1
|
Kernan KF, Adkins A, Jha RM, Kochanek PM, Carcillo JA, Berg RA, Wessel D, Pollack MM, Meert K, Hall M, Newth C, Lin JC, Doctor A, Cornell T, Harrison RE, Zuppa AF, Notterman DA, Aneja RK. IMPACT OF ABCC8 AND TRPM4 GENETIC VARIATION IN CENTRAL NERVOUS SYSTEM DYSFUNCTION ASSOCIATED WITH PEDIATRIC SEPSIS. Shock 2024; 62:688-697. [PMID: 39227362 DOI: 10.1097/shk.0000000000002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: Sepsis-associated brain injury is associated with deterioration of mental status, persistent cognitive impairment, and morbidity. The SUR1/TRPM4 channel is a nonselective cation channel that is transcriptionally upregulated in the central nervous system with injury, allowing sodium influx, depolarization, cellular swelling, and secondary injury. We hypothesized that genetic variation in ABCC8 (SUR1 gene) and TRPM4 would associate with central nervous system dysfunction in severe pediatric sepsis. Methods: 326 children with severe sepsis underwent whole exome sequencing in an observational cohort. We compared children with and without central nervous system dysfunction (Glasgow Coma Scale <12) to assess for associations with clinical characteristics and pooled rare variants in ABCC8 and TRPM4. Sites of variation were mapped onto protein structure and assessed for phenotypic impact. Results: Pooled rare variants in either ABCC8 or TRPM4 associated with decreased odds of central nervous system dysfunction in severe pediatric sepsis (OR 0.14, 95% CI 0.003-0.87), P = 0.025). This association persisted following adjustment for race, organ failure, viral infection, and continuous renal replacement therapy (aOR 0.11, 95% CI 0.01-0.59, P = 0.038). Structural mapping showed that rare variants concentrated in the nucleotide-binding domains of ABCC8 and N-terminal melastatin homology region of TRPM4 . Conclusion : This study suggests a role for the ABCC8/TRPM4 channel in central nervous system dysfunction in severe pediatric sepsis. Although exploratory, the lack of therapies to prevent or mitigate central nervous system dysfunction in pediatric sepsis warrants further studies to clarify the mechanism and confirm the potential protective effect of these rare ABCC8/TRPM4 variants.
Collapse
Affiliation(s)
| | | | - Ruchira M Jha
- Departments of Neurology, Neurological Surgery, Translational Neuroscience, Barrow Neurological Institute, and St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | | - Robert A Berg
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David Wessel
- Division of Critical Care Medicine, Department of Pediatrics, Children's National Hospital, Washington, DC
| | - Murray M Pollack
- Division of Critical Care Medicine, Department of Pediatrics, Children's National Hospital, Washington, DC
| | | | - Mark Hall
- Division of Critical Care Medicine, Department of Pediatrics, The Research Institute at Nationwide Children's Hospital Immune Surveillance Laboratory, and Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher Newth
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - John C Lin
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children's Hospital, St. Louis, Missouri
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children's Hospital, St. Louis, Missouri
| | - Tim Cornell
- Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Rick E Harrison
- Division of Critical Care Medicine, Department of Pediatrics, Mattel Children's Hospital at University of California Los Angeles, Los Angeles, California
| | - Athena F Zuppa
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel A Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | |
Collapse
|
2
|
Lin Q, Zhou D, Ma J, Zhao J, Chen G, Wu L, Li T, Zhao S, Wen H, Yu H, Zhang S, Gao K, Yang R, Shi G. Efficacy and Safety of Early Treatment with Glibenclamide in Patients with Aneurysmal Subarachnoid Hemorrhage: A Randomized Controlled Trial. Neurocrit Care 2024:10.1007/s12028-024-01999-z. [PMID: 39117964 DOI: 10.1007/s12028-024-01999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND This study aims to investigate the efficacy and safety of glibenclamide treatment in patients with acute aneurysmal subarachnoid hemorrhage (aSAH). METHODS The randomized controlled trial was conducted from October 2021 to May 2023 at two university-affiliated hospitals in Beijing, China. The study included patients with aSAH within 48 h of onset, of whom were divided into the intervention group and the control group according to the random number table method. Patients in the intervention group received glibenclamide tablet 3.75 mg/day for 7 days. The primary end points were the levels of serum neuron-specific enolase (NSE) and soluble protein 100B (S100B) between the two groups. Secondary end points included evaluating changes in the midline shift and the gray matter-white matter ratio, as well as assessing the modified Rankin Scale scores during follow-up. The trial was registered at ClinicalTrials.gov (identifier NCT05137678). RESULTS A total of 111 study participants completed the study. The median age was 55 years, and 52% were women. The mean admission Glasgow Coma Scale was 10, and 58% of the Hunt-Hess grades were no less than grade III. The baseline characteristics of the two groups were similar. On days 3 and 7, there were no statistically significant differences observed in serum NSE and S100B levels between the two groups (P > 0.05). The computer tomography (CT) values of gray matter and white matter in the basal ganglia were low on admission, indicating early brain edema. However, there were no significant differences found in midline shift and gray matter-white matter ratio (P > 0.05) between the two groups. More than half of the patients had a beneficial outcome (modified Rankin Scale scores 0-2), and there were no statistically significant differences between the two groups. The incidence of hypoglycemia in the two groups were 4% and 9%, respectively (P = 0.439). CONCLUSIONS Treating patients with early aSAH with oral glibenclamide did not decrease levels of serum NSE and S100B and did not improve the poor 90-day neurological outcome. In the intervention group, there was a visible decreasing trend in cases of delayed cerebral ischemia, but no statistically significant difference was observed. The incidence of hypoglycemia did not differ significantly between the two groups.
