Room 575, Newark, NJ, 07101, USA.
| | - Ying Li
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, MSB-H-512, 185 S. Orange Ave, Newark, NJ, 07103, USA.
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, MSB-H-512, 185 S. Orange Ave, Newark, NJ, 07103, USA; Molecular, Cell and Systems Biology, University of California Riverside, Spieth 1308, 3401 Watkins Drive, Riverside, CA, 92521, USA.
| | - Sridhar S Kannurpatti
- Department of Radiology, Rutgers New Jersey Medical School, Administrative Complex Building 5 (ADMC5), 30 Bergen Street Room 575, Newark, NJ, 07101, USA.
| |
Collapse
|