Collapse
Affiliation(s)
- Qing Lin
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dawei Zhou
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Ma
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, China
| | - Jingwei Zhao
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, China
| | - Guangqiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, China
| | - Lei Wu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, China
| | - Tong Li
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Honglin Wen
- Clinical Laboratory Center, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Huixian Yu
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaolan Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, China
| | - Kai Gao
- Department of Critical Care Medicine, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rongli Yang
- Department of Critical Care Medicine, Central Hospital of Dalian University of Technology, Dalian, China
| | - Guangzhi Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, China.
| |
Collapse
|
3
|
Jha RM, Simard JM. Glibenclamide for Brain Contusions: Contextualizing a Promising Clinical Trial Design that Leverages an Imaging-Based TBI Endotype. Neurotherapeutics 2023; 20:1472-1481. [PMID: 37306928 PMCID: PMC10684438 DOI: 10.1007/s13311-023-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
TBI heterogeneity is recognized as a major impediment to successful translation of therapies that could improve morbidity and mortality after injury. This heterogeneity exists on multiple levels including primary injury, secondary injury/host-response, and recovery. One widely accepted type of primary-injury related heterogeneity is pathoanatomic-the intracranial compartment that is predominantly affected, which can include any combination of subdural, subarachnoid, intraparenchymal, diffuse axonal, intraventricular and epidural hemorrhages. Intraparenchymal contusions carry the highest risk for progression. Contusion expansion is one of the most important drivers of death and disability after TBI. Over the past decade, there has been increasing evidence of the role of the sulfonylurea-receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) channel in secondary injury after TBI, including progression of both cerebral edema and intraparenchymal hemorrhage. Inhibition of SUR1-TRPM4 with glibenclamide has shown promising results in preclinical models of contusional TBI with benefits against cerebral edema, secondary hemorrhage progression of the contusion, and improved functional outcome. Early-stage human research supports the key role of this pathway in contusion expansion and suggests a benefit with glibenclamide inhibition. ASTRAL is an ongoing international multi-center double blind multidose placebo-controlled phase-II clinical trial evaluating the safety and efficacy of an intravenous formulation of glibenclamide (BIIB093). ASTRAL is a unique and innovative study that addresses TBI heterogeneity by limiting enrollment to patients with the TBI pathoanatomic endotype of brain contusion and using contusion-expansion (a mechanistically linked secondary injury) as its primary outcome. Both criteria are consistent with the strong supporting preclinical and molecular data. In this narrative review, we contextualize the development and design of ASTRAL, including the need to address TBI heterogeneity, the scientific rationale underlying the focus on brain contusions and contusion-expansion, and the preclinical and clinical data supporting benefit of SUR1-TRPM4 inhibition in this specific endotype. Within this framework, we summarize the current study design of ASTRAL which is sponsored by Biogen and actively enrolling with a goal of 160 participants.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, USA.
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, AZ, Phoenix, USA.
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
4
|
Catapano JS, Koester SW, Bond KM, Srinivasan VM, Farhadi DS, Rumalla K, Cole TS, Baranoski JF, Winkler EA, Graffeo CS, Muñoz-Casabella A, Jadhav AP, Ducruet AF, Albuquerque FC, Lawton MT, Jha RM. Outcomes in Patients with Aneurysmal Subarachnoid Hemorrhage Receiving Sulfonylureas: A Propensity-Adjusted Analysis. World Neurosurg 2023; 176:e400-e407. [PMID: 37236313 DOI: 10.1016/j.wneu.2023.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is associated with increased blood-brain barrier permeability, disrupted tight junctions, and increased cerebral edema. Sulfonylureas are associated with reduced tight-junction disturbance and edema and improved functional outcome in aSAH animal models, but human data are scant. We analyzed neurological outcomes in aSAH patients prescribed sulfonylureas for diabetes mellitus. METHODS Patients treated for aSAH at a single institution (August 1, 2007-July 31, 2019) were retrospectively reviewed. Patients with diabetes were grouped by presence or absence of sulfonylurea therapy at hospital admission. The primary outcome was favorable neurologic status at last follow-up (modified Rankin Scale score ≤2). Variables with an unadjusted P-value of <0.20 were included in a propensity-adjusted multivariable logistic regression analysis to identify predictors of favorable outcomes. RESULTS Of 1013 aSAH patients analyzed, 129 (13%) had diabetes at admission, and 16 of these (12%) were receiving sulfonylureas. Fewer diabetic than nondiabetic patients had favorable outcomes (40% [52/129] vs. 51% [453/884], P = 0.03). Among diabetic patients, sulfonylurea use (OR 3.90, 95% CI 1.05-15.9, P = 0.046), Charlson Comorbidity Index <4 (OR 3.66, 95% CI 1.24-12.1, P = 0.02), and absence of delayed cerebral infarction (OR 4.09, 95% CI 1.20-15.5, P = 0.03) were associated with favorable outcomes in the multivariable analysis. CONCLUSIONS Diabetes was strongly associated with unfavorable neurologic outcomes. An unfavorable outcome in this cohort was mitigated by sulfonylureas, supporting some preclinical evidence of a possible neuroprotective role for these medications in aSAH. These results warrant further study on dose, timing, and duration of administration in humans.
Collapse
Affiliation(s)
- Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Stefan W Koester
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kamila M Bond
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dara S Farhadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kavelin Rumalla
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Tyler S Cole
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Jacob F Baranoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ethan A Winkler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Christopher S Graffeo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Amanda Muñoz-Casabella
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Felipe C Albuquerque
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ruchira M Jha
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
5
|
Zhang L, Li C, He Y, Kuang C, Qiu X, Gu L, Wu J, Pang J, Zhang L, Xie B, Peng J, Yin S, Jiang Y. TRPM4 Drives Cerebral Edema by Switching to Alternative Splicing Isoform After Experimental Traumatic Brain Injury. J Neurotrauma 2023; 40:1779-1795. [PMID: 37078148 DOI: 10.1089/neu.2022.0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Traumatic brain injury (TBI) affects persons of all ages and is recognized as a major cause of death and disability worldwide; it also brings heavy life burden to patients and their families. The treatment of those with secondary injury after TBI is still scarce, however. Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism associated with various physiological processes, while the contribution of AS in treatment after TBI is poorly illuminated. In this study, we performed and analyzed the transcriptome and proteome datasets of brain tissue at multiple time points in a controlled cortical impact (CCI) mouse model. We found that AS, as an independent change against the transcriptional level, is a novel mechanism linked to cerebral edema after TBI. Bioinformatics analysis further indicated that the transformation of splicing isoforms after TBI was related to cerebral edema. Accordingly, we found that the fourth exon of transient receptor potential channel melastatin 4 (Trpm4) abrogated skipping at 72 h after TBI, resulting in a frameshift of the encoded amino acid and an increase in the proportion of spliced isoforms. Using magnetic resonance imaging (MRI), we have shown the numbers of 3nEx isoforms of Trpm4 may be positively correlated with volume of cerebral edema. Thus alternative splicing of Trpm4 becomes a noteworthy mechanism of potential influence on edema. In summary, alternative splicing of Trpm4 may drive cerebral edema after TBI. Trpm4 is a potential therapeutic targeting cerebral edema in patients with TBI.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaojie Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yijing He
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenghao Kuang
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Xiancheng Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Gu
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Department of Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Krocker JD, Cotton ME, Schriner JB, Osborn BK, Talanker MM, Wang YWW, Cox CS, Wade CE. Influence of TRPM4 rs8104571 genotype on intracranial pressure and outcomes in African Americans with traumatic brain injury. Sci Rep 2023; 13:5815. [PMID: 37037835 PMCID: PMC10086037 DOI: 10.1038/s41598-023-32819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
The TRPM4 gene codes for a membrane ion channel subunit related to inflammation in the central nervous system. Recent investigation has identified an association between TRPM4 single nucleotide polymorphisms (SNPs) rs8104571 and rs150391806 and increased intracranial (ICP) pressure following traumatic brain injury (TBI). We assessed the influence of these genotypes on clinical outcomes and ICP in TBI patients. We included 292 trauma patients with TBI. DNA extraction and real-time PCR were used for TRPM4 rs8104571 and rs150391806 allele discrimination. Five participants were determined to have the rs8104571 homozygous variant genotype, and 20 participants were identified as heterozygotes; 24 of these 25 participants were African American. No participants had rs150391806 variant alleles, preventing further analysis of this SNP. Genotypes containing the rs8104571 variant allele were associated with decreased Glasgow outcome scale-extended (GOSE) score (P = 0.0231), which was also consistent within our African-American subpopulation (P = 0.0324). Regression analysis identified an association between rs8104571 variant homozygotes and mortality within our overall population (P = 0.0230) and among African Americans (P = 0.0244). Participants with rs8104571 variant genotypes exhibited an overall increase in ICP (P = 0.0077), although a greater frequency of ICP measurements > 25 mmHg was observed in wild-type participants (P = < 0.0001). We report an association between the TRPM4 rs8104571 variant allele and poor outcomes following TBI. These findings can potentially be translated into a precision medicine approach for African Americans following TBI utilizing TRPM4-specific pharmaceutical interventions. Validation through larger cohorts is warranted.
Collapse
Affiliation(s)
- Joseph D Krocker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA.
| | - Madeline E Cotton
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| | - Jacob B Schriner
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| | - Baron K Osborn
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| | - Michael M Talanker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| | - Yao-Wei W Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
| | - Charles S Cox
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
- Red Duke Trauma Institute, Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Charles E Wade
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.204, Houston, TX, 77030, USA
- Red Duke Trauma Institute, Memorial Hermann-Texas Medical Center, Houston, TX, USA
| |
Collapse
|
7
|
Precision Effects of Glibenclamide on MRI Endophenotypes in Clinically Relevant Murine Traumatic Brain Injury. Crit Care Med 2023; 51:e45-e59. [PMID: 36661464 PMCID: PMC9848216 DOI: 10.1097/ccm.0000000000005749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING Preclinical laboratory. SUBJECTS Adult male C57BL/6J mice (n = 54). INTERVENTIONS Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 μg/kg)/high-dose glibenclamide (10 μg/mouse). Seven-day subcutaneous infusions (0.4 μg/hr) were continued. MEASUREMENTS AND MAIN RESULTS Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.
Collapse
|
8
|
Liu D, Zusman BE, Shaffer JR, Li Y, Arockiaraj AI, Liu S, Weeks DE, Desai SM, Kochanek PM, Puccio AM, Okonkwo DO, Conley YP, Jha RM. Decreased DNA Methylation of RGMA is Associated with Intracranial Hypertension After Severe Traumatic Brain Injury: An Exploratory Epigenome-Wide Association Study. Neurocrit Care 2022; 37:26-37. [PMID: 35028889 PMCID: PMC9287123 DOI: 10.1007/s12028-021-01424-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cerebral edema and intracranial hypertension are major contributors to unfavorable prognosis in traumatic brain injury (TBI). Local epigenetic changes, particularly in DNA methylation, may influence gene expression and thus host response/secondary injury after TBI. It remains unknown whether DNA methylation in the central nervous system is associated with cerebral edema severity or intracranial hypertension post TBI. We sought to identify epigenome-wide DNA methylation patterns associated with these forms of secondary injury after TBI. METHODS We obtained genome-wide DNA methylation profiles of DNA extracted from ventricular cerebrospinal fluid samples at three different postinjury time points from a prospective cohort of patients with severe TBI (n = 89 patients, 254 samples). Cerebral edema and intracranial pressure (ICP) measures were clustered to generate composite end points of cerebral edema and ICP severity. We performed an unbiased epigenome-wide association study (EWAS) to test associations between DNA methylation at 419,895 cytosine-phosphate-guanine (CpG) sites and cerebral edema/ICP severity categories. Given inflated p values, we conducted permutation tests for top CpG sites to filter out potential false discoveries. RESULTS Our data-driven hierarchical clustering across six cerebral edema and ICP measures identified two groups differing significantly in ICP based on the EWAS-identified CpG site cg22111818 in RGMA (Repulsive guidance molecule A, permutation p = 4.20 × 10-8). At 3-4 days post TBI, patients with severe intracranial hypertension had significantly lower levels of methylation at cg22111818. CONCLUSIONS We report a novel potential relationship between intracranial hypertension after TBI and an acute, nonsustained reduction in DNA methylation at cg22111818 in the RGMA gene. To our knowledge, this is the largest EWAS in severe TBI. Our findings are further strengthened by previous findings that RGMA modulates axonal repair in other central nervous system disorders, but a role in intracranial hypertension or TBI has not been previously identified. Additional work is warranted to validate and extend these findings, including assessment of its possible role in risk stratification, identification of novel druggable targets, and ultimately our ability to personalize therapy in TBI.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Benjamin E Zusman
- School of Medicine, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15213, USA
| | - Yunqi Li
- Institute for Public Health Genetics, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Annie I Arockiaraj
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shuwei Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shashvat M Desai
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, John G Rangos Research Center, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Ava M Puccio
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - David O Okonkwo
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA
| | - Yvette P Conley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA.
| | - Ruchira M Jha
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- St Joseph's Hospital and Medical Center, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
9
|
Munjal NS, Sapra D, Parthasarathi KTS, Goyal A, Pandey A, Banerjee M, Sharma J. Deciphering the Interactions of SARS-CoV-2 Proteins with Human Ion Channels Using Machine-Learning-Based Methods. Pathogens 2022; 11:pathogens11020259. [PMID: 35215201 PMCID: PMC8874499 DOI: 10.3390/pathogens11020259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for the protracted COVID-19 pandemic. Its high transmission rate and pathogenicity led to health emergencies and economic crisis. Recent studies pertaining to the understanding of the molecular pathogenesis of SARS-CoV-2 infection exhibited the indispensable role of ion channels in viral infection inside the host. Moreover, machine learning (ML)-based algorithms are providing a higher accuracy for host-SARS-CoV-2 protein–protein interactions (PPIs). In this study, PPIs of SARS-CoV-2 proteins with human ion channels (HICs) were trained on the PPI-MetaGO algorithm. PPI networks (PPINs) and a signaling pathway map of HICs with SARS-CoV-2 proteins were generated. Additionally, various U.S. food and drug administration (FDA)-approved drugs interacting with the potential HICs were identified. The PPIs were predicted with 82.71% accuracy, 84.09% precision, 84.09% sensitivity, 0.89 AUC-ROC, 65.17% Matthews correlation coefficient score (MCC) and 84.09% F1 score. Several host pathways were found to be altered, including calcium signaling and taste transduction pathway. Potential HICs could serve as an initial set to the experimentalists for further validation. The study also reinforces the drug repurposing approach for the development of host directed antiviral drugs that may provide a better therapeutic management strategy for infection caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Nupur S. Munjal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Dikscha Sapra
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - K. T. Shreya Parthasarathi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Abhishek Goyal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India;
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
- Manipal Academy of Higher Education (MAHE), Udupi 576104, India
- Correspondence:
| |
Collapse
|
10
|
Fauss GNK, Strain MM, Huang YJ, Reynolds JA, Davis JA, Henwood MK, West CR, Grau JW. Contribution of Brain Processes to Tissue Loss After Spinal Cord Injury: Does a Pain-Induced Rise in Blood Pressure Fuel Hemorrhage? Front Syst Neurosci 2022; 15:733056. [PMID: 34975424 PMCID: PMC8714654 DOI: 10.3389/fnsys.2021.733056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pain (nociceptive) input soon after spinal cord injury (SCI) expands the area of tissue loss (secondary injury) and impairs long-term recovery. Evidence suggests that nociceptive stimulation has this effect because it promotes acute hemorrhage. Disrupting communication with the brain blocks this effect. The current study examined whether rostral systems exacerbate tissue loss because pain input drives an increase in systolic blood pressure (BP) and flow that fuels blood infiltration. Rats received a moderate contusion injury to the lower thoracic (T12) spinal cord. Communication with rostral processes was disrupted by cutting the spinal cord 18 h later at T2. Noxious electrical stimulation (shock) applied to the tail (Experiment 1), or application of the irritant capsaicin to one hind paw (Experiment 2), increased hemorrhage at the site of injury. Shock, but not capsaicin, increased systolic BP and tail blood flow in sham-operated rats. Cutting communication with the brain blocked the shock-induced increase in systolic BP and tail blood flow. Experiment 3 examined the effect of artificially driving a rise in BP with norepinephrine (NE) in animals that received shock. Spinal transection attenuated hemorrhage in vehicle-treated rats. Treatment with NE drove a robust increase in BP and tail blood flow but did not increase the extent of hemorrhage. The results suggest pain input after SCI can engage rostral processes that fuel hemorrhage and drive sustained cardiovascular output. An increase in BP was not, however, necessary or sufficient to drive hemorrhage, implicating other brain-dependent processes.
Collapse
Affiliation(s)
- Gizelle N K Fauss
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Misty M Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science San Antonio, San Antonio, TX, United States
| | | | - Joshua A Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Jacob A Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Christopher R West
- Centre for Chronic Disease Prevention and Management, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
13
|
Osier ND, Bramlett HM, Shear DA, Mondello S, Carlson SW, Dietrich WD, Deng-Bryant Y, Wang KKW, Hayes RL, Yang Z, Empey PE, Poloyac SM, Lafrenaye AD, Povlishock JT, Gilsdorf JS, Kochanek PM, Dixon CE. Kollidon VA64 Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2021; 38:2454-2472. [PMID: 33843262 DOI: 10.1089/neu.2021.0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of plasmalemmal integrity may mediate cell death after traumatic brain injury (TBI). Prior studies in controlled cortical impact (CCI) indicated that the membrane resealing agent Kollidon VA64 improved histopathological and functional outcomes. Kollidon VA64 was therefore selected as the seventh therapy tested by the Operation Brain Trauma Therapy consortium, across three pre-clinical TBI rat models: parasagittal fluid percussion injury (FPI), CCI, and penetrating ballistic-like brain injury (PBBI). In each model, rats were randomized to one of four exposures (7-15/group): (1) sham; (2) TBI+vehicle; (3) TBI+Kollidon VA64 low-dose (0.4 g/kg); and (4) TBI+Kollidon VA64 high-dose (0.8 g/kg). A single intravenous VA64 bolus was given 15 min post-injury. Behavioral, histopathological, and serum biomarker outcomes were assessed over 21 days generating a 22-point scoring matrix per model. In FPI, low-dose VA64 produced zero points across behavior and histopathology. High-dose VA64 worsened motor performance compared with TBI-vehicle, producing -2.5 points. In CCI, low-dose VA64 produced intermediate benefit on beam balance and the Morris water maze (MWM), generating +3.5 points, whereas high-dose VA64 showed no effects on behavior or histopathology. In PBBI, neither dose altered behavior or histopathology. Regarding biomarkers, significant increases in glial fibrillary acidic protein (GFAP) levels were seen in TBI versus sham at 4 h and 24 h across models. Benefit of low-dose VA64 on GFAP was seen at 24 h only in FPI. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) was increased in TBI compared with vehicle across models at 4 h but not at 24 h, without treatment effects. Overall, low dose VA64 generated +4.5 points (+3.5 in CCI) whereas high dose generated -2.0 points. The modest/inconsistent benefit observed reduced enthusiasm to pursue further testing.
Collapse
Affiliation(s)
- Nicole D Osier
- Holistic Adult Health Division, University of Texas at Austin, School of Nursing, Austin, Texas, USA
- Department of Neurology, University of Texas at Austin, Dell Medical School, Austin Texas, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Program, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection Program, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, McKnight Brain Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, McKnight Brain Institute of the University of Florida, Gainesville, Florida, USA
| | - Philip E Empey
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- University of Texas Austin School of Pharmacy, Austin, Texas, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Program, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Fang J, Yuan Q, Du Z, Liu C, Xu H, Yang W, Chen L, Zhao J, Xie R, Hu J, Wu X. Contribution of factor VII polymorphisms to coagulopathy in patients with isolated traumatic brain injury. Clin Neurol Neurosurg 2021; 208:106836. [PMID: 34371385 DOI: 10.1016/j.clineuro.2021.106836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Coagulopathy is a severe complication of traumatic brain injury (TBI) and can cause secondary injuries and death. Decrease of FVII activity contributes to the coagulopathy and progressive hemorrhagic injury (PHI) in patients with isolated TBI. Some polymorphic loci of coagulation factor VII (FVII) are shown to be essential for FVII activity. However, the relationship between FVII gene polymorphisms and coagulopathy in patients with isolated TBI is still unknown. Therefore, the present study aimed to investigate the relationship between FVII gene polymorphisms and plasma FVIIa levels, and assess whether FVII polymorphisms were associated with TBI-related coagulopathy, PHI, and 6 months GOS in patients with isolated TBI. METHODS One-hundred-forty-nine patients with isolated TBI (from East of China) admitted to Huashan Hospital's Neurological Trauma Center from March 2012 to March 2016 were enrolled in this study. The Polymorphism-Polymerase Chain Reaction (PCR) method was used to analyze the five FVII polymorphism loci (-323P0/P10, R353Q, -401G/T, -402G/A, and -670A/C) of these patients. Patients' blood was collected to test the activated partial thromboplastin time, international normalized ratio, platelet, and FVIIa concentrations. Other clinical characteristics were also recorded. RESULTS The minor alleles of three genotypes of -323 P0/P10, R353Q, and -401G/T each independently associated with 23.3%, 28.6%, and 27.6% lower FVIIa levels, respectively. These polymorphisms explained 21% of the total variance of FVIIa levels (adjusted R2:0.206). The genotype of -323P0/P10 was an independent risk factor for coagulopathy (OR = 2.77, p = 0.043) and PHI (OR = 3.47, p = 0.03) after adjustment for confounding factors in the logistic regression model. Polymorphisms of FVII were not independently associated with 6 months Glasgow Outcome Scale (GOS) of isolated TBI patients. CONCLUSION -323P0/P10, R353Q, and -401 G/T genotypes were associated with FVIIa levels. -323P0/P10 genotype was independently associated with traumatic coagulopathy and PHI in isolated TBI patients.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Zhuoying Du
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Chaobo Liu
- Neurosurgery Department, PuDong hospital, FuDan University, 2800 Gongwei Road, Shanghai, China
| | - Hao Xu
- Neurosurgery Department, PuDong hospital, FuDan University, 2800 Gongwei Road, Shanghai, China
| | - Weijian Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Long Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Jianlan Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China.
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China.
| | - Xing Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China; Department of Neurosurgery, Shigatse People's Hospital, 28 Shanghai Zhong Road, Shigatse, Tibet, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China.
| |
Collapse
|
15
|
Jha RM, Zusman BE, Puccio AM, Okonkwo DO, Pease M, Desai SM, Leach M, Conley YP, Kochanek PM. Genetic Variants Associated With Intraparenchymal Hemorrhage Progression After Traumatic Brain Injury. JAMA Netw Open 2021; 4:e2116839. [PMID: 34309670 PMCID: PMC8314141 DOI: 10.1001/jamanetworkopen.2021.16839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Intracerebral hemorrhage progression is associated with unfavorable outcome after traumatic brain injury (TBI). No effective treatments are currently available. This secondary injury process reflects an extreme form of vasogenic edema and blood-brain barrier breakdown. The sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) cation channel is a key underlying mechanism. A phase 2 trial of SUR1-TRPM4 inhibition in contusional TBI is ongoing, and a phase 3 trial is being designed. Targeted identification of patients at increased risk for hemorrhage progression may inform prognostication, trial design (including patient selection), and ultimately treatment response. OBJECTIVE To determine whether ABCC8 (SUR1) and TRPM4 genetic variability are associated with intraparenchymal hemorrhage (IPH) progression after severe TBI, based on the putative involvement of the SUR1-TRPM4 channel in this pathophysiology. DESIGN, SETTING, AND PARTICIPANTS In this genetic association study, DNA was extracted from 416 patients with severe TBI prospectively enrolled from a level I trauma academic medical center from May 9, 2002, to August 8, 2014. Forty ABCC8 and TRPM4 single-nucleotide variants (SNVs) were genotyped (multiplex, unbiased). Data were analyzed from January 7, 2020, to May 3, 2021. MAIN OUTCOMES AND MEASURES Primary analyses addressed IPH progression at 6, 24, and 120 hours in patients without acute craniectomy (n = 321). Multivariable regressions and receiver operating characteristic curves assessed SNV and haplotype associations with progression. Spatial modeling and functional predictions were determined using standard software. RESULTS Of the 321 patients included in the analysis (mean [SD] age, 37.0 [16.3] years; 247 [76.9%] male), IPH progression occurred in 102. Four ABCC8 SNVs were associated with markedly increased odds of progression (rs2237982 [odds ratio (OR), 2.60-3.80; 95% CI, 1.14-5.90 to 1.80-8.02; P = .02 to P < .001], rs2283261 [OR, 3.37-4.77; 95% CI, 1.07-10.77 to 1.89-12.07; P = .04 to P = .001], rs3819521 [OR, 2.96-3.92; 95% CI, 1.13-7.75 to 1.42-10.87; P = .03 to P = .009], and rs8192695 [OR, 3.06-4.95; 95% CI, 1.02-9.12 to 1.67-14.68]; P = .03-.004). These are brain-specific expression quantitative trait loci (eQTL) associated with increased ABCC8 messenger RNA levels. Regulatory annotations revealed promoter and enhancer marks and strong and/or active brain-tissue transcription, directionally consistent with increased progression. Three SNVs (rs2283261, rs2237982, and rs3819521) in this cohort have been associated with intracranial hypertension. Four TRPM4 SNVs were associated with decreased IPH progression (rs3760666 [OR, 0.40-0.49; 95% CI, 0.19-0.86 to 0.27-0.89; P = .02 to P = .009], rs1477363 [OR, 0.40-0.43; 95% CI, 0.18-0.88 to 0.23-0.81; P = .02 to P = .006], rs10410857 [OR, 0.36-0.41; 95% CI, 0.20-0.67 to 0.20-0.85; P = .02 to P = .001], and rs909010 [OR, 0.27-0.40; 95% CI, 0.12-0.62 to 0.16-0.58; P = .002 to P < .001]). Significant SNVs in both genes cluster downstream, flanking exons encoding the receptor site and SUR1-TRPM4 binding interface. Adding genetic variation to clinical models improved receiver operating characteristic curve performance from 0.6959 to 0.8030 (P = .003). CONCLUSIONS AND RELEVANCE In this genetic association study, 8 ABCC8 and TRPM4 SNVs were associated with IPH progression. Spatial clustering, brain-specific eQTL, and regulatory annotations suggest biological plausibility. These findings may have important implications for neurocritical care risk stratification, patient selection, and precision medicine, including an upcoming phase 3 trial design for SUR1-TRPM4 inhibition in severe TBI.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Benjamin E. Zusman
- medical student at School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- now affiliated with Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ava M. Puccio
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David O. Okonkwo
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Pease
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Matthew Leach
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Olsen A, Babikian T, Bigler ED, Caeyenberghs K, Conde V, Dams-O'Connor K, Dobryakova E, Genova H, Grafman J, Håberg AK, Heggland I, Hellstrøm T, Hodges CB, Irimia A, Jha RM, Johnson PK, Koliatsos VE, Levin H, Li LM, Lindsey HM, Livny A, Løvstad M, Medaglia J, Menon DK, Mondello S, Monti MM, Newcombe VFJ, Petroni A, Ponsford J, Sharp D, Spitz G, Westlye LT, Thompson PM, Dennis EL, Tate DF, Wilde EA, Hillary FG. Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav 2021; 15:526-554. [PMID: 32797398 PMCID: PMC8032647 DOI: 10.1007/s11682-020-00313-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Virginia Conde
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen Genova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Neurology, Department of Psychiatry & Department of Psychology, Cognitive Neurology and Alzheimer's, Center, Feinberg School of Medicine, Weinberg, Chicago, IL, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hopsital, Trondheim University Hospital, Trondheim, Norway
| | - Ingrid Heggland
- Section for Collections and Digital Services, NTNU University Library, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ruchira M Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, Pittsburgh, PA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Vassilis E Koliatsos
- Departments of Pathology(Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Harvey Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Lucia M Li
- C3NL, Imperial College London, London, UK
- UK DRI Centre for Health Care and Technology, Imperial College London, London, UK
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- Department of Neurology, Drexel University, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Brain Injury Research Center (BIRC), UCLA, Los Angeles, CA, USA
| | | | - Agustin Petroni
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific & Technical Research Council, Institute of Research in Computer Science, Buenos Aires, Argentina
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - David Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Frank G Hillary
- Department of Neurology, Hershey Medical Center, State College, PA, USA.
| |
Collapse
|
17
|
Griepp DW, Lee J, Moawad CM, Davati C, Runnels J, Fiani B. BIIB093 (intravenous glibenclamide) for the prevention of severe cerebral edema. Surg Neurol Int 2021; 12:80. [PMID: 33767884 PMCID: PMC7982107 DOI: 10.25259/sni_933_2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Vasogenic edema in the setting of acute ischemic stroke can be attributed to the opening of transient receptor potential 4 channels, which are expressed in the setting of injury and regulated by sulfonylurea receptor 1 (SUR1) proteins. Glibenclamide, also known as glyburide, RP-1127, Cirara, and BIIB093, is a second-generation sulfonylurea that binds SUR1 at potassium channels and may significantly reduce cerebral edema following stroke, as evidenced by recent clinical trials. This review provides a comprehensive analysis of clinical considerations of glibenclamide use and current patient outcomes when administered in the setting of acute ischemic stroke to reduce severe edema. Methods: National databases (MEDLINE, EMBASE, Cochrane, and Google scholar databases) were searched to identify studies that reported on the clinical outcomes of glibenclamide administered immediately following acute ischemic stroke. Results: The pharmacological mechanism of glibenclamide was reviewed in depth as well as the known indications and contraindications to receiving treatment. Eight studies were identified as having meaningful clinical outcome data, finding statistically significant differences in glibenclamide treatment groups ranging from matrix metalloproteinase-9 serum levels, midline shift, modified Rankin Scores, National Institute of Health Stroke Score, and mortality endpoints. Conclusion: Studies analyzing the GAMES-Pilot and GAMES-PR trials suggest that glibenclamide has a moderate, however, measurable effect on intermediate biomarkers and clinical endpoints. Meaningful conclusions are limited by the small sample size of patients studied.
Collapse
Affiliation(s)
- Daniel W Griepp
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Jason Lee
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Christina M Moawad
- Department of Biomedical Engineering, Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, Champaign, Illinois, United States
| | - Cyrus Davati
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Juliana Runnels
- School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, United States
| |
Collapse
|
18
|
Zusman BE, Kochanek PM, Bell MJ, Adelson PD, Wisniewski SR, Au AK, Clark RSB, Bayır H, Janesko-Feldman K, Jha RM. Cerebrospinal Fluid Sulfonylurea Receptor-1 is Associated with Intracranial Pressure and Outcome after Pediatric TBI: An Exploratory Analysis of the Cool Kids Trial. J Neurotrauma 2021; 38:1615-1619. [PMID: 33430695 DOI: 10.1089/neu.2020.7501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfonylurea receptor-1 (SUR1) is recognized increasingly as a key contributor to cerebral edema, hemorrhage progression, and possibly neuronal death in multiple forms of acute brain injury. SUR1 inhibition may be protective and is actively undergoing evaluation in Phase-2/3 trials of traumatic brain injury (TBI) and stroke. In adult TBI, SUR1 expression is associated with intracranial hypertension and contusion expansion; its role in pediatric TBI remains unexplored. We tested 61 cerebrospinal fluid (CSF) samples from 16 pediatric patients with severe TBI enrolled in the multicenter Phase-3 randomized controlled "Cool Kids" trial and seven non-brain injured pediatric controls for SUR1 expression by enzyme-linked immunosorbent assay. Linear mixed models evaluated associations between mean SUR1 and intracranial pressure (ICP) over the first seven days and pediatric Glasgow Outcome Scale-Extended (GOS-E Peds) over the initial year after injury. SUR1 was undetectable in control CSF and increased versus control in nine of 16 patients with TBI. Mean SUR1 was not associated with age, sex, or therapeutic hypothermia. Each 1-point increase in initial Glasgow Coma Score was associated with a 1.68 ng/mL decrease in CSF SUR1. The CSF SUR1 was associated with increased ICP over seven days (b = 0.73, p = 0.004) and worse (higher) GOS-E Peds score (b = 0.24, p = 0.004). In this exploratory pediatric study, CSF SUR1 was undetectable in controls and variably elevated in severe TBI. Mean CSF SUR1 concentration was associated with ICP and outcome. These findings are distinct from our previous report in adults with severe TBI, where SUR1 was detected universally. SUR1 may be a viable therapeutic target in a subset of pediatric TBI, and further study is warranted.
Collapse
Affiliation(s)
- Benjamin E Zusman
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Children's Hospital of Pittsburgh, UPMC, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | | | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Publich Health, Pittsburgh, Pennsylvania, USA
| | - Alicia K Au
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Ruchira M Jha
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
DeKosky ST, Kochanek PM, Valadka AB, Clark RS, Chou SHY, Au AK, Horvat C, Jha RM, Mannix R, Wisniewski SR, Wintermark M, Rowell SE, Welch RD, Lewis L, House S, Tanzi RE, Smith DR, Vittor AY, Denslow ND, Davis MD, Glushakova OY, Hayes RL. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J Neurotrauma 2021; 38:1-43. [PMID: 33115334 PMCID: PMC7757533 DOI: 10.1089/neu.2020.7332] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.
Collapse
Affiliation(s)
- Steven T. DeKosky
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Department of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry H.-Y. Chou
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Horvat
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Division of Pediatric Critical Care, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Mannix
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Department of Medicine, Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Susan E. Rowell
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert D. Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit Receiving Hospital/University Health Center, Detroit, Michigan, USA
| | - Lawrence Lewis
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stacey House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, McCance Center for Brain Health, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Department of Neurology (Research), Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Darci R. Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, Maryland, USA
| | - Amy Y. Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Emerging Pathogens Institute, Gainesville, Florida, USA
| | - Nancy D. Denslow
- Departments of Physiological Sciences and Biochemistry and Molecular Biology, University of Florida, Center for Environmental and Human Toxicology, Gainesville, Florida
| | - Michael D. Davis
- Department of Pediatrics, Wells Center for Pediatric Research/Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
20
|
Jha RM, Mondello S, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Wang KKW, Yang Z, Hayes RL, Poloyac SM, Empey PE, Lafrenaye AD, Yan HQ, Carlson SW, Povlishock JT, Gilsdorf JS, Kochanek PM. Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2020; 38:628-645. [PMID: 33203303 DOI: 10.1089/neu.2020.7421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-μg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 μg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Neurology, Neurobiology, and Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hong Q Yan
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Zhou K, Liu Y, Zhao Z, Wang Y, Huang L, Chai R, Li G, Jiang T. ABCC8 mRNA expression is an independent prognostic factor for glioma and can predict chemosensitivity. Sci Rep 2020; 10:12682. [PMID: 32728190 PMCID: PMC7391768 DOI: 10.1038/s41598-020-69676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and is associated with very low survival rates. The development of reliable biomarkers can help to elucidate the molecular mechanisms involved in glioma development. Here the expression of ABCC8 mRNA, clinical characteristics, and survival information based on 1893 glioma samples from four independent databases were analyzed. The expression patterns of ABCC8 mRNA were compared by a Chi square test. The overall survival rate of gliomas was evaluated according to the expression level of ABCC8 mRNA. The prognostic value of this marker in gliomas was tested using Cox single factor and multi factor regression analyses. We found patients with low WHO grade, oligodendrocytoma, low molecular grade, IDH mutation, and 1p19q combined deletion had high ABCC8 mRNA expression. The patients with high expression of ABCC8 mRNA had longer survival. ABCC8 mRNA expression was a new independent prognostic index for glioma. Temozolomide chemotherapy was an independent index to prolong overall survival in high ABCC8 mRNA expression glioma patients, whereas in patients with low expression, there was no significant difference. So ABCC8 mRNA expression could be an independent prognostic indicator for glioma patients and could predict the sensitivity of glioma to temozolomide.
Collapse
Affiliation(s)
- Kaijia Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yinyuan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Lijie Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ruichao Chai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
22
|
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Ruchira M Jha
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Lietke S, Zausinger S, Patzig M, Holtmanspötter M, Kunz M. CT-Based Classification of Acute Cerebral Edema: Association with Intracranial Pressure and Outcome. J Neuroimaging 2020; 30:640-647. [PMID: 32462690 DOI: 10.1111/jon.12736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain edema after acute cerebral lesions may lead to raised intracranial pressure (ICP) and worsen outcome. Notwithstanding, no CT-based scoring system to quantify edema formation exists. This retrospective correlative analysis aimed to establish a valid and definite CT score quantifying brain edema after common acute cerebral lesions. METHODS A total of 169 CT investigations in 60 patients were analyzed: traumatic brain injury (TBI; n = 47), subarachnoid hemorrhage (SAH; n = 70), intracerebral hemorrhage (ICH; n = 42), and ischemic stroke (n = 10). Edema formation was classified as 0: no edema, 1: focal edema confined to 1 lobe, 2: unilateral edema > 1 lobe, 3: bilateral edema, 4: global edema with disappearance of sulcal relief, and 5: global edema with basal cisterns effacement. ICP and Glasgow Outcome Score (GOS) were correlated to edema formation. RESULTS Median ICP values were 12.0, 14.0, 14.9, 18.2, and 25.9 mm Hg in grades 1-5, respectively. Edema grading significantly correlated with ICP (r = .51; P < .0001) in focal and global cerebral edema, particularly in patients with TBI, SAH, and ICH (r = .5, P < .001; r = .5; P < .0001; r = .6, P < .0001, respectively). At discharge, 23.7% of patients achieved a GOS of 5 or 4, 65.0% reached a GOS of 3 or 2, and 11.9% died (GOS 1). CT-score of cerebral edema in all patients correlated with outcome (r = -.3, P = .046). CONCLUSION The proposed CT-based grading of extent of cerebral edema significantly correlated with ICP and outcome in TBI, SAH, and ICH patients and might be helpful for standardized description of CT-images and as parameter for clinical studies, for example, measuring effects of antiedematous therapies.
Collapse
Affiliation(s)
- Stefanie Lietke
- Department of Neurosurgery, Ludwigs-Maximilians University, Munich, Germany
| | - Stefan Zausinger
- Department of Neurosurgery, Ludwigs-Maximilians University, Munich, Germany
| | - Maximilian Patzig
- Institute for Neuroradiology, Ludwig-Maximilians University, Munich, Germany
| | - Markus Holtmanspötter
- Institute for Neuroradiology, Ludwig-Maximilians University, Munich, Germany.,Nuremberg Hospital, Neuroradiology, Paracelsus Medical University, Nürnberg, Germany
| | - Mathias Kunz
- Department of Neurosurgery, Ludwigs-Maximilians University, Munich, Germany
| |
Collapse
|
24
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
The authors reply. Pediatr Crit Care Med 2019; 20:1105-1107. [PMID: 31688689 DOI: 10.1097/pcc.0000000000002095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, He F, Jain S, Hayman EG. Magnetic Resonance Imaging Pilot Study of Intravenous Glyburide in Traumatic Brain Injury. J Neurotrauma 2019; 37:185-193. [PMID: 31354055 PMCID: PMC6921286 DOI: 10.1089/neu.2019.6538] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical studies of traumatic brain injury (TBI) show that glyburide reduces edema and hemorrhagic progression of contusions. We conducted a small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide. Twenty-eight subjects were randomized and underwent a 72-h infusion of IV glyburide or placebo, beginning within 10 h of trauma. Of the 28 subjects, 25 had Glasgow Coma Scale (GCS) scores of 6-10, and 14 had contusions. There were no differences in adverse events (AEs) or severe adverse events (ASEs) between groups. The magnetic resonance imaging (MRI) percent change at 72-168 h from screening/baseline was compared between the glyburide and placebo groups. Analysis of contusions (7 per group) showed that lesion volumes (hemorrhage plus edema) increased 1036% with placebo versus 136% with glyburide (p = 0.15), and that hemorrhage volumes increased 11.6% with placebo but decreased 29.6% with glyburide (p = 0.62). Three diffusion MRI measures of edema were quantified: mean diffusivity (MD), free water (FW), and tissue MD (MDt), corresponding to overall, extracellular, and intracellular water, respectively. The percent change with time for each measure was compared in lesions (n = 14) versus uninjured white matter (n = 24) in subjects receiving placebo (n = 20) or glyburide (n = 18). For placebo, the percent change in lesions for all three measures was significantly different compared with uninjured white matter (analysis of variance [ANOVA], p < 0.02), consistent with worsening of edema in untreated contusions. In contrast, for glyburide, the percent change in lesions for all three measures was not significantly different compared with uninjured white matter. Further study of IV glyburide in contusion TBI is warranted.
Collapse
Affiliation(s)
- Howard M Eisenberg
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martha E Shenton
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, Massachusetts
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christina Aldrich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feng He
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Erik G Hayman
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|